15,198 research outputs found

    Aerospace Manufacturing Industry: A Simulation-Based Decision Support Framework for the Scheduling of Complex Hoist Lines

    Get PDF
    The hoist scheduling problem is a critical issue in the design and control of Automated Manufacturing Systems. To deal with the major complexities appearing in such problem, this work introduces an advanced simulation model to represent the short-term scheduling of complex hoist lines. The aim is to find the best jobs schedule that minimizing the makespan while maximizing throughput with no defective outputs. Several hard constraints are considered in the model: single shared hoist, heterogeneous recipes, eventual recycles flows, and no buffers between workstations. Different heuristic-based strategies are incorporated into the computer model in order to improve the solutions generated over time. The alternative solutions can be quickly evaluated by using a graphical user interface developed together with the simulation model.Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pulido, Raul. Universidad Politécnica de Madrid; EspañaFil: Coccola, Mariana Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Combined make-to-order and make-to-stock in a food production system

    Get PDF
    The research into multi-product production/inventory control systems has mainly assumed one of the two strategies: Make-to-Order (MTO) or Make-to-Stock (MTS). In practice, however, many companies cater to an increasing variety of products with varying logistical demands (e.g. short due dates, specific products) and production characteristics (e.g. capacity usage, setup) to different market segments and so they are moving to more MTO-production. As a consequence they operate under a hybrid MTO-MTS strategy. Important issues arising out of such situations are, for example, which products should be manufactured to stock and which ones on order and, how to allocate capacity among various MTO-MTS products. This paper presents the state-of-the-art literature review of the combined MTO-MTS production situations. A variety of production management issues in the context of food processing companies, where combined MTO-MTS production is quite common, are discussed in details. The authors propose a comprehensive hierarchical planning framework that covers the important production management decisions to serve as a starting point for evaluation and further research on the planning system for MTO-MTS situations.

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach

    Optimizing campaign sizing policies: an application to a real-life setting.

    Get PDF
    This paper presents an integrated production inventory model that enables to capture the tradeoffs between average inventory, production capacity and customer service level in a semiprocess industry setting. The model includes different features that are specific for such a setting, such as differences in reactor yield and quality requirements across products, the need for cleaning reactors when switching between product types, and the requirement to produce products in campaign sizes that are an integer multiple of the reactor’s batch size. The model can be used to support midterm planning procedures. In this paper, we illustrate the application of the model to real-life data of two product families at a large specialty chemicals company, which for reasons of confidentiality is further referred to as Company C.Queueing; Campaign sizing; (Semi)process industries;

    Value stream analysis in military logistics: The improvement in order processing procedure

    Get PDF
    Military logistics is a complex process where response times, demand uncertainty, wide variety of material references, and cost-effectiveness are decisive for combat capability. The demanding flexibility can only be achieved by improving supply chain management (SCM) to minimize lead times. To cope with these requirements, lean thinking can be extended to military organizations. This research justifies and proposes the use of lean methodologies to improve logistics processes with the case study of a military unit. In particular, the article presents the results obtained using value stream mapping (VSM) and value stream design (VSD) tools to improve the order processing lead time of spare items. The procedure starts with an order generation from a military unit that requests the material and ends before transportation to the final destination. The whole project was structured, considering the define-measure-analyze-improve-control (DMAIC) problem-solving methodology. The results show that the future state map might increase added-value activities from 44% to 70%. After implementation, it was demonstrated that the methodology applied reduced the lead-time average and deviation up to 69.6% and 61.9%, respectively

    Introduction to Production: Philosophies, Flow, and Analysis

    Get PDF
    Production is a fundamental societal and economic activity. Production has to do with the transformation of raw materials into useful objects and includes the knowledge to complete the transformation effectively. Thus, production is a board topic ranging from philosophies about how to approach production such as lean and quick response manufacturing, how to organize production facilities, how to analyze production operations, how to control the flow of materials during production, the devices used to move materials within a facility, and strategies for coordinating multiple production facilities. An integrated introduction to production is presented in a set of learning modules. In significant part, these learning modules are based on over 20 years of interactions with the professional production community in the West Michigan region where Grand Rapids and Holland are the principal cities. This community consists almost exclusively of small and medium size companies engaged primarily in high mix, low volume manufacturing. Students in the Bachelor of Science in Engineering and Master of Science in Engineering programs at Grand Valley State University often work in production for these companies. Thus, interactions are facilitated particularly though master’s degree capstone projects, several of which are referenced in the learning modules. The learning modules are well-grounded in established production concepts. Emphasis is placed on proven procedures such as systematic layout planning, factory physics, various production flow control techniques such as kanban and POLCA, and discrete event simulation. Professional practice is a focus of the learning modules. Material from processional groups such as the Lean Enterprise Institute and the Material Handling Institute (MHI) is integrated. The opportunity to read and discuss professional publications presenting production improvement projects is provided. Students are referred to professional videos and web sites throughout the learning modules. All materials provided are referenced are open access and free of charge. When downloading the main file, it is important to also download and use the Main File Support as it contains supplemental materials.https://scholarworks.gvsu.edu/books/1022/thumbnail.jp

    Implementation of lean principles for performance improvement: Use of VSM+WID for waste identification

    Get PDF
    This article demonstrates the implementation of lean principles for performance improvement in a manufacturing firm. Value stream mapping and waste identification diagrams (VSM+WID) are integrated to assess the level of currently existing waste and the overall current status of the manufacturing flow. The VSM+WID enables an increase in the awareness of relative waste distribution among different processes in the selected case study manufacturing unit. This manuscript demonstrates how to use VSM+WID to understand the current status of the manufacturing flow related challenges such as: overproduction, work-in-process, inefficient use of man-hours (e.g. unbalanced work distribution), etc. It also demonstrates the effectiveness of visualization of the performance gap between the current and future state. The aforementioned type of performance assessment enables effective identification of waste present in a manufacturing flow in order for future improvement initiatives to be taken.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013

    Scheduling flexible flowshops with sequence -dependent setup times

    Get PDF
    This dissertation addresses the scheduling problem in a flexible flowshop with sequence-dependent setup times. The production line consists of S production stages, each of which may have more than one non-identical (uniform) machines. Prior to processing a job on a machine at the first stage, a setup time from idling is needed. Also sequence dependent setup times (SDST) are considered on each machine in each stage. The objective of this research is to minimize the makespan. A mathematical model was developed for small size problems and two heuristic algorithms (Flexible Flowshop with Sequence Dependent Setup Times Heuristic (FFSDSTH) and Tabu Search Heuristic (TSH)) were developed to solve larger, more practical problems. The FFSDSTH algorithm was developed to obtain a good initial solution which can then be improved by the TSH algorithm. The TSH algorithm uses the well-known Tabu Search metaheuristic. In order to evaluate the performance of the heuristics, two lower bounds (Forward and Backward) were developed. The machine waiting time, idle time, and total setup and processing times on machines at the last stage were used to calculate the lower bound. Computational experiments were performed with the application of the heuristic algorithms and the lower bound methods. Two quantities were measured: (1) the performance of the heuristic algorithms obtained by comparing solutions with the lower bounds and (2) the relative improvement realized with the application of the TSH algorithm to the results obtained with the FFSDSTH algorithm. The performance of the heuristics was evaluated using two measures: solution quality and computational time. Results obtained show that the heuristic algorithms are quite efficient. The relative improvement yielded by the TSH algorithm was between 2.95 and 11.85 percent
    corecore