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ABSTRACT 
 
 

Scheduling Flexible Flowshops with Sequence Dependent Setup Times 
 
 

Kanchana Sethanan  
 

 
This dissertation addresses the scheduling problem in a flexible flowshop with 
sequence-dependent setup times.  The production line consists of S production stages, 
each of which may have more than one non-identical (uniform) machines.  Prior to 
processing a job on a machine at the first stage, a setup time from idling is needed.  Also 
sequence dependent setup times (SDST) are considered on each machine in each 
stage.  The objective of this research is to minimize the makespan.  A mathematical 
model was developed for small size problems and two heuristic algorithms (Flexible 
Flowshop with Sequence Dependent Setup Times Heuristic (FFSDSTH) and Tabu 
Search Heuristic (TSH)) were developed to solve larger, more practical problems.  The 
FFSDSTH algorithm was developed to obtain a good initial solution which can then be 
improved by the TSH algorithm.  The TSH algorithm uses the well-known Tabu Search 
metaheuristic.  In order to evaluate the performance of the heuristics, two lower bounds 
(Forward and Backward) were developed.  The machine waiting time, idle time, and total 
setup and processing times on machines at the last stage were used to calculate the 
lower bound.  Computational experiments were performed with the application of the 
heuristic algorithms and the lower bound methods.  Two quantities were measured:     
(1) the performance of the heuristic algorithms obtained by comparing solutions with the 
lower bounds and (2) the relative improvement realized with the application of the TSH 
algorithm to the results obtained with the FFSDSTH algorithm.  The performance of the 
heuristics was evaluated using two measures: solution quality and computational time.  
Results obtained show that the heuristic algorithms are quite efficient.  The relative 
improvement yielded by the TSH algorithm was between 2.95 and 11.85 percent.   
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CHAPTER 1 

INTRODUCTION 

 
1.1. Background 

 1.1.1 Scheduling 
 

Scheduling is defined as the determination of relative position of jobs with 

respect to a processing machine, including the assignment of definite times at which 

processing occurs (Nawaz et al., 1983).  Another view of scheduling is defined as 

the "allocation of limited resources to jobs over time to perform a number of tasks" 

(Baker, 1974, p. 2).  Examples of resources include machines, operators, facilities, 

computers, and transporters.  

The problem of scheduling n jobs on m machines is one of the classical 

problems in flowshop manufacturing that have been studied by researchers for 

many years.  Additionally, scheduling plays an essential role in the entire 

manufacturing system.  Production scheduling problems exist frequently in 

production environments whenever resources are required to perform a set of 

operations on jobs, and also when each operation can be accomplished in more 

than one way (Randhawa & Kuo, 1997).  Normally, there are two categories of 

constraints that are commonly found in scheduling problems.  First, there are 

restrictions on the capacity of available resources and, second, there are 

technological limits on the order in which jobs can be performed. Resource 

constraints generally refer to processor capacities and limitations.  Technological 

constraints include alternative routing and precedence relationships.  Alternate 

routing means that the product can be produced on more than one processor, while 

precedence constraints mean that the processor cannot process a specific job if 

some other job is not completed.   Scheduling problems involve the assignment of 
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machines to various jobs and determination of the order in which the jobs will be 

performed in order to optimize some criteria while satisfying the shop constraints. 

Generally, there are three issues concerned with scheduling jobs on a set of 

machines (Cheng & Sin, 1990): 

1. What machine should be allocated to which job? 

2. How to sequence the jobs in order to obtain the best schedule and meet the 

constraints? 

3. How can the reasonableness of a schedule be rationalized? 

Hence, the scheduler wishes to optimize some measures of effectiveness 

(such as minimization of makespan, mean flow time, lateness, or inventory) which 

may vary from one situation to another, and to satisfy the production constraints 

(e.g. production requirements, resource capacities, or operation procedures).   

There are three issues that need to be specified when defining a scheduling 

problem.  These three issues, as presented by Cutright (1990), are: 

1. Length of planning horizon, 

2. Nature of tasks that will be scheduled, and 

3. Criteria used to determine the best schedule.  

Planning Horizon 

Planning (time) horizons are usually classified as long-term, intermediate-

term (or medium-term), and short-range.  Long-term planning typically involves 

capacity and strategic issues and is the responsibility of the top management.  

Management formulates policy-related questions such as gross labor-hours, 

machine-hours, floor space, customer policies, new product development, research 

funding, and company goals (Vollmann et al., 1992).  Normally, the length of the 
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long-term planning horizon is at least five years.  This research assumes that all 

long-term decisions have been made. 

Once the long-term planning is made, operation managers begin 

intermediate-range planning in order to meet the objectives of the firm, subjected to 

a set of constraints imposed by the long-range planning decisions.  Intermediate 

planning involves activities such as the determination of production plans, workforce 

levels, and forecasting product demand.  Typically, the time horizon of short range 

planning is in months.  It is also assumed in this research that all of these decisions 

have been determined and that workforce levels are fixed. 

Short-range planning is dependent on both long and intermediate-range 

planning decisions.  Operations managers make these plans in conjunction with 

supervisors and foremen who desegregate the intermediate plan into weekly, daily, 

or hourly schedules.  Short-range planning uses the production plan and workforce 

level from the intermediate planning stage to determine job scheduling through the 

resources in order to meet the criteria.  The time horizon of short-range planning is 

usually in days. 

Nature of the tasks in the shop-floor system    

 The nature of tasks (or jobs) to be scheduled involves the following issues 

and questions: 

1. Can a job be split in case there are more than one processors capable of 

performing it? 

2. Are there several processors that can perform the same job?, or 

3. Is the order of operations the same for each job? 
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Scheduling Criteria 

Scheduling criteria are always a function of completion time of the jobs and 

may also be a function of the due date.  Examples include minimization of flow time, 

lateness, or tardiness.   

 
1.1.2 The Place of Scheduling within an Organization 

The scheduling function must interface with many other important functions 

in the manufacturing systems (e.g. production planning, master production planning, 

material and capacity planning, etc.) as shown in the information flow diagram in 

Figure 1.1.  In order to provide the departments in an organization access to the 

necessary scheduling information and enable the departments to provide the 

scheduling system with relevant information (e.g. changes in jobs’ data and status 

of machines), a management information system (MIS) or a decision support 

system (e.g. forecasting, aggregate planning, and master production scheduling) is 

probably needed (Chen, 1997). The process of scheduling begins with capacity 

planning (also called long-term planning) which involves facility and equipment 

acquisition.  Intermediate planning includes aggregate and master production 

planning.  In the aggregate planning stage, decisions regarding the use of facilities, 

people, and inventories are made.  The master schedule then desegregates the 

aggregate planning and develops an overall schedule for outputs.   Short-term 

schedules then translate capacity decisions, intermediate planning, and master 

schedules into job sequences, specific assignments of personnel, machinery, and 

material.  
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1.1.3 Classification of Sequencing Problems  

To classify the major scheduling models, it is necessary to characterize the 

configuration of resources and the nature of tasks.  For instance, a model may 

contain one resource type (single-stage problems) or several resource types 

(multistage problems).  If the set of tasks available for scheduling does not change 

over the time, the system is called static.    Conversely, if new tasks arise over time, 

the system is called dynamic (Baker, 1974).   

Day and Hottenstein (1970) depict a schema for classifying sequencing 

problem as presented in Figure 1. 2.  The framework shows that the sequencing 

problems have been categorized according to the following components: 

1. the nature of job arrivals, such as fixed batch size or continuous arrivals which 

are given by a probability density function.   

2. the number of machines involved, for instance, single machine production       

(m = 1) or multi-machine production (m > 1), and 

3. the nature of job route. 

 
Further classification could be added to this figure which would include 

characteristics such as setup time (e.g. dependent or independent of job sequence 

on a given machine) and due date considerations.  

This research focuses on a static scheduling problem: A flexible (hybrid) 

flowshop with dependent setup times, which minimizes the maximum completion 

time of all jobs.  The jobs are available at time zero and have sequence dependent 

setup times on machines at each production stage.  All parameters such as 

processing and setup times are assumed to be known with certainty.  
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1.1.4 The General Flowshop Scheduling Problem 

Flowshop scheduling problems can be classified into two categories: general 

flowshop and permutation flowshop (Pinedo, 1995; Chen,1997).  For the 

permutation flowshop, each of the n jobs is processed on the machines  (m =1, 2, 

..., M) in the same order (Osman & Potts, 1989).  On the other hand, the processing 

sequences of jobs on machines from one stage to another could be different in the 

general flowshop.  In addition, flowshop scheduling may be classified as static or 
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ROUTINGS 

Figure 1.2: A Classification of Sequencing Problems 
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dynamic.  In general, a static scheduling problem specifies a number of n jobs and 

an optimal schedule is to be found with respect to the n jobs only (Dudek et al., 

1992), while a dynamic scheduling problem specifies that jobs are constantly 

entering and leaving the job file according to some probability distribution in the 

stochastic process (Day & Hotenstein, 1970).   

The majority of the research published has thus far been devoted to the 

static problem.  The early work started with Johnson (1954) for the two-machine 

case.  Johnson's algorithm finds an optimal sequence that minimizes the maximum 

flow time (called makespan) for all jobs.  The simplicity of Johnson's method 

encouraged other researchers to extend his idea in order to find optimal sequences 

for the M-machine problem.  For the M machine case, the Campbell, Dudek, and 

Smith’s (1970) heuristic (CDS), which extends Johnson's algorithm, is considered to 

be a very effective and robust heuristic (Ho & Chang, 1991).  Generally, the static 

flowshop problems have the following characteristics (Baker, 1974; Gupta, 1977; 

Stafford and Tseng, 1990; and Sarin& Lefoka, 1993, and Pinedo, 1995). 

1. Each machine can process at most one job at a time. 

2. Each job can be processed on at most one machine at a time. 

3. Preemption and splitting of any particular job are not allowed. 

4. Jobs are processed on each machine in the same order. 

5. All N jobs are available for processing at time zero. 

6. All machines are available at time zero and are independent. 

7. The processing time of each job on each machine is a known value. 

8. Jobs are independent of one another.  
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1.1.5 A Flexible Flowshop Environment (FFS) 

A flexible flowshop (FFS) is a generalization of the flowshop and the parallel 

processor environments.  A flexible flowshop is alternatively called a hybrid 

flowshop or multiprocessor flowshop.  In the most general setting of a flexible 

flowshop environment, there are multiple stages (S stages), each of which consists 

of m(s) (s = 1, 2, 3,…,S) parallel processors).  A schematic representation of a 

flexible flowshop environment is given in Figure 1.3. The processors in each stage 

may be identical, uniform, or unrelated.  Machines are uniform if the time to process 

a job on any machine is a constant ratio of its processing time on other machines. In 

other words, uniform machines are identical processors that do not have equal 

speeds.  Unrelated machines are machines for which the time to process a job on 

any machine has no particular relationship of its processing time on any other 

machine (Cheng & Sin, 1990).  In a FFS environment, each job is processed first at 

stage 1, then at stage 2, and so on.  Normally, a job requires only one machine at 

each stage and any machine can process any job. 

 
1.1.6 Dependent Setup Times 

Setup time is the time used to prepare the process of jobs on machines 

(Allahverdi et al., 1999).  Consequently, the requirements of setup times of jobs are 

very common in many real manufacturing situations. This includes setting up tools 

such as jigs and fixtures, cleanup, inspecting material, and positioning the jobs.  

The issue of setup time has been of much interest in the past few decades.  

According to the Goldratt Theory Of Constraint (TOC) (Goldratt, 1990), setup 

reduction efforts can improve performance, but only if concentrated on production 

bottlenecks or constraints. The total time for a machine can be classified as either 

production time, setup time, idle time (i.e., time not used for setup or processing), or 
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waste time (i.e., time spent processing material that cannot be converted into 

throughput; for instance, time to process products for which there is no demand).  It 

is possible to improve the efficiency or capacity of a resource by reducing idle time 

and waste time, cutting or reducing the total setup time, and reducing the production 

time per unit of the product.  
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Figure 1.3: A Schematic Representation of a Flexible Flowshop Environment 
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Typically, there are two categories of setup times.  In the first category, 

setup time is sequence independent.  That is, i.e., it depends only on the job to be 

processed. In the second, setup time is sequence dependent as it depends on both 

the job to be processed and the preceding job. Another view of setup time 

classification adopted by Randhawa and Kuo (1997) includes: (1) processor 

dependent, (2) product dependent, and (3) both processor and product dependent.  

Processor dependent setup time deals with the setup time that depends only on the 

processor, regardless of the job type, while product dependent setup time refers to 

the setup time that depends only on the product, regardless of the machine type. 

Sequence dependent properties (e.g. setup times or costs) are considered 

to be important factors in the manufacturing environment, especially, when a shop 

floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969).  Sequence 

dependent setups are commonly found both in a single machine type or a multiple 

machine type.  Even though there exists an enormous amount of research on the 

flowshop scheduling problem, research study has rarely been conducted in the case 

where setup times are sequence dependent (Simon Jr., 1992; Allahverdi, 1999).  

Hence, the results of these research studies lack a practical solution for applications 

that require the treatment of setup times.  For this reason, dependent setup times 

cannot be neglected and hence are considered in this research. 

Sequence dependent setups occur especially in process industry 

operations, where machine setup time is significant and is needed when products 

change.  The magnitude of setup time depends on the similarity in technological 

processing requirements (routing and precedence relationships) for the successive 

jobs (Srikan & Ghosh, 1986).  Normally, similar technological requirements for two 

consecutive jobs would require lesser setup.  For example, if the previous and the 
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current products processed on the machine are from the same family that consists 

of a set of similar products (or jobs) in terms of processing, then the changeover 

time between those two products is small. The changeover times depend on the 

family of products.  This type of production system can be found in many industries 

such as pharmaceutical, cosmetic, chemical, and food and brewing industries.  The 

following are real life examples of dependent setup times: 

1. In printing industry, the cleaning and setting of presses are dependent on the 

color of ink and size of paper. 

2. In textile industry, weaving and dyeing setup operations depend on jobs. 

3. In brewing and food industry (for container and bottling section), settings are 

changed when the containers or bottle sizes change. 

 
This research focuses on the scheduling problem in a flexible flowshop with 

sequence dependent setup times.  A complete description of the problem is given in 

Chapter 2. 

 

 

 

 



    

 

13 

 
 

CHAPTER 2 

STATEMENT OF THE PROBLEM  

 
2.1 Introduction  

 Nowadays, manufacturing companies are faced with market demands for a 

variety of high quality products.  These companies must, therefore, make their 

production systems more flexible, reduce costs related to production, and respond 

rapidly to demand fluctuations.  Hence, companies need to have advanced techniques 

and an increasingly high degree of automation. 

Production and operation management has been an interesting topic in 

manufacturing, especially in such areas as job scheduling and system control.  The 

development of production schedules is a remarkably important task in industry.  Many 

scheduling researchers have focused their research on sequencing and timing the 

scheduling of multiple non-identical jobs through one or more machine stations (Egbelu, 

1991).  A challenge facing many manufacturing and service industries is job assignment 

to parallel processors (e.g., workers or machines).  Parallel processing is the situation 

where a job can be processed by more than one processor, but only one processor can 

actually work on one job. This type of production system where multiple products are 

processed on parallel, non-identical machines is common in both manufacturing and 

service industries.  For instance, airline companies may assign one of several types of 

airplanes to service a route. In industries such as semiconductor manufacturing, it is 

common to find newer or more modern machines running side by side with older and 

less efficient machines.  Even though the older machines are less efficient, they may be 

kept in the production lines because of their high replacement costs.  The older 

machines may perform the same operations as the newer ones, but would generally 

require longer processing time for the same operations.    Other examples include textile 
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plants assigning jobs to looms and paper plants assigning products to different paper 

machines (Randhawa & Smith, 1995).  So, even though those resources may be of 

similar type, their production rates may be different.  This research will focus on 

scheduling non-identical jobs in a flexible flowshop (or hybrid) environment with 

sequence dependent setup times as described in the following section. 

 
2.2 Manufacturing Background 

Nature of the Tasks in the Shop-floor System    

In this research, production is restricted by resource and technological 

constraints.  Processors (or machines) can process the same jobs but differ in their 

speeds.  Thus, the production rate for the same job may be different between machines 

at the same stage, which results in different production costs per unit of the product.  

This research deals with the general flexible flowshop, with S production stages, 

in which the job sequence may not be the same on each machine at each stage.  The 

problem on hand has several distinct product families, and within each family there are 

different product types.  Each production stage may be composed of more than one 

machine.  If a stage has multiple machines, all machines would be similar in function but 

different in their performance.  All products may be processed on any of the machines in 

a stage.  It is assumed that the slowest machine in each stage has the lowest production 

performance for all products.  The problem hence will be developed and solved for the 

parallel processing case with uniform processors.  

Each product i of family j requires PTime(j,i,s,m) units of processing time on 

machine m of stage s.  A production line requires a setup time to change over from one 

product to another.  Machine changeover is needed when the product changes both 

within a family and between families. In this research, two types of machine 

changeovers (minor and major changeovers) are identified.  A minor changeover time is 
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the changeover time required if the previous product belongs to the same family.  On the 

other hand, if the previous product was of a different family, a major changeover time 

would be required.  The changeover time for machine m of stage s between product i of 

family j and product p of family q is denoted by ch(j,i,q,p,s).   If   j = q, then this 

changeover time is minor, but if j ≠ q, then it is a major one.  The changeover time in this 

research is assumed to be asymmetric.  This means that ch(j,i,q,p,s) may not be 

necessarily equal to ch(q,p,j,i,s).   It is also assumed that changeover times are equal for 

all machines in the same stage of a production line when changing from one product to 

another, but the changeover time may be different between stages. 

The processing on all stages is not preemptive, which means that a new product 

cannot enter into the stage until the previous product has been completely processed.   

 
2.3 Problem Statement 

  This research addresses the problem of scheduling jobs in a flexible flowshop in 

which machines are uniform.  A job used in this study is synonymous with an order and 

represents an individual, distinct demand for a product.  Each production stage may be 

composed of more than one machine.  Prior to processing a job on a machine in a 

production line, there is an associated setup time.  Setup times are considered 

significant and typically depend on the sequence of the jobs through the processors.  

The problem considered in this study is complex in three ways: 

1. Even though the flexible flowshop scheduling problems have been studied by 

several previous researchers, very few of them have considered both 

products and families in their models.  This research addresses products 

which are grouped into families to be processed in a flexible flowshop 

environment.  There are different products within each family, and there are 

many families to be considered. 
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2. Both major and minor setup times are considered.  A major setup time is 

required if a machine at any stage switches from one family to another.  On 

the other hand, a minor setup time is needed if the previous product belongs 

to the same family.  

3. The system consists of S stages of production.  Each production stage may 

consist of more than one non-identical (uniform) machines.  The production 

line may have different number of machines in each stage.  The system can 

produce a number of products and families, and all products and families can 

be produced on every processor.  

This research addresses the problem of scheduling all products on the machines 

at the different stages in order to minimize the makespan.  

 
2.4 Assumptions 

The assumptions made in formulating the problem are as follows: 

1. It is assumed that the decisions about production plans, workforce levels, and layout 

of the facility have been made from the long and intermediate-range planning.  

2. Production is make-for-stock; hence, there are no due dates associated with batches 

or products. 

3. All jobs and machines are available at the beginning of the scheduling process (at 

time zero). 

4. There are many stages in the flowshop production line.  Each stage may have 

several non-identical but uniform machines.  

5. Jobs may not be necessarily scheduled in the same order in all stages. 

6. Jobs can wait between two production stages (or stations) and the intermediate 

storage is unlimited. 



    

 

17 

 
 

7. Within the same product family, minor changeover times may not be equal between 

products.   Likewise, major setup times may not be equal between families. 

8. Setup times for jobs on each machine are dependent on the order in which jobs are 

processed, but it is also assumed that setup times are equal for all machines in the 

same stage when changing from one product to another.  

9. No job splitting is allowed.  A job must be completely finished on one machine before 

it can be manufactured on the succeeding machine.   

10. There is no job preemption. 

 
2.5 Research Objectives 

The major objectives of this research are: 

1. To formulate a mathematical model to solve the problem and to produce an optimal 

schedule in order to minimize the total makespan.  

2. To develop efficient scheduling heuristics to find approximate solutions for large-size 

problems. 

3. To evaluate the heuristics developed by comparing their results to good lower 

bounds. 
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CHAPTER 3 

LITERATURE REVIEW 

 
3.1 Introduction and Overview 

This research focuses on a static sequencing of a flexible flowshop (FFS) 

environment.  In a FFS environment, there are S production stages with one or more 

machines at each stage.  Sequence dependent setup times (SDST) are considered on 

each machine.  A review of previous work on flowshop scheduling is performed, along 

with a review of the SDST flowshop literature.  Also, a review of the literature on the 

application of the Tabu search (TS) algorithm relevant to this study is presented. 

 A popular notation used in scheduling problems has the form of α/β/γ.  The first 

parameter (α) describes the machine environment and contains a single entry.  The 

second parameter (β) is a field providing the details of processing characteristics and 

constraints.  The β field may contain no entry, a single entry, or multiple entries.  The last 

parameter (γ) contains the objective to be minimized and usually contains a single entry.  

Flowshop problems deal with m stages in series and with one machine in each stage, 

and are denoted, in general, as Fm//Cmax when makespan is to be minimized.   If there 

are several processors in each stage and all of them are identical, the problem becomes 

a flexible flowshop, denoted as FFs(Pm1,Pm2,…,PmS)//Cmax.   If the machines are 

uniform in the flexible flowshop, then Pms are replaced with Qms for s =1,2,…,S.   When 

setup times are involved, the notation becomes FFs(Pm1,Pm2,…,PmS)/sip/Cmax and 

Fm/sip/Cmax for the flexible flowshop and regular flowshop problems, respectively.  In 

addition, if the setup time between job i and p depends on the machine, then the 

subscript m is added, that is, it becomes sipm.  A complete list of the notation used in this 

study is presented in Appendix A.   
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Before reviewing the literature on flowshop scheduling, a review of the 

methodology for solving sequencing problems in general is presented in the following 

section. 

 
3.2 Solution Methodologies for Scheduling Problems 

 After determining the context in which scheduling is being defined, the 

methodology for selecting a "good" schedule solution is determined.  Day and 

Hottenstein (1970) state that there are four common approaches used to solve the static 

scheduling problem.  These approaches are described below: 

3.2.1 Combinatorial approach 

Combinatorial approaches are based on the changing of one permutation 

to another by switching jobs around in order to optimize a given objective 

function. 

 3.2.2 Enumerative optimal methods 

The most general techniques are mathematical formulations (including 

linear programming, dynamic programming, integer programming, or mixed 

integer programming), and branch and bound methods. 

Scheduling problems are typically represented as an optimization 

problem subject to a set of constraints.  The problem takes the form of a 

mathematical model that expresses the desired objective subject to the 

constraints set forth in the problem.  However, there are many difficulties in 

formulating mathematical models. These difficulties include the complexity of the 

interactions among many variables in a system, the difficulty in the attempt to 

optimize the schedule from the system, and the difficulty in gaining an agreement 

among these variables on what is essential for the good of the system (Cutright, 

1990).   
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Typically, the mathematical model for the problem is either too difficult or 

too time-consuming to solve in reasonable time. Since the development of a 

mathematical model is a time-consuming task and requires a thorough 

understanding of the system being represented, it is necessary to find solution 

techniques that are easy to implement even though they may not always lead to 

an optimal solution.  These techniques include heuristic approaches and Monte 

Carlo sampling which are described below. 

 3.2.3 Heuristic approach 

Generally, difficulties arise in solving scheduling problems.  Exact solution 

procedures may not exist or may be too expensive to apply for large-sized 

problems.  One then has to use procedures that yield good (but not necessarily 

optimal) solutions.  These methods are termed heuristics.  Heuristic approaches 

can be divided into: 

1. exact solution to a relaxed problem such as LP relaxation and     

Lagrangian relaxation, 

2.  local search procedures including search techniques such as tabu 

search (TS), genetic algorithm (GA), or simulated annealing (SA), and 

3.  ad hoc decision rules. 

3.2.4 Monte Carlo sampling 

Monte Carlo method is a technique for the solution of a model using 

random (or pseudo random) numbers.  For this approach, a scheduling problem 

is solved by taking random samples of feasible solutions and using the best of 

these solutions.  Ideally, the number of samples would be as large as possible. 
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3.3  Flowshop Scheduling Models 

In order to discuss relevant research in the area of flowshop scheduling, the 

topics reviewed are divided into three categories: (1) models without SDST 

consideration, (2) models which explicitly consider SDST, and (3) previous work 

concerned with TS application to solve the flowshop scheduling problems. 

3.3.1 Flowshop Scheduling Models without SDST Considerations 

3.3.1.1 General Flowshop Scheduling (Fm/ /Cmax) 

The flowshop scheduling problem with no setup times has been 

researched extensively over the past five decades.  Work on these problems was 

pioneered by Johnson (1954), who presented a simple algorithm for solving the 

F2//Cmax problems to optimality in a polynomial time.  A wealth of research then 

followed but will not be covered here as it is not relevant to the problem at hand. 

3.3.1.2 Flexible Flowshop Scheduling (FFs/ /Cmax) 

A flexible flowshop environment consists of S production stages, each of 

which having m(s) parallel machines, s =1,2,…,S.  The machines in each stage 

may be identical, uniform, or unrelated.  This section reviews previous work 

performed in a flexible flowshop environment without SDST considerations. 

3.3.1.2.1 Exact Approaches 

 Two-stage cases: FF2(Pm1,Pm2)//Cmax 

Arthanary and Ramaswamy (1971) were the first to develop the FFS 

problem (Soewandi, 1998).  They proposed a branch and bound algorithm for the 

two-stage FFS problem in which there are m identical machines in stage 1 but 

only one machine in stage 2, FF2(Pm1, Pm2 =1)//Cmax.  They could optimally 

solve problems with up to 10 jobs with reasonable computational effort. 

According to Gupta (1988), the two-stage flowshop problem in which 

each stage consists of identical multiple machines, FF2(Pm1,Pm2)//Cmax, is      
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NP-complete.   He proposed a heuristic to solve a special case when there is 

only one machine in the second stage in order to minimize the makespan,     

FF2(Pm1,Pm2=1)//Cmax. Computational experiments showed that the 

effectiveness of the proposed heuristic increases as the problem-size increases.  

Gupta and Tunc (1991) considered the FFs(Pm1=1,Pm2)//Cmax and 

established approximate solution algorithms.  They also developed a branch and 

bound algorithm using the heuristic solution as an upper bound on makespan.  

Their results showed that when the number of machines at stage 2 is equal to or 

greater than the total number of jobs, the Longest Processing Time (LPT) 

scheduling rule yields optimal solutions.  For the case in which the total number 

of jobs is greater than the number of machines in stage 2, they developed two 

heuristics to minimize the makespan.  Computational results indicated that the 

effectiveness of the algorithms increases with the increase of the total number of 

jobs.  For the cases in which the deviations of the heuristic makespans were 

relatively large from the lower bounds, an improved branch and bound algorithm 

was developed.  The maximum number of jobs reported in their work was only 

eight jobs. 

 Multiple stage cases (FFs(Pm1,Pm2,…,PmS)//Cmax) 

Brah and Hunsucker (1991) and Ragendran and Chaudhuri (1992) 

developed branch and bound algorithms for the FFs(Pm1,Pm2,…,PmS)//Cmax.  

Both studies can solve only small-sized problems.  Portmann et al. (1998) also 

studied the FFs(Pm1,Pm2,…,PmS)//Cmax problem. They improved the lower bound 

of Brah’s and reduced the number of branches used in the search tree.  They 

also used a genetic algorithm (GA) approach to improve the search.  Their 

computational experiments indicated that optimal solutions using their branch 

and bound approach were more often reached using the GA approach.  They 
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could solve problems with up to five stages (3, 3, 1, 2, and 2 machines in stages 

1 through 5, respectively) and 15 jobs with an average deviation of 3% from the 

results of the branch and bound algorithm. 

Moursli (1995) also investigated on the FFs(Pm1,Pm2,…,PmS)//Cmax 

problem.   He derived three improvements from Brah’s algorithm and three new 

lower bounds.  His computational experiments showed that his algorithm could 

solve problems with up to 20 jobs to optimality.  Both number of nodes 

investigated and running time were drastically reduced in his approach.  Another 

study was done by Vignier et al. (1996).  They developed a branch and bound 

approach to solve FFs(Pm1,Pm2,…,PmS)//Cmax and solve problems with up to 15 

jobs.   

3.3.1.2.2 Heuristic Approaches 

Two stage cases (FF2(Pm1,Pm2)//Cmax) 

Lee and Vairaktarakis (1994) developed five new lower bounds for the 

FF2(Pm1,Pm2)//Cmax problem.  They also proposed a heuristic to solve the 

FF2(Pm1,Pm2,…,PmS)//Cmax problem. However, their results were not reported.   

In 1996, Guinet et al. studied the scheduling for the FF2(Pm1,Pm2)//Cmax 

problems.  They developed a heuristic and three lower bounds.  The 

computational results showed that the average gap compared between the 

heuristic solution and lower bounds are less than 0.73%.  Another study was 

done by Haouari and Hallah (1997).  They developed a new lower bound and 

used the Simulated Annealing (SA) and TS approaches to solve the problems.  

According to the solutions of these problems, the TS based heuristic yielded an 

optimal solution for 35 % of the cases and an average relative error of only 

0.82%.  In 1998, Soewandi developed a new procedure, which he termed 

“Improved, Modified Johnson’s Order” to solve the FF2(Pm1,Pm2)//Cmax and 
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FF3(Pm1,Pm2,Pm3)//Cmax problems.  He also considered the two-stage FFS with 

uniform machines at each stage (FF2(Qm1,Qm2)//Cmax) and developed a solution 

procedure adapted from Johnson's rule.  Additionally, he proved that his heuristic 

has a worst case performance Bound1 (w.c.p.b) for the FF2(Qm1,Qm2) problem 
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and ms is the number of machines in stage s.  Further, he developed two 

heuristics for FF3(Pm1=1,Pm2,Pm3=1)//Cmax. Riane and Artiba (1997) and Riane 

et al. (1998) studied FF3(Pm1,Pm2,Pm3)//Cmax problems, and developed two 

heuristics to cope with realistic problems.  The experimental results indicated that 

their heuristics can solve problems with up to 130 jobs with a relative errors less 

than 1% of the lower bound. 

 Multiple stage cases : FFs(Pm1,Pm2, …, PmS)//Cmax) 

In 1994, Ding and Kittichartphayak developed three heuristics for 

scheduling in FFs(Pm1,Pm2, …, PmS)//Cmax.  The computational results showed 

that one of their heuristics, called the combined approach, is the best and can 

solve problem sets with number of jobs up to 8 with an average error less than 

3% of the optimal solutions. 

Multiple stage cases : FFs(Qm1,Qm2, …, QmS)//Cmax) 

A multi-stage FFS scheduling problem in which jobs are identical and 

machines are uniform at each stage was considered by Verma and Dessouky 

(1999) with the objective of minimizing the makespan.  They compared the Latest 

Start Time (LST) rule with other heuristics: the Fastest Available Machine  

                                                                        
1 An index that indicates the deviation of the performance values yielded by an algorithm, in the worst case, from the 
optimal solution for a given problem, or in some cases, from the values of the best known solutions or lower bounds. 
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Heuristic (FAMH), the Earliest Completion Time Heuristic (ECTH), and the Mix 

Heuristic (MH).  Their results indicated that the FAMH had a worst case absolute 

bound that was twice as large as the ECTH, LSTH, and MH heuristics.  

 
3.3.2 Flowshop Scheduling Models with SDST Consideration 

3.3.2.1 General Flowshop Scheduling (Fm/ sipm /Cmax) 

Allahverdi et al. (1999) presented a review of scheduling problems 

involving setup considerations.  They classified scheduling into batch and      

non-batch, sequence-dependent, and sequence-independent setup. They also 

summarized the results from the existing research and provided guidelines for 

future research. 

3.3.2.1.1Exact Approaches 

  Two-machine cases  (F2/ sipm /Cmax) 

Prior to the research of the multiple machine problem, the two-machine 

scheduling problem had been investigated by several researchers (e.g. Corwin & 

Esogbue, 1974; Gupta, 1986, etc.).  Corwin and Esogbue (1974) considered two 

different flowshop scheduling problems with one of the machines having no setup 

times.  The objective of their study was to find the minimum makespan.  After 

establishing the optimality of permutation schedules, they solved the problem 

using a dynamic programming formulation.   Their findings showed that, from 

computational standpoint, their formulation was comparable to that of the 

traveling salesman problem (TSP).  On the other hand, Gupta (1986) formulated 

the Fm/sipm,no wait/Cmax problem as a TSP for the case in which jobs are 

processed continuously through the shop.  He showed that the flowshop 

scheduling problem with SDST is NP-hard for the cases of limited or infinite 

intermediate storage space available to store partially completed jobs.  The 
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results from the TSP formulation of the continuous processing case were used to 

describe an approximate solution for the cases in which the storage spaces were 

limited or finite. 

In addition to Corwin & Esogbue’s and Gupta’s studies, one of the studies 

of Szwarc and Gupta (1987) was in terms of a special flowshop scheduling 

problem with sequence dependent additive setup times.  They developed a 

polynomially bounded approximate method with the objective of minimizing 

makespan.  

Multiple machine cases (Fm/ sipm /Cmax) 

 
Excellent efforts to solve the SDST for the m-machine flowshop problem 

to optimality were performed by Srikar and Ghosh (1986).  They developed a 

method to reduce the number of constraints and binary variables in a MILP 

formulation of the m-machine flowshop in order to minimize the makespan.  They 

could solve problems with up to six machines and six jobs; however, the time 

required to solve problem was too large (22 minutes of CPU on a Prime 550 

computer).  Stafford and Tseng (1990) later discovered an error in Srikar and 

Ghosh's model.  They corrected it and solved the problem using LINDO.  They 

developed new MIP formulations for the regular flowshop problem and for the no 

intermediate queues (NIQ) flowshop problem. 

Exact optimization schemes are mostly based on the application of a 

branch and bound (B&B) algorithm.  The important part of a successful B&B 

procedure lies in the computation of the lower bounds. In 1997, Rios-Mercado  

developed several inequalities for two MIP formulations of the Fm/sipm/Cmax 

problem.  He used a branch and cut (B&C) procedure and found that this 

procedure is effective compared to a branch and bound (B&B) algorithm.  The 
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main difference between the B&C and B&B procedures is that B&C algorithms 

reduce the problem size (or a set of unevaluated nodes) by adjoining valid 

inequalities (cutting planes or cuts).  This, in turn, provides a stronger linear 

programming-representation.  

Recently, Rios-Mercado (1997) and Rios-Mercado and Bard (1999) 

presented a branch and bound scheme for the SDST permutation flowshop 

scheduling problem in order to minimize the makespan.  Their algorithm included 

the implementation of lower bounds and upper bounds and a dominance 

elimination criterion, and yielded a significantly better performance over previous 

work.  They also could solve 100%, 43%, and 23% of 10-, 15-, and 20-job 

problems, respectively, within a 1 % optimality gap.  Gupta (1982) proposed a 

branch and bound algorithm for the solution of the SDST flowshop with the 

objective of minimizing the total setup times of machines.  Unfortunately, the 

computational results from the experiments were not reported. Because of the 

complexity of the multiple machine scheduling problem, thus far no approach has 

been found to solve the SDST flowshop to optimality for large-size problems. 

3.3.2.1.2 Heuristic Approaches 

Heuristic algorithms for the Fm/sipm/Cmax problem were developed by 

Simons (1992), Rios-Mercado (1997), and  Rios-Mercado (1999).  Simons (1992) 

developed four heuristics and compared them with three existing approaches (or 

benchmark) that represent generally practiced approaches to scheduling in this 

environment.  However, only two of their proposed heuristics (called SETUP and 

TOTAL) produced better results than the other heuristics tested.  In addition, 

computational experiments showed that problems with up to 15 machines and 15 

jobs could be solved. 
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Evidently, the most relevant work on heuristics for the Fm/sipm/Cmax 

problem was conducted by Rios-Mercado (1997; 1999).  They developed two 

heuristics called HYBRID and GRASP to solve the problem.  Experimental 

results showed that the HYBRID heuristic outperforms GRASP when the number 

of machines is small and when setup time fluctuations are large.   

Moreover, Rios-Mercado and Bard (1998) made a comparison between 

Simons's and Rios-Mercado and Bard's heuristics in relation to the Fm/sipm/Cmax 

problems and concluded that, in general, Rios-Mercado and Bard’s heuristics 

outperformed Simons’s SETUP heuristic.  Nonetheless, in terms of better 

solutions for the cases in which both setup and processing times are identically 

distributed, Simons’s SETUP heuristic is relatively superior to Rios-Mercado and 

Bard’s algorithms.   

Another performance measure investigated by several researchers is the 

minimization of the sum of weighted tardiness.  Scheduling jobs on parallel 

machines with SDST considerations were considered by Lee and Pinedo (1997).  

They developed a three-phase heuristic, and a local search technique using SA 

that is applied at the last phase.  Additionally, Randhawa and Smith (1995) 

investigated the factors that affected scheduling environments consisting of 

parallel and non-identical processors.  These factors are the processing capacity 

relationships, sequencing and assignment rules, job sizes, and demand 

distributions. They measured the effects of variables by comparing the mean flow 

time, processor utilization spread, and proportion of tardy jobs.   Computational 

experiments showed that, setup times and system loading parameters were 

important factors in the system performance. 
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3.3.2.2. Flexible Flowshop Scheduling (FFs/sipm /Cmax) 

To date, no literature in the flexible flowshop with sequence dependent 

setup time has been found.  However, some literature is available on flexible 

flowshops with independent time for the FFs(Pm1,Pm2,…,PmS)/ /Cmax problem as 

presented below. 

Setup times may simply be included in the processing times in the 

situations where the entire batch of products is processed on one machine.  

Conversely, if the same batch of products is partly assigned to several machines, 

the same amount of setup time is still needed for the machines they are partly 

assigned to and cannot be simply added to the processing times.    

Li (1997) considered a two-stage FFS with a single machine at the first 

stage and several identical machines at the second stage, and independent 

setup times with the objective of minimizing the makespan, FF2(Pm1=1,Pm2)/ /Cmax.  

He developed two heuristics adapted from previous work to solve the problem.  

Gupta and Tunc (1994) developed polynomial heuristics for the two-stage FFS 

scheduling problems in which there is only one machine in stage 1 and identical 

machines in stage 2 but the number of machines at this stage is equal to or 

larger than the total number of jobs.  They also considered setup and removal 

times independent from the processing times.  The computational results 

indicated that the effectiveness of the proposed algorithms increases when the 

number of jobs increases.  The contributions found in the literature for the FFS 

scheduling problem are summarized in Table 3.1.  

Exact algorithms based on branch and bound (B&B) and mixed integer 

programming (MIP) were found in the literature to solve the problem.  However, 

the results of the computational experiments showed that B&B algorithms 

become inefficient with more than 20 jobs.  Also, the MIP models are impractical 
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because of their large size even for a small number of jobs and machines.  

Hence, approximation methods such as TS have been paid attention to recently.  

 
 
 

Table 3.1: Summary of Previous Research on FFS Scheduling Problems. 
 

 

Problem Type 

 

References 

 

Methodology 

 

Problem size 

 

FF2(Pm1,Pm2=1)//Cmax 

 

1. Arthanary and Ramaswany (1971) 

2. Gupta (1988) 

 

Branch and Bound (B&B) 

Hueristic (w.c.p.b) 

 

6-8 jobs 

3 - (2 / m) 

 

FF2((Pm1,Pm2=1)//Cmax 

 

Gupta and Tunc (1991) 

 

Heuristic 

 

 

FF2(Pm1,Cm) //Cmax 

(Cm= continuous 

flowshop) 

 

Gupta (1997) 

 

Heuristic (w.c.p.b) 

 

2- (1 / m) 

 

FF2(Pm1,Pm2)//Cmax 

 

1. Brah and Hunsucker (1991) 

2. Lee and Vairaktarakis (1994) 

3. Rajendran and Chaudhari (1992) 

4. Moursli (1995) 

5. Guinet et al. (1996) 

6. Haouari and Hallah (1997) 

7. Soewandi (1998) 

 

B&B 

Heuristic (w.c.p.b) 

B&B 

B&B 

Heuristic 

Heuristic 

Heuristic (w.c.p.b) 

 

≤8 jobs 

2- (1/max{m1,m2}) 

≤ 8 jobs 

≤ 20 jobs 

 

 

2 –(1/max{m1,m2}) 

 

FF2(1,Pm2)/ /Cmax 

(independent setup is 

considered) 

 

Li (1997) 

 

Heuristic 

 

 

 

FF2(1,Pm2)/ /Cmax 

(both independent setup 

and removal items are 

considered) 

 

Gupta and Tunc (1994) 

 

Heuristic 
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Table 3.1: Summary of Previous Research on FFS Scheduling Problems (continued). 
 

 

Problem Type 

 

References 

 

Methodology 

 

Problem size 

 

FFs(Pm1,Pm2,…,Pms)//Cmax 

 

1. Lee and Vairaktarakis 

(1994) 

2. Moursli (1995) 

3. Vignier et al. (1996) 

4. Portmann et al. (1998) 

5. Soewandi (1998) 

 

 

 

6. Ding and Kittchartphayak 

(1996) 

7. Novicki and Smutnicki 

(1996) 

8. Franca et al. (1996) 

 

9. Novicki and Smutnicki 

(1998) 

 

 

Heuristic (w.c.p.b) 

 

B&B 

B&B 

B&B and B&B+GA 

Heuristic (w.c.p.b) 

 

 

 

Heuristic 

 

Heuristic (TS approach) 

 

Heuristic (TS approach)  

 

Heuristic (TS approach) 

 

S-(1/max{m1,m2}) - … - 

(1/max{m1-1,mS} 

≤ 6 jobs for 5 stages 

≤ 15 jobs 

≤ 15 jobs for 5 stages 

4- 1/max{m1,m2} – 1/m3 for 

Proc. SP1 

10/3- 1/max{m1,m2} – 

1/3m3 for Proc. SP2 

8 jobs 

 

≤ 500 jobs , 20 machines 

 

≤ 50 jobs , 5 machines 

 

≤ 150 jobs , 60 machines 

 

FF2(Qm1,Qm2)//Cmax 

 

Soewandi (1998) 

 

 

Heuristic (w.c.p.b) 

 

{1+ (m-1)vm}/V 

 

FFs(Qm1,Qm2,…,QmS)//Cmax 

(for jobs are identical only) 

 

Verma and Dessouly (1999) 

 

Heuristic 

 

 

 
 
 
 
 
 
 



 
                        

32  

3.3.3 Applications of Tabu Search (TS) to the Flowshop Scheduling Problem 

 3.3.3.1 Introduction and Overview 

Tabu search is a heuristic designed for finding a near optimal solution for 

combinatorial problems.  It is considered as a metaheuristic (Hertez and Werra 1989, 

1990, and Skorin-Kapov and Vakharia, 1993).  This heuristic was first proposed by 

Glover in 1989.  It attempts to find a better solution than an initial.  A key difference 

between TS algorithm and other hill-climbing algorithms is that TS is not trapped at local 

minima.  The search process is provided with a mechanism that allows the objective 

function to deteriorate and, in a controlled way, allows it to escape from local minima.   

Researchers have shown that many combinatorial problems are NP-hard; hence, 

near-optimal solutions are obtained.  A heuristic method is often used to find an initial 

solution which is then improved in an effort to find a near-optimal solution.  Basically, the 

application of TS is characterized by several components such as a move, 

neighborhood, memory, initial solution, tabu list, aspiration level, and stopping criteria.   

A move, a neighborhood, and a tabu list 

A move is a function that transforms one solution to another.  The subset of 

moves applicable to a given solution generates a collection of solutions called the 

neighborhood.  TS begins with an initial solution which may be obtained from a heuristic 

or from a random generation.  At each step, the neighborhood of the current solution is 

examined in order to find an appropriate neighbor. Typically, there are two fundamental 

methods to examine an appropriate neighborhood.  The first method is to examine the 

entire neighborhood and select the best neighbor.  This method is appropriate for 

problems with small neighborhoods.  The second method, which is useful with large 

neighborhoods, is to examine a smaller neighborhood determined by some appropriate 

technique.  A trade-off exists between the effort spent in searching the neighborhood 

and the quality of the neighbor selected.  The move that leads to this neighbor is 
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performed and the resulting solution becomes the new current solution to initiate the 

next iteration.  The search allows for moves that yield solutions inferior to the best 

solution obtained so far in order to avoid being trapped at a local optimum.    

Since the search always chooses the best new movement, it may well fall back 

into the local minimum from which it previously emerged.   At any stage of the process, a 

tabu list of mutation that the procedure is not allowed to perform is kept.  The goal of 

utilizing the tabu list is to exclude moves that would bring us back to the point where we 

were at some previous iterations and keep us trapped in a local minimum.  To avoid 

cycling, the reverse of a movement that has been recently performed is forbidden (tabu) 

and inserted on the top of tabu list.  All other entries are pushed down one position and 

the bottom entry is deleted.   In other words, a tabu list is operated as a FIFO strategy.  

The length of the tabu list is an important parameter.  If the number of entries in the tabu 

list is too small, cycling may occur.  Conversely, if the number of entries is too large, the 

computation time may increase significantly. The tabu list may be of several types such 

as position of jobs or pairs of jobs that may not be interchanged (Tillard,1990). 

Memory 

Normally, there are three types of memories: short-term, intermediate, and    

long-term memories.  A fundamental component of the TS algorithm is a short-term 

strategy called “simple TS” (Glover,1989; Glover, 1990; Werra & Hertz, 1989).     

The fundamental memory structure in the simple TS algorithm is the so-called 

tabu list.  As mentioned earlier, each move in a tabu list is memorized after each 

iteration.  The best move is selected among the set of candidates which are not in the 

tabu list.  Normally, a short-term memory is a method that keeps limited track of a search 

trajectory in order to guide the search out of a local optimum.  The functions of 

intermediate and long-term memories are employed within tabu search to achieve 

regional intensification and global diversification of the search.  When a region of the 
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solution space produces good solutions, then it is good to intensify the search in that 

region (intensification).  Conversely, instead of inducing the search to focus more 

intensively on regions that contain good solutions previously found, the long-term 

memory (diversification) guides the process to regions that markedly contrast with those 

examined so far.     

Aspiration level condition 

An improvement can be realized in the TS is due to the fact that too many 

solutions may be forbidden.  An aspiration level is defined as the value of the best 

schedule obtained so far. The aspiration level provides flexibility to choose good moves 

by allowing the tabu status of a move to be overridden, after comparing the values of the 

schedules, if it seems desirable to do so.  Criteria for removing the tabu status will be 

expressed by aspiration level condition.   

Stopping criteria   

Stopping criteria are rules to stop the search.  Some stopping rules are defined 

such as maximum number of iterations, maximum computation time, maximum CPU 

time, or the maximum number of iterations have been performed without improving the 

best solution obtained so far.  Figures 3.1 and 3.2 describe the process of the tabu 

search with short-term memory (Glover, 1990). 

 

3.3.3.2 Review of TS Applications  

During the last two decades, the Tabu Search (TS) technique has been 

found to be a remarkably effective approach to solve combinatorial optimization 

problems.  Barnes and Laguna (1993) reviewed some of the research related to 

TS applications in production scheduling and provided synthesis of the TS 

methods that have been employed.  Some suggestions for future research were 

also provided in their study. 
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Terminate Globally or Transfer 

 
A transfer initiates an long term memory 
components (intensification or diversification). 

Generate An Initial Solution 

It may be obtained from: 
! an improvement heuristic 
! a randomization. 

 

Create a candidate list of moves (neighborhood) 
! It is either not tabu or it is. If it is tabu, it can be 

overridden by the aspiration criteria. 

! Each move would generate a new solution from 

the current solution. 

Choose the best admissible move by evaluation 
each candidate move 

 
! Select the best admissible move leading to the 

next solution 
! record it as the new best solution if it improves 

on the previous best. 
(Note: Detail is presented in Figure 3.2) 

Stopping criteria 
Stop the search if: 
! a specified maximum number of iterations 

between two improvements of the objective 
function has reached 

! a specified maximum number of iterations has 
reached, or 

! the last best solution was found  

Update Admissibility conditions 

! Update Tabu restrictions, and 
! Update aspiration level criteria 

allowing the tabu status of a move to 
be overridden under appropriate 
circumstances 

STOP CONTINUE 

Figure 3.1 : The General Tabu Search Technique 
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Figure 3.2: Selecting the Best Admissible Move 

Evaluate each candidate move 
 
Does the move give the better solution than 
any other move found from the set of 
admissible candidates? 
 

Check Tabu Status 
 

Is the candidate is forbidden (tabu)? 

YES 

YES NO 

Check Aspiration level 
 
Does the move meet the 
aspiration level? 

Move is admissible 

The move is recorded as the best 
admissible candidate. 

YES 

Candidate List Check 
 
Is there any probability of better move 
left, or should candidate list be 
extended?  

NO 

NO 

Record and Update The Best Admissible Move 

YES

NO 
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In 1993, Laguna et al. applied TS to a single machine problem in order to 

minimize the sum of the setup costs and linear delay penalties when N jobs, 

arriving at time zero, are to be scheduled for sequential processing on a 

continuously available machine.  Their experimental results showed that the TS 

heuristic succeeded in finding optimal solutions to all problems (with up to 22 

jobs) to which the solutions are known.   A fast and easy approximation approach 

based on the TS technique was developed by Novicki and Smutnicki (1996) for 

the permutation flowshop problem with the objective of minimizing makespan.  

Their results showed that the algorithm was effective and could solve problems 

with up to 500 jobs and 20 machines.  Also, Franca et al. (1996) proposed a 

three-phase heuristic for solving the scheduling problem with identical parallel 

processors in order to minimize the makespan.  The TS algorithm was applied for 

solving the problem in phase 2 which improves the initial solution obtained from 

the first phase.  They then attempted to further improve the solution in phase 3.  

The number of jobs and machines that their method could solve within 

reasonable running time were up to 50 jobs and 5 machines. 

The best efforts to apply the TS algorithm for solving large-size FFs 

problems with identical parallel machines at each stage have been performed by 

Nowicki and Smutnicki (1998).  They developed an algorithm to solve problems 

with the objective of minimizing makespan.  They used their algorithm to solve 

problems with up to 150 jobs and 60 machines.  Another study was done by 

Norman (1999), who investigated flowshop scheduling problems with both 

sequence-dependent setup times and finite buffers by applying the TS approach.  

His findings showed that a TS heuristic procedure can give a good solution for 

problems with up to 200 jobs and 20 machines. 
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Because of the reported success of the TS in previous research with 

similar problems, it has been selected for application in this research.  
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CHAPTER 4 

EXACT ALGORITHM 

 
4.1 Introduction  

Even though the flexible flowshop problem with sequence dependent setup times 

is difficult to solve optimally for large-size problems, an exact procedure using a 

mathematical programming formulation, is generally accepted for solving small-size 

problems.  There are two main reasons for formulating a mathematical programming 

model:  

• The mathematical programming formulation provides a better understanding of the 

problem, which will be useful in formulating relaxed problems and in developing 

heuristic solution procedures. 

• Even though existing computing devices cannot solve large problems in an 

acceptable time, development of these devices is improving with a fast pace.  

Faster computers are developed, with larger memories, and may be able to solve 

practical size problems in the near future.  

 
4.2  Mathematical Formulation 

A brief description of the problem is reviewed in order to help in understanding 

the mathematical formulation.  The problem involves the scheduling of multiple products 

in a flexible flowshop environment with sequence dependent setup times 

(FFS(Qm1,Qm2,…, QmS)/sipm/Cmax).  In this research, there is only one production line 

considered.  The production line consists of many stages, which may have one or more 

non-identical (uniform) parallel machines.  In each stage, machines can process all 

products but they differ in their performances, and the machines cannot process a new 

product until the previous product has been completely finished.    
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 The products have to be manufactured on only one of the machines in each 

stage, and the processing of products cannot start until the products are completed in 

the previous stage.   Each product, e.g., product i of family j, requires PTime(j,i,s,m) 

units processing time on machine m of stage s.  Machine setup times are needed 

between any two products.  In this study, it is assumed that setup times are equal for all 

machines in the same stage when changing from one product to another.  

 This chapter presents a 0-1 mixed integer programming model with the objective 

of minimizing makespan for the problem.  The model is presented below with a brief 

explanation of each constraint.  Parameters and decision variables used in formulating 

the model are defined in Table 4.1.  

 
The objective function: 
 
 
Min E 

 
Constraints: 

 
! Completion time forcing constraints: 

This set of constraints ensures that all products are scheduled and the 

completion time of any product on any machine of the first stage is at least the sum 

of setup time from idling and processing time required for the product on that 

machine. 

 
 FT(j,i,1,m)  ≥ ch(0,0,j,i,s) + {PTime(j,i,1,m) ⋅ x(j,i,1,m)}         (1) 

 j = 1,2,…,N; i = 1,2,…,fj ; and m=1,2,…,m(1) 
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Table 4.1: The Notation Used in the Mixed Integer Programming Model 

 
Type of 

Variables 
 

 
Notation 

 
Explanation 

 
FTime(j,i,s,m) 

 
Finish time of product i, family j on machine m of stage s  Decision 

variables  
E 

 
The makespan 

 
x(j,i,s,m)         

 
= 1 , if product i, family j is assigned to machine m of stage s  
= 0 , otherwise 
 Binary decision 

variables  
w(j,i,q,p,s,m)      

 
= 1 , if product i, family j immediately precedes product p, family q  
        on machine  m of stage s  
= 0 , otherwise 

 
i,p 

 
Product indices 

j,q Family indices 

s Stage index 

m Machine index 

fj The number of products in family j 

m(s) The number of machines in stage s 

N Total number of families 

M(s) The set of machines in stage s ; M(s) = {1,2,..,m(s)}  

S The number of stages in the production line 

PTime(j,i,s,m) The processing time of product i, family j on machine m of stage s  

Parameters 

ch(j,i,q,p,s) The number of time units required to changeover from product i, 

family j to product p, family q at stage s   

 
 
 
 
! Stage link constraints: 

  Constraints (2) ensure that the completion time of product i of family j 

produced on machine m in the current stage (stage s) must be greater than its 

completion time in a previous stage (stage s-1).  The difference must be equal to or 

greater than the amount of processing time required in the current stage. 
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FTime(j,i,s,m)  ≥ FTime(j,i,s-1,mp) + {PTime(j,i,s,m) ⋅ x(j,i,s,m)}         (2) 

j = 1,2,…,N, i = 1,2,…,fj ; s = 2,3,…,S, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1) 

   
  Setup times are not considered here because the machine in the current 

stage may be setup for the product while the product is being processed in the 

previous stage.  

 
! Constraints about product sequencing on all the S stages: 

 
    FTime(j,i,s,m)-FTime(q,p,s,m)-ch(q,p,j,i,s)+(V)(1-w(q,p,j,i,s,m)) ≥ {PTime(j,i,s,m) ⋅ x(j,i,s,m)} (3) 

j = 1,2,…,N, q = 1,2,…,N, i = 1,2,…,fj ; p = 1,2,…,fq, s = 1,2,…,S, m = 1,2,…,m(s), 

and V is a very large positive number.  

 
If product p of family q is processed on machine m at stage s immediately 

before product i of family j, then the value of w(q,p,j,i,s,m) equals to one.  Hence, the 

completion time of product i, family j must be greater than the completion time of 

product p, family q.  The difference must be equal to or greater than the sum of the 

setup time from product p, family q to product i, family j and the required processing 

time of product i, family j on that machine.  

 
! Sequence completion time constraint: 

These constraints are needed to ensure that the makespan is equal to or 

greater than the completion time of each of the products in the last stage. 

 
FT(j,i,S,m)  ≤ E              (4) 

j = 1,2,…,N, i = 1,2,…,fj ; and m = 1,2,…,m(S) 
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! Constraints (5) ensure that each product is processed on exactly one machine in 

each stage. 

 

∑
=

)s(m

1m
)m,s,i,j(x  =  1                                  (5)  

 j = 1,2,…,N, i = 1,2,…, fj ; and s = 1,2,…,S  

 
! Except for the first product, a product scheduled on a machine must be immediately 

preceded by exactly one different product. 

         

x(q,p,s,m) – w(0,0,q,p,s,m) – ∑∑
= =

N

1j

fj

1i
m)s,p,q,i,w(j,  = 0          (6) 

        

q = 1,2,…,N; p = 1,2,…, fq; s = 1,2,…,S; and m = 1,2,…,m(s) 

 

! Except for the last product, a product scheduled on a machine must be immediately 

followed by exactly one product. 

x(j,i,s,m) – w(j,i,0,0,s,m) –  ∑∑
= =

N

q

fj

1p
m)s,p,q,i,w(j,

1
 = 0          (7) 

   

j = 1,2,…,N; i = 1,2,…,fj ; s = 1,2,…,S; and m = 1,2,…,m(s) 

 

! A machine can have exactly one first and one last product: 

∑∑
= =

N

1q

fj

1p
m)s,p,q,w(0,0,   =  1             (8) 

  
s = 1,2,…,S; and m = 1,2,…,m(s)  

∑∑
= =

N

1j

fj

1i
m)s,i,0,0,w(j,   = 1             (9) 

  
s = 1,2,…,S; and m = 1,2,…,m(s)  
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The above formulation is illustrated using the following simple problem.  The 

problem data are shown below and the computer model is listed in Appendix B. 

Number of families:  N = 2 

Number of stages:  S = 3 

Number of products:  fj = 2; j = 1,2 

Number of machines:  m(1) = 1, m(2) = 1, and m(3) = 2 

Speed of machines at each stage ~ U(0.85,1.15), resulting in the speeds shown in  

Table 4.2. 

Processing time of each product on the standard machine at each stage ~ U(10,50), 

resulting in the processing times shown in Table 4.3. 

Setup time from idling in stage 1 for each product, as a percentage of the processing 

time  ~ U(5%,15%), resulting in the setup times shown in Table 4.4. 

Changeover time between two products at each stage (ch(q,p,j,i,s)), as a percentage of 

the processing time ~U(10%,40%) and ~U(5%,15%) for major and minor setup times 

respectively, resulting in the times shown in Table 4.5. 

 

 

Table 4.2: Speeds of Machines at Each Stage 

 
Speed of Machine 

 

m=1 m=2 

Stage 1 1.1 - 

Stage 2 1.15 - 

Stage 3 1.0 0.98 
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Table 4.3: Processing Time of Each Product at Each Stage on the Standard Machine 
 

Processing Time of Products 
Stage Family 

 
Product 1 

 
Product 2 

j = 1 
18.28 33.81 s =1 

j = 2 
48.95 25.1 

j = 1 
31.57 28.24 s =2 

j = 2 
26.09 17.39 

j = 1 
23.68 44.87 s =3 

j = 2 
19.09 49.26 

 

 

 

 

Table 4.4: Setup Time from Idling for Each Product in Stage 1 
 

Setup Time from Idling of products 
Family 

 
ch(0,0,j,1,1) 

 
ch(0,0,j,1,2) 

j = 1 3.89 1.52 

j = 2 2.26 3.99 
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Table 4.5: Changeover Times between Products at each Stage (ch(q,p,j,i,s)) 

 
Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s)) 

 
 

Family q=1 
 

Family q=2 Stage s Family j Product i 

 
p=1 

 
p=2 

 
p=1 

 
p=2 

1 1 
0.00 4.24 5.88 4.90 

 2 
2.49 0.00 6.54 4.52 

2 1 
5.33 6.22 0.00 4.20 

1 

 2 
5.91 5.51 3.48 0.00 

1 1 
0.00 2.96 6.45 10.29 

 2 
2.20 0.00 11.25 7.87 

2 1 
9.39 10.24 0.00 2.41 

2 

 2 
10.58 6.98 3.07 0.00 

1 1 
0.00 3.22 6.64 10.63 

 2 
3.13 0.00 10.17 6.15 

2 1 
9.79 9.95 0.00 3.46 

3 

 2 
6.63 11.50 1.65 0.00 

 

 

 
The model has 188 constraints, 556 continuous variables, and 96 integer 

variables for this problem.  It is necessary to use a software which can handle a large 

number of variables.  The MPL/CPLEX software was used to solve this problem.  The 

makespan of this solution is 172.32 time units.  The optimal product sequences on the 

different machines and stages are presented below. 

Stage 1: Machine1: (1,2)-> (1,1) -> (2,2) -> (2,1) 

Stage 2: Machine 1: (1,2)-> (1,1) -> (2,2) -> (1,1) 

Stage 3: Machine 1: (1,2)-> (1,1) -> (2,1)  

Machine 2: (2,2) 

 where (j,i) is product i of family j. 
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Although an optimal solution was obtained for the problem, the computational 

time was excessive.  Attempts to solve larger problems were unsuccessful as they 

required too much CPU times.  Hence, a heuristic algorithm is developed to obtain a 

near-optimal solution for realistic sized problems. 
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CHAPTER 5 

HEURISTIC ALGORITHMS 
 

The flexible flowshop problem with sequence-dependent setup times is known to 

be NP-hard (Allahverdi et. al, 1999).  In general, the computational effort required to find 

an optimal solution grows exponentially with the size of the problem.  In an effort to find 

a near optimal solution for problems with average or large sizes, a two-phase algorithm 

was developed.  The first phase consists of a constructive heuristic developed to obtain 

an initial solution.  This heuristic will be termed as the “Flexible Flowshop with Sequence 

Dependent Setup Times Heuristic” (FFSDSTH).   The second phase, referred to as the 

Tabu Search Heuristic (TSH), uses the well-known Tabu Search meta-heuristic to 

improve on the solution obtained from the first phase.  The algorithm process flow for 

both phases is shown in Figure 5.1.  

The detailed description of the two-phase heuristic is presented in the following 

three sections.  A detailed description of the FFSDSTH is presented in Section 5.1, and 

is followed by a numerical illustration in Section 5.2.  The TSH is described in Section 

5.3. 

 
5.1 Phase 1: Obtaining an Initial Solution Using the FFSDSTH Algorithm 

The heuristic developed in this phase schedules one family at a time on the 

machines of the first stage.  The algorithm then proceeds by scheduling products to the 

machines of all other stages.  Prior to the presentation of the FFSDSTH algorithm, the 

notation and variables used are defined.   

Notation: 

Let  

i,p   =  product indices 

j,q  =  family indices 
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Phase 1: Obtaining an Initial Solution 
Using the FFSDSTH Algorithm 

Step 2: Determine the “Final Difference” 
(FD(j)) for each family 

Step 3: Assign families to the first-stage 
machines  

 
Step 5: Schedule products of the m* family 

on machines at the first stage 

Step 6: Schedule products of the remaining 
families on the machines at the first stage 

Step 4: Assign the remaining families to the 
machines at the first stage 

Step1: Make the initial arrangement of 
products in each family 

Part 1: Assigning Families to Machines 
at the First Stage 

Part 2: Sequencing Products on 
Machines at the First Stage 

Part 3: Balancing Production Times of 
Machines at the First Stage 

Step 7: Balance the production times of all 
machines at the first stage 

 
Step 8: Schedule all the products on all 

other stages and calculate the makespan 

GO TO PHASE 2 

Part 4: Scheduling All the Products on 
All Other Stages (i.e., stages 2, 3,…, S), 

and Calculate the Makespan 

Figure 5.1: A Process Flow of the FFSDSTH and TSH Algorithms 
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Figure 5.1: A Process Flow of the FFSDSTH and TSH Algorithms (continued) 

Phase 2: Improving the Initial Solution Using the TSH 
Algorithm 

 
Step 12: Move families between (or within) the machines  

 

Step 11: Check if the search 
should be stopped. 

YES NO 

Part 6: Moving Products between (and within) Machines at 
the First Stage 

 
Step 16: Moving product between (or within) the machines 

 

Step 15: Check if the search 
should be stopped. 

NO 

Step 17: Determine the makespan at the last stage and the best 
sequence found so far 

YES 

Part 5: Moving Families between Machines (and within a 
machine) at the First Stage 

Step 10: Update the number of current iterations 

Step 14: Update the number of current iterations 

Step 9: Initialize all parameters used in this part 

Step 13: Initialize all parameters used in this part 
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s   =  stage index 

J    =  set of all families; J = {1,2,…,N} 

Fj   =  set of products in family j; j ∈  J 

    =  {1,2,…,fj} 

fj    =  number of products in family j; j ∈  J 

Ψ   =  set of stages in a production line 

=  {1,2,…,S} 

m(s) = number of machines in stage s; s ∈  Ψ 

M(s)  =  set of machines in stage s  

         = {1,2,…,m(s)} 

vs,m =  speed of machine m at stage s 

ch(q,p,j,i,s) = The number of time units required to changeover from 

product i of family j to product p of family q at stage s  

STime(j,i,s,m)  =  start time of product i of family j on machine m of stage s.  

There are 8 possible ways of determining the value of 

STime(j,i,s,m).  A detailed description of these ways is 

presented in section 5.1.1.     

PTime(j,i,s,m)  =   processing time of product i of family j on machine m of 

stage s; j ∈  J, i ∈  Fj, s ∈  Ψ, and m ∈  M(s).  

T(j,i) = processing time of product i of family j on the standard 

machine in stage 1 

FTime(j,i,s,m)   =  finish time of product i, family j on machine m of stage s.  

This time is equal to the sum of its start time and 

processing time.  
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FTime(j,i,s,m)   =  STime(j,i,s,m) + PTime(j,i,s,m); j ∈  J, i ∈  Fj, s ∈  Ψ, and           

m ∈  M(s) 

x  = the largest integer less than or equal to x 

avg_proc/prd/mc(j) = the average processing time per product per machine for 

family j at the first stage; j ∈  J 

COT(q,j)  = the average changeover time from family q to family j; q,   

j ∈  J and q ≠ j.  The value of COT(q,j) is obtained by 

calculating the average of the total changeover times from 

all products of family q to all products of family j. 

avg_COT(j) = the average changeover time from all other families to 

family j; j ∈  J. The value of avg_COT(j) is obtained by 

dividing the sum of the average changeover times from all 

other families to family j by N-1. 

W1j                          =  the ratio between avg_proc/prd/mc(j) and  
 

min  avg_proct/prd/mc(q); j ∈  J  
                                                 q ∈ J  
 
W2j  =  the ratio between avg_COT(j) and 

Jq∈
min COT(q); j ∈  J 

 
m* =  the minimum value of m(s); m* = 

ψ∈s
min  m(s)  

  
FD(j) = the “final difference” value for family j; j ∈  J, calculated as 

{W1j x  avg_proc/prd/mc(j)} – {W2j x avg_COT (j)}.  This 

value is used to assign the first m* families to machines in 

the first stage at the start of scheduling. 

R = set of the m* families with the lowest values of FD(j),     

|R|  = m* and R =  { f1, f2, …, fm*} where fj is the family with 
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∑
∈ Rj

jWKL )(

the jth lowest FD value.  These families will be assigned 

first at the start of the scheduling. 

WKL(j) = the total processing time and setup time (or workload) of 

family j in stage 1, j ∈  R, using a standard machine (i.e., 

speed = 100%).  The value of WKL(j) is obtained by 

summing the processing times of all products on a 

standard machine at the first stage and the setup times of 

all products using the products order determined in Step 

1, as explained in section 5.1.2. 

GT = the sum of the total processing and setup times of all 

families in set R at the first stage, i.e.,  

GT = 

                             
avg_GT(1) = The average processing time per machine for families in 

set R, using standard machines at stage 1; i.e., 

avg_GT(1) = GT/ m(1) 

num_mc(j) = total number of machines needed to process family j in 

stage 1; j ∈  R.  The value of num_mc(j) is obtained by 

simply dividing the total processing time of family j at the 

first stage (WKL(j)) by avg_GT(1).  

Min_mach(j) = the minimum number of machines needed to process 

family j in stage 1; j ∈  R.  This value of is obtained as 

follows: 

      Min_mach(j)  = max{ 1, num_mc(j) }  

min_used = the minimum total number of machines needed to 

process all families in set R in stage 1;  
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∑
∈ Rj

jmachMin )(_  min_used =  

 
K = set of shared machines at the first stage.  These 

machines are the slowest m(1) – min_used machines.  

Shared machines are those to which more than one 

family has been assigned. 

quota_time(j) = the limited production time of family j on the shared                        

machine; j ∈  G 

 
Prior to the presentation of the FFSDSTH algorithm, the procedure used to 

determine the start time of a product on a machine is presented below.   

 
5.1.1 Start Time Determination 

There are eight possible ways to determine the value of the start time 

(STime(j,i,s,m)) as described below. 

5.1.1.1 If  j = the first family processed on machine m at the first stage; j ∈  J,   

i = the first product scheduled in family j; i ∈  Fj, and m ∈  M(1), then: 

STime(j,i,1,m) = ch(0,0,j,i,1)    

5.1.1.2 If j = the first family scheduled on machine m at the first stage, i ≠ the 

first product in family j processed on the machine, then: 

STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1) 

where, 

p = the product that precedes product i on machine m in the first 

stage 

                     and j ∈  J, i, p ∈  Fj, m ∈  M(1) 

5.1.1.3 If j ≠ the first family scheduled, i = the first product scheduled in family 

j on machine m at the first stage.  Then: 
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                  STime(j,i1,m) = FTime(q,p,1,m) + ch(q,p,j,i,1) 

where,  

q = the family that precedes family j on machine m of stage s  

p = the last product of family q scheduled on machine m of stage s 

and j,q ∈ J, i ∈  Fj, p ∈  Fq,  m ∈  M(1) 

5.1.1.4 If j ≠ the first family scheduled, i ≠ the first product in j processed on 

machine m at the first stage.  Then: 

                             STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1) 

where, 

p = the product in family j that precedes product i on machine m at 

the first stage 

                        and j ∈  J, i, p ∈  Fj, m ∈  M(1) 

5.1.1.5 If j = the first family scheduled, i = the first product in j processed on 

machine m in stage s: s ∈  {2,3,…,S}.  Then: 

                       STime(j,i,s,m) = FTime(j,i,s-1,mp) 

where, j ∈  J, i ∈  Fj, m ∈  M(s), mp is the machine in stage s-1 on which 

product i of family j was processed 

5.1.1.6 If j = the first family scheduled, i ≠ the first product in family j 

processed on machine m in stage s:s ∈  {2,3,…,S}.  Then: 

      STime(j,i,s,m) = max {FTime(j,p,s,m) + ch(j,p,j,i,s), FTime(j,i,s-1,mp)} 

        where, 

p = the product in family j that precedes product i on machine m  

stage s 

         j ∈ J, i, p ∈  Fj 

                              m ∈  M(s) 
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                              mp is defined as above. 

5.1.1.7 If j ≠ the first family scheduled, i = the first product in family j 

processed on machine m in stage s:s ∈  {2,3,…,S}.  Then: 

       STime(j,i,s,m) = max{FTime(q,p,s,m)+ch(q,p,j,i,s), FTime(j,i,s-1,mp)} 

                               where, 

                               q = the family that precedes family j on machine m of stage s  

                               p = the last product of family q scheduled on machine m of stage s 

                              and j,q ∈ J, i ∈  Fj, p ∈  Fq,  m ∈  M(s), mp is defined earlier. 

5.1.1.8 If j ≠ the first family scheduled, i ≠ the first product in family j 

processed on machine m in stage s:s ∈  {2,3,…,S}.  Then: 

        STime(j,i,s,m) = max{FTime(j,p,s,m)+ch(j,p,j,i,s), FTime(j,i,s-1,mp)} 

        Where, 

p = the product in family j that precedes product i on machine m  

stage s 

        j ∈  J, i, p ∈  Fj 

m ∈  M(s) 

mp is defined earlier. 

If there is any change in the schedule, then the start time of all products and 

families affected by the change are recalculated.    

 
5.1.2 A Detailed Description of the FFSDSTH Algorithm 

The detailed description of the FFSDSTH is presented below in Parts 1 

through 4. 
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Part 1: Assigning Families to Machines at the First Stage 

In order to assign families to machines at the first stage, the algorithm 

starts by sorting products in an initial order within each family and calculating 

some production and setup parameters for each family, as detailed in the 

following steps. 

Step 1: Make the initial arrangement of products in each family 

Since this problem involves uniform machines, define a machine with 

a standard speed (speed = 100%) for the first stage.  Determine the 

processing time of each product on this standard machine.  For each 

family, arrange the products as follows:  

Calculate for each product the sum of its setup time from idling and 

its processing time on the standard machine.  Select as the first product 

in the sequence the product with the lowest sum.  Then calculate for each 

remaining product the sum of its setup time from the previous product and 

its processing time on the standard machine.  Selected as the second 

product in the sequence the product with the lowest sum.  Repeat this 

procedure until all products in each family have been completely ordered.  

Details of the above procedure are given below. 

1.1 Find the first product in the sequence.   

Find i’ with: 
 
    

jFi∈
min (T(j,i) + ch(0,0,j,i,1); j ∈ J  

 
 1.2  Update Fj = Fj \ {i’}.  

If Fj = φ, update J = J\ {j}.  If J  = φ, go to Step 2; otherwise, go to 

Step 1.1. 

If Fj ≠ φ, go to Step 1.3. 
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1.3 Find the next product.   

 Find i’ with: 

   
jFi∈

min (T(j,i) + ch(j,p,j,i,1); j ∈ J                       

where p is the last product scheduled so far on machine m at the 

first stage. 

Then, go to Step 1.2. 

Step 2: Determine the “Final Difference” [FD(j)] of each family 

This step determines the “Final Difference” [FD(j)] of each family, 

which is used for selecting the families to be scheduled at the start of the 

schedule.  Calculations of some parameters must be made prior to the 

determination of FD(j) as detailed below.    

2.1 Calculate avg_proc/prd/mc(j):  

 
           avg_proc/prd/mc(j) =  

for j =1,2,…,N 

  2.2  Calculate COT(q,j):    

COT(q,j) is calculated by averaging the changeover time from all 

products of family q to all products of family j.  

 

COT(q,j)       =                                       

 
q, j ∈  J and q  ≠ j, i ∈  Fj, p ∈  Fq 

2.3  Calculate avg_COT(j): 

 

           avg_COT(j) =         ; q ≠ j, and q, j ∈  J 

                                 N-1 
 
  

 

∑ 

= 

N 

q 

COT(q,j) 
1 
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2.4 Calculate FD(j) as follows: 

FD (j)  = {W1j x  avg_proc/prd/mc(j)} – {W2j x avg_COT (j)} 

where, j ∈  J 

Step 3: Assign families to the first-stage machines 

   In assigning families to machines, one can either select a machine 

and assign a family to it or select a family and then assign it to a machine.  

The latter approach is used here.  

In this step two tasks are performed.  In the first task families are 

selected to be assigned to the first-stage machines.  In the second, these 

families are assigned to machines. 

3.1 Select m* families.  

The first m* families are those with the lowest values of FD(j).  

These families will constitute the elements of set R.  At the start of the 

schedule, only these m* families are assigned to the machines in 

order to reduce idle times of the machines at the stage that has the 

smallest number of machines.  

3.2  Assign the selected families to machines.  

Once the families to be scheduled at the start of the schedule 

have been selected, the assignment of those families to machines is 

made.  The number and speeds of the machines are considered in 

order to reduce machine idle times at the first stage as much as 

possible.  In this step, these families are assigned, one at a time, to 

the first-stage machines.  There are two cases to be considered.    

3.2.1 Case 1: m(1) = m* 

In this case, the algorithm assigns the family with the 

minimum value of FD(j) on the fastest machine, the family with 
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the second lowest value of FD(j) to the second fastest machine, 

and so on.  

3.2.2 Case 2: m(1) > m* 

Since the number of machines is greater than the number 

of families to be assigned to these machines, each of the m* 

families may be processed on one or more than one machines, 

depending on their total processing times.  In addition, some of 

these families may share a machine with other families. The 

assignment of the m* families in this case is described as 

follows.   

3.2.2.1 Calculate the total processing time and setup time 

(WKL(j)) for each family j; j ∈  R on the standard 

machine at the first stage.  This value is calculated by 

summing the processing times of all products and the 

setup times of all products when they have been 

arranged in the order or sequence specified in Step 1. 

 
 WKL(j)  =                                  +   

 
j∈  R, iy, iy+1 ∈  Fj   

where, iy = the product in position y.  If y = 0, that 

means product iy+1 is the first product in a sequence, 

and both iy and j are equal to 0 when y = 0. 

3.2.2.2 Calculate the grand total processing times (GT) of all 

families in set R. 
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GTavg
jWKL

 
GT  =                          

  
3.2.2.3 Calculate the average processing time to be allocated 

to each machine at the first stage when using the 

standard machine (avg_GT(1)). 

 

           avg_GT(1)   =  

 
3.2.2.4  Calculate the number of machines (num_mc(j)), in 

stage 1, to be assigned to each family in set R.   

 
 

                     num_mc(j)  =                        

 
3.2.2.5  Calculate the minimum number of machines 

(Min_mach(j)), needed to process family j from set R in 

the first stage:  

                Min_mach(j) = max{1,  num_mach(j)  } ; j ∈  R 

3.2.2.6 Calculate the minimum number of machines  

(min_used) needed to process all families in set R at 

the fist stage:   

 
              min_used = 

 
3.2.2.7 Assign the first m* families to the first min_used 

machines.  This procedure starts by assigning family j 

with the lowest FD(j) value to the Min_mach(j) fastest 

machines.  Then family q with the second lowest FD(q) 

value to the next Min_mach(q) fastest machines, and 

) 1 ( m 

GT 
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so on.  This procedure is then repeated until all the 

families in set R have been scheduled on the first 

min_used fastest machines.  For every family j with the 

value of num_mach(j) –Min_mach(j) = 0, j ∈  R, update 

R = R \ {j} and J = J \ {j}. 

3.2.2.8 The remaining families in set R need to be scheduled 

on the m(1) - min_used remaining machines.  These 

machines are the shared machines which form the 

elements of set K.  

Since the families in remaining set R have to 

share machines, the limited production times 

(quota_time(j)) of these families on the machines must 

be determined:  

 
          quota_time(j) = (num_mach(j) -  Min_mach(j)) x                  

avg_GT(1) ; j ∈  R 

 
For families not completely scheduled (i.e., those 

in the remaining set R), the assignment of these 

families starts with the assignment of one family to the 

fastest shared machine.  The procedure is then 

repeated in a cyclic order, as presented below.  

3.2.2.8.1 Find j’ such that  

COT(j’,q) = 
jq,

min (COT(j,q));q, j ∈ R and q ≠ j 
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3.2.2.8.2 Schedule family j’ on the fastest shared 

machine (e.g., machine m': m' ∈  K). 

3.2.2.8.3 Update R = R\{j’}, J=J\ {j’}, and K = K \ {m'} 

If R ≠ φ and K ≠ φ, go back to Step 

3.2.2.8.1, 

                                                  if R ≠ φ and K = φ, reset K back to its 

original set value, and go to Step 

3.2.2.8.4,  

   and if R = φ, go to Step 4. 

3.2.2.8.4 Assign the next family, i.e., family j’ to the next 

fastest shared machine (i.e. machine m': m'∈  K) 

where  

                    COT (q,j’) = 
j

min COT(q,j), j ∈ R 

 
               and q is the last family scheduled on machine 

m’ so far.   

 Update R = R\{j}’,J=J \ {j’}, and K = K\ {m'}. 

If R ≠ φ and K ≠ φ, go back to Step 3.2.2.8.4,  

if R ≠ φ and K = φ, reset K back to its original 

set value, and go back to Step 3.2.2.8.4, and if 

R = φ, go to Step 4. 

 
Step 4: Assign the remaining families to the machines at the first stage 

In this step, the heuristic selects a machine and then assigns one 

of the remaining families to that machine. The assignment of the 

remaining families to the machines at the first stage starts with scheduling 
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one family to the fastest machine.  The family selection procedure 

consists of finding the family with the lowest sum of the average 

changeover time from the last family (e.g., family q) scheduled on that 

machine (COT(q,j)) and the average processing time per product per 

machine of the family at the first stage (avg_proc/prd/mc(j)).  This 

procedure is then repeated in a cyclic order until all remaining families 

have been assigned to the machines.  A description of the procedure is 

given below:  

4.1 Determine the fastest remaining machine (e.g., machine m) 

4.2 Find family j’ in the remaining set J with:   

Jj∈
min [COT(q,j)  + avg_proc/prd/mc(j)] 

    
Where, q = the last family on machine m of stage 1 

4.3 Schedule family j’ on machine m. 

4.4 Update J = J \ {j’} and M(1) = M(1) \ {m}. 

4.5 If M(1) ≠ φ, and J ≠ φ, then go back to Step 4.1. 

If M(1) = φ, and J ≠ φ, set M(1) back to its original set value and go to 

Step 4.1.   

If J = φ, go to Part 2. 

 
Part 2: Sequencing Products on Machines at the First Stage 

After all families are assigned to the first-stage machines, the product 

scheduling is performed.  There are two types of product scheduling on these 

machines: 1) Product scheduling for the first m* families, and 2) product 

scheduling for the remaining families.  The Earliest Finish Time (EFT) rule was 
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used to sequence products on machines at the first stage in an attempt to reduce 

machine idle times. A description of the EFT rule is presented below: 

 
Earliest Finish Time (EFT) Rule 

The EFT rule selects from the remaining products the one that yields the 

earliest finish time.  The following procedure is followed to apply this rule when 

scheduling the products of family j on a set of machines at stage s. 

1. Initialization: 

  Fj  = set of unscheduled products in family j 

 MU(j) = set of machines needed to process the products of family j,  

MU(j) ⊂  M(s) 

2. Scheduling steps: 

2.1 Product i’ is selected to be processed on the machine with the 

earliest finish time such that: 

 
     FT(j,i’,s,m’)   =  

)(,
min

jMUmFi j ∈∈
        

  
 

2.2 Assign product i’ to machine m’. 

2.3 Update the finish time of product i’ on machine m’ 

 
FTime(j,i’,s,m’)  =  

 
Fj = Fj\ {i’}.  Go back to Step 2.1 until Fj = φ.   

 
Step 5: Schedule products of the first m* families on machines at the first stage 

5.1 For each family with no shared machine:  

The products of these families are scheduled on the 

corresponding machines using the EFT rule. 



 

 

66 
5.2  For other families scheduled on shared machines: 

5.2.1 Start with products of the families assigned to the fastest 

shared machine(s).  The families are selected in the order in 

which they were assigned to the shared machine in Steps 3 

and 4 of Part 1. 

5.2.2 Define MU(j) as the set of machines to which the selected 

family j is assigned, including the shared machine. 

5.2.3 Apply the EFT rule in sequencing these products on the 

machines in MU(j).  If the machine selected with the EFT 

rule is the shared machine, make sure that quota_time(j) is 

not exceeded; otherwise, do not schedule the selected 

product on the shared machine, remove the shared machine 

from MU(j), and proceed with the EFT rule. 

5.2.4 Update R  = R  \ {j}.  If R ≠ φ, update j to the following family 

and go to Step 5.2.2; otherwise, go to Step 6. 

 
Step 6: Schedule products of the remaining families      

Each of the remaining families is scheduled on only one machine. 

The Earliest Finish Time (EFT) rule is used to sequence the products of 

each of these families on the first-stage machines.  

 
Part 3: Balancing the Production Times of Machines at the First Stage 

Step 7: Balance the production times of machines at the first stage.  

Balancing the production times of machines at the first stage is 

performed by moving one or more of the products of a family from the 

machine with the latest completion time to other machines such that the 

latest completion time of the first-stage machines is reduced. Balancing 



 

 

67 
is performed after the assignment of all products to machines at the first 

stage has been completed.  The procedure used to balance the 

production times of the first-stage machines is presented below: 

7.1 Find the machine with the latest completion time (e.g., machine 

m’)  

7.2 Remove the last product scheduled on machine m’.  

7.3 Calculate the latest completion time on each of the machines after 

scheduling the removed product last within its family if scheduled 

on the machine; otherwise, last on the machine.  Select the one 

with the smallest updated completion time and the corresponding 

latest completion time.  

7.4 If the latest completion time is improved, perform the product re-

schedule and return to Step 7.1; otherwise, do not remove the 

product from machine m’, and go to Step 7.5. 

7.5 Repeat Steps 7.1 through 7.4 with the product scheduled before 

the product used in the last removal attempt.  If all attempts have 

been exhausted, proceed with Part 4.  

 
Part 4: Scheduling All products on All other Stages (i.e., stages 2,3,4,…,S) 

After all products are completely assigned to the first-stage machines, the 

assignment of these products on machines at the succeeding stages needs to be 

performed.  A Look Ahead (LA) rule was developed to sequence the products on 

machines at stages 2 through S, in order to obtain low product finish times and a 

low makespan.  Prior to the presentation of the LA rule, the notation used to 

explain this rule is presented and is followed by details of the rule.  Figure 5.2 

shows the flowchart for this rule.   
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Notation: 

i, j =  product i of family j, which just finished processing in the previous 

stage (stage s-1).  It is the current product looking for a machine to 

be processed in stage s.  

MU(j) =  set of machines in stage s that are processing products of family j, 

MU(j) ⊂  M(s)  

m =  the machine in set MU(j) that yields the earliest finish time for 

product i of family j  

m'       =  the machine in set M(s) that yields the earliest finish time for product 

i of family j.  If machine m’ is currently processing products of family 

q≠j, then denote the last product of family q, processed on this 

machine, as p’.  

 p = a product, if any, of family q that is being processed at the previous 

stage (stage s-1).   

mp =  the machine in stage s-1 on which product p of family q is 

processed 

DST(q,p) =  the delay in the start time of product p of family q when it is 

scheduled after product i on machine m’.  The value of the DST(q,p) 

is the difference between the start time of product p when it is 

scheduled after product i and the start time when it is scheduled 

directly after product p’ on machine m’.  This value is calculated as 

follows: 

DST(q,p) = max {0, FTime(j,i,s,m’) + ch(j,i,q,p,s,) –  

              max{FTime(q,p,s-1, mp), FTime(q,p’,s,m’) + ch(q,p’,q,p,s)}}.   
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RFT(j,i) =  the reduction in the finish time of product i of family j when it is 

processed on machine m’ instead of machine m.   

=  FTime(j,i,s,m) – FTime(j,i,s,m’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LA-3 Apply the EFT rule to determine the 
machine in MU(j) (e.g. machine m) yielding the 

earliest finish time of product i of family j LA-13 Schedule product i of family j  
on this machine (machine m’) 

No

Yes

Determine the set of machines to which family j 
is assigned (MU(j)). 

Yes No 

LA-5 Check whether 
the machines m’ and 

m are the same family. 

LA-2 Check whether there 
is any machine in stage s is 
processing the products of 

family j. 

LA-12 Apply the EFT rule to 
determine the machine in M(s) (e.g. 

machine m’) yielding the earliest 
finish time of product i of family j 

LA-4 Apply the EFT rule to determine the 
machine in M(s) (e.g. machine m’) yielding the 

earliest finish time of product i of family j 

 Initialization 

Schedule steps: 

LA-1 Determine the product (e.g., product i) finish first from 
stage s-1 

Go to Step LA-6. 

Figure 5.2: Flowchart of the Look Ahead Rule 
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LA-7 Calculate the sum of finish time of product i of family j on 
machine m’ (FT(j,i,s,m’)) and the changeover time from this 

product to product p of family q (ch(j,i,q,p,s)).   

No 

Yes 

LA-6 Check if there is any 
incoming product of family q 
(e.g., product p of family q) 

being processed in the previous 
stage.   

 

Yes 

No 

LA-9 Check if FT(j,i,s,m’) + 
ch(j,i,q,p,s,m’) ≤ 
STime(q,p,s,m’)) 
 

No 

Yes 

LA-11 Do not schedule product i of family j on machine m’.  

 
LA-10 Check whether the value 
of RFT(j,i) is greater than that of 

the DST(q,p). 

GO TO STEP LA-13 

Figure 5.2: Flowchart of the Look Ahead Rule (continued) 

LA-8 Calculate the start time of product p of family q on machine 
m’ at stage s when it is scheduled after product p’ 

(STime(q,p,s,m’)) 

Go back to LA-1 to schedule this product on other machines. 
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Look Ahead (LA) Rule 

The LA rule is applied when a product from a certain family (e.g., product i 

from family j) has finished processing in a previous stage (stage s-1; s >1).  The 

algorithm starts by using the EFT rule to determine the best machine, e.g. 

machine m’, for this product which yields the earliest product finish time.  Th LA 

rule then checks if the product that precedes product i on machine m' is from the 

same family.  If true, then product i is scheduled on machine m’ as soon as it 

becomes available.  Otherwise, the rule checks if there is an incoming product of 

family q from the previous stage (e.g., product p of family q) to be processed on 

machine m’ in the near future (i.e., before time Γ where Γ is equal to the finish 

time of product i on machine m’, plus the changeover time to product p).  If not 

true, this rule schedules product i of family j on machine m’ as soon as the 

machine becomes available.  Otherwise, the rule schedules product i of family j 

on machine m’ if either of the following conditions is true: 

1. The scheduling of product i of family j on machine m’ does not delay 

the start time of the incoming product of family q.  In other words, 

product i of family j can be scheduled on machine m’ if the value of 

DST(q,p) is equal to zero.  This results in an earlier finish time of 

product i by FTime(j,i,s,m) – FTime(j,i,s,m’) time units. 

2. The amount of RFT(j,i) is greater than that of DST(q,p). For this 

condition, the machine idle time would be reduced by                

RFT(j,i) – DST(q,p) time units.   

As described above, the LA rule tries to reduce the machine idle time.  

The detailed procedure for the LA rule is given below.  
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 Initialization: 

Let H   =  the set of products arranged in non-decreasing order of finish 

times from machines in stage s -1, s >1.   

Scheduling steps. 

LA-1  Let i be the next unscheduled product in set H. 

LA-2  Check whether there is any machine in stage s processing products 

from the same family as product i (i.e., from family j).  If true, 

determine the set of the machines in stage s processing the products 

of family j (MU(j)) and go to LA-3.  If no machine is processing 

products of this family, go to LA-12. 

LA-3  Apply the EFT rule to determine machine m, m ∈  MU(j), that yields 

the earliest finish time for product i, family j. 

LA-4  Apply the EFT rule to determine machine m’, m’ ∈  M(s), which yields 

the earliest finish time of product i, family j. 

LA-5 If machines m and m’ are the same machine, go to LA-13; otherwise, 

go to LA-6. 

LA-6 Check if there is any product of family q (e.g., product p) being 

processed in the previous stage.  If yes, go to LA-7; otherwise, go to 

LA-13. 

LA-7 Calculate the sum of the finish time of product i, family j on machine 

m’ (FTime(j,i,s,m')) and the changeover time from this product to 

product p of family q (ch(j,i,q,p,s)). 

LA-8 Calculate the start time of product p of family q on machine m’ of 

stage s when scheduled after product p’:  
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 STime(q,p,s,m’) = max {FTime(q,p,mp,s-1), FTime(q,p’,s,m’) + 

ch(q,p’,q,p,s)}. 

LA-9 Compare the time in LA-7 (i.e., FTime(j,i,s,m') + ch(j,j,q,p,s')} to that 

in LA-8 (i.e., STime(q,p,s,m’))  

  If FT(j,i,s,m') + ch(j,j,q,p,s)} ≤ STime(q,p,s,m’), go to LA-13; 

otherwise, go to LA-10.  

LA-10 Check whether the value of RFT(j,i) = FTime(j,i,s,m) – FTime(j,i,s,m’) 

is greater than that of DST(q,p).  If yes, go to LA-13; otherwise, go to 

LA-11. 

LA-11 Do not schedule product i of family j on machine m’.  Go back to LA-1 

(i.e., repeat this procedure until the product is scheduled on a 

machine in this stage).     

LA-12 Apply the EFT rule to determine machine m’, m’ ∈  M(s), that yields 

the earliest finish time for product i, family j. 

LA-13 Schedule product i of family j on machine m’. 

 
The steps for Part 4 are given below.   

 
Step 8: Schedule all products on all other stages (i.e., stage 2, 3, … , S) and 

calculate the makespan 

8.1 Set s = 2. 

8.2 Set H = the set of products arranged in non-decreasing order of finish 

times from machines in stage s-1.  

8.3 Schedule the first product (e.g., product i) in set H on one of the 

machines of stage s using the LA rule. 
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8.4 Update H = H \ {i}.  If H ≠ φ, go back to Step 8.3.  If H = φ, update         

s = s + 1.  If s  ≤ S, go to Step 8.2; otherwise, calculate the makespan 

and go to Phase 2. 

 
5.2 Illustration of the FFSDSTH Algorithm 

 To demonstrate how this algorithm works, the following problem was generated 

and will be used as an example.  The problem data are as follows. 

Number of families:  N = 4 

Number of stages:  S = 3 

Number of products:  fj = 3; j = 1,2,3,4 

Number of machines:  m(1) = 3, m(2) = 2, and m(3) = 2 

Speed of machines at each stage ~ U(0.85,1.15), resulting in the speeds shown in  

Table 5.1. 

Processing time of each product on the standard machine at each stage ~ U(10,50), 

resulting in the processing times shown in Table 5.2. 

Setup time from idling in stage 1 for each product in terms of percentage of processing 

time ~ U(5%,15%), resulting in the setup times shown in Table 5.3. 

Changeover time between two products at each stage (ch(q,p,j,i,s)) in terms of 

percentage of processing time ~U(10%,40%) and ~U(5%,15%) for major and minor 

setup times respectively, resulting in the times shown in Table 5.4. 

 
Table 5.1: Speeds of Machines at Each Stage 

  
Speed of Machine 

 1 2 3 

Stage 1 1.1 1.08 0.95 

Stage 2 1 0.93 - 

Stage 3 1.06 1.00 - 
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Table 5.2: Processing Time of Each Product at Each Stage on the Standard Machine 

 
 

Processing time of Products 
Stage Family 

 

Product 1 

 

Product 2 

 

Product 3 

j = 1 47.68 18.19 26.55 

j = 2 34.72 31.58 33.43 

j = 3 21.02 27.71 32.58 

s =1 

j = 4 43.13 16.06 23.36 

j = 1 23.74 11.07 33.01 

j = 2 11.94 11.31 16.59 

j = 3 14.99 43.76 25.47 

s =2 

j = 4 36.55 33.76 33.46 

j = 1 32.47 24.8 28.59 

j = 2 48.49 34.25 22.76 

j = 3 33.32 12.87 20.25 

s =3 

j = 4 48.77 27.88 17.74 

 
 
 
 
 
 

Table 5.3: Setup Time from Idling for Each Product in Stage 1 
 

 

Setup time from Idling of Products 
Family 

 

ch(0,0,j,1,1) 

 

ch(0,0,j,2,1) 

 

ch(0,0,j,3,1) 

j = 1 5.97 6.27 4.53 

j = 2 7.48 6.29 7 

j = 3 5.75 7.37 5.74 

j = 4 5.93 6.16 5.54 
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Table 5.4: Changeover Times between Products at each Stage (ch(q,p,j,i,s)) 
 

 

Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s)) 

Family q = 1 Family q = 2 Family q = 3 Family q = 4 
Stage s Family j Product i 

p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 

1 - 4.19 4.28 11.06 8.60 6.51 6.43 7.19 7.82 10.61 10.91 8.94 

2 1.60 - 1.93 10.98 9.00 8.90 9.19 11.77 10.31 9.05 11.15 8.65 1 

3 4.27 4.13 - 6.26 8.06 11.49 9.93 11.73 8.01 8.09 8.20 6.48 

1 7.80 6.23 10.05 - 3.24 3.91 10.03 11.42 11.21 10.23 8.97 6.88 

2 8.32 10.58 9.33 2.34 - 3.66 7.90 11.77 9.71 7.37 9.96 7.98 2 

3 9.25 10.85 11.41 2.27 4.00 - 6.01 11.02 10.41 9.19 9.32 10.21 

1 8.74 9.47 6.62 8.57 9.27 6.22 - 1.97 2.02 6.15 6.94 6.02 

2 8.11 7.73 6.51 10.37 9.94 11.62 2.95 - 2.90 10.89 11.24 11.08 3 

3 9.44 10.27 6.55 10.83 11.19 7.79 1.57 3.52 - 6.42 11.22 11.25 

1 6.35 6.94 10.08 11.30 10.59 10.22 8.90 10.95 10.99 - 4.35 4.47 

2 10.64 11.63 10.19 10.78 8.63 11.82 10.32 10.77 6.24 1.65 - 3.91 

1 

4 

3 9.78 6.57 10.74 9.97 10.73 6.26 6.21 6.98 10.22 1.82 4.30 - 

1 - 3.09 2.82 7.68 9.31 8.18 9.46 11.37 11.07 8.74 7.38 9.67 

2 2.34 - 3.17 7.28 7.77 11.12 8.51 9.21 9.82 10.95 10.45 7.02 1 

3 4.42 4.24 - 10.17 6.84 7.02 7.54 6.90 8.54 11.93 11.60 7.76 

1 10.52 11.17 7.61 - 3.83 3.89 8.74 10.64 6.23 10.63 11.63 11.75 

2 6.06 6.22 8.16 3.94 - 3.82 9.93 6.34 7.45 8.5 9.03 8.81 

2 

2 

3 11.98 10.14 11.57 2.40 4.18 - 9.76 8.92 8.37 10.14 10.79 10.88 
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Table 5.4: Changeover Times between Products at each Stage (ch(q,p,j,i,s)) (continued) 
 

 

Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s)) 

Family q = 1 Family q = 2 Family q = 3 Family q = 4 
Stage s Family j Product i 

p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 

1 7.72 7.16 8.13 6.83 10.59 6.60 - 2.98 2.94 8.50 7.36 9.26 

2 6.33 9.13 8.63 7.64 11.59 7.33 3.85 - 3.41 8.74 8.11 9.61 3 

3 9.38 8.99 11.18 11.39 11.83 6.05 2.19 3.72 - 10.06 11.85 10.46 

1 6.06 7.80 7.56 6.65 7.31 11.40 8.24 7.47 10.48 - 2.78 3.64 

2 10.21 7.30 10.16 7.77 9.52 8.01 11.94 9.07 8.53 4.36 - 1.59 

2 

4 

3 11.66 10.94 9.82 8.07 10.57 8.57 9.20 11.04 10.50 4.36 3.92 - 

1 - 3.27 2.91 10.82 8.55 9.68 9.74 6.89 9.50 10.27 6.64 11.08 

2 3.14 - 1.76 11.00 6.83 7.14 11.08 10.84 9.09 6.02 6.53 9.11 1 

3 3.52 4.14 - 10.12 7.05 11.74 8.52 8.91 10.81 6.98 6.50 11.94 

1 10.42 7.19 11.54 - 2.33 3.18 8.34 7.27 7.37 11.98 11.65 10.44 

2 10.74 10.76 8.35 1.65 - 2.58 6.83 8.96 8.48 6.12 9.77 8.64 2 

3 10.8 10.31 7.99 3.93 3.47 - 6.52 11.73 6.95 10.44 6.22 10.09 

1 10.04 10.93 10.84 10.04 10.54 9.06 - 3.27 3.88 11.99 6.00 8.50 

2 9.44 8.38 6.11 8.76 11.74 7.54 3.73 - 2.67 11.05 10.06 11.90 3 

3 11.66 11.83 6.11 8.45 8.41 7.13 2.26 1.76 - 6.34 9.52 9.84 

1 6.82 8.46 9.62 9.43 10.58 7.13 9.38 6.37 8.69 - 4.10 3.69 

2 10.38 9.65 11.18 8.22 10.36 8.77 6.22 11.26 8.83 2.75 - 3.44 

3 

4 

3 8.96 9.85 10.48 8.81 9.82 7.76 11.02 6.93 8.32 3.13 3.87 - 
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Part 1: Assigning Families to Machines at the First Stage 

 Step 1: Make the initial arrangement of products in each family 

1.1 Find the first product. 
 

j = 1: ch(0,0,j,1,1) + T(j,1)  = 5.97 + 47.68 = 53.65 

ch(0,0,j,2,1) + T(j,2)  = 6.27 + 18.19 = 24.46 

ch(0,0,j,3,1) + T(j,3)  = 4.53 + 26.55 = 31.08 

Then, the first product of the sequence in this family is product 2. 

1.2 Update F1 = F1\{2} = {1,3} 

1.3 Find the next product. 

  ch(1,2,1,1,1) + T(1,1)  = 4.19 + 47.68 = 51.87 

 ch(1,2,1,3,1) + T(1,3)  = 4.13 + 26.55 = 30.68 

 The second product of the sequence in this family is product 3. 

Since there is only one product left, the last product in the 

products sequence of family 1 is product 1.  This procedure is repeated 

with families 2, 3 and 4, resulting in the following sequences: 

Products sequence for family 1 is 2--> 3--> 1. 

Products sequence for family 2 is 2--> 3--> 1. 

Products sequence for family 3 is 1--> 2--> 3. 

Products sequence for family 4 is 2--> 3--> 1. 

Step 2: Determine the “Final Diffrence” [FD(j)] of each family. 

2.1 Calculate avg_proc/prd/mc(j); j = { 1,2,3,4} 

avg_proc/prd/mc(1)  = {(47.68 + 18.19 + 26.55) x  

  (1/1.1+1/1.08 +1/0.95)} /(3x3) 

 = 29.65 
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avg_proc/prd/mc(2)  = {(34.72 + 31.58 + 33.43) x  

(1/1.1 + 1/1.08 +1/0.95)} /(3x3) 

   = 32.00 

avg_proc/prd/mc(3)  = {(21.02 + 27.71 + 32.58) x  

(1/1.1 + 1/1.08 +1/0.95)} /(3x3) 

   = 26.09 

avg_proctime/prd/mc(4)  = {(43.13 + 16.06 + 23.36) x  

(1/1.1 + 1/1.08 +1/0.95)} /(3x3) 

   = 26.48 

2.2 Calculate COT(q,j) 

COT(2,1) = {11.06 +8.6 +6.51+10.98+9+8.9+6.26+8.06+11.49} /(3x3) 

= 8.98 

 Using the same procedures, the following values are obtained.  

  COT(3,1) = 9.15, COT(4,1) = 9.12,  

   COT(1,2) = 9.31, COT(3,2) = 9.94,  

   COT(4,2) = 8.90, COT(1,3) = 8.16,  

COT(2,3) = 9.53, COT(4,3) = 9.02, 

COT(1,4) = 9.21, COT(2,4) = 10.03,  

COT(3,4) = 9.06 

2.3 Calculate avg_COT(j) 

avg_COT(1) = (8.98 + 9.15+9.12) / 3 = 9.08 

avg_COT(2) = 9.38 

avg_COT(3) = 8.90 

avg_COT(4) = 9.43 
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2.4 Calculate FD(j) 

The minimum value of an average processing time per product 

per machine at the first stage is avg_proc/prd/mc(3) = 26.09, and the 

minimum value of the average changeover time at the first stage is 

avg_COT(3) = 8.90.   Then, the FD(j) values are obtained as follows. 

FD(1) = (29.65)2/26.09 – (9.08)2/8.9 = 24.43 

FD(2) = (32.00)2/26.09 – (9.38)2/8.9 = 29.36 

FD(3) = (26.09)2/26.09 – (8.90)2/8.9 = 17.19 

FD(4) = (26.48)2/26.09 – (9.43)2/8.9 = 16.88 

 
Step 3: Assign some families to the first-stage machines. 

3.1 m(s*) = 2, R = {4,3} 

3.2 Since m(1) > m(s*), then case 2 is applied. 

3.2.2.1 WKL(4)  = (6.16 + 4.3+ 4.47) + (43.13+ 16.06+23.36)    

 = 97.48 time units 

             WKL(3)  = (5.75 + 2.95+ 3.52) + (21.02+ 27.71+ 32.58)   

= 93.53 time units 

3.2.2.2 GT  = 97.48 + 93.53 = 191.01 time units 
 
3.2.2.3 avg_GT(1,m) = 191.01/3  = 63.67 time units 

3.2.2.4 num_mc(4) = 97.48/63.67   = 1.53 machines 

            num_mc(3) = 93.53/63.67   = 1.47 machines 

3.2.2.5 min_mach(4) = 1 machine 

            min_mach(3) =1 machine 

3.2.2.6 min_used = 1+ 1 = 2 machines 

3.2.2.7 Assign family 4 to machine 1, and assign family 3 to 

machine 2. 
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3.2.2.8  R = {4,3} 

             K= {3} 

quota_time(4) = (1.53 – 1) x 63.67 = 33.75 time units 

quota_time(3) = (1.47 – 1) x 63.67 = 29.92 time units 

3.3.2.8.1 – 3.3.2.8.4  COT(3,4) = 9.06 

            COT(4,3) = 9.02 

  Since the minimum value is 9.02, schedule family 4 

on the shared machine first (i.e., machine 3) and then 

family 3.  Go to Step 4. 

Step 4: Assign the remaining families to the machines at the fist stage 

 4.1 Set M(1) = {1,2}.  The fastest machine in this set is 1. 

 4.2 The candidate families are families 1 and 2 (set J = {1,2}). 

 Calculate: 

                            COT(4,1) + avg_proctime/prd/mc(1)   = 9.12 + 29.65 

               = 38.77 

COT(4,2) + avg_proctime/prd/mc(2)   = 9.38 + 32.00   

    = 41.38 

4.3 Since the minimum value is 38.77, then schedule family 1 on machine 

1.   

4.4 Set J = {2} and M(1) = {2}. 

4.1 The fastest remaining machine is 2. 

4.2 Since family 2 is the last family to be scheduled, it is assigned to 

machine 2. 

Figure 5.3 shows the assignment of families to the machines at 

the first stage. 
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Part 2: Sequencing products on machines at the first stage 

Step 5: Schedule products of the first m* families (i.e., m* = 2)  

Case 5.2 is applied. 

5.2.1   Since family 4 is the first family scheduled on the shared machine 

(i.e., machine 3), its products are sequenced first. 

5.2.2 MU(4) = {1,3} 

5.2.3 Apply the EFT rule to schedule the products of family 4. 

Scheduling of the first product: 

FTime(4,1,1,1) = ch(0,0,4,1,1) + PTime(4,1,1,1)  

= 5.93+43.13/1.1 = 45.14 

 FTime(4,2,1,1) = ch(0,0,4,2,1) + PTime (4,2,1,1) 

= 6.16 + 16.06/1.1 = 20.76 

FTime(4,3,1,1) = ch(0,0,4,3,1) + PTime (4,3,1,1) 

= 5.54 + 23.36/1.1 = 26.78 

FTime(4,1,1,3) = ch(0,0,4,1,1) + PTime (4,1,1,3) 

= 5.93+43.13/0.95 = 51.33 

 

 
 
             Machine 1: 
 
 
 
             Machine 2: 
 
 
 
             Machine 3: 

Family 4 

Family 3 

Family 4 Family 3 

Family 1 

Family 2 

           Figure 5.3: The Assignment of all Families to the First-Stage Machines 
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FTime(4,2,1,3) = ch(0,0,4,2,1) + PTime (4,2,1,3) 

= 6.16 + 16.06/0.95 = 23.06 

       FTime(4,3,1,3) = ch(0,0,4,3,1) + PTime (4,3,1,3)  

= 5.54 + 23.36/0.95 = 30.13 

Since FTime(4,2,1,1) is the minimum value, schedule 

product 2 of family 4 on machine 1.   

  Scheduling the next products of family 4. 

   FTime(4,1,1,1) = FTime(4,2,1,1) + ch(4,2,4,1,1) + PTime (4,1,1,1)  

= 20.76 + 4.35 + 43.13/1.1 = 64.32 

FTime(4,3,1,1) = FTime(4,2,1,1) + ch(4,2,,4,3,1) + PTime (4,3,1,1) 

= 20.76 +4.30 + 23.36/1.1 = 46.30 

FTime(4,1,1,3) = ch(0,0,4,1,1) + PTime (4,1,1,3) 

 = 5.93+43.13/0.95 = 51.33 

FTime(4,3,1,3) = ch(0,0,4,3,1) + PTime (4,3,1,3)  

 = 5.54 + 23.36/0.95 = 30.13 

From the above calculations, schedule product 3 of this 

family on machine 3.  Since machine 3 is the shared machine, 

then go back to Step 5.2.4, check whether the limited processing 

time of family 4 (quota_time(4)) on the shared machine is not 

exceeded, as detailed below. 

quota_time(4) = (1.53 - 1) x (63.67) = 33.75 time units.   

FTime(4,3,1,3) = 30.13 time units 

Since the value of quota_time(4) is greater than that of 

FTime(4,3,1,3), product 3 of family 4 is scheduled on machine 3, 
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and this machine can still be considered to process the remaining 

products of family 4. 

Scheduling of the last product of family 4. 

 FTime(4,1,1,1) = FTime(4,2,1,1) + ch(4,2,4,1,1) + PTime(4,1,1,1)  

= 20.76 + 4.35 + (43.13/1.1) 

= 64.32 

FTime(4,1,1,3) = FTime(4,3,1,3) + ch(4,3,4,1,1) + PTime(4,1,1,3)  

= 30.13 + 4.47 + (43.13/0.95) 

= 80.00 

 Then, schedule product 1 of family on machine 1. 

5.2.4 Update R = R \ {4} = {3}, and go back to Step 5.2.2 in order to 

schedule the products of family 3, as presented below. 

Scheduling of the products of family 3 to the machines at the first 

stage. 

5.2.2  MU(3) = {2,3} 

 5.2 3  Apply the EFT rule to schedule the products of this family. 

Scheduling of the first product of family 3. 

 FTime(3,1,1,2) = ch(0,0,3,1,1) + PTime(3,1,1,2)  

= 5.75 + 21.02/1.08 = 25.21 

  FTime(3,2,1,2) = ch(0,0,3,2,1) + PTime(3,2,1,2)  

= 7.37 + 27.71/1.08 = 33.03 

 FTime(3,3,1,2) = ch(0,0,3,3,1) + PTime(3,3,1,2)  

= 5.74 + 32.58/1.08 = 35.91 

 FTime(3,1,1,3)  = FTime(4,3,1,3)+ch(4,3,3,1,1) + T(3,1,1,3) 

= 30.13 +6.02 + 21.02/0.95 = 58.28 



 

 

85 
 

 FTime(3,2,1,3)  = FTime(4,3,1,3)+ch(4,3,3,2,1) + T(3,2,1,3)  

= 30.13+11.08 + 27.71/0.95 = 70.38 

FTime(3,3,1,3)  = FTime(4,3,1,3)+ch(4,3,3,3,1) + T(3,3,1,3)  

 = 30.13+11.25 + 32.58/0.95 = 75.67 

  From the above calculations, schedule product 1 of family 

3 on machine 2.  Scheduling the remaining products of family 3 is 

continued as follows. 

FTime(3,2,1,2) = FTime(3,1,1,2)+ ch(3,1,3,2,1) + PTime(3,2,1,2)  

   = 25.21+2.95 + 27.71/1.08 = 53.82 

FTime(3,3,1,2) = FTime(3,1,1,2)+ ch(3,1,3,3,1) + PTime(3,3,1,2) 

= 25.21+1.57 + 32.58/1.08 = 56.95 

FTime(3,2,1,3) = FTime(4,3,1,3)+ch(4,3,3,2,1) + PTime(3,2,1,3) 

= 30.13+11.08 + 27.71/0.95 = 70.38 

FTime(3,3,1,3) = FTime(4,3,1,3)+ch(4,3,3,3,1) + PTime(3,3,1,3) 

= 30.13+11.25 + 32.58/0.95 = 75.67 

So, schedule product 2 of family 3 on machine 2.  Finally, to 

schedule the last product of this family: 

FTime(3,3,1,2) = FTime(3,2,1,2)+ch(3,2,3,3,1) + PTime(3,3,1,2)  

= 53.82+3.52 + 32.58/1.08 = 87.51 

FTime(3,3,1,3) = FTime(4,3,1,3)+ch(4,3,3,3,1) + PTime(3,3,1,3) 

= 30.13+11.25 + 32.58/0.95 = 75.67 

Hence, schedule product 3 of family 3 on machine 2. 

5.2.5 Update R = R \ {3} = φ.  Since R = φ, go to Step 6. 
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  Step 6: Sequence products of the remaining families to machines at the first stage 

The EFT rule is also applied to sequence the products of the 

families scheduled next on each machine.  

Scheduling the products of family 1. 

1. Find the first product of this family to be scheduled using the EFT rule. 

FTime(1,1,1,1) = FTime(4,1,1,1)+ ch(4,1,1,1,1) + PTime(1,1,1,1) 

= 64.32 + 10.61 + 47.50/1.10 = 118.11 

FTime(1,2,1,1) = FTime(4,1,1,1)+ ch(4,1,1,2,1) + PTime(1,2,1,1) 

= 64.32 + 9.05 + 18.19/1.10 = 89.91 

FTime(1,3,1,1) = FTime(4,1,1,1)+ ch(4,1,1,3,1) + PTime(1,3,1,1) 

= 64.32 + 8.09 + 26.55/1.10 = 96.55 

Hence, schedule product 2 of family 1 on machine 1.   

2. Find the next product of the family to be scheduled. 

FTime(1,1,1,1) = FTime(1,2,1,1)+ ch(1,2,1,1,1) + PTime(1,1,1,1) 

= 89.91 + 4.19 + 47.50/1.10  

= 137.28 

FTime(1,3,1,1) = FTime(1,2,1,1)+ ch(1,2,1,3,1) + PTime(1,3,1,1) 

= 89.91 + 4.13 + 26.55/1.10  

= 118.18 

Hence, schedule product 3 of family 1 on machine 1.  Product 1 of 

family 1 is then scheduled as the last product.  The finish time of product 

1 is determined as follows. 

FTime(1,1,1,1) = FTime(1,3,1,1)+ ch(1,3,1,1,1) + PTime(1,1,1,1) 

= 118.18 + 4.28 + 47.50/1.10 = 165.64 
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Scheduling the products of family 2 

3. Find the first product of this family to be scheduled using the EFT rule. 

FTime(2,1,1,2) = FTime(3,2,1,2)+ ch(3,2,2,1,1) + PTime(2,1,1,2) 

= 53.82 + 11.42 + 34.72/1.08  

= 97.39 

FTime(2,2,1,2) = FTime(3,2,1,2)+ ch(3,2,2,2,1) + PTime(2,2,1,2) 

= 53.82 + 11.77 + 31.58/1.08  

= 94.83 

FTime(2,3,1,2) = FTime(3,2,1,2)+ ch(3,2,2,3,1) + PTime(2,3,1,2) 

= 53.82 + 11.02 + 33.43/1.08  

= 95.79 

Hence, schedule product 2 of family 2 on machine 2.   

4. Find the next product of family 2 to be scheduled. 

FTime(2,1,1,2) = FTime(2,2,1,2)+ ch(2,2,2,1,1) + PTime(2,1,1,2) 

= 94.83 + 3.24 + 34.72/1.08  

= 130.22 

FTime(2,3,1,2) = FTime(2,2,1,2)+ ch(2,2,2,3,1) + PTime(2,3,1,2) 

= 94.83 + 4 + 33.43/1.08  

= 129.78 

Hence, schedule product 3 of family 2 on machine 2.  Product 2 of 

family 1 is then scheduled as the last product.  The finish time of product 

1 of family 2 is calculated as follows. 

FTime(2,1,1,2) = FTime(2,3,1,2)+ ch(2,3,2,1,1) + PTime(2,1,1,2) 

= 129.78 + 3.91 + 34.72/1.08 = 165.84 
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The sequences of products on the machines at the first stage 

obtained so far are presented in Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Part 3: Balancing the Production Times of Machines at the First Stage 

Step 7: Balance the production times of machines at the first stage 

7.1 The machine with the largest finish time is 2. 

7.2 Remove product 1 of family 2 from machine 2 and move it to other 

machines (i.e., machines 1 and 3).   

7.3 Calculate the latest completion time on machines 1 and 3 after 

scheduling product 1 of family 2.  

FTime(2,1,1,1) = FTime(1,1,1,1)+ ch(1,1,2,1,1) + PTime(2,1,1,1) 

= 165.64 + 7.8 + 34.72/1.10  = 205.00 

FTime(2,1,1,3) = FTime(3,3,1,3)+ ch(3,3,2,1,1) + PTime(2,1,1,3) 

= 75.67 + 11.21 + 34.72/0.95 = 123.43 

           
  (4,2)   (4,1)                          (1,2)               (1,3)     (1,1) 
Machine 1 
 
      20.76                      64.32                                  89.91                                118.18                    165.64  
 
  (3,1)  (3,2)             (2,2)                                        (2,3)         (2,1)    
Machine 2 
       

                  25.21              53.82                                                  94.83                   129.78           165.84   
 

                                   (4,3)             (3,3)     
Machine 3 

                                        
30.13           75.67            

 

 Processing time 

Changeover time 

     (j,i) Product i of family j 

 
 
 

         Direction of the scheduling. 

Figure 5.4: Sequences of Products on the Machines at Stage 1 
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The machine yielding the shortest finish time of this product is 

machine 3. 

Update the finish time of all machines at the first stage. 

Machine 1: latest completion time = 165.64 time units 

Machine 2: latest completion time = 129.78 time units 

Machine 3: latest completion time = 123.43 time units. 

7.4 The new latest finish time of the first-stage machines is equal to 

165.64 time units for machine 1.  Go back to Step 7.1. Using the 

same procedure, it was found that product 1 of family 1 could not be 

moved since it results in a higher latest completion time.  Go to Step 

7.5.  

7.5 Remove product 3 of family 1 from machine 1.  The calculations of  

the latest completion times on machines 2 and 3 after scheduling 

product 3 of family 1 are as follows: 

 FTime(1,3,1,2) = FTime(2,3,1,2)+ ch(2,3,1,3,1) + PTime(1,3,1,2) 

= 129.78 + 11.49 + 26.55/1.08  = 165.85 

FTime(1,3,1,3) = FTime(2,1,1,3,)+ ch(2,1,1,3,1) + PTime(2,1,1,3) 

= 123.43 + 6.26 + 26.55/0.95 = 157.64 

The machine yielding the earliest finish time of this product is 

machine 3.  Hence product 3 of family 1 is rescheduled on machine 3. 

Update the finish time of all machines at the first stage. 

Machine 1: latest finish time = 89.91 + ch(1,2,1,1,1) + PTime(1,1,1,1)  

      = 89.91 + 4.19 + 47.68/1.1  

      = 137.44 time units 
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Machine 2: latest finish time = 129.78 time units 

Machine 3: latest finish time = 157.64 time units 

This process is continued with all the products scheduled on 

machine 3, but none can be allocated to other machines.  The final 

sequence of the products on the machines at the first stage is presented 

in Figure 5.5. 

 
Part 4: Scheduling All Products on All other Stages 

Step 8: Sequence all products on machines at stage s : s > 1, and calculate the 

makespan. 

The sequences of products on machines at the first stage were 

obtained at the last step as shown in Figure 5.5.  

  8.1 Set s = 2. 

8.2 Set H = {(4,2), (3,1), (4,3), (3,2), (4,1), (3,3), (1,2), (2,2), (2,1), (2,3), 

(1,1),(1,3)} 

 

 

 

 

 

 

 

 

 

 

 

           
  (4,2)   (4,1)                          (1,2)            (1,1)  
Machine 1 
 
      20.76                      64.32                                  89.91                                137.44 
 
  (3,1)  (3,2)             (2,2)                                        (2,3)            
Machine 2 
       

              25.21            53.82                                                94.83                   129.78         
                                   (4,3)             (3,3)          (2,1)                (1,3) 
Machine 3 

                                        
               30.13 75.67            123.43  157.64 

 
 
 Processing time 

Changeover time 

   (j,i) Product i of family j 

 
 

   Direction of the scheduling. 

           Figure 5.5: Final Sequences of Products on the Machines at Stage 1 



 

 

91 
 

8.3 Scheduling of the first product on one of the machines of the second 

stage using the LA rule. 

Schedule steps: 

LA-1  The first unscheduled product in set H is product 2 of family 4. 

LA-2   Since no machine is processing the products of family 4, go to 

LA-12 to schedule this product to the machine yielding the 

lowest finish time, as detailed below. 

LA-12  FTime(4,2,2,1)  = STime(4,2,2,1) + PTime(4,2,2,1) 

    = 20.76 + 33.76/1.00 = 54.52 time units 

FTime(4,2,2,2) = STime(4,2,2,2) + PTime(4,2,2,2) 

    = 20.76 + 33.76/0.93 = 57.06 time units 

Schedule this product to machine 1. 

 8.4 Update H = H \ {(4,2} = {(3,1), (4,3), (3,2), (4,1), (3,3), (1,2), (2,2), 

(2,1), (2,3), (1,1), (1,3)}.  Then go back to Step 8.3. 

 8.3 Scheduling of the first product in set H on one of the machines of 

stage 2 using the LA rule: 

 LA-1  The first unscheduled product in set H is product 1 of family 3. 

 LA-2  Since no machine is processing the products of family 3, go 

to LA-12, as follows. 

 LA-12 Schedule this product to the machine yielding the lowest 

finish time. 

  FTime(3,1,2,1)= STime(3,1,2,1) + PTime(3,1,2,1) 

  =FTime(4,2,2,1)+ch(4,2,3,1,1)+PTime(3,1,2,1) 

= 54.52 + 7.36 + 14.99/1.00 = 76.87 time units 

   



 

 

92 
 

  FTime(3,1,2,2) = STime(3,1,2,2) + PTime(3,1,2,2) 

    = 25.21 + 14.99/0.93 = 41.33 time units 

LA-13 Schedule product 3, family 1 to machine 2. 

8.4 Update H = H \ {(3,1} = {(4,3), (3,2), (4,1), (3,3), (1,2), (2,2), (2,1), 

(2,3), (1,1), (1,3)}.  Then go back to Step 8.3. 

8.3 Scheduling of the first product in set H on one of the machines of 

stage 2 using the LA rule: 

 LA-1  The first unscheduled product in set H is product 3 of family 4. 

LA-2 The machine processing the products of this family is 

machine 1.  Hence, MU(4) = {1}. 

 LA-3  Determine machine m, m ∈  MU(4), which yields the earliest 

finish time.  

FTime(4,3,2,1)  = STime(4,3,2,1) + PTime(4,3,2,1) 

 =  max{FTime(4,2,2,1)+ch(4,2,4,3,1), 

FTime(4,3,1,3)} +  PTime(3,1,2,1) 

   = max{54.52 + 3.92, 30.13} + 33.46/1.00  

   = 91.90 time units 

  Hence, m = 1. 

LA-4  Determine the machine m’, m’ ∈  M(2), which yields the 

earliest finish time.  

 FTime(4,3,2,1)  = 91.90 time units (as determined in the last 

step) 

 FTime(4,3,2,2)  = STime(4,3,2,2) + PTime(4,3,2,2) 

   =  max{FTime(3,1,2,2) + ch(3,1,4,3,1), 

FT(4,3,1,3)} +  PTime(4,3,1,3) 
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 = max{41.33 + 9.2, 30.13} + 33.46/0.93  

  = 86.51 time units 

 Hence, m’ = 2. 

 LA-5 Since m ≠  m’, go to LA-6 to check whether there is any 

incoming product of family 3 in the previous stage. 

 LA-6 Product 2 of family 3 (i.e., product 2) is scheduled to finish at 

time 53.82 in stage 1, so go to LA-7. 

 LA-7 Calculate FTime(4,3,2,2) + ch(4,3,3,2,2) = 86.51 + 9.61 = 

96.12. 

LA-8 Calculate  STime(3,2,2,2)  = max {FTime(3,2,1,2), 

FTime(3,1,2,2)+ch(3,1,3,2,2)} 

  = max {53.82, 41.33+3.85} 

 = 53.82 

 LA-9 Since, STime(3,2,2,2) < FTime(4,3,2,2) + ch(3,1,4,3,2), go to 

LA-10. 

 LA-10 Check whether the amount of reduced finish time of product 3 

of family 4 (RFT(4,3)) is greater than DST(3,2).   

 RFT(4,3) = FTime(4,3,2,2) - FTime(4,3,2,1)  

  = 91.90 – 86.51  

 = 5.39 time units 

DST(3,2) = FT(4,3,2,2) + ch(4,3,3,2,2) – max {FTime(3,1,2,2) 

+ ch(3,1,3,2,2), FTime(3,2,1,2)}  

 = 86.51+9.61 – max{53.82, 41.33 + 3.85}  

 = 42.30 time units. 



 

 

94 
 

 Since the value of RFT(4,3) is less than that of DST(3,2), go 

to LA-11. 

LA-11 Do not schedule product 3 of family 4 on machine 2.  Go back 

to LA-1 and apply the EFT rule to schedule this product on 

other machine(s).  From the previous calculations in LA-4, it 

was found that this product can be scheduled on machine 1.  

  8.4 Update H = H \ {(4,3} = {(3,2), (4,1), (3,3), (1,2), (2,2), (2,1), (2,3), 

(1,1), (1,3)}.  Then go back to Step 8.3. 

8.3 Scheduling of the first product in set H on one of the machines of 

stage 2 using the LA rule: 

LA-1   The first unscheduled product in set H is product 2 of family 3. 

LA-2   The machine processing the products of family 3 is machine 2. 

Hence, MU(3) = {2}. 

LA-3 Determine the machine m, m ∈  MU(3), which yields the 

earliest finish time.  

 FTime(3,2,2,2) = STime(3,2,2,2) + PTime(3,2,2,2) 

=  max{FTime(3,1,2,2) + ch(3,1,3,2,2), 

FTime(3,2,1,2)} +  PTime(3,1,2,1) 

= max{41.33 + 3.85, 53.82} + 43.76/0.93  

= 100.87 time units 

 Hence, m = 2. 

LA-4 Determine the machine m’, m’ ∈  M(2), which yields the earliest 

finish time.  

 FTime(3,2,2,2) = 100.87 time units (as determined in the last 

step) 
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 FTime(3,2,2,1) = STime(3,2,2,1) + PTime(3,2,2,1) 

  =  max{FTime(4,3,2,1)+ch(4,3,3,2,2), 

FTime(3,2,2,1)} +  PTime(4,3,1,3) 

 = max{91.9 + 9.61, 53.82} + 43.76/1.0  

 = 145.27 time units 

 Hence, m’ = 2. 

 LA-5 Since m’ = m = 2, go to LA-13. 

 LA-13 Schedule product 2 of family 3 on machine 2. 

  8.4 Update H = H \ {(3,2} = {(4,1), (3,3), (1,2), (2,2), (2,1), (2,3), (1,1), 

(1,3)}.  Then go back to Step 8.3. 

8.3 Scheduling of the first product in set H on one of the machines of 

stage 2 using the LA rule: 

 LA-1 The first unscheduled product in set H is product 1 of family 4. 

 LA-2 The machine processing the products of family 4 is machine 1.  

Hence, MU(1) = {1}. 

 LA-3 Determine machine m, m ∈  MU(1), which yields the earliest 

finish time.  

FTime(4,1,2,1) = STime(4,1,2,1) + PTime(4,1,2,1) 

  = max{91.90 + 3.64, 64.32} + 36.55/1.00  

= 132.09 time units 

 Hence, m = 1. 

 LA-4 Determine the machine m, m ∈  M(2), yielding the earliest 

finish time.  

 FTime(4,1,2,1) = 132.09 time units (as determined in the last 

step) 
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 Hence, m = 1. 

       FTime(4,1,2,2) = STime(4,1,2,2) + PTime(4,1,2,2) 

                            = max{100.87 + 7.47, 64.32} + 36.55/0.93  

 = 147.64 time units 

 Hence, m’ = 1. 

 LA-5 Since m’ = m = 1, go to LA-13. 

 LA-13 Schedule product 1 of family 4 on machine 1. 

8.4 Update H = H \ {(4,1} = {(3,3), (1,2), (2,2), (2,1), (2,3), (1,1), (1,3)}.  

Then go back to Step 8.3 to schedule the first product in set H on one 

of the machines of stage 2.  The process is continued until all 

products in set H are scheduled on the machines in this stage.  Figure 

5.6 shows the product sequences obtained on the machines of    

stage 2.  

 

 

 

 

 

 

 

 

 

 

 
 

 

           
  (4,2)              (4,3)              (4,1)                  (2,2)                   (2,1)         (2,3)  
Machine 1 

          20.76                  54.52              91.90                   132.09 151.90              167.67                 186.66 
  

 
   (3,1)             (3,2)                        (3,3)       (1,2)                         (1,1)               (1,3) 
   
Machine 2 
              25.21          41.33                                100.87                  131.98                        153.70                              182.32                   222.23 
 
 
 Processing time 

Changeover time 

Machine idle time 

   (j,i) Product i of family j 

Direction of the scheduling. 

Figure 5.6: Product Sequences on Machines at Stage 2 
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8.5 Update s = s+1 = 3. Since s ≤ S, go to Step 8.2.  The procedure is 

repeated to schedule all products on the machines of the third stage.  

Figure 5.7 shows the results of the products sequence obtained for this 

stage.    

 

 

 

 

 

 

 

 

 

 

 

From Figure 5.7, the makespan of this solution is 279.53 time units.  

The product sequences on each machine of each stage are presented as 

follows. 

Stage 1:  Machine 1: (4,2) -> (4,1) -> (1,2) ->(1,1) 
 
Machine 2: (3,1) ->(3,2)->(2,2)->(2,3) 
 
Machine 3: (4,3)->(3,3)->(2,1)->(1,3) 
 

Stage 2: Machine 1: (4,2) -> (4,3) ->(4,1)->(2,2)->(2,1)->(2,3)  
 
Machine 2: (3,1) ->(3,2)->(3,3)->(1,2)->(1,1)->(1,3) 

 
Stage 3: Machine 1: (3,1)->(3,2) -> (3,3) ->(2,2)->(2,1)->(2,3) 

 
Machine 2: (4,2) -> (4,3)->(4,1)->(1,2)->(1,1)->(1,3) 

 

       
         (3,1)                   (3,2)          (3,3)    (2,2)                   (2,1)                              (2,3)   
Machine 1 
 
                  41.33        72.76        100.87    113.01    131.98   151.08              191.87     239.95                                          265.35   
 
          (4,2)                 (4,3)                              (4,1)                               (1,2)                  (1,1)    (1,3) 
 
       
Machine 2 
              54.52        82.40   91.90    109.64     132.09                          180.86                           211.68                            247.42                 279.53  

 
 Processing time 

Changeover time 

Machine idle time 

 
Direction of the scheduling. 

Figure 5.7: Sequences of Products on Machines at the Last Stage 
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5.3 Phase 2: Improving the Initial Solution Using the TSH Algorithm  
 
 The initial solution obtained from Phase 1 (using the FFSDSTH algorithm) 

may not be close to the optimal solution.  A different heuristic is required to 

generate better schedules.  The final solution of the first phase can be 

considered as an initial solution that will be improved in this phase.  From the 

flow process presented in Figure 5.1, the heuristic of the second phase has three 

main steps: 1) moving families between (or within) machines at the first stage,   

2) moving products between (or within) machines at the first stage, and 3) finding 

the best sequence resulting in the minimum makespan.  Prior to the presentation 

of the TSH algorithm, the background of the TS as implemented in this problem 

is introduced in the following five sections.  The implementation of the TS 

heuristic with the FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax problem is introduced in Section 

5.3.1.  The tabu list is discussed in Section 5.3.2 and is followed by a discussion 

of the neighborhood size in Section 5.3.3, the tabu restriction in Section 5.3.4, 

and the admissible moves in Section 5.3.5. 

5.3.1 Implementing the TS Heuristic with the FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax 

Problem 

In the tabu search, a decision is made from the set of admissible 

candidates.  The candidate decisions are evaluated and the best one is selected.  

A candidate is admissible either if it is not tabu or if its tabu status can be 

overridden by the aspiration criterion.  As suggested by Laguna et al. (1993) and 

Barnes & Laguna (1993), there are four key elements to be considered in the TS: 

- To identify the attributes (i.e., the criteria used to define or 

characterize a move) of a move that will be used to generate the tabu 

classification.  Attributes of moves, e.g., indices of jobs (or jobs 
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numbers), positions of jobs, and weights of jobs, are identified and 

recorded in the tabu list in order to prevent move reversals.  

- To identify the actual tabu restriction based on the attributes. 

- To identify a good data structure to keep track of moves that have a 

tabu status, and to free those moves from their tabu condition when 

their short-term memory has expired. 

- To identify an aspiration condition in an effort to allow the tabu status 

of a move to be overridden if it yields a better solution. 

 
Two popular types of moves found in the literature for the flowshop 

problem are: (1) exchanging jobs (i.e., swap move) and (2) removing the job 

placed at the xth position and then putting it at the yth position (i.e., insertion 

move).  Taillard’s (1990) experiments showed that the insertion move is the most 

efficient in terms of quality and computation time.  Hence, only the insertion move 

will be considered in this research. 

Insertion moves allow a single job to move from one machine to another.  

Let P be the set of all jobs, P = {1,2,…,np} and nps,m denote the number of jobs 

scheduled on machine m of stage s, m ∈  M(s) and s ∈  ψ.  At each stage s, the 

jobs in set P are partitioned into m(s) groups.  This means that there are m(s) job 

processing orders (or schedules) at stage s.  The processing order of jobs on 

machine m of stage s can be expressed by a permutation πs,m:  

πs,m = (πs,m(1), πs,m(2), πs,m(3), …,πs,m(nps,m))  

where πs,m(k) denotes the job of set P which is in position k in πs,m. Hence, the 

processing order of jobs at stage s can be completely presented by the set of 
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m(s) permutations πs = {πs,1, πs,2, …, πs,m(s)}.  The collection of the job processing 

orders (i.e., schedules) is defined by s-tuple π = (π1, π2,…, πS).   

Let s denote a stage, m1 and m2 two machines in this stage, and x, y two 

positions of jobs on machine m1 and m2, respectively.  For a processing order π, 

the move (s,m1,x,m2,y) is defined as the insertion move in which the job at 

position x is removed from machine m1 and placed on machine m2 at position y.  

If the insertion-type move is performed between two machines (m1 ≠ m2) in stage 

s, the deletion of job i from position x in permutation πs,m1 and its insertion in 

position y in permutation πs,m2 implies the following events: 

1. jobs πs,m1(x+1), …, πs,m1(nps,m1) are moved to the left by a single 

position in the new permutation π’s,m1, and 

2. job i is located at position y and jobs πs,m2(y), πs,m2(y+1),…, πs,m1(nps,m2) 

are moved to the right by a single position in the new permutation 

π’s,m2.   

Conversely, if the insertion-type move is performed within the same 

machine (m1 = m2) in stage s, the deletion of job i from position x and its insertion 

in position y in permutation πs,m1 implies the following events: 

1. If x < y, jobs πs,m1(x+1), …, πs,m1(y) are moved to the left by a single 

position, and job i is located at position y in the new permutation π’s,m1, 

or 

2. If x > y, job i is located at position y and jobs πs,m1(y), πs,m1(y+1),…, 

πs,m1(x-1) are moved to the right by a single position in the new 

permutation π’s,m1. 
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5.3.2 Tabu List  

The tabu list stores attributes of the performed moves.  These moves are 

defined by a pair (or two pairs) of adjacent jobs in a production stage, as detailed 

below.  The selection of the pair(s) depends on the insertion move performed.  In 

this research, the tabu status corresponding to the insertion move is defined as a 

triple element (s, i, p) representing the pair of jobs i and p from stage s.  This 

representation was also used in the study of Nowicki and Smutnicki (1998).  Let 

T = (T1, T2, …, Tmaxtl) be a tabu list of a fixed length maxtl, where Ttl = (s, i, p) is a 

triple element and tl = 1, 2, …, maxtl.  The tabu list is initially empty.  Every time 

an insertion move is performed in a processing order π, this move is added to the 

tabu list.  

Details of the definition of the stored attributes of a move performed in a 

processing order π are presented below.  Figure 5.8 shows an illustration of the 

moves.  In this figure, thick arcs link the pair of jobs at stage s that will be added 

to the tabu list after the move is performed. 

1. Moves are performed within a machine (i.e., m1 = m2 = m) 

In this case, only one triple element is added to the tabu list. 

Two cases are considered here: 

Case 1.1: x < y 

The triple element added to the tabu list is composed of the 

stage number, the index of the moved job, and the index of the job to 

the right of the moved job (prior to the move).  This triple element is 

represented as (s, πs,m(x), πs,m(x+1)). 

 

 



 

 

102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1.2: x > y  

The triple element added to the tabu list consists of the stage 

number, the index of job to the left of the moved job (prior to the 

move), and the index of the moved job.  The triple element is 

represented as (s, πs,m(x-1), πs,m(x)). 

2. Moves are performed between two different machines (m1 ≠ m2). 

 In this case, one or two triple elements may be added to 

 
If (m1 ≠ m2) 
 
 
 
     x- 1              x                    x+1 
        

m1: 
 
 
 

 
 
m2:                  

     y 
 
 
 
If (m1 = m2 = m)  
  

if (x<y) 
 
 
         

x     x+1             y 
  
 

if (x>y) 
  
 
     

y   x-1        x  
  

 
= link of pairs of jobs at stage s added to the tabu list 

 
 = performed insertion move 

Figure 5.8: Tabu List of a Move (s,m1,x,m2,y) 
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the tabu list depending on the move that has been performed, 

as detailed below. 

Case 2.1: The Job to be moved is not the first or the last job in πs,m1 

(i.e., 1 < x < nps,m1). 

Two triple elements are added to the tabu list.  These are: (1) 

the triple element that comprises the stage number, the index of the 

moved job, and the index of job to the right of the moved job (prior to 

the move) (i.e., (s, πs,m1(x), πs,m1(x+1))) and (2) the triple element that 

consists of the stage number, the index of the job to the left of the 

moved job (prior to the move), and the index of the moved job (i.e.,  

(s, πs,m1(x-1), πs,m1(x))). 

Case 2.2 The job to be moved is the first job in πs,m1 (i.e., x = 1). 

Only one triple element is added to the tabu list which 

consists of the stage number, the index of the moved job, and the 

index of job to the right of the moved job (prior to the move) (i.e.,      

(s, πs,m1(x), πs,m1(x+1))). 

Case 2.3: The job to be moved is the last job in πs,m1 (i.e., x = nps,m1). 

The triple element added to the tabu list is composed of the 

stage number, the index of job to the left of the moved job (prior to the 

move), and the index of the moved job (i.e., (s, πs,m1(x-1), πs,m1(x))). 

 
The attributes of the performed moves in a tabu list are applied along with 

the neighborhood size and the tabu restriction, as explained in the subsequent 

sections (Sections 5.3.3 and 5.3.4., respectively) to prevent move reversals in 

the future moves.    
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5.3.3 Neighborhood Size 

The neighborhood generation is one of the important elements of TS.  

The neighborhood generation usually has a very significant effect on the 

efficiency of the search.  In the case of FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax 

sequencing problems, for instance, when an insertion move is performed 

within the same machine (e.g., machine m in stage s), the size of the 

neighborhood (i.e., number of possible moves) can be shown to be equal to  

(nps,m – 1)2.  If too few neighborhoods are produced, some good solutions may 

be overlooked.  Conversely, if all neighborhood solutions are produced, the 

search may produce better solutions but will be time consuming.  The 

evaluation of the entire neighborhood for large size problems may not be 

practical.  A procedure to curtail the length of the search (i.e., by reducing the 

size of the neighborhood) is determined based on the use of the move 

distance.   

 Consider the case of problems where an insertion move is performed 

within the same machine.  Instead of examining all possible moves of job 

πs,m(x) to be inserted in position y,  the search is restricted to those positions 

within a certain distance d from the job’s position.  More precisely, job πs,m(x) 

can be moved (i.e., inserted in position y) if the difference between y and x is 

less than d (i.e., |y – x| < d), where d is the maximum moving distance allowed 

and may be determined after experiencing with different problem settings.   

In general, defining a good size of d depends on the structure of the 

problem.  Based on studies by Laguna et al. (1993) and Barnes and Laguna 

(1993), the value of d can be obtained as follows: 
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• For nps,m ≤ 30 

d = nps,m/2  -1 

where h    = the largest integer less than or equal to h 

• For nps,m > 30 

  d = (nps,m/2  / 2) x c/4  

where c is determined experimentally (Laguna et al., 1993 and 

Brandao & Mercer, 1997).  The value of c is usually a number 

between 1 and 4 (Laguna et al., (1993)). 

The move distance concept was used in many studies such as in those of 

Laguna et al. (1993), Barnes and Laguna (1993), Amin-Naseri (1993), Brandao 

and Mercer (1997), and Nowicki and Smutnicki (1998). 

 
5.3.4 Tabu Restriction 

In order to prevent a move reversal, a tabu restriction is used to 

determine if the future move is admissible.  There are many ways to generate the 

tabu restriction.  One effective way is to apply a move distance.  Consider the 

case when the job is moved within the same machine.  After a job πs,m(x) is 

removed from position x and inserted in position y on the same machine m of 

stage s where y > x, job πs,m(x) cannot be placed in the future (as long as this 

move is in the tabu list) any earlier than position y.  This means that the job that 

was initially at position x cannot move to the left in the subsequent schedules 

until the attributes of this job are removed from the tabu list (Laguna et al., 1993). 

In this research, the move distance is also used to generate the tabu 

restriction.  The move is considered to be admissible if no triple element resulting 
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from performing a move (s, m1, x, m2, y) exists in the tabu list.  The tabu 

restrictions of a move (s,m1,x,m2,y) of each case are explained as follows.  

 1. Jobs are moved within a machine (m1  = m2 = m) 

  There are two cases considered when jobs are moved within a 

machine, as detailed below.  Also, Figure 5.9 shows the tabu 

restriction of the move (s, m, x, m, y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1.1: x < y, where y - x < d 

The tabu restrictions consist of all the triple elements resulting 

from performing the move (s,m,x,m,y), which comprise the stage 

number, the index of job at position k (prior to the move) where x<k≤ y, 

If (x<y) 
position   x    y  
 
 
 
 
 
 
 
 
 
If (x>y)  
position        y’                                 y  x 
 
 
 
 
 
 
  

=  Tabu restriction.  Move (s,m,x,m,y) cannot be performed if at least one pair of jobs at   
    stage s linked by dashed lines is in the tabu list) 
=  Position to be inserted  

Figure 5.9: Tabu Restriction when Jobs are Moved within a Machine 
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and the index of the moved job.  These triple elements are represented 

as (s, πs,m(k), πs,m(x)). 

Case 1.2: x > y, where x - y < d 

Let y’ be the end position of the move distance.  This means that 

x - y’ = (d -1).  The tabu restrictions consist of all the triple elements 

resulting from performing the move (s, m, x, m, y), which comprise the 

stage number, the index of the moved job, and the index of job at 

position k (prior to the move) where y’ ≤ k < x (i.e., (s, πs,m(x), πs,m(k))).  

 
 2. Jobs are moved between machines (m1 ≠ m2) 

   When jobs are moved between two machines, the move 

distance starts from position (y-y’) and ends at position (y + y”) on 

machine m2 (i.e., (y” + y) – (y’ + y) = (d - 1)).  Figure 5.10 shows the 

tabu restriction when insertion is performed in different machines.  

Details of the triple element generation for each case are presented as 

follows. 

 Case 2.1: y = 1 

The tabu restrictions consist of all the triple elements resulting 

from performing the move (s, m, x, m, 1), which comprise the stage 

number, the job index at position x, and the job index at position y + z 

(prior to the insertion of job πs,m1(x)), where 0 ≤ z <d (i.e., (s, πs,m1(x), 

πs,m2(1 + z))). 
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Case 2.2: 1 < y ≤ d/2 , where u  is the least integer greater than or 

equal to u. 

 The tabu restrictions consist of all the triple elements resulting 

from performing the move (s, m1, x, m2, y), which for this case are: 

(1) the triple elements that consist of the stage number, the job index 

at position w (prior to the insertion of job πs,m1(x)), where 1 ≤ w < y, 

and the job index at position x (i.e., (s, πs,m2(w), πs,m1(x))), and 

(2) the triple elements that consist of the stage number, the job index 

at position x, and the job index at position y + z (prior to the 

insertion of job πs,m1(x)), where 0 ≤ z ≤ (d - y) (i.e., (s,πs,m1(x), 

πs,m2(y+z))). 

 

 

 
Machine1: 
Position  …   x-1   x  x+1 .. 
 
 
 
      
 
Machine2: 
Position  y-y’….     y-1  y        y+1 ….. y+y” 
 
 
 
     

 
 
 
= Tabu restriction.  Move (s,m1,x,m2,y) cannot be performed if at least  
   one pair of jobs at stage s linked by dashed lines is in the tabu list 
= position to be inserted 
 

Figure 5.10: Tabu Restriction when Jobs are Moved between Machines 
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Case 2.3: d/2  < y < nps,m2 – d/2  

 The tabu restrictions consist of all the triple elements resulting 

from performing the move (s, m1, x, m2, y), which for this case are:  

(1) the triple elements consisting of the stage number, the job index at 

position y - w (prior to the insertion of job πs,m1(x)) where 

1≤w<d/2 , and the job index at position x (i.e., (s, πs,m2(y - w), 

πs,m1(x))), and 

(2) the triple elements comprising the stage number, the job index at 

position x, and the job index at position y + z (prior to the insertion 

of job πs,m1(x)) where 0 ≤ z ≤ d/2   (i.e., (s, πs,m1(x), πs,m2(y+z))). 

Case 2.4: nps,m2 – d/2  ≤ y ≤ nps,m2  

The tabu restrictions consist of all the triple elements resulting 

from performing the move (s,m1,x,m2,y), which for this case are: 

(1) the triple elements consisting of the stage number, the job index at 

position x, and the job index at position y + w (prior to the insertion 

of job πs,m1(x)) where y + w ≤ nps,m2. .  These triple elements are 

represented  as (s, πs,m1(x), πs,m2(y+w)).  

(2) the triple elements comprising the stage number, the job index at 

position y - z (prior to the insertion of job πs,m1(x)), where               

1 ≤ z ≤ (d-1) – (nps,m2 - y), and the job index at position x.  These 

triple elements are represented as (s, πs,m2(y-z), πs,m1(x)). 

Case 2.5: y = nps,m2 + 1 

The tabu restrictions consist of all the triple elements resulting 

from performing the move (s,m1,x,m2,y), which for this case comprise 

the stage number, the job index at position y - z (prior to the insertion 
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of job πs,m1(x)) where 0 < z < d, and the job index at position x.  These 

triple elements are represented as (s,πs,m2(y-z), πs,m1(x)). 

 
 5.3.5 Admissible Moves 

The move to be performed at a given iteration may be found by examining 

the value of the objective function for all candidate moves and selecting the best 

one.  As discussed in Sections 5.3.3 and 5.3.4, the move is considered to be 

admissible if the following two conditions are satisfied.  

1. If the move is within the same machine, the difference between the initial 

position of the job to be moved and its new position is less than d (i.e.,  

|y – x | < d), where d is the maximum moving distance allowed.   

2.  No triple element of a tabu restriction exists in the tabu list. 

  
 The following example shows how to determine whether a move is admissible. 

Example: Consider moving a job between two machines (m1 and m2) in stage s.  

Assume that the tabu list T is initially empty.  The value of m(s) is 

equal to 2, and the job processing orders on the two machines are 

presented below. 

πs,m1 = (3, 2, 1, 4,9,10,15,16,17,18,19,24,25), and 

πs,m2 = (5,7,6,8,11,12,13,14,20,21,22,23). 

Consider the move (s,1,2,2,2).  The value of d can be obtained 

using the formula presented in Section 5.3.3.  Hence, d = (12/2)–1 = 5.  

The tabu restrictions resulting from the move (s,1,2,2,2) consist of the 

following triple elements: (s,5,2), (s,2,7), (s,2,6), (s,2,8), and (s,2,11). 
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  Since none of these triple elements is in the tabu list, the move 

(s,1,2,2,2) is admissible.  Performing this move yields the following 

new sequences: 

π’s,m1 = (3,1,4,9,10,15,16,17,18,19,24,25), and 

π’s,m2 = (5,2,7,6,8,11,12,13,14,20,21,22,23). 

  The triple elements added to the tabu list after performing the 

move (s,1,2,2,2) are: 1) (s,3,2), and 2) (s,2,1). 

Consider the move (s,2,2,1,2).  Using the formula presented in 

Section 5.3.3, the value of d is equal to 5. The tabu restrictions 

resulting from the move (s,2,2,1,2) consist of the following triple 

elements: (s,3,2), (s,2,1), (s,2,4), (s,2,9), and (s,2,10).  The move 

(s,2,2,1,2) cannot be performed because the triple elements (s,3,2) 

and (s,2,1) are in the tabu list. 

 
Details of the TSH heuristic are given below.  

 
Part 5: Moving Families between Machines (and within a Machine) at the First 

Stage 

In this part, the families scheduled on machines at the first stage are 

moved between machines (or within a machine) in an effort to minimize the 

makespan.  This process is not performed for the other stages as it takes a large 

amount of computation time, and yields very little improvement.  The best 

solution obtained from the previous Phase will be used as the initial solution.  For 

each iteration, all the admissible moves within the neighborhood in the current 

schedule are evaluated and the best move is selected.  The tabu list, 

neighborhood size, and tabu restrictions are applied in the process of moving 
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families between machines at the first stage.  The details of these three 

components are described below, and are followed by the notation used in this 

part and the detailed procedure of the TSH algorithm.   

Tabu List 

Let N be the total number of families.  The size of the tabu list is 

determined as follows: 

1. m(1) =1.  

Based on the studies of Laguna et al. (1993), the size of the tabu list 

when jobs are moved within a machine is determined as described below.  

1.1 N ≤ 12 

| T | =   N / 2    

 where, | T | = size of the tabu list 

1.2 N > 12 

| T | = 7 

2. m(1) > 1 

2.1 If 2 ≤ N ≤10, 1 ≤ | T | ≤ 3.   

2.2 If 11 ≤ N ≤20, 3 ≤ | T | ≤ 5. 

2.3 If 21 ≤ N ≤50, 5 ≤ | T | ≤ 10. 

2.4 If N > 51, 10 ≤ | T | ≤ 15. 

Neighborhood Size and Tabu Restriction 

1. For m1 = m2 = m 

   Let nfs,m be the number of families schedule on machine m in stage s.  

The value of d is determined as follows: 

• If nfs,m = 2, d = 1. 

• If 3 ≤ nfs,m ≤ 5, d = 2. 
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• If 6 ≤nfs,m ≤ 9, d =3. 

• lf nfs,m > 9, the value of d is calculated using the formula 

presented in Section 5.3.3.  If nfs,m > 30, the value of c is equal 

to 2.  

2. For m1 ≠ m2 

• If nfs,m2 = 1, or 2, d = 1. 

• If nfs,m2 = 3, d = 2. 

• If 4 ≤ nfs,m2 ≤ 9, d = 3. 

• If nfs,m2 ≥ 10, the value of d is determined using the formula 

presented in Section 5.3.3.  If nfs,m2 > 30, the value of c is 

equal to 2. 

 Notation 

 iter_fam = current iteration number for the process of moving 

families between machines at the first stage 

 iter_max_fam  =  maximum number of iterations allowed to be performed 

in the family insertion move procedure 

 best_value_fam  =  the minimum makespan found so far  

 best_seq_fam  =  the best schedule found so far   

 tor_iter_fam  = maximum number of iterations allowed between two 

successive improvements  

 best_iter_fam   =   iteration where the best solution was found so far  

 size_tabu_list_fam =  size of tabu list  

move_value_fam =  the minimum makespan obtained from the evaluation of 

all admissible moves in the iteration  
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 move_seq_fam =  the schedule that yields the minimum makespan in the 

iteration 

   Figure 5.11 shows the flow of the TS search implementation when 

moving families between or within machines at the first stage.  Details of this part 

are described below.  

Step 9: Initialize all parameters used in the process of moving families between 

the machines at the first stage. 

   Set  iter_fam   = 0 

best_value_fam = makespan obtained in Phase 1 (Part 4)  

best_iter_fam   = 0 

iter_max_fam   =100  

tor_iter_fam   = 30 

size_tabu_list_fam  = 3 for 12 families (50 products) 

= 4 for 18 families (80 products). 

 The values of parameters iter_max_fam, tor_iter_fam and 

size_tabu_list_fam are a-priori fixed constants that were determined 

experimentally.  In this research, only two data sets (sets of 50 and 80 

products, as detailed in Chapter 7) were tested with the TSH algorithm.  

Computational experience showed that a value of 100 of the maximum 

number of iterations (iter_max_fam) is a good value in terms of 

computational time and solution quality.  Likewise, a value of 30 for the 

maximum number of iterations without improving the best solution 

(tor_iter_fam) was found to be good.  Also values of 3 and 4 are 

adequate for the size of the tabu list  (size_tabu_list_fam) when the 

numbers of families are 12 and 18, respectively.  
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Figure 5.11: Flow Process of Moving Family between and within Machines at the First Stage 

GO TO 
Part 6 

Initialization 
! Identify the current sequence of families on the machines at the first stage (obtained from the initial 

solution) and define it as the best sequence. 
! Set the makespan obtained from the last stage as the minimum makespan found so far (best_sol_fam) 
! Set iter_fam = 0    
! Set tor_ier_fam = maximum number of iterations allowed between two successive improvements  
! Set iter_max_fam = maximum number of iterations allowed to be performed  
! Set best_iter_fam =0; 
 

No 

Yes 

 
 

Evaluate the makespan of all moves of 
this iteration.  Then, record and update 

the best admissible move (move_seq_fam 
and move_value_fam).  In order to obtain 
the best admissible move, the procedure 
presented in Figure 3.2 in Chapter 3 is 

applied. 

Is move_value_fam< 
best_value_fam? 

best_value_fam = move_value_fam 
best_seq_fam = move_seq_fam 

No 

Yes 

Put the attribute of the selected 
family in the tabu list 

Iter_fam =iter_fam+1 

Is iter_fam > iter_max_fam?  
or, iter_fam – iter_best_fam > 

tor_iter_fam? 



 

 

116 
 

Step 10: Update the number of current iterations. 

Increment the number of iterations (iter_fam) by 1. 

Step 11: Check if the search should be stopped. 

In this step, two stopping criteria are used:   

11.1 Stop the search if the number of the current iterations (iter_fam) is 

greater than max_iter_fam, or 

11.2 Stop the search if the number of successive iterations without 

improvement is greater than tor_iter_fam.  

If the search is not stopped, go to Step 12; otherwise, go to 

Part 6 to proceed with the movement of products. 

Step 12: Move families between (or within) machines. 

  Families that were divided between machines are treated as 

individual sub-families.  Sequences of products within families (or sub-

families) are not changed in this step.   

 12.1 For each admissible move, perform the following: 

• determine the tentative schedule of families on machines in 

stage 1 after performing the move for the entire family (or 

sub-family). 

• tentatively re-schedule all products on machines in stages 2 

through S using the procedure detailed in Step 8 and find the 

corresponding makespan. 

 12.2 After all admissible moves have been  performed, select the move 

that yields the minimum makespan.  Denote the minimum 

makespan as move_value_fam and the corresponding schedule 

as move_seq_fam. 
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 12.3 Check whether move_value_fam is less than the 

best_value_fam.  If true, perform the following updates and go to 

Step 12.4 

  best_value_fam = move_value_fam, 

  best_seq_fam = move_seq_fam. 

  Otherwise, go to Step 12.4 

 12.4 Put the attribute of this move in the tabu list and go back to Step 

10.  

 
Part 6: Moving Products between (and within) Machines at the First Stage 

In this part, the products are moved between (and within) machines in an 

effort to minimize the makespan.  As in Part 5, the process of moving products 

between (and within) machines is performed only in the first stage.  The best 

solution obtained in the previous part is used as the initial solution.  The notation 

used in the implementation of the TS is described below and is followed by the 

procedure.  Basically, the rules used to define the tabu list and to determine the 

tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.   

 
Notation 

iter_prod = current iteration number for the process of moving 

products  between machines at the first stage 

iter_max_prod  =  maximum number of iterations allowed to perform in the 

process of products insertion procedure  

best_value_prod  =  the minimum makespan found so far  

best_seq_prod  =  the best schedule found so far  
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tor_iter_ prod =  maximum number of iterations allowed between two 

successive improvements  

best_iter_prod   =  iteration where the best solution has been found so far  

size_tabu_list_ prod   =  size of tabu list  

move_value_ prod  =   the minimum makespan obtained from the evaluation of 

all admissible moves in the iteration  

move_ seq_prod =  the schedule that yields the minimum makespan in the 

iteration  

 
Details of this part are described as follows. 

 
Step 13: Initialize all parameters used in the process of moving product between 

machines at the first stage. 

Set  iter_ prod  = 0, 

best_sol_ prod  = makespan obtained in Part 5  

best_iter_ prod  = 0,   

iter_max_ prod =100,  

tor_iter_ prod   = 30, 

size_tabu_list_prod  = 7 for 50 products  

= 12 for 80 products. 

The values of parameters iter_max_prod, tor_iter_prod and 

size_tabu_list_prod are a-priori fixed constants that were determined 

experimentally.  Computational experience showed that a value of 100 

for the maximum number of iterations (iter_max_prod) is a good value 

in terms of computational time and solution quality.  Likewise, a value of 

30 for the maximum number of iterations without improving the best 
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solution (tor_iter_prod) was found to be good.  Also, values of 7 and 12 

are adequate for the size of the tabu list (size_tabu_list_prod) when the 

numbers of products are 50 and 80, respectively.   

Step 14: Update the number of current iteration.  

Increment the number of (iter_prod) by 1. 

Step 15: Check if the search should be stopped. 

The two stopping criteria used in Step 10 are also used in this 

step, as detailed below. 

1. Stop the search if the maximum number of current iterations 

(iter_prod) is greater than max_iter_prod, or 

2. Stop the search if the number of successive iterations without 

improvement is greater than tor_iter_prod.  

If the search is not stopped, go to Step 16.  Otherwise, go to Step 

17. 

Step 16: Move products between (or within) machines.  

 16.1 For each admissible move, perform the following: 

• determine the tentative schedule of products on machines in 

stage 1 after performing a product move.  

• tentatively re-schedule all products on machines in stages 2 

through S using the procedure detailed in Step 8 and find the 

corresponding makespan. 

 16.2 After all admissible moves have been performed, select the move 

that yields the minimum makespan.  Denote the minimum 

makespan as move_value_prod and the corresponding schedule 

as move_seq_prod. 
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 16.3 Check if move_value_prod is less than best_value_prod.  If true, 

perform the following updates and go to Step 16.4 

  best_value_prod = move_value_prod, 

  best_seq_prod  = move_seq_prod. 

  Otherwise, go to Step 16.4 

 16.4 Put the attribute of this move in the tabu list and go back to Step 

14. 

Step 17: Determine the best makespan at the last stage and the best sequence 

found so far. 

 
Applying the TSH algorithm to the solution obtained for the illustrated problem in 

Section 5.2, the makespan was improved to 247.75 time units.  The product sequences 

obtained on the machines of each stage are presented below. 

Stage 1: Machine1: (2,2)-> (2,1) -> (4,3) -> (4,2) -> (1,1) 

Machine 2: (3,1) -> (1,2) -> (2,3) 

Machine 3: (3,3) -> (4,1) -> (1,3) -> (3,2) 

Stage 2: Machine 1: (3,1)-> (3,3) -> (2,1) -> (2,3) -> (4,3) -> (1,3) -> (1,1) 

Machine 2: (2,2)-> (1,2) -> (4,1) -> (4,2) -> (3,2) 

Stage 3: Machine 1: (3,1)-> (1,2)-> (2,1) -> (4,3) -> (4,2) -> (1,1) 

Machine 2: (2,2)-> (3,3) -> (2,3) -> (4,1) -> (1,3) -> (3,2) 

 where (j,i) means product i of family j. 
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CHAPTER 6 

LOWER BOUNDS 

 
6.1 Introduction 

 Normally, the quality of heuristic solutions is assessed by comparing their results 

to: (1) optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained 

by the best known approximation algorithms.  The flexible flowshop problem with 

sequence dependent setup is known to be NP-hard, and hence finding an optimal 

solution for average or large-size problems will be computationally intractable.  Since the 

FFs(Qm1, Qm2,…, Qms)/sipm/Cmax is also relatively new, and no approximation algorithms 

can be found for it in the literature, the only alternative left is to develop lower bounds for 

the problem and use them to assess the quality of the TS heuristic solutions. 

 Lower bounds can be obtained using a combinatorial approach as detailed 

below.  Other lower bounds can be obtained by relaxing the integrality constraints in the 

integer programming formulation.  Using the latter approach, several problems with 

relaxed formulations were solved using the MPL/CPLEX software, but the results 

obtained were not good enough, as the lower bounds obtained were less than fifty 

percent of those obtained with the combinatorial approach.  Hence, the relaxed linear 

programming formulation was not considered any further. 

 
6.2 Lower Bound Determination 

 Problem parameters and notation used in the development of the lower bound 

are defined below.  The notation used in Chapters 4 and 5 is kept as much as possible 

and supplemented with some additional variables.   

Notation 

i, p  = product indices 
 

j, q  = family indices 
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N  = number of families 

 
J   = set of all families 

= {1,2,..,N) 

 (j, i) = product i of family j 

Fj  = set of products in family j; j∈  J 
 

= {1, 2,…,fj} 
 

fj  = number of products in family j 
ψ = set of stages in a production line 

= {1,2,..,S} 

 s   = stage index 

 np  = total number of products 

 NP  = set of products from all families 

= U
N

j
jF

1=
  ; | NP | = np 

 m(s) = number of machines in stage s 

 M(s)   = set of machines at stage s 

   = {1,2,…, m(s)} 

vs,m = speed of machine m at stage s 

 x   = the least integer value greater than or equal to x. 

 SI(i)      = the setup time from idling for product i in stage 1  

 P(i,s)      = the processing time of product i on the fastest machine in stage s  

T(i,s) = processing time of product i on a standard machine (i.e., speed = 1) in 

stage s 

 CT(i)      = the cumulative processing time of product i on the fastest machines 

from stage 1 through stage S-1 
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  = ∑
−

=

1

1
),(

S

s
siP  

 MN(i,s)  = the minimum minor setup time of product i at stage s.  MN(i,s) is the 

lowest setup time for product i at stage s from any other product that 

belongs to the same family.  Let i ∈  Fj, the value of MN(i,s) is obtained 

as follows. 

   MN(i,s) =   
jFp

pi
∈
≠ ,

min ch(j,p,j,i,s)   

 MJ(i,s)  = the minimum major setup time of product i at stage s.  MJ(i,s) is the 

lowest setup time for product i at stage s from any product that belongs 

to a different family.  Let i ∈  Fj, then: 

   MJ(i,s) =    
qFp

jq
∈
≠ ,

min ch(q,p,j,i,s) 

    

 ICT(i) = the sum of the setup time from idling at the first stage and the 

cumulative processing times of product i on the fastest machines from 

stage 1 through stage S-1.   

  = SI(i) + CT(i) 

 λ = the minimum value between m(S) and m(1) 

  = min {m(S), m(1)} 

 xtra(s) = the difference between the number of machines in the last stage and 

that in stage s.  If negative, a value of zero is used. 

 = max {0, m(S) - m(s)}  

E = set of λ products with lowest values of CT(i)  

A = set of λ products with lowest values of ICT(i)  

B = set of np – N products yielding the lowest values of MN(i,S) 

C = set of N – m(S) products yielding the lowest values of MJ(i,S) 
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 G = set of m(1) products yielding the lowest values of SI(i) 

 K = NP - A 
 

Z = B ∩ C 

 D = NP – (B ∪  C) 

 LBF = the lower bound on the makespan obtained by the forward method 

 LBB = the lower bound on the makespan obtained by the backward method 

 BLB = the best lower bound  

  = max {LBF, LBB} 

 
Based on the flow or routing of products, two methods were developed in this 

research to calculate a lower bound on the makespan: 1) the forward method and 2) the 

backward method.  The best lower bound (BLB) is obtained by taking the maximum 

value of the LBF and LBB.   

To calculate the lower bound on the makespan for the 

FFS(Qm1,Qm2,…,Qms)/sipm/Cmax sequencing problem, the key idea is to consider a 

flexible flowshop structure with all machines in each stage as fast as the fastest 

machine.  The makespan can be determined by considering the sum of two quantities: 

(1) the last-stage machine total waiting and idle times and (2) the total setup and 

production times on the last-stage machines.  These two quantities can be divided into 

five components, as presented below.  

• total waiting time at the last stage (total_wait) 

• total processing time of all products at the last stage (total_proc) 

• total major setup time at the last stage (total_major) 

• total minor setup time at the last stage (total_minor) 

• adjustments to setup times at the last stage (adjust_setup) 
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)(∑
∈ Ai

iICT

A detailed description of these components and how they are used to calculate 

LBF and LBB is presented in sections 6.3.1 and 6.3.2, respectively.  The optimal 

makespan cannot be less than the sum of the above five components divided by the 

number of machines in the last stage.  Hence, using the forward method: 

LBF  = 
)(

1
Sm

[total_wait + total_proc + total_major + total_minor + 

adjust_setup] 

Similarly, for the backward method: 

LBB  = 
)1(

1
m

[total_wait + total_proc + total_major + total_minor + 

adjust_setup] 

 
6.2.1 Forward Method 

1. Total waiting time at the last stage (total_wait) 

The total_wait is the minimum amount of time that the machines at the 

last stage have to wait until their first products are processed.  This means that 

the first m(S) products have to complete their processing on stage 1 through 

stage S-1.  Two cases are considered in calculating the total_wait.  

Case 1: m(S) ≤ m(1) 

The total_wait is determined by summing the first λ, λ = m(S), 

smallest values of ICT(i).  

 Hence: 

 total_wait  =   

    
Case 2: m(S) > m(1) 

 In this case, the machines in stage S are divided into two groups.  

The first group contains m(1) machines, and the second contains          
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m(S) – m(1) machines (i.e. xtra(1)).  The total waiting time for the machines 

in the first group (waiting_time_g1) is calculated as the sum of the first λ 

smallest values of ICT(i): ∑
∈ Ai

iICT )( . For the second group, the ratio (R) 

between xtra(1) and m(1) is determined and will be used to calculate the 

machine waiting times (waiting_time_g2).  The value of R is determined as 








 −
)1(

)1()(
m

mSm
.  Two cases are considered in calculating the machine 

waiting times in this group: (1) R = 1, and (2) R > 1.  Details for each of 

these cases are described below. 

2.1 R = 1 

  The following procedure is followed: 
 

Let  

 Ω(i) = SI(i) + P(i,1); i ∈  NP 

      β(i) = min {min{MN(p,1)}, MN(i,1)} + CT(i) 

where, p ∈  A and i ∈  K 

 2.1.1 Let x be the machine number in the second group, x = 1,2,…, 

xtra(1).  Set x = 1.  

 2.1.2 Determine the machine waiting time on machine x using the 

following steps. 

2.1.2.1 Sort all values of Ω(i) in non-decreasing order.  Let Ω[1], 

Ω[2], Ω[3],…, Ω[np] be the values resulting from the order.  

Then, find the product with the first lowest value of Ω(i) 

(e.g., product k): 

Ω(k) = Ω[1] = 
NPi∈

min Ω(i)  
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2.1.2.2 Sort all values of β(i) in non-decreasing order.  Let β[1], β[2], 

β[3],…, β[k] be the values resulting from the order.  Then, 

find the product with the first lowest value of β(i) (e.g., 

product g):  

β(g) = β[1] = 
Ki∈

min β(i)  

  2.1.2.3 Check if k = g.  If not true, calculate waiting_time(x) and 

update set NP as follows.  

waiting_time(x) = Ω(k) + β(g) 

NP = NP \ {k}, delete β(g) 

and go to step 2.1.3; otherwise, go to step 2.1.2.4. 

2.1.2.4 Find the product with the second lowest value of Ω(i) 

(e.g., product k’): 

Ω(k’) = Ω[2] = 
}{\

min
kNPi∈

 Ω(i) 

2.1.2.5  Find the product with the second lowest value of β(i) 

(e.g., product g’): 

β(g’) = β[2] =  
}{\

min
gNPi∈

β(i) 

2.1.2.6 Calculate the minimum waiting time on machine x 

(waiting_time(x)) as follows: 

waiting_time(x) = min {Ω(k) + β(g’), Ω(k’) + β(g)} 

  2.1.2.7 If Ω(k) + β(g’) < Ω(k’) + β(g), update K = K – {k} and delete 

β(g’). 

   Otherwise, update K = K – {k’} and delete β(g). 
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 2.1.3 Update x = x + 1.  If x is greater than m(S) - m(1), go to step 2.1.4; 

otherwise, go back to step 2.1.2. 

 2.1.4 Calculate total_wait as follows: 

 total_wait = ∑
∈ Ai

iICT )(  + ∑
−

=

)1()(

1

)(_
mSm

x
xtimewaiting  

 
 2.2 R > 1 
 

For this case, the machines in the second group are divided into 

smaller subgroups of m(1) machines (the last subgroup may have a smaller 

number).  The minimum waiting tine of the machines in the first subgroup 

(i.e., machine number m(1)+1, m(1)+2, …, 2m(1)) is determined using the 

procedure detailed in case 2.1 (i.e., R = 1).  To calculate the minimum 

waiting time for the machines of the remaining subgroups, the same 

procedure is repeated with the following modifications. 

(1) Function Ω(i) is replaced with function α(i, w1, w2 ,…,wr) which is defined 

as follows. 

α(i, w1, w2 ,…,wr) = SI(i) + P(i,1) + ∑
=

+
r

wPwMN
1

)}1,()1,({
σ

σσ  

 where, i, wσ ∈  NP, σ = 1,2,…,r, i ≠ w1 ≠ w2 ,…,≠ wr 

 

 To calculate the waiting time on each subgroup of machines in the 

last stage, function α(i,w1,w2 ,…,wr) must be regenerated for each r until 

the value of r reaches R-1.  For instance, when r =1, the quantity α(i, w1) 

is used to calculate the waiting time for the second subgroup of 

machines (i.e., machines 2⋅m(1)+1, 2⋅m(1)+2,…, 3⋅m(1)).  Likewise, 

when r = R – 1, the quantity α(i, w1, w2 ,…,wr) is used to calculate the 
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waiting time for the Rth subgroup of machines (i.e., machines                

(R –1)⋅m(1)+1,…, m(S)).   

 In step 2.1.2.1, all values of α(i, w1, w2 ,…,wr) obtained from all 

combinations of i and wσ  are sorted in non-decreasing order and let α[1], 

α[2], α[3],…, α[np] be the values resulting from the order. 

(2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member 

of set ϖ, where ϖ is set of products (i, w1, w2 ,…,wr) that yielded α[1]. 

(3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of 

α(ϖ) and β(g) such that g is not a member of ϖ, which yield the 

minimum value of the sum of α(ϖ) and β(g).  Step 2.1.2.7 is then 

modified to update K = K – ϖ and delete β(g). 

  
    The value total_wait when R > 1 is calculated as follows: 

     total_wait = waiting_time_g1 + waiting_time_g2 

 

      = ∑
∈ Ai

iICT )( + ∑
−

=

)1()(

1
)(_

mSm

x
xtimewaiting  

 
2. Total processing time of all products at the last stage (total_proc) 

 A lower bound of the total processing times on the machines at the last 

stage is calculated as the sum of the processing times of all products when 

processed on machines with the average speed in that stage.  The value of 

total_proc is hence calculated as follows: 

  

total_proc = 
∑

∑

∈

∈
⋅

)(
,

)(),(

SMm

NPi
mSv

SmSiT
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∑
∈ Ci

 S)MJ(i,

∑
∈ Bi

SiMN ),(

   
  A better (higher) lower bound may be calculated for total_proc by allowing 

preemption and applying the “Shortest Remaining Processing Time on Fastest 

Machine [SRPT-FM] rule; but this may take some effort and the improvement can 

be very little, especially when the ratio of the number of products to the number 

of machines is high. 

 3.  Total major setup time at the last stage (total_major) 

       In minimizing major changeovers, the number of machines assigned to 

each family should be as few as possible.  Major setups can be minimized by 

scheduling each family on only one machine.  Thus, the minimum number of 

major setups for the entire production schedule on the last-stage machines is 

equal to N - m(S) setups.  The value of total_major is hence determined as the 

sum of the N – m(S) smallest major changeovers.  

 
total_major  = 

 

 4. Total minor setup times at the last stage (total_minor) 

 With each family assigned to only one machine, a total of np - N minor 

setups would be required.  The total_minor is hence determined by summing the 

first np – N smallest minimum minor changeovers, as shown below.  

 
total_minor =     

 
 

 5. Adjustments to setup times at the last stage (adjust_setup) 

 The lower bound on the total setup times at the last stage can be improved 

if some of the products in set B are also members of set C (i.e., B ∩ C = Z ≠ φ).  In 
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this case, some members of set D must replace members of either set C (major 

setup times) or set B (minor setup times), whichever yields a smaller difference.  

Let z ∈  Z.   

If a member d∈ D replaces z in set C, then the difference is calculated as 

follows: 

mj_diff(d,z) = MJ(d, S) – MJ(z, S) 

The minimum value mj_diff(d*,z*) is realized by selecting 
Dd∈

min (MJ(d,S)) and 

Zz∈
max (MJ(z,S)).  Denote 

Zz∈
max (MJ(z, S)) as MJMax.   

Similarly, if d replaces z in set B, then the minimum difference 

mn_diff(d’,z’) = 
Dd∈

min (MN(d,S) – 
Zz∈

max (MN(z,S)).  Denote 
Zz∈

max (MN(z,S)) as 

MNMax.  The minimum value between mj_diff(d*,z*) and mn_diff(d’,z’) is then 

added to adjust_setup (which has an initial value of zero).  Product z* (or z’) is 

then deleted from set Z and product d* (or d’) is deleted from set D.  However, 

the values of MJMax and MNMax should not be updated.  This process is 

repeated until set Z is void. 

 
The overall lower bound is then calculated as follows: 

 

LBF = 
)(

1
Sm

 [ total_wait + total_proc + total_major + total_minor + adjust_setup ]   

 
6.2.2 Backward Method 

 Consider a schedule where products are processed from stage S to stage 1 

(i.e., reverse order of machines), then its antithetical schedule (mirror image) yields 

the same makespan for the original problem when no setup times are considered.  

With setup times, the lower bound for the backward schedule would still remain a 
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lower bound for the original problem, when calculated as in the forward method 

with the following two adjustments: 

1. Setup times from idling for the first m(S) products in stage S must not be 

considered when calculating total_wait (i.e., assume SI(i) = 0 for all products, 

where SI(i) in this case is the setup time for product i from idling at stage S). 

2. The sum of the m(1) minimum setup times from idling in stage 1 

(sum_setup_idle) should be added to total_wait. 

 
The backward lower bound will then be calculated as follows:  

 

LBB = 
)1(

1
m

 [total_wait + total_proc + total_major + total_minor + adjust_setup ] 

  
The best lower bound (BLB) is then determined as max {LBF,LBB}.  

 
6.3 Illustration of the Lower Bound Calculations 

The problem presented in Chapter 5 is used here to demonstrate the calculation 

of the lower bound. 

 
Number of families:  J = 4 

Number of stages:   S = 3 

Number of products:   fj = 3, j = 1, 2, 3, 4 

Number of machines:   m(1) =3, m(2) = 2, and m(3)= 2 

 
 

Processing times of each product on the fastest machine at each stage (P(i,s)) 

and changeover times of each product in terms of setup times from idling (SI(i)), major 

(MJ(i,s)) and minor (MN(i,s)) setup times in each stage are shown in Table 6.1. 

 



  133 
Table 6.1: Processing Times on the Fastest Machine at each Stage and Changeover Times of Each 

Product on Each Stage 
 

Family 
1 2 3 4 

Product Product Product Product Description 

1 2 3 1 2 3 1 2 3 1 2 3 
Processing 
Time (P(i,s))  

s=1 43.351 16.54 24.14 31.56 28.71 30.39 19.11 25.19 29.62 39.21 14.60 21.24 
s=2 23.74 11.07 33.01 11.94 11.31 16.59 14.99 43.76 25.47 36.55 33.76 33.46 
s=3 30.63 23.40 26.97 45.75 32.31 21.47 31.43 12.14 19.10 46.01 26.30 16.74 
Setup time 
From idle 
(SI(i)) 

5.97 6.27 4.53 7.48 6.29 7.00 5.75 7.37 5.74 5.93 6.16 5.54 

Minor 
Setup time 
(MN(i,s)) 

 

s=1 4.192 1.6 4.13 3.24 2.34 2.27 1.97 2.9 1.57 4.35 1.65 1.82 
s=2 2.82 2.34 4.24 3.83 3.82 2.4 2.94 3.41 2.19 2.78 1.59 3.92 
s=3 2.91 1.76 3.52 2.33 1.65 3.47 3.27 2.67 1.76 3.69 2.75 3.13 
Major 
setup time 
(MJ(i,s))3 

 

s=1 6.433 8.65 6.26 6.23 7.37 6.01 6.02 6.51 6.42 6.35 6.24 6.21 
s=2 7.38 7.02 6.84 6.23 6.06 8.37 6.60 6.33 6.05 6.06 7.30 8.07 
s=3 6.64 6.02 6.50 7.19 6.12 6.22 6.00 6.11 6.11 6.37 6.22 6.93 

 
Note: 

1 (47.68/1.1)  = 43.35 
2 MN(1,1) = min {4.19, 4.28} 
3 MJ(1,1)  = min {11.06, 8.6, 6.51, 6.43, 7.19, 7.82, 10.61, 10.91, 8.94} 
 
 
 
 
 
 

6.3.1 Lower bound Calculations Based on Forward Method: 

Calculations of the total waiting time at the last stage (total_wait) 

In this problem, the value of m(3) is less than m(1), hence λ = m(3) = 2.  

The total_wait is determined as: 

          total_wait = )(∑
∈ Ai

iICT   

 
From the data obtained in Table 6.1, the summations of idle time and 

processing time of each product from stages s = 1 through S-1 are 

presented in Table 6.2. 
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Table 6.2: The Summations of Setup Time from Idling of the First Stage and Cumulative 

Processing Times of Each Product on the Fastest Machine from Stages 1 through 
S-1 

 
 

Family j 

(1) 

 

Product i 

(2) 

 

SI(i) 

(time units) 

(3) 

 

CT(i) 

 (time units) 

(4) 

 

SI(i) + CT(i) 

 (time units) 

(3)+(4) 

1 1 5.97 67.09 73.06 

 2 6.27 27.61 33.88 

 3 4.53 57.15 61.68 

2 1 7.48 43.50 50.98 

 2 6.29 40.02 46.31 

 3 7.00 46.98 53.98 

3 1 5.75 34.10 39.85 

 2 7.37 68.95 76.32 

 3 5.74 55.09 60.83 

4 1 5.93 75.76 81.69 

 2 6.16 48.36 54.52 

 3 5.54 54.70 60.24 

 

 

 

From Table 6.2, it is obvious that the lowest two values of the sum 

of SI(i) and CT(i) are 33.88 and 39.85 time units.  These values belong to 

product 2 of family 1 and product 1 of family 3, respectively.  Hence,          

A = {(1,2), (3,1)}, and  

total_wait   = (33.88 + 39.85) 

 = 73.73 time units 

Calculations of the total processing time of all products at the last stage 

(total_proc) 

total_proc = ∑∑
∈∈

⋅
)3(

,/)]3()3,([
MmNPi

msvmiT  
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From Tables 5.1 and 5.2 in chapter 5, the values of ∑
∈ )(

,

SMm
msv  and 

that of ∑
∈ NPi

iT )3,( are equal to 2.06 and 352.19, respectively.  Hence, the 

total processing time of all products from all families at the last stage is 

presented as follows: 

total_proc = [2 x 352.74] / 2.06 

     =  341.93 time units 

Calculations of the total major setup time at the last stage (total_major) 

total_major  = ∑
∈ Ci

iMJ )3,(    

From Table 6.1, the lowest two major setup times at the last stage 

are 6.00 and 6.02 time units belonged to product 1 of family 3 and product 

2 of family 1, respectively.  Hence, C = {(3,1), (1,2)} and   

 total_major  = 6.00 + 6.02 

    = 12.02 time units 

 Calculations of the total minor setup time at the last stage (total_minor) 
 

total_minor = ∑
∈ Bi

iMN )3,(  

From Table 6.1, the lowest eight minor setup times at the last 

stage are presented below: 

 1.65 time units from product 2 of family 2, 

 1.76 time units from product 2 of family 1,  

 1.76 time units from product 3 of family 3,  

2.33 time units from product 1 of family 2, 

 2.67 time units from product 2 of family 3,  
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 2.75 time units from product 2 of family 4,  

2.91 time units from product 1 of family 1, and  

 3.13 time units from product 3 of family 4. 

  Hence, B = {(2,2), (1,2), (3,3), (2,1), (3,2), (4,2), (1,1), (4,3)} 

total_minor = 1.65+1.76+1.76 + 2.33 + 2.67 + 2.75 + 2.91 + 3.13 

                                                     = 18.96 time units 

Calculations of the adjustments to setup time at the last stage 

(adjust_setup) 

From the previous calculations of the major and minor setup times, 

the products in the different sets are presented below: 

Products in Set B: {(2,2), (1,2), (3,3), (2,1), (3,2), (4,2), (1,1), (4,3)} 

Products in set C: {(3,1), (1,2)} 

Products in set Z = B ∩ C: {(1,2)}  

Products in set D = NP - (B ∪  C): {(2,3), (4,1), (1,3)} 

The adjustments to the setup times for this problem are 

calculated as follows: 

  MJMax  = 
Zz∈

max MJ(z,3) 

    = 6.02 

mj_diff(d*,z*)  = 
Dd∈

min (MJ(d,3) – MJMax 

  
   = min {6.5, 6.22, 6.37} – 6.02 

= 0.20 time units 

  d* = (4,1) and z* = (1,2) 

  Similarly, MNMax = 
Zz∈

max MN(z,3) 

= 1.76 
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mn_diff(d’, z’)  = 
Dd∈

min MN(d,3) – MNMax 

= min {3.52, 3.47, 3.69} – 1.76 

= 1.71 time units 

d’ = (4,1) and z’ = (1,2) 

Hence, adjust_setup  = min {0.20, 1.71} 

= 0.20 time units 

And Z = φ.   

After all five components have been determined, the lower bound, 

using the forward method, is calculated as follows: 

LBF =  ½ (73.73 + 341.93 + 12.02 + 18.96 + 0.20) 

 = 223.42 time units  

 Hence, LBF = 224 time units 

 
6.3.2 Lower bound Calculations Based on Backward Method 

Calculations of the total waiting time at the first stage (total_wait) 

In this example, m(1) > m(3), hence total_wait in this case is: 

     total_wait = waiting_time_g1 + waiting_time_g2 + sum_setup_idle 
 

 = )(∑
∈ Ei

iCT  + ∑
−

=

)3()1(

1
)(_

mm

x
xtimewaiting + ∑

∈ Gi
iSI )(  

From the data obtained in Table 6.1, the summations of the 

processing times of each product from stages s = 3 to 2 are presented in 

Table 6.3.  From this table, it is obvious that the lowest two values of the 

sum of the total processing times from stages 3 to stage 2 are 34.47 and 

38.06 time units.  These values belong to product 2 of family 1 and product 

3 of family 2, respectively.  Hence, E = {(1,2), (2,3)}, and  

waiting_time_g1  = 34.47 + 38.06 = 72.53 time units. 
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Table 6.3: The Values of CT(i) and β(i) Used to Calculate the Backward Lower Bound 
 

 

Family j 

(1) 

 

Product i 

(2) 

 

min {1.76, 

MN(i,1)}  

(time units) 

(3) 

 

P(i,2) 

(time units) 

(4) 

 

P(i,3) 

(time units) 

(5) 

 

CT(i)  

(time units) 

(4) +(5) 

 

ββββ(i) 

(time units) 

(3) + (4) + (5) 

1 1 1.76 23.74 30.63 54.37 56.13 

 2 1.76 11.07 23.40 34.47 36.23 

 3 1.76 33.01 26.97 59.98 61.74 

2 1 1.76 11.94 45.75 57.69 59.45 

 2 1.65 11.31 32.31 43.62 45.27 

 3 1.76 16.59 21.47 38.06 39.82 

3 1 1.76 14.99 31.43 46.42 48.18 

 2 1.76 43.76 12.14 55.90 57.66 

 3 1.76 25.47 19.10 44.57 46.33 

4 1 1.76 36.55 46.01 82.56 84.32 

 2 1.76 33.76 26.30 60.06 61.82 

 3 1.76 33.46 16.74 50.20 51.96 

 

 

 

 The waiting time on the second group machines is determined as 

follows. 

R =  (3-2)/2  = 1, hence case 2.1 is applied.  

 Ω(i) = SI(i) + P(i,1); i ∈  NP 

      β(i) = min {min{MN(p,1)}, MN(i,1)} + CT(i) 

where, p ∈  A and i ∈  K 

2.1.1 Set x = 1. 

2.1.2 Calculation steps: 

2.1.2.1 Since the setup time from idling in the last stage is 

not considered, the value of Ω(i) is P(i,1).  Hence, the 
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lowest value of Ω(i) is Ω((3,2)) which is equal to 

12.14.  

2.1.2.2 To determine the value of β(i), the minimum value of 

MN(p,1) is 1.76 time units.  The values of β(i) are 

shown in Table 6.3.  From this table, the lowest value 

of β(i) (i.e., β(g)) is β((1,2)) which is equal to 36.23 

time units.   

2.1.2.3 Since (3,2) ≠ (1,2), then the waiting time on the 

second group machine is determined below. 

waiting_time(1)  = 12.14 + 36.23 

     = 48.37 time units 

   Then, go to step 2.1.3. 

2.1.3 Update x = x+1 = 2.  Since x is greater than m(1) – m(S), go 

to 2.1.4. 

2.1.4 The sum of the lowest three setup times from idling at   

stage 1 ( ∑
∈ Gi

iSI )( ) is equal to 15.81 (i.e., 4.53 + 5.54 + 5.74 

= 15.81) time units.  The value of total_wait is calculated as 

follows: 

total_wait = 72.53 + 48.23 + 15.81 

     = 136.57 time units 

Calculations of the total processing time of all products at the first stage 

(total_proc) 

total_proc = ∑∑
∈∈

⋅
)1(

]/[)1()1,( ,

MmNPi
msvmiT  
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From Tables 5.1 and 5.2 in chapter 5, the values of ∑
∈ )1(

,1

mm
mv and 

∑
∈ NPi

iT )1,( are 3.13 and 356.01, respectively.  Hence, the total processing 

time of all products from all families at the last stage is calculated as 

follows: 

total_proc = (356.01 x 3)/ 3.13 

     = 341.22 time units 

Calculations of the total major setup time at the first stage (total_major) 

total_major  = ∑
∈ Ci

iMJ )1,(    

 where,  C has 4 – 3 = 1 family. 

From Table 6.1, the lowest major setup time at the first stage is 6.01 

time units belonged to product 3 of family 2.  Hence, C = {(2,3)}, and  

  total_major  = 6.01 time units 

Calculations of the total minor setup time at the first stage (total_minor) 

total_minor = ∑
∈ Bi

iMN )1,(  

where,    B has 12 – 4 = 8 products.   

From Table 6.1, the lowest eight minor setup times at the first stage 

are presented below: 

 1.57 time units from product 3 of family 3, 

 1.60 time units from product 2 of family 1,  

 1.65 time units from product 2 of family 4,  

 1.82 time units from product 3 of family 4, 

 1.97 time units from product 1 of family 3,  
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 2.27 time units from product 3 of family 2,  

2.34 time units from product 2 of family 2, and  

 2.90 time units from product 2 of family 3. 

 Hence, B = {(3,3), (1,2), (4,2), (4,3), (3,1), (2,3), (2,2), (3,2)} 

total_minor  = 1.57 + 1.60 + 1.65 + 1.82 + 1.97 + 2.27 + 2.34 + 2.90 

= 16.12 time units 

Calculations of the total adjustments to setup times at the first stage 

(adjust_setup) 

From the previous calculations of the major and minor setup times, the 

products in the different sets are presented below: 

Products in Set B: {(3,3), (1,2), (4,2), (4,3), (3,1), (2,3), (2,2), (3,2)} 

Products in set C: {(2,3)} 

Products in Set D: {(1,1), (1,3), (2,1), (4,1)} 

Products in set Z: {(2,3)}  

The adjustments to the setup times for this problem are 

calculated as follows: 

  MJMax  = 
Zz∈

max MJ(z,1) 

    = 6.01 

mj_diff(d*,z*)  = 
Dd∈

min (MJ(d,1) – MJMax 

  
   = 6.23 – 6.01 

= 0.22 time units 

  d* = (2,1) and z* = (2,3) 

  Similarly, MNMax = 
Zz∈

max MN(z,1) 

= 2.27 



  142 

mn_diff(d’, z’)  = 
Dd∈

min MN(d,1) – MNMax 

= 3.24 – 2.27 

= 0.97 time units 

d’ = (2,1) and z’ = (2,3) 

Hence, adjust_setup  = min {0.22, 0.97} 

= 0.22 time units 

And Z = φ.   

LBB = 1/3 [136.57 + 341.22 + 6.01 + 16.12 + 0.22] 

= 166.71 time units 

  Hence, LBB = 167 time units. 

  The best lower bound for this problem (BLB) = max { LBF, LBB} 

         = max {224, 167} 

         = 224 time units 
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CHAPTER 7 

COMPUTATIONAL EXPERIMENTS 

 
7.1 Introduction 

 The flexible flowshop with sequence dependent setup time is known to be NP-

hard.  Obtaining an optimal solution using mathematical formulation would require large 

computational effort; hence, optimal solutions will not be investigated further.  This 

chapter will focus on computational experience with the heuristic algorithms (FFSDSTH 

and TSH).  Two quantities are investigated: (1) the performance of the heuristic 

algorithms, obtained by comparing their solutions to the lower bound and (2) the relative 

improvement of the solutions obtained by the FFSDSTH algorithm with respect to those 

of the TSH algorithm.   

 Two sets of problems, with six types of data characteristics in each set, were 

generated to evaluate the above two quantities: 

Set 1: 50 products (12 families) 

Set 2: 80 products (18 families) 

Six types (A, B, C, D, E, and F) of data characteristics were generated for each 

set, and 10 test problems were generated for each data type.  The parameters for each 

data type, processing times of products on a standard machine (speed = 1) at each 

stage (PTime(j,i,s,m)), machine speed deviations (vs,m), changeover times between 

products at each stage (ch(j,i,q,p,s)), and setup times from idling of products at the first 

stage (ch(0,0,j,i,s)), were randomly selected from different uniform distributions as 

shown in Table 7.1 
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Table 7.1: Values of Parameters Used with the Different Data Types 

 
Type Parameter 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

Total number 

of machines 

and stages 

 

9 machines,  

3 stages 

(3,3,3) 

 

20 machines,  

5 stages 

(4,4,4,4,4) 

 

11 machines,  

3 stages 

(4,2,5) 

 

9 machines,  

3 stages 

(3,3,3) 

 

20 machines,  

5 stages 

(4,4,4,4,4) 

 

11 machines,  

3 stages 

(4,2,5) 

 

PTime(j,i,s,m) 

 

U[10,50] 

 

U[10,50] 

 

U[10,50] 

 

U[10,50] 

 

U[10,50] 

 

U[10,50] 

vs,m  
 

U[0.85, 1.15] 

 

U[0.85, 1.15] 

 

U[0.85, 1.15] 

 

U[0.75, 1.25] 

 

[0.75, 1.25] 

 

U[0.75, 1.25] 

ch(j,i,q,p,s) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

 

U[20%, 40%]  

of PTime(j,i,s,m) 

ch(j,i,j,p,s) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

 

U[5%, 15%]  

of PTime(j,i,s,m) 

ch(0,0,j,i,s) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 

U[15%, 25%]  

of PTime(j,i,s,m) 

 
 
 
 
 

 Changeover times between products at each stage (ch(j,i,q,p,s) and setup times 

from idling at the first stage (ch(0,0,j,i,s)) are identical on all machines at the same stage.  

Types A, B, and C generate problems with small deviations in the speed of machines.  

Conversely, types D, E, and F generate problems with large deviations in the speeds.  

Characteristics of the data types can be summarized as follows: 

 A: A small number of stages, small deviations in machine speeds, and small, 

identical number of machines in each stage.  

 B: A large number of stages, small deviations in machine speeds, and large, 

identical number of machines in each stage. 
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 C: A small number of stages, small deviations in machine speeds, and small, 

non-identical number of machines in each stage.  

 D: A small number of stages, large deviations in machine speeds, and small, 

identical number of machines in each stage. 

 E: A large number of stages, large deviations in machine speeds, and large, 

identical number of machines in each stage. 

 F: A small number of stages, large deviations in machine speeds, and small, 

non-identical number of machines in each stage.  

 
In section 7.2, the computational results obtained with the heuristics are 

presented and compared to the lower bounds for the large size problems.  Section 7.3 

presents the relative improvement of the solutions obtained by the FFSDSTH algorithm 

with the application of the TSH algorithm. 

  
7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds 

 The heuristic algorithms were coded in C++ and run on a 300 MHz PC, with 96 

MegaBytes of RAM, for testing and evaluation.  In this section, the heuristic algorithms 

are evaluated using two performance measures: (1) solution quality, and (2) 

computational speed.   The quality of a solution generated by the heuristics is measured 

in terms of their performance (HP), as presented below. 

 HP  = (solLB/solheu) x 100 

 where, 

 HP =  the heuristic performance (%) 

 solLB = the lower bound of the solution 

 solheu = the solution obtained from the heuristic algorithms 

 The computational speed of the algorithms is measured by the amount of CPU 

time required to execute the algorithms.  The CPU time includes compiling, linking, and 
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execution times, and is reported in seconds and seconds per iteration for the FFSDSTH 

and TSH algorithms, respectively.    

 For each combination of problem set and data type, ten different test problems 

were generated.  The solution of each test problem using the heuristic algorithm and its 

lower bound were obtained for all combinations of sets and data types.  The results of 

these computations are presented in Tables 7.2-7.13.  Table 7.14 shows the averages 

obtained for these results.  

 

 
 

Table 7.2: Computational Results for Set 1 Type A: 
 Heuristic Algorithms vs. Lower Bound 
 

 
CPU Time 

 

 
Heuristic Performance (%) 

TSH Problem 

Number  
FFSDSTH 
(seconds) 

seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.2 10.90 50 81.463 88.485 
2 1.3 10.60 48 74.322 79.616 
3 1.3 10.60 45 85.698 91.364 
4 1.2 10.40 69 79.576 85.127 
5 1.4 10.90 91 74.400 80.286 
6 1.5 10.80 38 85.392 90.700 
7 1.3 10.70 43 85.243 92.651 
8 1.4 10.60 44 82.684 90.368 
9 1.4 10.60 89 80.403 86.788 
10 1.2 10.50 66 82.049 90.265 
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Table 7.3: Computational Results for Set 1 Type B: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.4 29.20 63 79.611 89.156 

2 1.3 28.70 48 80.244 87.251 

3 1.4 28.80 47 80.756 86.361 

4 1.5 28.70 60 79.442 84.660 

5 1.4 29.30 58 79.245 84.955 

6 1.5 28.90 58 81.353 86.972 

7 1.3 29.50 80 76.119 82.724 

8 1.4 29.70 49 74.618 80.249 

9 1.6 28.50 42 82.102 88.748 

10 1.5 29.90 65 79.576 86.824 

 
 
 
 

Table 7.4: Computational Results for Set 1 Type C: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.8 11.50 52 86.812 91.170 

2 1.6 11.20 49 80.613 85.890 

3 1.7 11.30 65 83.836 88.659 

4 1.9 11.40 65 81.935 88.358 

5 1.8 10.90 49 80.302 86.184 

6 1.9 11.10 84 80.852 86.725 

7 1.8 11.40 38 80.916 88.698 

8 1.6 11.60 68 84.384 90.345 

9 1.6 11.50 55 85.291 90.926 

10 1.7 11.20 33 81.817 87.446 
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Table 7.5: Computational Results for Set 1 Type D: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.4 10.80 51 81.463 88.485 

2 1.5 10.60 63 74.322 79.616 

3 1.3 10.70 39 85.698 91.364 

4 1.5 10.80 52 79.576 85.127 

5 1.2 10.80 67 74.400 80.286 

6 1.5 10.60 80 85.392 90.700 

7 1.4 11.10 34 85.243 92.651 

8 1.2 11.00 36 82.684 90.368 

9 1.3 10.70 52 80.403 86.788 

10 1.6 10.70 64 82.049 90.265 

 
 
 
 

Table 7.6: Computational Results for Set 1 Type E: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.9 30.20 47 72.721 81.117 

2 1.8 29.80 47 71.241 77.730 

3 1.8 29.90 79 77.481 83.921 

4 2.0 30.10 70 73.650 78.533 

5 2.1 30.00 77 76.324 81.758 

6 1.8 29.70 40 73.338 82.765 

7 1.7 29.20 39 70.361 79.638 

8 1.6 30.40 64 74.031 82.585 

9 1.6 30.50 46 70.099 79.522 

10 2.1 29.50 36 73.438 79.352 
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Table 7.7: Computational Results for Set 1 Type F: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.4 12.00 53 74.972 81.550 

2 1.5 12.00 55 79.406 87.135 

3 1.3 11.70 32 78.046 83.117 

4 1.5 11.80 78 76.516 83.759 

5 1.5 12.00 64 75.047 83.983 

6 1.7 12.00 79 79.438 87.860 

7 1.4 11.80 38 73.959 83.066 

8 1.6 11.60 48 80.097 84.536 

9 1.7 11.50 50 73.708 81.224 

10 1.3 11.60 52 77.924 87.810 

 
 
 
 

Table 7.8: Computational Results for Set 2 Type A: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.9 42.00 35 82.545 86.052 

2 2.0 42.30 73 89.203 93.335 

3 2.2 42.30 68 79.945 83.556 

4 2.0 41.80 34 82.587 85.287 

5 2.1 41.70 42 81.262 83.822 

6 1.8 41.90 68 85.502 89.785 

7 1.7 42.00 92 83.549 87.084 

8 2.0 42.00 80 84.135 87.464 

9 1.9 42.50 65 80.573 84.459 

10 1.8 42.10 69 83.306 86.599 
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Table 7.9: Computational Results for Set 2 Type B: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 2.4 121.00 40 77.985 82.079 

2 2.3 122.40 47 76.963 81.000 

3 2.7 119.80 80 76.169 81.784 

4 2.1 119.40 32 78.279 83.382 

5 2.2 119.80 37 73.902 79.459 

6 2.4 121.40 54 76.708 81.632 

7 2.5 119.10 39 71.015 77.274 

8 2.6 122.00 40 75.044 78.824 

9 2.7 119.00 39 77.164 81.636 

10 2.3 120.00 80 74.787 79.803 

 
 
 
 

Table 7.10: Computational Results for Set 2 Type C: 
   Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.8 54.30 54 79.432 84.766 

2 2.0 55.00 59 79.921 85.334 

3 2.1 55.10 66 79.689 83.490 

4 2.0 55.20 94 90.751 95.583 

5 2.1 55.00 80 78.983 82.120 

6 2.2 54.30 33 79.306 84.550 

7 2.3 56.10 61 78.511 84.095 

8 1.9 49.70 42 80.116 85.185 

9 2.1 55.00 34 80.083 84.636 

10 1.8 55.00 57 79.041 83.844 
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Table 7.11: Computational Results for Set 2 Type D: 
 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 1.9 44.00 62 76.373 81.358 

2 1.8 44.00 38 75.985 80.374 

3 2.1 44.50 80 84.538 87.975 

4 2.0 44.20 96 75.046 79.265 

5 2.2 43.90 52 79.512 84.750 

6 2.1 43.80 42 80.065 87.427 

7 2.1 44.00 34 72.910 77.382 

8 1.9 44.10 41 75.276 80.168 

9 1.9 44.50 98 80.829 87.815 

10 2.0 44.30 92 79.116 83.524 

 
 
 
 

Table 7.12: Computational Results for Set 2 Type E: 
   Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 2.3 123.00 39 69.419 74.763 

2 2.2 123.70 40 73.694 81.635 

3 2.4 123.30 54 73.802 80.123 

4 2.1 123.90 33 72.369 79.595 

5 2.3 122.80 80 71.746 77.625 

6 2.1 122.50 42 73.947 78.457 

7 2.2 123.00 63 72.906 79.426 

8 2.3 123.70 65 68.858 74.331 

9 2.2 122.00 54 64.291 70.117 

10 2.1 122.70 53 69.923 75.175 
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Table 7.13: Computational Results for Set 2 Type F: 
   Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

Heuristic Performance 
(%) 

 
TSH Problem Number  

FFSDSTH 
(seconds) seconds/iteration 

Number of Iterations 

(iterations) 

 
FFSDSTH 

 
TSH 

1 2.5 57.00 38 72.073 77.789 

2 2.5 57.40 45 72.914 79.415 

3 2.6 57.10 76 74.506 79.341 

4 2.8 56.90 68 73.253 80.775 

5 2.9 57.00 80 75.267 79.050 

6 2.5 56.80 40 74.360 81.395 

7 2.5 56.40 47 70.350 77.351 

8 2.6 57.00 70 70.000 76.455 

9 2.8 57.00 57 75.491 79.847 

10 2.5 57.30 47 74.442 80.141 

 
 
 

Table 7.14: Averages of Computational Results for Sets 1 and 2 for all Data Types: 
Heuristic Algorithms vs. Lower Bound  

 

 
CPU time 

 
Heuristic Performance 

(%) 
 

TSH 
 

Set Type  
FFSDSTH 
(seconds) seconds/iteration 

Number of iterations 
(iterations) 

 
FFSDSTH 

 
TSH 

1 A 1.3 10.66 59 86.309 90.876 

 B 1.7 29.12 57 79.307 88.790 

 C 1.4 11.31 56 82.676 88.440 

 D 1.4 10.78 54 81.123 87.565 

 E 1.5 29.93 55 73.268 80.692 

 F 1.8 11.80 55 76.911 84.404 

2 A 1.9 42.06 63 83.261 86.744 

 B 2.4 120.39 49 75.802 80.687 

 C 2.0 54.47 58 80.583 85.360 

 D 2.0 44.13 64 77.965 83.004 

 E 2.6 123.06 53 71.096 77.125 

 F 2.2 56.99 57 73.266 79.156 
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 Based on these results, the average performance for set 1 ranges between  

73.3-86.3% for the FFSDSTH algorithm and 80.7-90.9% for the TSH algorithm.  For set 

2, the average performance is lower than that of set 1, and ranges between 71.1-83.3% 

for the FFSDSTH algorithm and 77.1-86.7% for the TSH algorithm.  

 The computational times for the FFSDSTH are extremely small-- less than 3 

seconds.  These times do not significantly increase with the size of the problem.  This 

means that the FFSDSTH algorithm is very efficient, and more importantly it is not 

sensitive to the problem size.  In contrast, computational times for the TSH algorithm 

seem to be high-- between 10 and 30 seconds per iteration for data set 1 and between 

42 and 124 seconds per iteration for data set 2.  These times increase significantly with 

the size of the problem in terms of numbers of products (families), stages, and 

machines. 

 A Factorial Design was used to evaluate the performance of the heuristic 

algorithms (HP).  The design has three factors: deviations in machine speeds, number of 

products, and number of machines and stages.  The analysis was performed using SAS 

Software V8 for Windows and the results are presented in Appendix C.  The statistical 

results show a significant effect for each of the three factors on the heuristic 

performance.  Tukey’s test was performed to compare between the three means 

obtained with different number of machines and stages.  Results of the test (see 

Appendix C, Section C.3) indicate that the three means are different from each other.   

 The statistical results obtained from ANOVA and Tukey’s test show that the 

heuristic performance declines with the increase of: (1) number of products, (2) number 

of machines and stages, and (3) deviation in machine speeds.  This decline is due mainly 

to the decrement in the value of the lower bound rather than the performance of the 

heuristics.  The lower bound value may be affected by the following factors: 
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(1) the difference between the actual processing times and the smallest 

processing times of products used to calculate the first component of lower 

bound.  The difference in processing times gets larger when the difference in 

the speeds between the fastest and the slowest machines increases. 

(2) the difference between actual processing times and the processing times on 

the average speed machine of products used to calculate the second 

component of the lower bound, and  

(3) the difference between actual setup times (both major and minor setup 

times) and the smallest setup times of the products, used to calculate 

components 3,4, and 5 of the lower bound.   

If the differences were small, the lower bound would be relatively high resulting in higher 

algorithm performance, and vice versa.  Larger deviations in machine speeds, a number 

of products (families), and of machines and stages would most probably cause larger 

differences in processing times and setup times.  

 
7.3 Comparison between the FFSDSTH Algorithm and the TSH Algorithm 

 In this section, the relative improvement of the solutions obtained from the 

FFSDSTH algorithm after applying the TSH is evaluated and presented below. 

 Let  RI  = {(solFFSDSTH/ - solTSH) / solFFSDSTH} x 100 

 where, 

 RI =  the relative improvement (%) between solFFSDSTH and solTSH 

 solFFSDSTH = the solution obtained from the FFSDSTH algorithm 

 solTSH = the solution obtained from the TSH algorithm 

 Two sets of relatively large size problems are used in this section.  These sets 

are identical to those described in Section 7.2.  For each combination of problem set and 

data type, 10 different test problems were generated.  The solutions of each test 
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problem using the FFSDSTH and TSH algorithms were obtained for all combinations of 

sets and data types.  The results obtained are presented in Tables 7.15 and 7.16.  Table 

7.17 shows the averages obtained for these results.  

 
 

 
 
 

Table 7.15: Relative Improvement Results for the Different Data Types in Set 1: 
 

 
Relative Improvement (%) 

 
Type 

 

 
Problem Number 

A B C D E F 

1 4.220 10.706 4.780 7.936 10.351 8.066 

2 7.706 8.031 6.143 6.650 8.348 8.870 

3 5.649 6.490 5.440 6.201 7.675 6.102 

4 3.992 6.164 7.269 6.521 6.218 8.647 

5 5.945 6.721 6.825 7.331 6.647 10.639 

6 3.573 6.461 6.771 5.853 11.390 9.586 

7 2.948 7.985 8.774 7.995 11.649 10.963 

8 5.601 7.017 6.598 8.503 10.358 5.250 

9 7.511 7.489 6.198 7.357 11.850 9.253 

10 3.059 8.348 6.437 9.102 7.453 11.258 

 
 
 
 

 
 
Table 7.16: Relative Improvement Results for the Different Data Types in Set 2: 
 

 
Relative Improvement (%) 

 
Type 

 

 
Problem Number 

A B C D E F 

1 4.075 4.987 6.293 6.127 7.148 7.348 

2 4.427 4.983 6.344 5.460 9.728 8.186 

3 4.322 6.865 4.552 3.907 7.889 6.093 

4 3.166 6.120 5.055 5.322 9.078 9.313 

5 3.054 6.994 3.820 6.180 7.573 4.786 

6 4.771 6.032 6.202 8.420 5.749 8.643 

7 4.059 8.100 6.640 5.779 8.208 9.051 

8 3.806 4.795 5.951 6.102 7.363 8.442 

9 4.601 5.478 5.380 7.955 8.309 5.455 

10 3.802 6.286 5.729 5.278 6.987 7.111 



 156 
Table 7.17: Averages of Relative Improvement Results for Sets 1 and 2  

 
 

Relative Improvement (%) 

 

 
Type 

 

Set 
 

 
A 
 

 
B 

 
C 

 
D 

 
E 

 
F 

 
1 
 

 
5.02 

 
7.54 

 
6.52 

 
7.35 

 
9.20 

 
8.86 

 
2 
 

 
4.01 

 
6.06 

 
5.60 

 
6.05 

 
7.80 

 
7.44 

 

 

 
  As shown in Tables 7.15 and 7.16, the TSH algorithm provides better makespan 

values than the FFSDSTH algorithm by 2.95-11.85% in the individual test runs.  A 

Factorial Design was used to evaluate the relative improvement (RI) of the solutions 

obtained by the FFSDTSH algorithm with the application of the TSH algorithm.  The 

design has three factors: deviations in machine speeds, number of products, and 

number of machines and stages.  The analysis was performed using SAS Software V8 

for Windows and the results are presented in Appendix C.  The statistical results show a 

significant effect for each of the three factors on the RI.  Tukey’s test was performed to 

compare between the three means.  Results of the test (see Appendix C, Section C.4) 

show no difference in the relative improvement (RI) obtained with the (4,2,5) and the 

(4,4,4,4,4) configurations, and a smaller RI for the (3,3,3) configuration.  This can be 

expected as the quality obtained when applying the FFSDSTH algorithm to problems 

with larger number of stages and machines (e.g.,(4,4,4,4,4) configuration) or different 

number of machines per stage (e.g., (4,2,5)) may suffer, thus leaving more room for the 

TSH to improve the solutions.  Results obtained in the ANOVA tables and Tukey’s test 
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show that the relative improvement increases with the increase of the number of 

machines and stages and the deviations in machine speeds.  In contrast, the relative 

improvement declines as the size of number of products (or families) increases.  
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 
8.1 Introduction 

A comprehensive research was undertaken to minimize the makespan for the 

“flexible flowshop with sequence dependent setup times” problem.  An exact algorithm 

was first developed and used to solve small problems.  Two heuristic algorithms 

(FFSDSTH and TSH) were then developed to solve larger and more practical problems.   

In order to evaluate the performance of the heuristic algorithms, two lower bounds were 

developed for the solution of the problem.  In this chapter, a summary of the research 

performed and the conclusions obtained are presented and followed by its contributions 

and recommendations for future research. 

 
8.2 Summary of the Research 

 In Chapter 2, the flexible flowshop with sequence-dependent setup time problem 

(FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax) was introduced in details.  The problem investigated 

in this research consists of one production line with S stages.  Each stage has one or 

more non-identical parallel machines (uniform).  Machine setup times are required to 

change over from one product to another.  The objective of this research was to 

minimize the makespan.  A review of the relevant literature was presented in Chapter 3 

for flexible flowshop scheduling with no setup time consideration, and flowshop 

scheduling with sequence dependent setup times (SDST).  No work was found in the 

literature for the flexible flowshop scheduling with SDST.  A brief review and description 

of the “Tabu Search” was also given in the same chapter. 

 In Chapter 4, a 0-1 mixed integer programming model was developed.  Since the 

optimal solution can be obtained for only small size problems, two heuristic algorithms 

(FFSDSTH and TSH) were developed in Chapter 5.  The first algorithm (FFSDSTH) was 
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developed to obtain a good initial solution.  This algorithm starts by assigning families to 

machines at the first stage, and then proceeds by sequencing the products on the 

machines.  Once all products have been scheduled on the first-stage machines, the 

algorithm tries to move individual products between machines in an effort to reduce the 

latest completion time of all products in the first stage.  After completing the schedule for 

the first-stage machines, the assignments of products to machines at the succeeding 

stages are performed.  A Look Ahead (LA) rule was developed to sequence the products 

on machines at stages 2 through S. 

 The solution obtained from the first phase algorithm (FFSDSTH) is improved in 

the second phase using the TSH algorithm.  The TSH algorithm has 3 main steps:       

(1) moving families between machines (and within a machine) at the first stage,           

(2) moving products between machines (and within a machine) at the first stage, and   

(3) finding a good sequence that results in a low makespan.  The processes of moving 

families and products are not performed for other stages as their computations take 

large amount of times and they yield very little improvement.  

 In Chapter 6, two methods were presented for obtaining a lower bound for the 

flexible flowshop with sequence dependent setup times problems: (1) forward method 

and (2) backward method.  Machine waiting time, idle time, and the total setup and 

processing times on machines at the last stage were used to obtain the lower bounds. 

 In Chapter 7, the computational experience obtained with the application of the 

heuristic procedures was presented.  Two data sets with six problem configurations for 

each set were generated, and ten test problems were generated for each configuration.  

The performances of the heuristics were presented and evaluated using two measures:         

(1) solution quality and (2) computational speed.  The quality of heuristic solutions was 

evaluated using lower bounds.  The results showed a performance for the FFSDSTH 

algorithm between 76.9-86.3% for data set 1 and 71.1-83.3% for data set 2.  The 
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performance for the TSH algorithm ranged between 80.7-90.9% for data set 1 and    

79.2-86.7% for data set 2.  The performance of the algorithms declined with the increase 

of: (1) deviation in machine speeds (2) number of products, and  (3) number of machines 

and stages.  

The computational times were very small for the FFSDSTH algorithm, indicating 

that this algorithm is very efficient and not sensitive to problem size.  Conversely, the 

computational times of the TSH algorithm increased significantly with problem size--

number of products, stages, and machines.  For the relative improvement realized when 

applying the TSH algorithm to the results obtained with the FFSDSTH algorithm, the 

results indicated an improvement between 2.95 and 11.85%.  This improvement 

increased as the deviations in machine speeds, number of stages, and machines 

increased.  On the other hand, it decreased as the number of products (families) 

increased. 

 
8.3 Contribution of the Research  

  According to the literature review, the flexible flowshop with sequence-dependent 

setup time problem has never been studied.  This is true for both cases with identical 

and uniform processing.  The exact algorithm as well as the heuristic algorithm and the 

lower bound methods developed for the FFSDSTH can also be applied to both identical 

and uniform parallel processing problems with or without dependent setup times.  

Computational experience showed that both heuristic algorithms are effective in solving 

the problem. 

 
8.4 Recommendations for Future Research    

 The following recommendations are made for future research: 
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• Additional research may be performed for flexible flowshop with sequence-

dependent setup time problems that have several production lines and unrelated 

machines. 

• The calculation of the lower bounds may be further enhanced.  In this research, the 

performance of the lower bound developed declined as deviations in speeds, number 

of products, number of stages, and number of machines increased.  Further research 

needs to be performed to develop better ways to calculate more accurate lower 

bounds rather than taking the smallest setup times or the smallest processing times.  

In this research, the lower bounds were determined by summing two quantities: 

machine waiting time and total of setup and processing times at the last stage.  

These lower bounds may be improved by determining these two quantities on every 

stage rather than just the last stage.   

• Improvements may be made to the TSH algorithm.  The Tabu search was utilized in 

this research without using intensification or diversification strategies.  These 

strategies, which are used to guide the search in a more intelligent way, need to be 

further studied. 

• Other search methods (e.g., Neural Network or Genetic Algorithm) may be applied to 

solve this problem.  Their performances may be compared to that of the Tabu 

Search algorithm.  
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APPENDIX A 

 
Sequencing Notation Used in This Research 

 
Normally, a notation of scheduling problems has the form which consists of three 

parameters, α/β/γ.  The first parameter (α) describes a machine environment and 

contains a single entry.  The second parameter (β) is a field providing the details of 

processing characteristics and constraints.  The β field may contain no entry, a single 

entry, or multiple entries.  The last parameter (γ) contains the objective to be minimized 

and usually contains a single entry.  Additionally, the number of jobs and machines are 

denoted by n and m, respectively.  Both m and n are assumed to be finite.  In this 

research, subscripts i and p refer to jobs, whereas subscript k refer to machines. 

There are two sections presented in this appendix.  The first section describes 

data associated with jobs, and the second section presents descriptions of possible 

entries of the fields in the triple form (α/β/γ) that are used in this research.  The notation 

described in this appendix is adapted from Pinedo (1995).  

 
A.1 Fundamental Data Associated with Jobs 

 
The following pieces of data are associated with job i. 

! Processing time (t(i,k)).  The t(i,k) represents the processing time of job i on machine 

k.  The subscript i is dropped if the processing time of job i does not depend on the 

machine or if job i is only to be processed on one given machine.  In this research, 

both products and families are considered.  Products are grouped within a family. 

The t(j,i,k,s)denotes the processing time of product i of family j on machine k on 

stage s. 
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! Due date (di).  The due date di of job i represents the committed shipping or 

completion date (the date of the job that is promised to the customers). 

! Weight (wi).  The weight wi of job i is a priority factor denoting the importance of job i 

relative to the other jobs in the system.   

 
A.2 Problem Description 

 
 In this section, the possible entries for each of the fields in a triplet α/β/γ of a 

scheduling problem are presented. 

 
Field αααα.  This field describes the machine environment and contains a single entry.  The 

following examples are possible machine environments contained in the α field. 

 
! Flowshop (Fm).  There are m machines in series.  Each job has to be processed on 

each one of the machines.  All jobs have the same routing; that is, they have to be 

processed first on machine 1, then on machine 2, and so on and so forth.   After 

completion on one machine, a job joins the queue at the next machine.  Normally, all 

queues are assumed to operate under the first-in-first-out (FIFO) discipline; that is, a 

job cannot “pass” another while waiting in a queue.  If the FIFO discipline is in effect, 

the flowshop is referred to as a permutation flowshop, and the β field includes the 

entry prmu.  Often, when a general m-machine case is considered, the m identifier 

may be dropped such that F//Cmax, for instance, refers to the m-machine flowshop 

with the objective of minimizing makespan. 

! Flexible flowshop (FFs).  A flexible flowshop is a generalization of the flowshop and 

the parallel machine environments.  A flexible flowshop consists of S production 

stages in series with a number of machines in parallel at each stage.  Each job is 
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processed first at stage 1, then at stage 2, and so on.  Normally, job i requires only 1 

machine at each stage and any machine can process any job. 

! Identical machines in parallel (Pm).  There are m identical machines in parallel.  Job i 

requires a single operation and may be processed on any one of the m machines or 

on any one belonging to a given subset.  If job i is not allowed to be processed on 

just any one, but rather only on any one belonging to a given subset, that is, Mi, then 

the entry Mi appears in the β field. In this environment, if the unit processing time of 

job i on machine k is denoted by t(i,k), then t(1,k)= t(2,k)= … = t(i,k) = t(i,m) for           

i = 1,2,…,n. 

! Machines in parallel with different speeds (Qm).  There are m machines in parallel 

with different speeds.  The speed of machine k is denoted by vk.  If job i is assumed 

to process only on machine k, the time t(i) job i spends on machine k is equal to 

t(i)/vk.  This environment is also called uniform machines.  If all machines have the 

same speed, that means vk = 1 for all k and t(i,k) = t(k), then this environment is 

identical to the identical machines in parallel (Pm). 

! Unrelated machines in parallel (Rm).  This environment is a generalization of the 

machines in parallel with different speed (Qm) environment.  There are m different 

machines in parallel.  Machine k can process job i at speed vki.  The time t(i,k) job i 

spends on machine k is equal to t(i)i/vki.  If the speeds of the machines are 

independent of the jobs, that means vki = vk for all i and k, then the environment is 

identical to the machines in parallel with different speed (Qm) environment. 

 
Field ββββ.  This field provides details of processing characteristics and constraints and 

may contain no entries, a single entry, or multiple entries.  Possible entries are described 

as follows: 
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! Sequence dependent setup times (s(i,p)).  The s(i,p) represent the setup time 

between jobs i and p. s(i,p)  denotes the setup time for job p if job p is first in the 

sequence and s(i,0)  denotes the clean-up time after job i if job i is the last in the 

sequence.  However, s(0,p) and s(i,0) may be zero.  If the setup time between job i 

and p depends on the machine, then the subscript m is included, that is, s(i,p,m).  If 

no s(i,p)  appears in the β field, all setup times are assumed to be zero or sequence 

independent, in which case they can simply be added to the processing times.   

In this research, both end products and families are considered.  This means 

there are many end products within each family and both major and minor setup 

times are considered.  If the previous product belongs to the same family, setup time 

is minor.  On the other hand, if the product is of a different family, a major setup time 

is needed.  The s(j,i,j,p) denotes the minor setup time between product i and product 

p from the same family j.  The s(j,i,q,p) denotes the major setup time between 

product i family j and product p family q. If the setup time between two products 

depends on the machine of any stage s, then the subscripts m and s are included.  

For instance, s(j,i,q,p,s,m) denotes the major setup time between product i family j 

and product p family q on machine m stage s. 

! Permutation (prmu).  A constraint that may appear in the flowshop is that the queues 

in form of each machine operate according to the FIFO discipline.  This means that 

the order (or permutation) in which the jobs go through the first machine is 

maintained throughout the system. 

! No-wait (nwt).  The no-wait requirement is another phenomenon which may occur in 

flowshops.  Jobs are not allowed to wait between two successive machines.  This 

means that the starting time of a job at the first machine has to be delayed to ensure 

that the job can go through the flowshop without having to wait for any machine.  An 

example of such an operation is a steel-rolling mill in which a slab of steel is not 
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allowed to wait because it would cool off.  In other words, under no-wait the 

machines also operate under the FIFO discipline. 

 
Field γγγγ.  This field contains the objective to be minimized and usually contains a single 

entry.  In order to minimize the objective, it is always a function of the completion times 

of the jobs which depend on the schedule.  The completion time of job i on machine m is 

represented by Cim.  The time of job i exits the system (i.e. its completion time on the last 

machine on which it requires processing) is denoted by Ci.  The objective may also be a 

function of the due dates.  The lateness of job i is defined as  

 
Li = Ci-di          (A.1) 

 
Which is positive when job i is completed late and negative when it is completed early.  

The tardiness of job i is defined as 

 
Ti = max(Ci – di, 0) = max (Li, 0).       (A.2) 

 
The difference between tardiness and lateness lies in the fact that tardiness is never 

negative.  The unit penalty of job i is defined as 

 

 Uj =              (A.3) 

   

! Makespan (Cmax).  The makespan, defined as 
i

max {Ci}: i=1,2,3,..,n, is equivalent to 

the completion time of the last job to leave the system.  A minimum makespan 

usually indicates a high utilization of the machine(s). 

! Total weighted completion time (∑wiCi).  The minimization of ∑wiCi is equivalent to 

the minimization of the in-process inventory cost for the shop.  
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! Total weighted tardiness (∑wiTi).  The total weighted tardiness may be used as a 

measure for meeting due dates.  
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APPENDIX B 

 
 

Listing of the 0-1 Mixed Integer Programming Model for the Problem  
Illustrated in Chapter 4 

 
 
 
MINIMIZE 
  Z:  E 
SUBJECT TO 
  FT1111 - 16.61818181818 x1111  >=  3.89 
  FT1211 - 30.73636363636 x1211  >=  1.52 
  FT2111 - 44.5 x2111  >=  2.26 
  FT2211 - 22.81818181818 x2211  >=  3.99 
  - FT1111 + FT1121 - 27.45217391304 x1121  >=  0 
  - FT1121 + FT1131 - 23.68 x1131  >=  0 
  - FT1121 + FT1132 - 24.16326530612 x1132  >=  0 
  - FT1211 + FT1221 - 24.55652173913 x1221  >=  0 
  - FT1221 + FT1231 - 44.87 x1231  >=  0 
  - FT1221 + FT1232 - 45.78571428571 x1232  >=  0 
  - FT2111 + FT2121 - 22.68695652173 x2121  >=  0 
  - FT2121 + FT2131 - 19.09 x2131  >=  0 
  - FT2121 + FT2132 - 19.47959183673 x2132  >=  0 
  - FT2211 + FT2221 - 15.12173913043 x2221  >=  0 
  - FT2221 + FT2231 - 49.26 x2231  >=  0 
  - FT2221 + FT2232 - 50.26530612244 x2232  >=  0 
  - E + FT1131  <=  0 
  - E + FT1132  <=  0 
  - E + FT1231  <=  0 
  - E + FT1232  <=  0 
  - E + FT2131  <=  0 
  - E + FT2132  <=  0 
  - E + FT2231  <=  0 
  - E + FT2232  <=  0 
  FT1111 - FT1211 - 5000 w121111 - 16.61818181818 x1111      >=  - 4995.76 
  FT1121 - FT1221 - 5000 w121121 - 27.45217391304 x1121      >=  - 4997.04 
  FT1131 - FT1231 - 5000 w121131 - 23.68 x1131  >=      - 4996.78 
  FT1132 - FT1232 - 5000 w121132 - 24.16326530612 x1132      >=  - 4996.78 
  FT1111 - FT2111 - 5000 w211111 - 16.61818181818 x1111      >=  - 4994.12 
  FT1121 - FT2121 - 5000 w211121 - 27.45217391304 x1121      >=  - 4993.55 
  FT1131 - FT2131 - 5000 w211131 - 23.68 x1131  >=      - 4993.36 
  FT1132 - FT2132 - 5000 w211132 - 24.16326530612 x1132      >=  - 4993.36 
  FT1111 - FT2211 - 5000 w221111 - 16.61818181818 x1111      >=  - 4995.1 
  FT1121 - FT2221 - 5000 w221121 - 27.45217391304 x1121      >=  - 4989.71 
  FT1131 - FT2231 - 5000 w221131 - 23.68 x1131  >=      - 4989.37 
  FT1132 - FT2232 - 5000 w221132 - 24.16326530612 x1132      >=  - 4989.37 
  - FT1111 + FT1211 - 5000 w111211 - 30.73636363636 x1211      >=  - 4997.51 
  - FT1121 + FT1221 - 5000 w111221 - 24.55652173913 x1221      >=  - 4997.8 
  - FT1131 + FT1231 - 5000 w111231 - 44.87 x1231  >=      - 4996.87 
  - FT1132 + FT1232 - 5000 w111232 - 45.78571428571 x1232      >=  - 4996.87 
  FT1211 - FT2111 - 5000 w211211 - 30.73636363636 x1211      >=  - 4993.46 
  FT1221 - FT2121 - 5000 w211221 - 24.55652173913 x1221      >=  - 4988.75 
  FT1231 - FT2131 - 5000 w211231 - 44.87 x1231  >=      - 4989.83 
  FT1232 - FT2132 - 5000 w211232 - 45.78571428571 x1232      >=  - 4989.83 
  FT1211 - FT2211 - 5000 w221211 - 30.73636363636 x1211      >=  - 4995.48 
  FT1221 - FT2221 - 5000 w221221 - 24.55652173913 x1221      >=  - 4992.13 
  FT1231 - FT2231 - 5000 w221231 - 44.87 x1231  >=      - 4993.85 
  FT1232 - FT2232 - 5000 w221232 - 45.78571428571 x1232      >=  - 4993.85 
  - FT1111 + FT2111 - 5000 w112111 - 44.5 x2111  >=      - 4994.67 
  - FT1121 + FT2121 - 5000 w112121 - 22.68695652173 x2121      >=  - 4990.61 
  - FT1131 + FT2131 - 5000 w112131 - 19.09 x2131  >=      - 4990.21 
  - FT1132 + FT2132 - 5000 w112132 - 19.47959183673 x2132      >=  - 4990.21 
  - FT1211 + FT2111 - 5000 w122111 - 44.5 x2111  >=      - 4993.78 
  - FT1221 + FT2121 - 5000 w122121 - 22.68695652173 x2121      >=  - 4989.76 
  - FT1231 + FT2131 - 5000 w122131 - 19.09 x2131  >=      - 4990.05 
  - FT1232 + FT2132 - 5000 w122132 - 19.47959183673 x2132      >=  - 4990.05 
  FT2111 - FT2211 - 5000 w222111 - 44.5 x2111  >=  - 4995.8 
  FT2121 - FT2221 - 5000 w222121 - 22.68695652173 x2121      >=  - 4997.59 
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  FT2131 - FT2231 - 5000 w222131 - 19.09 x2131  >=      - 4996.54 
  FT2132 - FT2232 - 5000 w222132 - 19.47959183673 x2132      >=  - 4996.54 
  - FT1111 + FT2211 - 5000 w112211 - 22.81818181818 x2211      >=  - 4994.09 
  - FT1121 + FT2221 - 5000 w112221 - 15.12173913043 x2221      >=  - 4989.42 
  - FT1131 + FT2231 - 5000 w112231 - 49.26 x2231  >=      - 4993.37 
  - FT1132 + FT2232 - 5000 w112232 - 50.26530612244 x2232      >=  - 4993.37 
  - FT1211 + FT2211 - 5000 w122211 - 22.81818181818 x2211      >=  - 4994.49 
  - FT1221 + FT2221 - 5000 w122221 - 15.12173913043 x2221      >=  - 4993.02 
  - FT1231 + FT2231 - 5000 w122231 - 49.26 x2231  >=      - 4988.5 
  - FT1232 + FT2232 - 5000 w122232 - 50.26530612244 x2232      >=  - 4988.5 
  - FT2111 + FT2211 - 5000 w212211 - 22.81818181818 x2211      >=  - 4996.52 
  - FT2121 + FT2221 - 5000 w212221 - 15.12173913043 x2221      >=  - 4996.93 
  - FT2131 + FT2231 - 5000 w212231 - 49.26 x2231  >=      - 4998.35 
  - FT2132 + FT2232 - 5000 w212232 - 50.26530612244 x2232      >=  - 4998.35 
  x1111  =  1 
  x1121  =  1 
  x1131 + x1132  =  1 
  x1211  =  1 
  x1221  =  1 
  x1231 + x1232  =  1 
  x2111  =  1 
  x2121  =  1 
  x2131 + x2132  =  1 
  x2211  =  1 
  x2221  =  1 
  x2231 + x2232  =  1 
  - w001111 - w121111 - w211111 - w221111     + x1111  =  0 
  - w001121 - w121121 - w211121 - w221121     + x1121  =  0 
  - w001131 - w121131 - w211131 - w221131     + x1131  =  0 
  - w001132 - w121132 - w211132 - w221132     + x1132  =  0 
  - w001211 - w111211 - w211211 - w221211     + x1211  =  0 
  - w001221 - w111221 - w211221 - w221221     + x1221  =  0 
  - w001231 - w111231 - w211231 - w221231     + x1231  =  0 
  - w001232 - w111232 - w211232 - w221232     + x1232  =  0 
  - w002111 - w112111 - w122111 - w222111     + x2111  =  0 
  - w002121 - w112121 - w122121 - w222121     + x2121  =  0 
  - w002131 - w112131 - w122131 - w222131     + x2131  =  0 
  - w002132 - w112132 - w122132 - w222132     + x2132  =  0 
  - w002211 - w112211 - w122211 - w212211     + x2211  =  0 
  - w002221 - w112221 - w122221 - w212221     + x2221  =  0 
  - w002231 - w112231 - w122231 - w212231     + x2231  =  0 
  - w002232 - w112232 - w122232 - w212232     + x2232  =  0 
  - w110011 - w111211 - w112111 - w112211     + x1111  =  0 
  - w110021 - w111221 - w112121 - w112221     + x1121  =  0 
  - w110031 - w111231 - w112131 - w112231     + x1131  =  0 
  - w110032 - w111232 - w112132 - w112232     + x1132  =  0 
  - w120011 - w121111 - w122111 - w122211     + x1211  =  0 
  - w120021 - w121121 - w122121 - w122221     + x1221  =  0 
  - w120031 - w121131 - w122131 - w122231     + x1231  =  0 
  - w120032 - w121132 - w122132 - w122232     + x1232  =  0 
  - w210011 - w211111 - w211211 - w212211     + x2111  =  0 
  - w210021 - w211121 - w211221 - w212221     + x2121  =  0 
  - w210031 - w211131 - w211231 - w212231     + x2131  =  0 
  - w210032 - w211132 - w211232 - w212232     + x2132  =  0 
  - w220011 - w221111 - w221211 - w222111     + x2211  =  0 
  - w220021 - w221121 - w221221 - w222121     + x2221  =  0 
  - w220031 - w221131 - w221231 - w222131     + x2231  =  0 
  - w220032 - w221132 - w221232 - w222132     + x2232  =  0 
  w001111 + w001211 + w002111 + w002211  =  1 
  w001121 + w001221 + w002121 + w002221  =  1 
  w001131 + w001231 + w002131 + w002231  =  1 
  w001132 + w001232 + w002132 + w002232  =  1 
  w110011 + w120011 + w210011 + w220011  =  1 
  w110021 + w120021 + w210021 + w220021  =  1 
  w110031 + w120031 + w210031 + w220031  =  1 
  w110032 + w120032 + w210032 + w220032  =  1 
   
INTEGERS 
    w001111 
    w001121 
    w001131 



 176 
    w001132 
    w001211 
    w001221 
    w001231 
    w001232 
    w002111 
    w002121 
    w002131 
    w002132 
    w002211 
    w002221 
    w002231 
    w002232 
    w110011 
    w110021 
    w110031 
    w110032 
    w120011 
    w120021 
    w120031 
    w120032 
    w210011 
    w210021 
    w210031 
    w210032 
    w220011 
    w220021 
    w220031 
    w220032     
    w111211 
    w111221 
    w111231 
    w111232 
    w112111 
    w112121 
    w112131 
    w112132 
    w112211 
    w112221 
    w112231 
    w112232 
    w121111 
    w121121 
    w121131 
    w121132 
    w122111 
    w122121 
    w122131 
    w122132 
    w122211 
    w122221 
    w122231 
    w122232 
    w211111 
    w211121 
    w211131 
    w211132 
    w211211 
    w211221 
    w211231 
    w211232 
    w212211 
    w212221 
    w212231 
    w212232 
    w221111 
    w221121 
    w221131 
    w221132 
    w221211 
    w221221 
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    w221231 
    w221232 
    w222111 
    w222121 
    w222131 
    w222132 
    x1111 
    x1121 
    x1131 
    x1132 
    x1211 
    x1221 
    x1231 
    x1232 
    x2111 
    x2121 
    x2131 
    x2132 
    x2211 
    x2221 
    x2231 
    x2232 
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APPENDIX C 

 
Statistical Results for the Evaluations of the Heuristic Performance  

and the Relative Improvement 
 
 
 C.1 Statistical Results for the Evaluation of the Heuristic Performance (HP) 
 
  
 Dependent Variable: HPTSH 
 
 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 
 Model                      11    1858.360009     168.941819     19.14   <.0001 
 
 Error                     108     953.486950       8.828583 
 
 Corrected Total           119    2811.846959 
 
 
 
 
               R-Square     Coeff Var      Root MSE      TSH Mean 
 
               0.660904      3.530798      2.971293      84.15358 
 
 
 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 prod                        1    550.1085408    550.1085408     62.31   <.0001 
 mach                        2    715.8530017    357.9265008     40.54   <.0001 
 prod*mach                   2      0.2084017      0.1042008      0.01   0.9883 
 speed                       1    561.2985075    561.2985075     63.58   <.0001 
 prod*speed                  1      0.9451875      0.9451875      0.11   0.7441 
 mach*speed                  2     12.7282850      6.3641425      0.72   0.4887 
 prod*mach*speed             2     17.2180850      8.6090425      0.98   0.3804 
 
 
 
 Dependent Variable: HPFFSDSTH 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 
 Model                      11    2326.077143     211.461558     25.93   <.0001 
 
 Error                     108     880.626070       8.153945 
 
 Corrected Total           119    3206.703212 
 
               
 
 

 R-Square     Coeff Var      Root MSE      FFS Mean 
 
               0.725380      3.639275      2.855511      78.46375 
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 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 prod                        1     258.867188     258.867188     31.75   <.0001 
 mach                        2    1065.433460     532.716730     65.33   <.0001 
 prod*mach                   2       0.413180       0.206590      0.03   0.9750 
 speed                       1     980.579841     980.579841    120.26   <.0001 
 prod*speed                  1       0.088021       0.088021      0.01   0.9174 
 mach*speed                  2      10.255287       5.127643      0.63   0.5351 
 prod*mach*speed             2      10.440167       5.220083      0.64   0.5292 
 
 
 

  C.2 Statistical Results for the Evaluation of the Relative Improvement (RI) 
 
 
 Dependent Variable: RI 
 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 
 Model                      11    258.3741492     23.4885590     12.11   <.0001 
 
 Error                     108    209.5162300      1.9399651 
 
 Corrected Total           119    467.8903792 
 
 
 
               R-Square     Coeff Var      Root MSE      IMP Mean 
 
               0.552211      20.51920      1.392826      6.787917 
 
 
 
 Source                     DF      Type I SS    Mean Square   F Value   Pr > F 
 
 prod                        1     47.0877408     47.0877408     24.27   <.0001 
 mach                        2     89.6388867     44.8194433     23.10   <.0001 
 prod*mach                   2      0.4924867      0.2462433      0.13   0.8809 
 speed                       1    118.9821675    118.9821675     61.33   <.0001 
 prod*speed                  1      0.3933075      0.3933075      0.20   0.6534 
 mach*speed                  2      1.3467800      0.6733900      0.35   0.7075 
 prod*mach*speed             2      0.4327800      0.2163900      0.11   0.8946 
 
 
  

C.3 Results of Tukey’s test for Comparing the Means for the Heuristic 
Performance 

 
 Since the number of products and deviations in machine speeds have only 2 

levels, the comparison of their means for the heuristic performance (HP) can be 

interpreted using the ANOVA tables in Section C.1 and the summary of the averages of 

the heuristic performance in Table 7.14.  Hence, Tukey’s test was performed only to 
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compare between the three means obtained with different number of machines and 

stages (mach).  

  
Tukey's Studentized Range (HSD) Test for HPTSH 

 
 
                  Alpha                                   0.05 
                  Error Degrees of Freedom                 108 
                  Error Mean Square                   8.828583 
                  Critical Value of Studentized Range  3.36085 
                  Minimum Significant Difference        1.5789 
 
 
           Means with the same letter are not significantly different. 
 
 
            Tukey Grouping          Mean      N    mach 
 
                         A       87.0475     40    1 
 
                         B       84.3397     40    3 
 
                         C       81.0735     40    2 
 

Tukey's Studentized Range (HSD) Test for HPFFSDSTH 
 
 
                  Alpha                                   0.05 
                  Error Degrees of Freedom                 108 
                  Error Mean Square                   8.153945 
                  Critical Value of Studentized Range  3.36085 
                  Minimum Significant Difference        1.5174 
 
 
 

      Means with the same letter are not significantly different. 
 
 
            Tukey Grouping          Mean      N    mach 
 
                         A       82.1642     40    1 
 
                         B       78.3593     40    3 
 
                         C       74.8678     40    2 
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C.4 Results of the Tukey’s Test for Comparing the Means for the Relative 

Improvement (RI) 
 
 

  As in Section C.3, Tukey’s test was used only to compare between the means 

obtained with different number of machines and stages (mach).  

 
Tukey's Studentized Range (HSD) Test for RI 

 
 
                  Alpha                                   0.05 
                  Error Degrees of Freedom                 108 
                  Error Mean Square                   1.939965 
                  Critical Value of Studentized Range  3.36085 
                  Minimum Significant Difference        0.7401 
 
 
           Means with the same letter are not significantly different. 
 
 
            Tukey Grouping          Mean      N    mach 
 
                         A        7.6507     40    2 
                         A 
                         A        7.1063     40    3 
 
                         B        5.6068     40    1 
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