50,600 research outputs found

    An Integer Programming Formulation Using Convex Polygons for the Convex Partition Problem

    Get PDF
    A convex partition of a point set P in the plane is a planar partition of the convex hull of P into empty convex polygons or internal faces whose extreme points belong to P. In a convex partition, the union of the internal faces give the convex hull of P and the interiors of the polygons are pairwise disjoint. Moreover, no polygon is allowed to contain a point of P in its interior. The problem is to find a convex partition with the minimum number of internal faces. The problem has been shown to be NP-hard and was recently used in the CG:SHOP Challenge 2020. We propose a new integer linear programming (IP) formulation that considerably improves over the existing one. It relies on the representation of faces as opposed to segments and points. A number of geometric properties are used to strengthen it. Data sets of 100 points are easily solved to optimality and the lower bounds provided by the model can be computed up to 300 points

    Minimum Convex Partitions and Maximum Empty Polytopes

    Full text link
    Let SS be a set of nn points in Rd\mathbb{R}^d. A Steiner convex partition is a tiling of conv(S){\rm conv}(S) with empty convex bodies. For every integer dd, we show that SS admits a Steiner convex partition with at most ⌈(n−1)/d⌉\lceil (n-1)/d\rceil tiles. This bound is the best possible for points in general position in the plane, and it is best possible apart from constant factors in every fixed dimension d≥3d\geq 3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any nn points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n)\omega(1/n). Here we give a (1−ε)(1-\varepsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst nn given points in the dd-dimensional unit box [0,1]d[0,1]^d.Comment: 16 pages, 4 figures; revised write-up with some running times improve

    Trisections of a 3-rotationally symmetric planar convex body minimizing the maximum relative diameter

    Get PDF
    In this work we study the fencing problem consisting of finnding a trisection of a 3-rotationally symmetric planar convex body which minimizes the maximum relative diameter. We prove that an optimal solution is given by the so-called standard trisection. We also determine the optimal set giving the minimum value for this functional and study the corresponding universal lower bound.Comment: Preliminary version, 20 pages, 15 figure

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio
    • …
    corecore