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TRISECTIONS OF A 3-ROTATIONALLY SYMMETRIC

PLANAR CONVEX BODY MINIMIZING THE MAXIMUM

RELATIVE DIAMETER

ANTONIO CAÑETE, CINZIA MIORI, AND SALVADOR SEGURA GOMIS

Abstract. In this work we study the fencing problem consisting of find-
ing a trisection of a 3-rotationally symmetric planar convex body which
minimizes the maximum relative diameter. We prove that an optimal so-
lution is given by the so-called standard trisection. We also determine the
optimal set giving the minimum value for this functional and study the
corresponding universal lower bound.

Introduction

In the setting of convex geometry, it is considered historically that the
classical geometric magnitudes associated to a planar compact convex set are
the perimeter, the area, the diameter, the minimum width, the circumradius
and the inradius. These magnitudes have been deeply studied, and along
the last century, the different relations between them, which can be usually
established by means of inequalities, have become a very interesting topic, as
well as the characterization of the optimal sets satisfying the equality in such
inequalities. Possibly, the most remarkable example of this kind of problems
is the classical isoperimetric inequality, relating the area and the perimeter of
a set, see [14]. We refer the reader to [17] and references therein for a detailed
description of the known relations involving two and three of the previous
magnitudes for general planar convex sets.

In addition, the study of these classical functionals has inspired a large
amount of related questions and open problems, see [8]. Among them, we
have the so-called fencing problems, which consist of finding the way of parti-
tioning a planar compact convex set into n connected subsets of equal areas,
minimizing (or maximizing) a given geometric measure. For these questions,
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different approaches can be explored: one can try to characterize the opti-
mal division, or find out some geometric properties of the solution, or even
compute estimates for the optimal value or bounds of the considered measure.

The most common sample of fencing problems is the relative isoperimetric
problem, consisting of minimizing the relative perimeter of the partition of the
set (or equivalently, the length of the partitioning curves). For some regular
polygons, including the circle, this relative isoperimetric problem has been
treated in several works [18, 2, 3, 7], not only for subdivisions of equal areas,
providing general properties of the minimal partition and characterizing the
solution when the number of subsets is small. On the other hand, for partitions
into two connected subsets of equal areas, which are called bisections, a recent
result gives a sharp upper bound for the perimeter of the shortest bisection for
planar convex sets, which is attained by the circle [9, Th. 1.1]. This optimal
bound is expressed in terms of the area of the set. Some others lower and
upper bounds for the minimal length of bisections in terms of the classical
magnitudes, and the corresponding characterizations of some optimal sets,
can be found in [11], as well as the study of the same questions regarding the
maximal length of bisections.

Apart from the relative perimeter of the partition, fencing problems can
be considered with others relative geometric magnitudes to be minimized or
maximized. For instance, we can define the maximum relative diameter as
follows: given a planar compact (convex) set C and a partition P of C into
connected subsets {C1, . . . , Cn} of equal areas, the maximum relative diameter
of P is

dM (P) = max{D(Ci) : i = 1, . . . , n},
whereD(Cj) = max{d(x, y) : x, y ∈ Cj} denotes the diameter of the subset Cj ,
and d(·, ·) the Euclidean distance. In other words, this magnitude measures
the largest distance in any of the subsets of the partition. This functional and
the corresponding associated fencing problem have been already studied in [13]
(see also [4]). This work focuses on bisections of centrally symmetric planar
convex bodies, and proves that for any set of this family, the minimum value
for dM is attained when the bisection consists of a straight line passing through
the center of the set [13, Prop. 4]. We remark that the precise characterization
of the optimal straight line is not known, and that the minimizing bisection is
not necessarily unique. Moreover, it is also determined a centrally symmetric
planar convex body of unit area with the minimum possible value for the
maximum relative diameter dM , that is, an optimal set for this problem [13,
Th. 5].

The results in [13] are obtained in the class of centrally symmetric convex
bodies, which a priori may seem a restrictive hypothesis. However, this class
of sets is the suitable domain in the setting of bisections, arising naturally in
this framework: when considering simple bisections by line segments for con-
vex bodies, the minimum value for the maximum relative diameter is attained
on a centrally symmetric body, and not only in the planar case [13, Th. 7].
Moreover, this class of sets had previously appeared for some classical geomet-
ric questions. Regarding the maximal length of the shortest bisecting chord,
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Santaló conjectured if for any planar convex set K, an upper bound was given
by (4π)1/2 area(K), with equality for a disk [8, Problem A26]. Although this
conjecture is not true in general (counterexamples were obtained by Auerbach
[1], see also [10]) and the complete answer has been recently found [9, Th. 1.2],
the conjecture holds when restricting to centrally symmetric convex sets [6,
Th. 4].

Continuing in the direction explored in [13], in this paper we shall focus
on trisections of planar convex bodies, studying the minimum value for the
maximum relative diameter. Trisections are partitions into three connected
subsets of equal areas by means of three curves meeting in a common inte-
rior point, and therefore, the convenient setting for this problem is the class
of 3-rotationally symmetric planar convex bodies. For any set in this class,
we shall find a trisection that minimizes the maximum relative diameter dM
(Theorem 3.5), describing its explicit construction in Section 2. This par-
ticular minimizing trisection will be referred to as standard trisection. We
shall also see that uniqueness of the solution is not expected, since some small
perturbations of a minimizing trisection will give the same value for dM . In ad-
dition, we shall determine which is the 3-rotationally symmetric planar convex
body attaining the minimum value for the maximum relative diameter (The-
orem 4.7). This optimal set consists of a certain intersection of an equilateral
triangle and a circle, and has already arisen in several optimization problems
involving some triplets of classical geometric magnitudes, see [12, §. 4]. We
stress that, along this paper, we are considering trisections by general curves,
not only by straight line segments, and that the sets of our family are convex
bodies (that is, compact convex sets), in order to guarantee the existence of
the maximum relative diameter.

The restriction of our fencing problem to the family of 3-rotationally sym-
metric planar convex bodies is natural in this setting since we are dealing with
trisections. In fact, this family will play the same role as the class of centrally
symmetric bodies for bisections. Apart from this, the family of 3-rotationally
symmetric planar convex bodies is geometrically interesting for different rea-
sons: many geometric transformations preserve the existing threefold sym-
metry, and it contains the optimal solution for many problems in the convex
geometry setting (for instance, Pal proved that among all planar convex sets
with fixed minimal width, the equilateral triangle is the set with minimum
area enclosed [15]). Moreover, many boundary curves in Santaló’s diagrams
for complete systems of inequalities represent 3-rotationally symmetric convex
bodies [12].

We have organized this paper as follows. Section 1 contains the precise
definitions and the statement of the problem, and Section 2 describes the con-
struction of the so-called standard trisection for any 3-rotationally symmetric
planar convex body. This construction will be completely determined by the
smallest equilateral triangle containing the considered set. Section 3 contains
the proof of our main Theorem 3.5:
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For any 3-rotationally symmetric planar convex body, a trisec-
tion minimizing the maximum relative diameter dM is given by
the standard trisection.

The key results for proving our main Theorem 3.5 are Proposition 2.1, which
indicates the pairs of points that may realize the maximum relative diameter
for the standard trisection, and Lemmata 3.1 and 3.3, where we show that the
maximum relative diameter for any trisection is always greater than or equal
to such value, then yielding that the standard trisection provides a desired
minimum. We also give some examples illustrating that the uniqueness of the
solution for this problem does not hold.

In Section 4 we investigate a related problem in this setting, searching for the
3-rotationally symmetric planar convex body of fixed area with the minimum
value for the maximum relative diameter (equivalently, the minimum possible
value for the maximum relative diameter in that class of sets). In view of
Theorem 3.5, we only have to focus on the standard trisections, and after
analyzing this question in some particular cases, we obtain our Theorem 4.7:

The minimum value for the maximum relative diameter in the
class of 3-rotationally symmetric planar convex bodies of unit
area is uniquely attained by the standard trisection of the set

H̃ from Figure 1.

Figure 1. Optimal set providing the minimum value for the
maximum relative diameter

This set H̃ is geometrically determined by an appropriate intersection of an
equilateral triangle and a circle, and provides the universal sharp lower bound
for the maximum relative diameter functional (Remark 4.8).

Finally, in Section 5 we treat the same problem when considering partitions
into three connected subsets of equal areas which are not trisections. Propo-
sition 5.1 asserts that, even in this more general case, the standard trisection
is a minimizing one for the maximum relative diameter.

We remark that Section 4 has been written constructively, reproducing in
some sense the process followed in order to obtain the results, with the analysis
of some particular examples leading to more general conclusions. We think this
can be interesting for the reader, since it may help to a better comprehension
of this work.
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1. Preliminaries

Given a planar convex set C, and n ∈ N, we say that C has n-fold rotational
symmetry (or that it is n-rotationally symmetric) with respect to a center
p ∈ C if C is invariant under the action of rotation of angle 360/n degrees
about p. In particular, for n = 3 this implies that 3-rotationally symmetric
sets are invariant under any term of rotations about p with angles of 120, 240
and 360 degrees. Consequently, any three equiangular axes centered at p will
divide C into three identical subsets, up to rotations. Some examples of sets
of this family are the regular polygons of 3n edges (with n ∈ N) and Reuleaux
triangle.

Figure 2. Some examples of 3-rotationally symmetric sets:
equilateral triangle, regular nonagon, and Reuleaux triangle

In this work, we shall focus on the class of 3-rotationally symmetric planar
convex bodies, thus assuming that they are compact sets. For a given set
C belonging to this class, we shall denote by Tr(C) the smallest equilateral
triangle containing C. This triangle will be useful along this work, and its
construction can be done as follows: consider m ∈ ∂C such that d(p,m) =
d(p, ∂C), where d represents the Euclidean distance in the plane. Equivalently,
m is a point in ∂C achieving the minimum distance to p. Consider then the
line orthogonal to the segment pm passing through m, and the other two
lines determined by the existing threefold symmetry of C, see Figure 3. The
resulting equilateral triangle is necessarily Tr(C), due to the convexity of C
and the fact that the apothem of that triangle is minimal by the choice of the
point m.

Figure 3. Construction of the smallest equilateral triangle
containing a 3-rotationally symmetric hexagon

Remark 1.1. We remark that the smallest equilateral triangle containing a
given 3-rotationally symmetric planar convex body C is not unique in general,
as can be easily seen for a regular hexagon. But notice that all these triangles
will be congruent by construction, so we can consider Tr(C) as one of them.
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Remark 1.2. Let C be a 3-rotationally symmetric planar convex body C, and
let Tr(C) be its associated smallest equilateral triangle. We shall denote by
B(C) the inscribed ball of Tr(C), whose center coincides with the center of the
threefold symmetry of C, and its radius is equal to the length of the apothem
of Tr(C). Notice that there are no points from ∂C in the interior of B(C),
and B(C) ⊆ C ⊆ Tr(C), see Figure 4.

Figure 4. Inscribed ball associated to a 3-rotationally sym-
metric hexagon

We now define the suitable partitions into three subsets that will be consid-
ered for the class of 3-rotationally symmetric planar convex bodies, although
the definition can be done in a more general setting.

Definition 1.3. Let C be a planar compact set. A trisection T of C is a
decomposition {C1, C2, C3} of C by planar curves {γ12, γ23, γ13} satisfying:

i) C = C1 ∪ C2 ∪ C3.
ii) int(Ci) ∩ int(Cj) = ∅, for i, j ∈ {1, 2, 3}, i �= j.
iii) area(Ci) =

1
3 area(C), for i ∈ {1, 2, 3}.

iv) Ci is a connected set, and γij = ∂Ci ∩ ∂Cj, for i, j ∈ {1, 2, 3}.
v) The curves γ12, γ23, γ13 meet at a point c ∈ int(C), and the other end-

points of the curves lie in ∂C.

The endpoints of the curves {γ12, γ23, γ13} meeting ∂C will be simply referred
to as the endpoints of the trisection, and the point c ∈ int(C) will be called the
common point of the trisection.

In other words, a trisection is a partition of the original set C into three
connected subsets of equal areas by three curves starting from an interior
common point and ending on different points of the boundary of C. It is clear
that there is an infinite number of trisections for any 3-rotationally symmetric
planar convex body, since the curves are not necessarily segments and the
common point c does not have to coincide with the center p of symmetry of
the set, as depicted in Figure 5.

In this work we shall consider a geometric functional defined in terms of the
diameter of a set, which is called maximum relative diameter, which is defined
as follows.

Definition 1.4. Let C be a planar compact set, and let T be a trisection of
C into subsets C1, C2, C3. We define the maximum relative diameter of the
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Figure 5. Some different trisections for a regular hexagon

trisection T as

dM (T,C) = max{D(C1), D(C2), D(C3)},
where D(Ci) = max{d(x, y) : x, y ∈ Ci} denotes the diameter of Ci.

Remark 1.5. For simplicity, we shall usually write dM (T ) instead of dM (T,C),
if no confusion may appear.

Remark 1.6. We point out that for a given trisection of a set, the maximum
relative diameter represents the maximum distance between two points in any
of the subsets of the trisection. The existence of this value is clear due to the
continuity of the Euclidean distance and the compactness of the original set.

Remark 1.7. We recall that the diameter of a convex polygon is attained by
the distance between two of its vertices.

The following lemma shows that the maximum relative diameter of a trisec-
tion is always achieved by points lying in the boundary of one of the subsets
determined by the trisection.

Lemma 1.8. Let C be a planar compact set, and T a trisection of C. Then,
the maximum relative diameter dM (T ) is attained by the distance between two
points belonging to the boundary of one of the subsets given by T .

Proof. Let C1, C2, C3 be the subsets of C given by the trisection T , and assume
that dM (T ) = d(a, b), with a, b ∈ C1. If a ∈ int(C1), we can find a small ball
Ba centered at a and completely contained in C1, since int(C1) is an open set.
Then it is clear that there are points in Ba whose distance from b will be strictly
larger than d(a, b), which contradicts the fact that dM (T ) = d(a, b). �

As pointed out in the Introduction, the purpose of this paper is the fol-
lowing: among all the trisections for a given 3-rotationally symmetric planar
convex body, which is the trisection providing the minimum possible value for
the maximum relative diameter? We shall prove that the so-called standard
trisection, described in Section 2, is an answer to this question.

2. Standard trisection Tb

We now proceed to the description of the construction of one particular
trisection for the sets of our family, called the standard trisection.

Let C be a 3-rotationally symmetric planar convex body, and consider Tr(C)
its associated smallest equilateral triangle. By joining the midpoints of the
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edges of Tr(C) with the center p of the threefold symmetry of C by line
segments, we shall clearly obtain a trisection of C yielding identical subsets
C1, C2, C3 up to rotation, due to the existing symmetry. This trisection will
be called standard trisection of C, and will be denoted by Tb(C) (or simply
Tb if there is no confusion with the considered set). Notice that the standard
trisection of C is uniquely determined by means of the equilateral triangle
Tr(C). Along this paper, we shall also denote by {v1, v2, v3} the endpoints of
the standard trisection, which coincide with the midpoints of the edges of the
associated equilateral triangle.

Figure 6. Standard trisections for different 3-rotationally
symmetric sets

Next Proposition 2.2 indicates which pair of points realizes dM (Tb) for any
3-rotationally symmetric planar convex body.

Proposition 2.1. Let C be a 3-rotationally symmetric planar convex body,
and Tb the standard trisection of C. Then

dM (Tb) = d(v1, v2), or dM (Tb) = d(p, x),

where v1, v2 are two endpoints of Tb, p is the center of the threefold symmetry,
and x ∈ ∂C.

Proof. Let C1, C2, C3 be the congruent subsets of C given by Tb. We can
assume that dM (Tb) = d(a, b), with a, b ∈ ∂C1, in view of Lemma 1.8. In fact,
those points will belong to A := ∂C1 ∩ ∂C or B := ∂C1 ∩ int(C). If both
of them belong to B, then clearly d(a, b) < d(v1, v2), which is contradictory.
If both points belong to A, as C is contained in the smallest triangle Tr(C),
it follows that A will be contained in the equilateral triangle determined by
the edge v1v2, and so d(a, b) � d(v1, v2). Finally, if a ∈ A and b ∈ B, it is
easy to check that the only admissible possibility for dM (Tb) is d(p, x), with
x ∈ A. �
Remark 2.2. For a 3-rotationally symmetric convex polygon C, in view of
Remark 1.7, it is clear that Proposition 2.1 reads

dM (Tb) = d(v1, v2), or dM (Tb) = d(p, x),

where Tb is the associated standard trisection of C and x is a vertex of C.

Both possibilities from Proposition 2.1 may occur, as illustrated in the fol-
lowing lemma. We shall denote by P the family of 3-rotationally symmetric
regular polygons, which will have necessarily 3n edges, n ∈ N.

Lemma 2.3. Consider C ∈ P, with m = 3n edges, n ∈ N. Let Tb be the
standard trisection of C with endpoints v1, v2, v3. Then
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i) dM (Tb, C) = d(v1, v2) if n > 1, and
ii) dM (Tb, C) = d(p, x) if n = 1,

where p is the center of C and x is any vertex of C.

Proof. By Proposition 2.2, we know that dM (Tb, C) is either d(v1, v2) or d(p, x).
It is straightforward checking (by using conveniently the law of sines) that
d(v1, v2) =

√
3 a(C), and d(p, x) = a(C) cos−1(π/m), where a(C) is the

apothem of C. Analytically,
√
3 > cos−1(π/m) if and only if m > 3, equiva-

lently n > 1, as stated. �
Remark 2.4. The previous lemma implies that the equilateral triangle is the
unique 3-rotationally symmetric regular polygon with dM (Tb) = d(p, x). For
the rest of polygons in P, the maximum relative diameter for the standard
trisection is given by the distance between two of its endpoints.

Remark 2.5. We stress that Proposition 2.1 implies that one of the points
realizing the maximum relative diameter for the standard trisection will nec-
essarily lie in the boundary of the considered set. This property does not hold
for general trisections, where that value might be achieved by two points from
the interior of the set.

3. Trisections minimizing the maximum relative diameter

In this section we shall prove that, for any 3-rotationally symmetric planar
convex set C, its associated standard trisection Tb gives the minimum possible
value for the maximum relative diameter dM . The key point is the previous
Proposition 2.1, which describes the two possible precise values for dM (Tb, C).
In fact, we shall see in Lemmata 3.1 and 3.3 that, for any trisection T of C,
dM (T,C) is always greater than or equal to each of those possibilities, leading
us to our main Theorem 3.5. Furthermore, at the end of this section we shall
discuss about the uniqueness of the minimizing trisection. Several examples
will show that uniqueness does not occur in general for this problem.

Lemma 3.1. Let C be a 3-rotationally symmetric planar convex body, and let
T be a trisection of C. For any x ∈ ∂C, we have that

dM (T ) � d(p, x),

where p is the center of symmetry of C.

Proof. Let C1, C2, C3 be the subsets of C given by T . We can assume that p ∈
C1. Call x

′, x′′ the two threefold symmetric points of x in ∂C, which will satisfy
d(p, x) = d(p, x′) = d(p, x′′). If any of these three points x, x′, x′′ belongs to
C1, then the thesis is trivial since dM (T ) � D(C1) � d(p, x). Otherwise, two
of them will be necessarily contained in the same subset Ci, for i ∈ {2, 3}, say
x′, x′′. Therefore dM (T ) � D(Ci) � d(x′, x′′). It is straightforward checking
that d(x′, x′′) > d(p, x), which finishes the proof. �
Remark 3.2. In the previous proof, we obtain strict inequality dM (T ) > d(p, x)
if p ∈ int(C1), since in that case, by assuming for instance that x ∈ C1 and
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proceeding as in the proof of Lemma 1.8, we will find points in C1 whose
distance to x is larger than d(p, x).

Lemma 3.3. Let C be a 3-rotationally symmetric planar convex body, and let
T be a trisection of C. Then we have that

dM (T ) � d(v1, v2),

where v1, v2 are endpoints of the standard trisection Tb of C.

Proof. Call w1, w2, w3 the endpoints of the trisection T , and C1, C2, C3 the
subsets of C given by T . We shall distinguish two cases in this proof.

Case 1: Assume that an endpoint of T coincides with an endpoint of Tb,
say w1 = v1. Decompose ∂C − {w1} into three disjoint curves α, β, γ, where
α = (w1, v2], β = (w1, v3] and γ = (v2, v3). Clearly w2, w3 ∈ α ∪ β ∪ γ. It
is straightforward checking, by discussing the precise placement of w2 and w3

along ∂C, that there will be always two endpoints vi, vj of Tb contained in a
same subset Ci, and so

dM (T ) � D(Ci) � d(vi, vj).

Case 2: Assume that the endpoints of T do not coincide with the endpoints
of Tb. Then, all these endpoints have to be placed alternately along ∂C,
say v1, w1, v2, w2, v3, w3 (otherwise, two endpoints of Tb will belong to a same
subset Ci and so dM (T ) � d(v1, v2), as previously). Rotate the standard
trisection Tb with its edges extended until meeting an endpoint of T , say w3.
This rotation will move the endpoints of Tb onto three new points v′1, v′2, v′3
on ∂B(C), with d(v′i, v

′
j) = d(vi, vj), i, j ∈ {1, 2, 3}. Note that w1 will be

contained by construction in the striped region from Figure 7, and therefore
w1 is not contained in the ball centered at w3 of radius d(w3, v

′
1) = d(w3, v

′
2),

so d(w1, w3) > d(w3, v
′
1). Hence

dM (T ) � d(w1, w3) > d(w3, v
′
1) > d(v′3, v

′
1) = d(v3, v1),

where the last inequality above is trivial. �

Figure 7. Points v′1, v′2, v′3 after rotating Tb. The endpoint w1

of T will be contained in the striped region

Remark 3.4. A refinement in the proof of Lemma 3.3 gives the strict inequality
dM (T ) > d(v1, v2), unless the three endpoints of T coincide with the endpoints
of the standard trisection Tb. In fact, if the endpoint v1 of Tb is not an endpoint
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of T , we can find a point q close to v1, and another endpoint vi of Tb, with
q, vi contained in a same subset given by T , and satisfying d(q, vi) > d(v1, vi).

The two previous lemmata allow us to state our main result: for any 3-
rotationally symmetric planar convex body, its associated standard trisection
gives the minimum value for the maximum relative diameter.

Theorem 3.5. Let C be a 3-rotationally symmetric planar convex body, and
Tb its associated standard trisection. Then,

dM (Tb, C) � dM (T,C),

for any trisection T of C.

Proof. From Proposition 2.1 we have that dM (Tb, C) equals either d(v1, v2) or
d(p, x), where v1, v2 are endpoints of Tb, p is the center of symmetry and x ∈
∂C. By using Lemmata 3.1 or 3.3, we conclude that dM (T,C) � dM (Tb, C).

�

3.1. Uniqueness of the minimizing trisection. For this particular prob-
lem involving the maximum relative diameter functional, uniqueness of the
minimizing trisection does not hold. This can be observed with some simple
examples. Figure 8 shows some trisections of the regular hexagon H obtained
by small-enough appropriate deformations of its standard trisection Tb(H),
which give the same minimum value for our functional. And Figure 9 shows
that, by rotating slightly the standard trisection for the equilateral triangle T ,
we obtain new trisections with the same maximum relative diameter. Thus,
the minimizing trisection for a set of our class is not unique, and we cannot
aim to find a complete characterization of all of them.

Figure 8. Four different minimizing trisections for H. The
first trisection is Tb(H), and the rest of them are obtained by
small deformations. In the last one, the common point does
not coincide with the center of symmetry

Remarks 3.2 and 3.4 provide necessary conditions for a trisection to be min-
imizing. More precisely, for a 3-rotationally symmetric planar convex body
C, and any minimizing trisection T , it follows that dM (T ) will be equal to
dM (Tb), where Tb is the standard trisection associated to C, by using The-
orem 3.5. Taking into account Proposition 2.1 and the notation therein, if
dM (Tb) is given by d(vi, vj), then the endpoints of T will coincide with the
endpoints of Tb due to Remark 3.4. On the other hand, if dM (Tb) is given by
d(p, x), Remark 3.2 implies that the common point of T will necessarily be
the center of symmetry of the set.
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Figure 9. Three different minimizing trisections for T : the
standard trisection Tb(T ), a trisection obtained by rotating
slightly Tb(T ), and a trisection determined by curves

Finally, if we restrict our problem to trisections by line segments, we can
assure uniqueness only if the maximum relative diameter for the standard tri-
section is given by d(vi, vj), due to Remark 3.4 and the fact that, in that case,
the common point of the trisection must coincide with the center of symmetry
of the set, in order to satisfy the subdivision area condition. In the other
case, when the maximum relative diameter for the standard trisection equals
d(p, x), Figure 9 shows that uniqueness does not occur even for trisections by
line segments.

4. Lower bound for dM in the class of 3-rotationally symmetric

planar convex bodies

In this section we shall discuss the following related questions: for a given
3-rotationally symmetric planar convex body C of unit area, and an arbitrary
trisection T of C, can we estimate a lower bound for dM (T,C)? Can we char-
acterize a set attaining such lower bound? These questions are interesting in
the context of fencing problems, because they lead to useful relative geomet-
rical inequalities [16]. We remark that this problem is analogous to the one
studied in [13], where a lower bound for the maximum relative diameter of
bisections of centrally symmetric planar convex bodies is obtained, describing
also a corresponding optimal body [13, Th. 5].

In our setting, it is clear that we have to focus on the standard trisections,
which give the minimum value for the maximum relative diameter functional
dM for any set in our family, in view of Theorem 3.5. In addition, note that
for a given 3-rotationally symmetric planar convex set C and its associated
standard trisection Tb, the quotient

dM (Tb, C) 2

area(C)
,

is invariant under dilations. Hence we can focus on the class of 3-rotationally
symmetric planar convex bodies of unit area, denoted by C1, in order to com-
pute the minimum possible value for the maximum relative diameter func-
tional. With these considerations, our problem then consists of estimating

min{dM (Tb, C) : C ∈ C1}.

We shall start with the subfamily P1 of C1 composed by the regular 3-
rotationally symmetric polygons of unit area. Recall that these polygons will
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have necessarily m = 3n edges, with n ∈ N. Taking into account Lemma 2.3,
where the maximum relative diameter is precisely computed for the sets in P1,
we shall prove that the minimum value is given by the equilateral triangle.

Theorem 4.1. Let P1 ⊂ C1 be the family of regular 3-rotationally symmetric
polygons of unit area. Then,

min{dM (Tb, C) : C ∈ P1} = dM (Tb, T ),

where T is the equilateral triangle.

Proof. For any polygon C ∈ P1 with m = 3n edges, n ∈ N, it is easy to check
that the apothem a(C) of C is equal to m−1/2 cot1/2(π/m). Using this fact,
we can compare the maximum relative diameter of the sets in P1, taking into
account Lemma 2.3 and its proof.

From Lemma 2.3, if n > 1, then

dM (Tb, C) = d(v1, v2) =
√
3 a(C) =

√
3m−1/2 cot1/2(π/m),

where v1, v2 are two endpoints of Tb. It is straightforward checking that the
above expression is increasing with respect to m, and so the minimum value
will be attained when m = 6, equivalently n = 2 (which is the case of the

regular hexagon H), with dM (Tb, H) equal to 2−1/2 cot1/2(π/6). On the other
hand, if n = 1, C is an equilateral triangle T and

dM (Tb, T ) = d(p, x) = a(C) cos−1(π/3) = 2 cot1/2(π/3) 3−1/2,

where p is the center of symmetry and x is any vertex of T . Since dM (Tb, T ) <
dM (Tb, H), the result follows. �
Remark 4.2. We point out that Theorem 4.1 provides a lower bound for the
maximum relative diameter of any trisection of a regular polygon contained
in P1. That is, for C ∈ P1,

dM (T,C) � dM (Tb, T ) = 2 cot1/2(π/3) 3−1/2 = 0.877383 . . . ,

for any trisection T of C.

In [13, Th. 5] it is proved that the minimum value of the maximum relative
diameter for bisections, in the class of centrally symmetric planar convex bod-
ies, is attained by a particular set delimited by the intersection of a strip and
two symmetric circular sectors meeting in a certain angle. In some sense, this
result may suggest that the minimizing set in our setting could have curved
edges. Since Reuleaux triangle is a remarkable set of our class with that prop-
erty, we shall proceed to the study of this candidate in detail, showing in
the following examples that it does not actually provide the desired minimum
value.

Example 4.3. Consider a Reuleaux triangle R of unit area. This implies that
the equilateral triangle obtained by joining the vertices of R has edges of
length a = (2/(π −

√
3))1/2. In view of Theorem 3.5, the standard trisection

Tb gives the minimum value for dM , and taking into account Proposition 2.1,
straightforward computations yield that dM (Tb, R) = d(v1, v2) = (

√
3− 1) a =

0.872002 . . . , where v1, v2 are two endpoints of Tb. Notice that dM (Tb, R) <
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dM (Tb, T ), where T is the equilateral triangle of unit area. However, we shall
see in Example 4.4 that the minimum value for the maximum relative diameter
is strictly smaller than dM (Tb, R).

Example 4.4. Consider a regular hexagon H with edges of length h > 0, and
the smallest equilateral triangle Tr(H) containing H. Enlarge each edge of H
lying on ∂Tr(H) by adding symmetrically two segments of length 0 < ε � h.
By joining the endpoints of these new edges, we shall obtain a 3-rotationally
symmetric convex non-regular hexagon Hε. Call a, b the lengths of the edges
of Hε, with a < b.

Figure 10. A set Hε with edges of lengths a, b

By imposing that these sets enclose unit area, we have that Hε evolve con-
tinuously, when ε increases, from the regular hexagon (with a = b = 21/23−3/4)

to the equilateral triangle (with a = 0 and b = 2 3−1/4). Morever, taking into
account that each Hε can be seen as an equilateral triangle with edges of
length b + 2a where three equilateral triangles with edges of length a have
been removed from the corners, the unit area condition satisfied by Hε can be
expressed analytically in terms of a, b, obtaining

b = −2 a+
√
3−1/2 4 + 3 a2,

where a ∈ [0, 21/23−3/4].

From Theorem 3.5, the minimum value for dM will be given by the standard
trisection Tb(Hε). By using Proposition 2.2 we have that dM (Tb, Hε) equals
either d(p, x) or d(v1, v2), where p is the center of the threefold symmetry, x
is a vertex of Hε and v1, v2 are two endpoints of Tb. In fact, that minimum
value will depend on the proximity of Hε to an equilateral triangle or a regular
hexagon. In this setting, it can be checked that

d(p, x) =
1

3

(
4
√
3 + 18a2 − 3a

√
12

√
3 + 27a2

)1/2

,

d(v1, v2) =
1

2

(
3a2 + 4/

√
3

)1/2

.

Figure 11 shows the graphs of the above expressions as functions of a,
where the decreasing one corresponds to d(p, x). By the definition of maxi-
mum relative diameter functional, we have that dM (Tb, Hε) will be the larger
value between d(p, x) and d(v1, v2). As both graphs intersect when a = a0 =
0.141227 . . . , it follows that dM (Tb, Hε) equals d(p, x) if a � a0 (when Hε is
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closer to an equilateral triangle), and equals d(v1, v2) if a � a0 (when Hε is,
in some sense, more similar to a regular hexagon).

0.1 0.2 0.3 0.4 0.5 0.6

0.70

0.75

0.80

0.85

0.90

Figure 11. The decreasing graph corresponds to d(p, x), and
the increasing one corresponds to d(v1, v2)

In any case, it is clear that there are values of a, and thus sets of type Hε,
such that dM (Tb, Hε) is strictly smaller than dM (Tb, R) = 0.872002 . . . , and
so the minimum value for the maximum relative diameter is not achieved by
Reuleaux triangle R. More precisely, the minimum value for dM for sets of
type Hε is equal to 0.769616 . . . , being attained when a = a0.

Remark 4.5. We point out that each set Hε from Example 4.4 coincides with
a proper Minkowski sum λT +(1−λ)H, where T is an equilateral triangle, H
is a regular hexagon, and λ ∈ [0, 1], after scaling in order to enclose unit area.

The previous example suggests us the following idea, which will lead us to
the desired optimal set for our problem.

Example 4.6. Consider the set Hε with a = a0 and its associated smallest
triangle Tr(Hε), being p its center of symmetry. Set r := d(p, x), where x is
any vertex of Hε, and substitute the edges of Hε of length a by circular arcs
of radius r centered at p, see Figure 12. By shrinking appropriately in order
to enclose unit area, we obtain a new 3-rotationally symmetric convex body

that will be called H̃.

Figure 12. H̃ is obtained by rounding some edges in the op-
timal set Hε, and shrinking for unit area

Notice that, since we have to shrink in order to preserve unit area, all the

distances will decrease and so the maximum relative diameter for H̃ (which
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by construction will be given by d(vi, vj) = d(p, x), being x any point in the
circular arcs) will be strictly less than the corresponding value for the optimal

set of type Hε. Next result shows that this set H̃ is the only one attaining
the minimum possible value for the maximum relative diameter in the class of
unit area 3-rotationally symmetric planar convex bodies.

Theorem 4.7. Let C be a 3-rotationally symmetric planar convex body of unit

area, and let H̃ be the set described in Example 4.6. Then,

dM (Tb, H̃) � dM (Tb, C),

with equality if and only if H̃ = C.

Proof. Consider Tr(H̃) and Tr(C) the smallest equilateral triangles containing

H̃ and C, respectively. Due to the threefold symmetry, we can assume that
both triangles are centered at the same point p, and so the corresponding
standard trisections are given by the same lines leaving from p.

If Tr(H̃) ⊂ Tr(C), then clearly the distance between two endpoints of Tb(C)

is strictly larger than the distance between two endpoints of Tb(H̃), and so

dM (Tb, C) > dM (Tb, H̃).

Assume now the other possibility Tr(C) ⊆ Tr(H̃), taking into account that

both triangles are equilateral and centered at p. Then C ⊂ Tr(C) ⊆ Tr(H̃).

Notice that it is not possible that C ⊂ H̃, since both sets enclose unit area.

Hence, we can find a point y ∈ ∂C ⊂ C which is not contained in H̃ but
included in Tr(C) (in fact, such a point will be placed nearby the corners of
Tr(C), see Figure 13). Then d(p, y) > d(p, x), for any x in the circular arcs of

H̃, which implies dM (Tb, C) > dM (Tb, H̃). �

Figure 13. H̃ and the two nested equilateral triangles Tr(H̃)
and Tr(C). The striped regions will necessarily contain points
from C

Remark 4.8. We point out that the question treated in this Section 4 of finding
the minimum possible value for the maximum relative diameter functional on
the class C1 of unit area 3-rotationally symmetric planar convex bodies, is
equivalent to minimizing the quotient

(4.1)
dM (Tb, C) 2

area(C)
,
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among all 3-rotationally symmetric planar convex bodies. Notice that (4.1)
is invariant under dilations, which allows to omit the unit area restriction.
This approach has been used in several works studying analogous problems
[4, 5, 13]. In our setting, Theorem 4.7 assures that

(4.2)
dM (Tb, C) 2

area(C)
� dM (Tb, H̃) 2

area(H̃)
,

for any 3-rotationally symmetric planar convex body C. In fact, straight-

forward computations will give that dM (Tb, H̃) equals 0.769262 . . . , a value
slightly less than dM (Tb, Hε) when a = a0, and so the optimal bound in (4.2)
is 0.591764 . . . .

Remark 4.9. We stress that the optimal set H̃ can be geometrically constructed
by considering the intersection of an equilateral triangle and an appropriate
circle with the same center, imposing unit area. This set has already appeared
in literature for some optimization problems. More precisely, it is the solution
of some complete systems of inequalities for 3-rotationally symmetric planar
convex bodies, involving classical geometric magnitudes, see [12, §. 4].

Figure 14. The set H̃ is given by a unit area intersection of
an equilateral triangle and a circle

5. General subdivisions

For a 3-rotationally symmetric planar convex body C, one can consider our
problem of minimizing the maximum relative diameter functional not only for
trisections (given by three curves leaving from an interior point and meeting
the boundary of C), but for general partitions of C into three connected subsets
of equal areas (provided by curves with no self-intersections).

Figure 15. Three different partitions of the regular hexagon
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In this setting, we have the following result stating that the minimum value
for the maximum relative diameter when considering general partitions is given
by the corresponding standard trisection.

Proposition 5.1. Given a 3-rotationally symmetric planar convex body C,
and a partition Q of C into three connected subsets of equal areas, we have
that

dM (Tb, C) � dM (Q,C),

where Tb is the standard trisection of C.

Proof. By Proposition 2.1 we know that dM (Tb, C) equals either d(p, x) or
d(v1, v2), where p is the center of symmetry, x ∈ ∂C, and v1, v2 are two
endpoints of Tb. Call C1, C2, C3 the subsets of C given by the partition Q.

If dM (Tb, C) = d(p, x), call x′, x′′ the threefold symmetric points of x, and
let C1 be a subset containing p. In case that C1 contains x or one of its
symmetric points, then dM (Q,C) � D(C1) � d(p, x) = dM (Tb, C). Otherwise,
if C1 does not contain any of those points, then clearly two of them will be
contained in a same subset, say C2, and so dM (Q,C) � D(C2) � d(x, x′).
Since d(x, x′) > d(p, x), we conclude that dM (Q,C) > dM (Tb, C), as desired.

On the other hand, if dM (Tb, C) = d(v1, v2), let q be the number of intersec-
tion points between ∂C and the curves of Q. In case that q equals zero or one,
it is clear that ∂C (and in particular the endpoints of Tb) will be contained
in one of the subsets Cj , and so dM (Q,C) � D(Cj) � d(v1, v2) = dM (Tb, C).
If q = 2, then ∂C will be contained in the union of two subsets Ci ∪ Cj , and
so two endpoints of Tb will necessarily lie in one subset, say v1, v2 ∈ Ci. Then
dM (Q,C) � D(Ci) � d(v1, v2) = dM (Tb, C). If q = 3, then the curves of
the partition Q will meet in the interior of C in at most one point. If such
meeting point exists, then Q will be a trisection, and so the statement is true
by Theorem 3.5. If such meeting point does not exist, then either ∂C will
be contained in a union Ci ∪ Cj , and we can proceed as previously, or Q will
consist of two curves meeting at a same point y of ∂C. In this latter case, a
subset Ci will contain the two antipodal points y, y of ∂C (that is, the seg-
ment joining y and y passes through the center of symmetry of C), and then
dM (Q,C) � D(Ci) � d(y, y) � d(v1, v2) = dM (Tb, C), by using Lemma 5.3
below. If q = 4, then Q will consist of two curves meeting ∂C, and one of the
subsets Ci will contain two antipodal points by Lemma 5.4 below. Hence, by
proceeding as in the case q = 3 it follows that dM (Q,C) � dM (Tb, C). Since
any partition with more than four intersection points divides C into more than
three subsets, we conclude that the statement holds. �

Remark 5.2. Taking into account that any trisection is, in particular, a parti-
tion, Proposition 5.1 implies that the minimum value for the maximum rela-
tive diameter when considering general partitions is attained by the standard
trisection.

Lemma 5.3. Let C be a 3-rotationally symmetric planar convex set, with p
its center of symmetry. Let y, y ∈ ∂C be two antipodal points (that is, the
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segment joining y and y passes through p). Then, d(y, y) � d(v1, v2), where
v1, v2 are two endpoints of the standard trisection of C.

Proof. Recall that d(p, vi) = d(p, ∂C) = min{d(p, x) : x ∈ ∂C}, i = 1, 2, 3,
by construction of the standard trisection of C. Then d(p, y) � d(p, v1) and
d(p, y) � d(p, v1), and so

d(y, y) = d(p, y) + d(p, y) � d(p, v1) + d(p, v2) � d(v1, v2),

where we have used that y, y are antipodal points in the first equality, and the
classical triangular inequality in the last inequality. �
Lemma 5.4. Let C be a 3-rotationally symmetric planar convex set, and
let Q be a partition of C by two curves meeting ∂C in four diferent points
{y1, y2, y3, y4}. Then there are two antipodal points in one of the subsets given
by Q.

Proof. In this proof, we shall consider the counterclockwise orientation along
∂C. Assume that one of the curves from Q has endpoints y1, y2, and the other
one has endpoints y3, y4, so that ∂C1 ∩ ∂C is delimited by y1, y2, ∂C3 ∩ ∂C is
delimited by y3, y4, and ∂C2 ∩ ∂C is delimited by y2, y3, and by y4, y1.

Suppose that Ci does not contain two antipodal points, i = 1, 2, 3. As
y1 ∈ ∂C1 ∩ ∂C2, its antipodal point y1 cannot belong to ∂C1 ∩ ∂C2, and
so y2, y3 must lie in the part of ∂C between y1 and y1. Analogously, since
y3 ∈ ∂C2∩∂C3, it follows that y4 must lie in the part of ∂C between y3 and y1
(being y3 the antipodal point of y3). Then the antipodal point y4 of y4 belongs
to the part of ∂C between y3 and y1, which implies that y4 ∈ ∂C3∩∂C. Hence
y4, y4 belong to C3, yielding a contradiction. �
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