
Graduate Theses, Dissertations, and Problem Reports

2001

Scheduling flexible flowshops with sequence -dependent setup Scheduling flexible flowshops with sequence -dependent setup

times times

Kanchana Sethanan
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Sethanan, Kanchana, "Scheduling flexible flowshops with sequence -dependent setup times" (2001).
Graduate Theses, Dissertations, and Problem Reports. 2349.
https://researchrepository.wvu.edu/etd/2349

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230452169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2349?utm_source=researchrepository.wvu.edu%2Fetd%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

SCHEDULING FLEXIBLE FLOWSHOPS
WITH SEQUENCE DEPENDENT SETUP TIMES

Kanchana Sethanan

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Decision Sciences and Production System

Wafik H. Iskander, Ph.D., Chair
Alan R. McKendall, Jr., Ph.D.
John L. Harpell, Jr., D.B.A.

Majid Jaraiedi, Ph.D.
Ralph W. Plummer, Ph.D.

Department of Industrial and Management Systems Engineering

Morgantown, West Virginia

2001

Keywords: Flexible Flowshop, Hybrid Flowshop, Dependent Setup Times,

Tabu Search, Heuristics
Copyright 2001 Kanchana Sethanan

ABSTRACT

Scheduling Flexible Flowshops with Sequence Dependent Setup Times

Kanchana Sethanan

This dissertation addresses the scheduling problem in a flexible flowshop with
sequence-dependent setup times. The production line consists of S production stages,
each of which may have more than one non-identical (uniform) machines. Prior to
processing a job on a machine at the first stage, a setup time from idling is needed. Also
sequence dependent setup times (SDST) are considered on each machine in each
stage. The objective of this research is to minimize the makespan. A mathematical
model was developed for small size problems and two heuristic algorithms (Flexible
Flowshop with Sequence Dependent Setup Times Heuristic (FFSDSTH) and Tabu
Search Heuristic (TSH)) were developed to solve larger, more practical problems. The
FFSDSTH algorithm was developed to obtain a good initial solution which can then be
improved by the TSH algorithm. The TSH algorithm uses the well-known Tabu Search
metaheuristic. In order to evaluate the performance of the heuristics, two lower bounds
(Forward and Backward) were developed. The machine waiting time, idle time, and total
setup and processing times on machines at the last stage were used to calculate the
lower bound. Computational experiments were performed with the application of the
heuristic algorithms and the lower bound methods. Two quantities were measured:
(1) the performance of the heuristic algorithms obtained by comparing solutions with the
lower bounds and (2) the relative improvement realized with the application of the TSH
algorithm to the results obtained with the FFSDSTH algorithm. The performance of the
heuristics was evaluated using two measures: solution quality and computational time.
Results obtained show that the heuristic algorithms are quite efficient. The relative
improvement yielded by the TSH algorithm was between 2.95 and 11.85 percent.

 iii

ACKNOWLEDGEMENTS

 I am deeply grateful to my dissertation advisor, Dr. Wafik Iskander, who spent

numerous hours to share his knowledge and intelligence. He continuously provided

valuable guidance, comments, and encouragement throughout this work. He has

always been available for help and advice in a friendly atmosphere that inspired

creativity and motivation. Without his help, I would have never finished this research.

 I am also grateful to my dissertation committee, Dr. John Harpell, Dr. Alan

McKendall, Dr. Majid Jaraiedi, and Dr. Ralph Plummer, for their positive comments and

suggestions, which greatly improved the quality of this research.

 I am profoundly grateful to my dearest friends in Thailand who always gave me

excellent encouragement throughout my graduate studies in the USA. I also thank Thai

students and fellow graduate students in the Industrial and Management Systems

Engineering Department at West Virginia University, who made my life and stay in

Morgantown such a joyful and truly exceptional experience.

Special thanks to the department of Industrial and Management Systems

Engineering, West Virginia University, which furnished hospitality for learning and

conducting research and provided me with financial support throughout my graduate

years in the department.

 Finally, my deep appreciation goes to my parents, sisters, and brother, no matter

how far you were, you were always there for me. Your endless love, confidence, great

support, and excellent encouragement were crucial to my accomplishments and my

well-being.

 iv

Dedicated to Luang Por Prarajchabhavanavisuthi,

my parents Sunee and Pichai Sethanan,

my sisters Wachiraporn and Amornrat Sethanan,

and my brother Nithi Sethanan.

 v

TABLE OF CONTENTS

Page

ABSTRACT.. ii

ACKNOWLEDGEMENTS .. iii

DEDICATION ... iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES... xi

CHAPTER 1: INTRODUCTION.. 1

1.1 Background.. 1

1.1.1 Scheduling ... 1

1.1.2 The Place of Scheduling within an Organization............................. 4

1.1.3 Classification of Sequencing Problems... 6

1.1.4 The General Flowshop Scheduling Problem................................... 7

1.1.5 A Flexible Flowshop Environment .. 9

1.1.6 Dependent Setup Times... 9

CHAPTER 2: STATEMENT OF THE PROBLEM... 13

2.1 Introduction.. 13

2.2 Manufacturing Background .. 14

2.3 Problem Statement .. 15

2.4 Assumptions .. 16

2.5 Research Objectives.. 17

CHAPTER 3: LITERATURE REVIEW.. 18

3.1 Introduction and Overview ... 18

3.2 Solution Methodologies for Scheduling Problems 19

 vi

3.3 Flowshop Scheduling Models... 21

3.3.1 Flowshop Scheduling Models without SDST Considerations.......... 21

3.3.2 Flowshop Scheduling Models with SDST Considerations............... 25

3.3.3 Applications of Tabu Search to the Flowshop

Scheduling Problem ... 32

CHAPTER 4: EXACT ALGORITHM .. 39

4.1 Introduction.. 39

4.2 Mathematical Formulation.. 39

CHAPTER 5: HEURISTIC ALGORITHMS ... 48

5.1 Phase 1: Obtaining an Initial Solution Using the FFSDSTH Algorithm........ 48

5.1.1 Start Time Determination .. 54

5.1.2 A Detailed Description of the FFSDSTH Algorithm............................ 56

5.2 Illustration of the FFSDSTH Algorithm ... 74

5.3 Phase 2: Improving the Initial Solution Using the TSH Algorithm 98

5.3.1 Implementing the TS Heuristic with the

FFs(Qm1, Qm2,…,Qms)/Sipm/Cmax Problem.. 98

5.3.2 Tabu List ... 101

5.3.3 Neighborhood Size.. 104

5.3.4 Tabu Restriction .. 105

5.3.5 Admissible Moves ... 110

CHAPTER 6: LOWER BOUNDS ... 121

6.1 Introduction.. 121

6.2 Lower Bound Determination... 121

6.2.1 Forward Method .. 125

6.2.2 Backward method ... 131

 vii

6.3 Illustration of the Lower Bound Calculations... 132

CHAPTER 7: COMPUTATIONAL EXPERIMENTS.. 143

7.1 Introduction.. 143

7.2 Comparison of the Results of Heuristic Algorithms

with the Lower Bounds... 145

7.3 Comparison between the FFSDSTH Algorithm and the TSH Algorithm 154

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 158

8.1 Introduction.. 158

8.2 Summary of the Research ... 158

8.3 Contribution of the Research ... 160

8.4 Recommendations of for Future Research... 160

REFERENCES ... 162

APPENDICIES ... 167

APPENDIX A ... 168

APPENDIX B ... 174

APPENDIX C... 178

 viii

LIST OF TABLES

Table 3.1 Summary of Previous Research on

FFS Scheduling Problems.. 30

Table 4.1 The Notation Used in the Mixed Integer Programming Model............... 41

Table 4.2 Speeds of Machines at Each Stage.. 44

Table 4.3 Processing Time of Each Product at Each Stage on

the Standard Machine .. 45

Table 4.4 Setup Time from Idling for Each Product in Stage 1 45

Table 4.5 Changeover Times between Products of Each Stage........................... 46

Table 5.1 Speeds of Machines at Each Stage.. 74

Table 5.2 Processing Time of Each Product at Each Stage on

the Standard Machine .. 75

Table 5.3 Setup Time from Idling for Each Product in Stage 1 75

Table 5.4 Changeover Times between Products of Each Stage........................... 76

Table 6.1 Processing Times on the Fastest Machine at Each Stage and

Changeover Times of Each Product on Each Stage............................. 133

Table 6.2 The Summations of Setup Time from Idling of the First Stage and

Cumulative Processing Times of Each Product on the Fastest

Machine from Stages 1 through S-1 ... 134

Table 6.3 The Values of CT(i) and β(i) Used to Calculate the

Backward Lower Bound ... 138

Table 7.1 Values of Parameters Used with the Different Data Types 144

Table 7.2 Computational Results for Set 1 Type A:

 Heuristic Algorithms vs. Lower Bound .. 146

 ix

Table 7.3 Computational Results for Set 1 Type B:

 Heuristic Algorithms vs. Lower Bound .. 147

Table 7.4 Computational Results for Set 1 Type C:

 Heuristic Algorithms vs. Lower Bound .. 147

Table 7.5 Computational Results for Set 1 Type D:

 Heuristic Algorithms vs. Lower Bound .. 148

Table 7.6 Computational Results for Set 1 Type E:

 Heuristic Algorithms vs. Lower Bound .. 148

Table 7.7 Computational Results for Set 1 Type F:

 Heuristic Algorithms vs. Lower Bound .. 145

Table 7.8 Computational Results for Set 2 Type A:

 Heuristic Algorithms vs. Lower Bound .. 145

Table 7.9 Computational Results for Set 2 Type B:

 Heuristic Algorithms vs. Lower Bound .. 150

Table 7.10 Computational Results for Set 2 Type C:

 Heuristic Algorithms vs. Lower Bound .. 150

Table 7.11 Computational Results for Set 2 Type D:

 Heuristic Algorithms vs. Lower Bound .. 151

Table 7.12 Computational Results for Set 2 Type E:

 Heuristic Algorithms vs. Lower Bound .. 151

Table 7.13 Computational Results for Set 2 Type F:

 Heuristic Algorithms vs. Lower Bound .. 152

Table 7.14 Average of Computational Results for Sets 1 and 2 for all Data Types

 Heuristic Algorithms vs. Lower Bound .. 152

Table 7.15 Relative Improvement Results for the Different Data Types in Set 1:.... 155

 x

Table 7.16 Relative Improvement Results for the Different Data Types in Set 2:.... 155

Table 7.17 Averages of Relative Improvement Results for Sets 1 and 2 156

 xi

LIST OF FIGURES

Figure 1.1 Information Flow Diagram in a Manufacturing System

(Pinedo, 1995).. 5

Figure 1.2 A Classification of Sequencing Problems ... 7

Figure 1.3 A Schematic Representation of a Flexible Flowshop Environment 10

Figure 3.1 The General Tabu Search Technique .. 35

Figure 3.2 Selecting the Best Admissible Move... 36

Figure 5.1 A Process Flow of the FFSDSTH and TSH Algorithms......................... 49

Figure 5.2 Flowchart of the Look Ahead Rule.. 69

Figure 5.3 The Assignment of all Families to the First-Stage Machines................. 82

Figure 5.4 Sequences of Products on the Machines at Stage 1 88

Figure 5.5 Final Sequences of Products on the Machines at Stage 1.................... 90

Figure 5.6 Product Sequences on Machines at Stage 2.. 96

Figure 5.7 Sequences of Products on Machines at the Last Stage........................ 97

Figure 5.8 Tabu List of a Move (s,m1,x,m2,y)... 102

Figure 5.9 Tabu Restriction when Jobs are Moved within a Machine 106

Figure 5.10 Tabu Restriction when Jobs are Moved between Machines 108

Figure 5.11 Flow Process of Moving Families between (or within)

Machines at the First Stage.. 115

 1

CHAPTER 1

INTRODUCTION

1.1. Background

 1.1.1 Scheduling

Scheduling is defined as the determination of relative position of jobs with

respect to a processing machine, including the assignment of definite times at which

processing occurs (Nawaz et al., 1983). Another view of scheduling is defined as

the "allocation of limited resources to jobs over time to perform a number of tasks"

(Baker, 1974, p. 2). Examples of resources include machines, operators, facilities,

computers, and transporters.

The problem of scheduling n jobs on m machines is one of the classical

problems in flowshop manufacturing that have been studied by researchers for

many years. Additionally, scheduling plays an essential role in the entire

manufacturing system. Production scheduling problems exist frequently in

production environments whenever resources are required to perform a set of

operations on jobs, and also when each operation can be accomplished in more

than one way (Randhawa & Kuo, 1997). Normally, there are two categories of

constraints that are commonly found in scheduling problems. First, there are

restrictions on the capacity of available resources and, second, there are

technological limits on the order in which jobs can be performed. Resource

constraints generally refer to processor capacities and limitations. Technological

constraints include alternative routing and precedence relationships. Alternate

routing means that the product can be produced on more than one processor, while

precedence constraints mean that the processor cannot process a specific job if

some other job is not completed. Scheduling problems involve the assignment of

 2

machines to various jobs and determination of the order in which the jobs will be

performed in order to optimize some criteria while satisfying the shop constraints.

Generally, there are three issues concerned with scheduling jobs on a set of

machines (Cheng & Sin, 1990):

1. What machine should be allocated to which job?

2. How to sequence the jobs in order to obtain the best schedule and meet the

constraints?

3. How can the reasonableness of a schedule be rationalized?

Hence, the scheduler wishes to optimize some measures of effectiveness

(such as minimization of makespan, mean flow time, lateness, or inventory) which

may vary from one situation to another, and to satisfy the production constraints

(e.g. production requirements, resource capacities, or operation procedures).

There are three issues that need to be specified when defining a scheduling

problem. These three issues, as presented by Cutright (1990), are:

1. Length of planning horizon,

2. Nature of tasks that will be scheduled, and

3. Criteria used to determine the best schedule.

Planning Horizon

Planning (time) horizons are usually classified as long-term, intermediate-

term (or medium-term), and short-range. Long-term planning typically involves

capacity and strategic issues and is the responsibility of the top management.

Management formulates policy-related questions such as gross labor-hours,

machine-hours, floor space, customer policies, new product development, research

funding, and company goals (Vollmann et al., 1992). Normally, the length of the

 3

long-term planning horizon is at least five years. This research assumes that all

long-term decisions have been made.

Once the long-term planning is made, operation managers begin

intermediate-range planning in order to meet the objectives of the firm, subjected to

a set of constraints imposed by the long-range planning decisions. Intermediate

planning involves activities such as the determination of production plans, workforce

levels, and forecasting product demand. Typically, the time horizon of short range

planning is in months. It is also assumed in this research that all of these decisions

have been determined and that workforce levels are fixed.

Short-range planning is dependent on both long and intermediate-range

planning decisions. Operations managers make these plans in conjunction with

supervisors and foremen who desegregate the intermediate plan into weekly, daily,

or hourly schedules. Short-range planning uses the production plan and workforce

level from the intermediate planning stage to determine job scheduling through the

resources in order to meet the criteria. The time horizon of short-range planning is

usually in days.

Nature of the tasks in the shop-floor system

 The nature of tasks (or jobs) to be scheduled involves the following issues

and questions:

1. Can a job be split in case there are more than one processors capable of

performing it?

2. Are there several processors that can perform the same job?, or

3. Is the order of operations the same for each job?

 4

Scheduling Criteria

Scheduling criteria are always a function of completion time of the jobs and

may also be a function of the due date. Examples include minimization of flow time,

lateness, or tardiness.

1.1.2 The Place of Scheduling within an Organization

The scheduling function must interface with many other important functions

in the manufacturing systems (e.g. production planning, master production planning,

material and capacity planning, etc.) as shown in the information flow diagram in

Figure 1.1. In order to provide the departments in an organization access to the

necessary scheduling information and enable the departments to provide the

scheduling system with relevant information (e.g. changes in jobs’ data and status

of machines), a management information system (MIS) or a decision support

system (e.g. forecasting, aggregate planning, and master production scheduling) is

probably needed (Chen, 1997). The process of scheduling begins with capacity

planning (also called long-term planning) which involves facility and equipment

acquisition. Intermediate planning includes aggregate and master production

planning. In the aggregate planning stage, decisions regarding the use of facilities,

people, and inventories are made. The master schedule then desegregates the

aggregate planning and develops an overall schedule for outputs. Short-term

schedules then translate capacity decisions, intermediate planning, and master

schedules into job sequences, specific assignments of personnel, machinery, and

material.

 5

 ORDERS, DEMAND FORECASTS
 CAPACITY STATUS

 SCHEDULING CONSTRAINTS MATERIAL REQUIREMENT

 SCHEDULING
 SCHEDULE
 PERFORMANCE

 SHOP STATUS

 DATA COLLECTION JOB LOADING

PRODUCTION PLANNING ,
MASTER SCHEDULING

MRP, CAPACITY PLANNING

SCHEDULING AND
RESCHEDULING

DISPATCHING

SHOPFLOOR MANAGEMENT

SHOPFLOOR

Figure 1.1: Information Flow Diagram in a Manufacturing System (Pinedo,1995)

 6

1.1.3 Classification of Sequencing Problems

To classify the major scheduling models, it is necessary to characterize the

configuration of resources and the nature of tasks. For instance, a model may

contain one resource type (single-stage problems) or several resource types

(multistage problems). If the set of tasks available for scheduling does not change

over the time, the system is called static. Conversely, if new tasks arise over time,

the system is called dynamic (Baker, 1974).

Day and Hottenstein (1970) depict a schema for classifying sequencing

problem as presented in Figure 1. 2. The framework shows that the sequencing

problems have been categorized according to the following components:

1. the nature of job arrivals, such as fixed batch size or continuous arrivals which

are given by a probability density function.

2. the number of machines involved, for instance, single machine production

(m = 1) or multi-machine production (m > 1), and

3. the nature of job route.

Further classification could be added to this figure which would include

characteristics such as setup time (e.g. dependent or independent of job sequence

on a given machine) and due date considerations.

This research focuses on a static scheduling problem: A flexible (hybrid)

flowshop with dependent setup times, which minimizes the maximum completion

time of all jobs. The jobs are available at time zero and have sequence dependent

setup times on machines at each production stage. All parameters such as

processing and setup times are assumed to be known with certainty.

 7

1.1.4 The General Flowshop Scheduling Problem

Flowshop scheduling problems can be classified into two categories: general

flowshop and permutation flowshop (Pinedo, 1995; Chen,1997). For the

permutation flowshop, each of the n jobs is processed on the machines (m =1, 2,

..., M) in the same order (Osman & Potts, 1989). On the other hand, the processing

sequences of jobs on machines from one stage to another could be different in the

general flowshop. In addition, flowshop scheduling may be classified as static or

SEQUENCING PROBLEM

MXN PROBLEMS
(FIX BATCH SIZE)

CONTINUOUS ARRIVALS
(STOCHASTIC PROCESS)

ONE MACHINE
PROBLEM

MULTI-MACHINE
PROBLEM

MULTI-MACHINE
QUEUEING PROBLEM

SINGLE CHANNEL
QUEUEING PROBLEM

PARALLEL ROUTING

SERIAL ROUTING
(FLOWSHOP&JOBSHOP)

HYBRID SHOP

PARALLEL ROUTING

SERIAL ROUTING
(FLOWSHOP&JOBSHOP)

HYBRID SHOP

(STATIC CASE) (DYNAMIC CASE)

ROUTINGS

ROUTINGS

Figure 1.2: A Classification of Sequencing Problems

 8

dynamic. In general, a static scheduling problem specifies a number of n jobs and

an optimal schedule is to be found with respect to the n jobs only (Dudek et al.,

1992), while a dynamic scheduling problem specifies that jobs are constantly

entering and leaving the job file according to some probability distribution in the

stochastic process (Day & Hotenstein, 1970).

The majority of the research published has thus far been devoted to the

static problem. The early work started with Johnson (1954) for the two-machine

case. Johnson's algorithm finds an optimal sequence that minimizes the maximum

flow time (called makespan) for all jobs. The simplicity of Johnson's method

encouraged other researchers to extend his idea in order to find optimal sequences

for the M-machine problem. For the M machine case, the Campbell, Dudek, and

Smith’s (1970) heuristic (CDS), which extends Johnson's algorithm, is considered to

be a very effective and robust heuristic (Ho & Chang, 1991). Generally, the static

flowshop problems have the following characteristics (Baker, 1974; Gupta, 1977;

Stafford and Tseng, 1990; and Sarin& Lefoka, 1993, and Pinedo, 1995).

1. Each machine can process at most one job at a time.

2. Each job can be processed on at most one machine at a time.

3. Preemption and splitting of any particular job are not allowed.

4. Jobs are processed on each machine in the same order.

5. All N jobs are available for processing at time zero.

6. All machines are available at time zero and are independent.

7. The processing time of each job on each machine is a known value.

8. Jobs are independent of one another.

 9

1.1.5 A Flexible Flowshop Environment (FFS)

A flexible flowshop (FFS) is a generalization of the flowshop and the parallel

processor environments. A flexible flowshop is alternatively called a hybrid

flowshop or multiprocessor flowshop. In the most general setting of a flexible

flowshop environment, there are multiple stages (S stages), each of which consists

of m(s) (s = 1, 2, 3,…,S) parallel processors). A schematic representation of a

flexible flowshop environment is given in Figure 1.3. The processors in each stage

may be identical, uniform, or unrelated. Machines are uniform if the time to process

a job on any machine is a constant ratio of its processing time on other machines. In

other words, uniform machines are identical processors that do not have equal

speeds. Unrelated machines are machines for which the time to process a job on

any machine has no particular relationship of its processing time on any other

machine (Cheng & Sin, 1990). In a FFS environment, each job is processed first at

stage 1, then at stage 2, and so on. Normally, a job requires only one machine at

each stage and any machine can process any job.

1.1.6 Dependent Setup Times

Setup time is the time used to prepare the process of jobs on machines

(Allahverdi et al., 1999). Consequently, the requirements of setup times of jobs are

very common in many real manufacturing situations. This includes setting up tools

such as jigs and fixtures, cleanup, inspecting material, and positioning the jobs.

The issue of setup time has been of much interest in the past few decades.

According to the Goldratt Theory Of Constraint (TOC) (Goldratt, 1990), setup

reduction efforts can improve performance, but only if concentrated on production

bottlenecks or constraints. The total time for a machine can be classified as either

production time, setup time, idle time (i.e., time not used for setup or processing), or

 10

waste time (i.e., time spent processing material that cannot be converted into

throughput; for instance, time to process products for which there is no demand). It

is possible to improve the efficiency or capacity of a resource by reducing idle time

and waste time, cutting or reducing the total setup time, and reducing the production

time per unit of the product.

 STAGE 1 STAGE 2 STAGE S

 ………………………...

 ………………………….

 …………………………..

 : : :
 : : :
 : : :

 ………………………..

m1,1 m2,1 mS,1

m1,2 m2,2 mS,2

m1,3

m2,3 mS,3

m1,m(1) m2,m(2) mS,m(S)

IN OUT

Figure 1.3: A Schematic Representation of a Flexible Flowshop Environment

 11

Typically, there are two categories of setup times. In the first category,

setup time is sequence independent. That is, i.e., it depends only on the job to be

processed. In the second, setup time is sequence dependent as it depends on both

the job to be processed and the preceding job. Another view of setup time

classification adopted by Randhawa and Kuo (1997) includes: (1) processor

dependent, (2) product dependent, and (3) both processor and product dependent.

Processor dependent setup time deals with the setup time that depends only on the

processor, regardless of the job type, while product dependent setup time refers to

the setup time that depends only on the product, regardless of the machine type.

Sequence dependent properties (e.g. setup times or costs) are considered

to be important factors in the manufacturing environment, especially, when a shop

floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence

dependent setups are commonly found both in a single machine type or a multiple

machine type. Even though there exists an enormous amount of research on the

flowshop scheduling problem, research study has rarely been conducted in the case

where setup times are sequence dependent (Simon Jr., 1992; Allahverdi, 1999).

Hence, the results of these research studies lack a practical solution for applications

that require the treatment of setup times. For this reason, dependent setup times

cannot be neglected and hence are considered in this research.

Sequence dependent setups occur especially in process industry

operations, where machine setup time is significant and is needed when products

change. The magnitude of setup time depends on the similarity in technological

processing requirements (routing and precedence relationships) for the successive

jobs (Srikan & Ghosh, 1986). Normally, similar technological requirements for two

consecutive jobs would require lesser setup. For example, if the previous and the

 12

current products processed on the machine are from the same family that consists

of a set of similar products (or jobs) in terms of processing, then the changeover

time between those two products is small. The changeover times depend on the

family of products. This type of production system can be found in many industries

such as pharmaceutical, cosmetic, chemical, and food and brewing industries. The

following are real life examples of dependent setup times:

1. In printing industry, the cleaning and setting of presses are dependent on the

color of ink and size of paper.

2. In textile industry, weaving and dyeing setup operations depend on jobs.

3. In brewing and food industry (for container and bottling section), settings are

changed when the containers or bottle sizes change.

This research focuses on the scheduling problem in a flexible flowshop with

sequence dependent setup times. A complete description of the problem is given in

Chapter 2.

13

CHAPTER 2

STATEMENT OF THE PROBLEM

2.1 Introduction

 Nowadays, manufacturing companies are faced with market demands for a

variety of high quality products. These companies must, therefore, make their

production systems more flexible, reduce costs related to production, and respond

rapidly to demand fluctuations. Hence, companies need to have advanced techniques

and an increasingly high degree of automation.

Production and operation management has been an interesting topic in

manufacturing, especially in such areas as job scheduling and system control. The

development of production schedules is a remarkably important task in industry. Many

scheduling researchers have focused their research on sequencing and timing the

scheduling of multiple non-identical jobs through one or more machine stations (Egbelu,

1991). A challenge facing many manufacturing and service industries is job assignment

to parallel processors (e.g., workers or machines). Parallel processing is the situation

where a job can be processed by more than one processor, but only one processor can

actually work on one job. This type of production system where multiple products are

processed on parallel, non-identical machines is common in both manufacturing and

service industries. For instance, airline companies may assign one of several types of

airplanes to service a route. In industries such as semiconductor manufacturing, it is

common to find newer or more modern machines running side by side with older and

less efficient machines. Even though the older machines are less efficient, they may be

kept in the production lines because of their high replacement costs. The older

machines may perform the same operations as the newer ones, but would generally

require longer processing time for the same operations. Other examples include textile

14

plants assigning jobs to looms and paper plants assigning products to different paper

machines (Randhawa & Smith, 1995). So, even though those resources may be of

similar type, their production rates may be different. This research will focus on

scheduling non-identical jobs in a flexible flowshop (or hybrid) environment with

sequence dependent setup times as described in the following section.

2.2 Manufacturing Background

Nature of the Tasks in the Shop-floor System

In this research, production is restricted by resource and technological

constraints. Processors (or machines) can process the same jobs but differ in their

speeds. Thus, the production rate for the same job may be different between machines

at the same stage, which results in different production costs per unit of the product.

This research deals with the general flexible flowshop, with S production stages,

in which the job sequence may not be the same on each machine at each stage. The

problem on hand has several distinct product families, and within each family there are

different product types. Each production stage may be composed of more than one

machine. If a stage has multiple machines, all machines would be similar in function but

different in their performance. All products may be processed on any of the machines in

a stage. It is assumed that the slowest machine in each stage has the lowest production

performance for all products. The problem hence will be developed and solved for the

parallel processing case with uniform processors.

Each product i of family j requires PTime(j,i,s,m) units of processing time on

machine m of stage s. A production line requires a setup time to change over from one

product to another. Machine changeover is needed when the product changes both

within a family and between families. In this research, two types of machine

changeovers (minor and major changeovers) are identified. A minor changeover time is

15

the changeover time required if the previous product belongs to the same family. On the

other hand, if the previous product was of a different family, a major changeover time

would be required. The changeover time for machine m of stage s between product i of

family j and product p of family q is denoted by ch(j,i,q,p,s). If j = q, then this

changeover time is minor, but if j ≠ q, then it is a major one. The changeover time in this

research is assumed to be asymmetric. This means that ch(j,i,q,p,s) may not be

necessarily equal to ch(q,p,j,i,s). It is also assumed that changeover times are equal for

all machines in the same stage of a production line when changing from one product to

another, but the changeover time may be different between stages.

The processing on all stages is not preemptive, which means that a new product

cannot enter into the stage until the previous product has been completely processed.

2.3 Problem Statement

 This research addresses the problem of scheduling jobs in a flexible flowshop in

which machines are uniform. A job used in this study is synonymous with an order and

represents an individual, distinct demand for a product. Each production stage may be

composed of more than one machine. Prior to processing a job on a machine in a

production line, there is an associated setup time. Setup times are considered

significant and typically depend on the sequence of the jobs through the processors.

The problem considered in this study is complex in three ways:

1. Even though the flexible flowshop scheduling problems have been studied by

several previous researchers, very few of them have considered both

products and families in their models. This research addresses products

which are grouped into families to be processed in a flexible flowshop

environment. There are different products within each family, and there are

many families to be considered.

16

2. Both major and minor setup times are considered. A major setup time is

required if a machine at any stage switches from one family to another. On

the other hand, a minor setup time is needed if the previous product belongs

to the same family.

3. The system consists of S stages of production. Each production stage may

consist of more than one non-identical (uniform) machines. The production

line may have different number of machines in each stage. The system can

produce a number of products and families, and all products and families can

be produced on every processor.

This research addresses the problem of scheduling all products on the machines

at the different stages in order to minimize the makespan.

2.4 Assumptions

The assumptions made in formulating the problem are as follows:

1. It is assumed that the decisions about production plans, workforce levels, and layout

of the facility have been made from the long and intermediate-range planning.

2. Production is make-for-stock; hence, there are no due dates associated with batches

or products.

3. All jobs and machines are available at the beginning of the scheduling process (at

time zero).

4. There are many stages in the flowshop production line. Each stage may have

several non-identical but uniform machines.

5. Jobs may not be necessarily scheduled in the same order in all stages.

6. Jobs can wait between two production stages (or stations) and the intermediate

storage is unlimited.

17

7. Within the same product family, minor changeover times may not be equal between

products. Likewise, major setup times may not be equal between families.

8. Setup times for jobs on each machine are dependent on the order in which jobs are

processed, but it is also assumed that setup times are equal for all machines in the

same stage when changing from one product to another.

9. No job splitting is allowed. A job must be completely finished on one machine before

it can be manufactured on the succeeding machine.

10. There is no job preemption.

2.5 Research Objectives

The major objectives of this research are:

1. To formulate a mathematical model to solve the problem and to produce an optimal

schedule in order to minimize the total makespan.

2. To develop efficient scheduling heuristics to find approximate solutions for large-size

problems.

3. To evaluate the heuristics developed by comparing their results to good lower

bounds.

18

CHAPTER 3

LITERATURE REVIEW

3.1 Introduction and Overview

This research focuses on a static sequencing of a flexible flowshop (FFS)

environment. In a FFS environment, there are S production stages with one or more

machines at each stage. Sequence dependent setup times (SDST) are considered on

each machine. A review of previous work on flowshop scheduling is performed, along

with a review of the SDST flowshop literature. Also, a review of the literature on the

application of the Tabu search (TS) algorithm relevant to this study is presented.

 A popular notation used in scheduling problems has the form of α/β/γ. The first

parameter (α) describes the machine environment and contains a single entry. The

second parameter (β) is a field providing the details of processing characteristics and

constraints. The β field may contain no entry, a single entry, or multiple entries. The last

parameter (γ) contains the objective to be minimized and usually contains a single entry.

Flowshop problems deal with m stages in series and with one machine in each stage,

and are denoted, in general, as Fm//Cmax when makespan is to be minimized. If there

are several processors in each stage and all of them are identical, the problem becomes

a flexible flowshop, denoted as FFs(Pm1,Pm2,…,PmS)//Cmax. If the machines are

uniform in the flexible flowshop, then Pms are replaced with Qms for s =1,2,…,S. When

setup times are involved, the notation becomes FFs(Pm1,Pm2,…,PmS)/sip/Cmax and

Fm/sip/Cmax for the flexible flowshop and regular flowshop problems, respectively. In

addition, if the setup time between job i and p depends on the machine, then the

subscript m is added, that is, it becomes sipm. A complete list of the notation used in this

study is presented in Appendix A.

19

Before reviewing the literature on flowshop scheduling, a review of the

methodology for solving sequencing problems in general is presented in the following

section.

3.2 Solution Methodologies for Scheduling Problems

 After determining the context in which scheduling is being defined, the

methodology for selecting a "good" schedule solution is determined. Day and

Hottenstein (1970) state that there are four common approaches used to solve the static

scheduling problem. These approaches are described below:

3.2.1 Combinatorial approach

Combinatorial approaches are based on the changing of one permutation

to another by switching jobs around in order to optimize a given objective

function.

 3.2.2 Enumerative optimal methods

The most general techniques are mathematical formulations (including

linear programming, dynamic programming, integer programming, or mixed

integer programming), and branch and bound methods.

Scheduling problems are typically represented as an optimization

problem subject to a set of constraints. The problem takes the form of a

mathematical model that expresses the desired objective subject to the

constraints set forth in the problem. However, there are many difficulties in

formulating mathematical models. These difficulties include the complexity of the

interactions among many variables in a system, the difficulty in the attempt to

optimize the schedule from the system, and the difficulty in gaining an agreement

among these variables on what is essential for the good of the system (Cutright,

1990).

20

Typically, the mathematical model for the problem is either too difficult or

too time-consuming to solve in reasonable time. Since the development of a

mathematical model is a time-consuming task and requires a thorough

understanding of the system being represented, it is necessary to find solution

techniques that are easy to implement even though they may not always lead to

an optimal solution. These techniques include heuristic approaches and Monte

Carlo sampling which are described below.

 3.2.3 Heuristic approach

Generally, difficulties arise in solving scheduling problems. Exact solution

procedures may not exist or may be too expensive to apply for large-sized

problems. One then has to use procedures that yield good (but not necessarily

optimal) solutions. These methods are termed heuristics. Heuristic approaches

can be divided into:

1. exact solution to a relaxed problem such as LP relaxation and

Lagrangian relaxation,

2. local search procedures including search techniques such as tabu

search (TS), genetic algorithm (GA), or simulated annealing (SA), and

3. ad hoc decision rules.

3.2.4 Monte Carlo sampling

Monte Carlo method is a technique for the solution of a model using

random (or pseudo random) numbers. For this approach, a scheduling problem

is solved by taking random samples of feasible solutions and using the best of

these solutions. Ideally, the number of samples would be as large as possible.

21

3.3 Flowshop Scheduling Models

In order to discuss relevant research in the area of flowshop scheduling, the

topics reviewed are divided into three categories: (1) models without SDST

consideration, (2) models which explicitly consider SDST, and (3) previous work

concerned with TS application to solve the flowshop scheduling problems.

3.3.1 Flowshop Scheduling Models without SDST Considerations

3.3.1.1 General Flowshop Scheduling (Fm/ /Cmax)

The flowshop scheduling problem with no setup times has been

researched extensively over the past five decades. Work on these problems was

pioneered by Johnson (1954), who presented a simple algorithm for solving the

F2//Cmax problems to optimality in a polynomial time. A wealth of research then

followed but will not be covered here as it is not relevant to the problem at hand.

3.3.1.2 Flexible Flowshop Scheduling (FFs/ /Cmax)

A flexible flowshop environment consists of S production stages, each of

which having m(s) parallel machines, s =1,2,…,S. The machines in each stage

may be identical, uniform, or unrelated. This section reviews previous work

performed in a flexible flowshop environment without SDST considerations.

3.3.1.2.1 Exact Approaches

 Two-stage cases: FF2(Pm1,Pm2)//Cmax

Arthanary and Ramaswamy (1971) were the first to develop the FFS

problem (Soewandi, 1998). They proposed a branch and bound algorithm for the

two-stage FFS problem in which there are m identical machines in stage 1 but

only one machine in stage 2, FF2(Pm1, Pm2 =1)//Cmax. They could optimally

solve problems with up to 10 jobs with reasonable computational effort.

According to Gupta (1988), the two-stage flowshop problem in which

each stage consists of identical multiple machines, FF2(Pm1,Pm2)//Cmax, is

22

NP-complete. He proposed a heuristic to solve a special case when there is

only one machine in the second stage in order to minimize the makespan,

FF2(Pm1,Pm2=1)//Cmax. Computational experiments showed that the

effectiveness of the proposed heuristic increases as the problem-size increases.

Gupta and Tunc (1991) considered the FFs(Pm1=1,Pm2)//Cmax and

established approximate solution algorithms. They also developed a branch and

bound algorithm using the heuristic solution as an upper bound on makespan.

Their results showed that when the number of machines at stage 2 is equal to or

greater than the total number of jobs, the Longest Processing Time (LPT)

scheduling rule yields optimal solutions. For the case in which the total number

of jobs is greater than the number of machines in stage 2, they developed two

heuristics to minimize the makespan. Computational results indicated that the

effectiveness of the algorithms increases with the increase of the total number of

jobs. For the cases in which the deviations of the heuristic makespans were

relatively large from the lower bounds, an improved branch and bound algorithm

was developed. The maximum number of jobs reported in their work was only

eight jobs.

 Multiple stage cases (FFs(Pm1,Pm2,…,PmS)//Cmax)

Brah and Hunsucker (1991) and Ragendran and Chaudhuri (1992)

developed branch and bound algorithms for the FFs(Pm1,Pm2,…,PmS)//Cmax.

Both studies can solve only small-sized problems. Portmann et al. (1998) also

studied the FFs(Pm1,Pm2,…,PmS)//Cmax problem. They improved the lower bound

of Brah’s and reduced the number of branches used in the search tree. They

also used a genetic algorithm (GA) approach to improve the search. Their

computational experiments indicated that optimal solutions using their branch

and bound approach were more often reached using the GA approach. They

23

could solve problems with up to five stages (3, 3, 1, 2, and 2 machines in stages

1 through 5, respectively) and 15 jobs with an average deviation of 3% from the

results of the branch and bound algorithm.

Moursli (1995) also investigated on the FFs(Pm1,Pm2,…,PmS)//Cmax

problem. He derived three improvements from Brah’s algorithm and three new

lower bounds. His computational experiments showed that his algorithm could

solve problems with up to 20 jobs to optimality. Both number of nodes

investigated and running time were drastically reduced in his approach. Another

study was done by Vignier et al. (1996). They developed a branch and bound

approach to solve FFs(Pm1,Pm2,…,PmS)//Cmax and solve problems with up to 15

jobs.

3.3.1.2.2 Heuristic Approaches

Two stage cases (FF2(Pm1,Pm2)//Cmax)

Lee and Vairaktarakis (1994) developed five new lower bounds for the

FF2(Pm1,Pm2)//Cmax problem. They also proposed a heuristic to solve the

FF2(Pm1,Pm2,…,PmS)//Cmax problem. However, their results were not reported.

In 1996, Guinet et al. studied the scheduling for the FF2(Pm1,Pm2)//Cmax

problems. They developed a heuristic and three lower bounds. The

computational results showed that the average gap compared between the

heuristic solution and lower bounds are less than 0.73%. Another study was

done by Haouari and Hallah (1997). They developed a new lower bound and

used the Simulated Annealing (SA) and TS approaches to solve the problems.

According to the solutions of these problems, the TS based heuristic yielded an

optimal solution for 35 % of the cases and an average relative error of only

0.82%. In 1998, Soewandi developed a new procedure, which he termed

“Improved, Modified Johnson’s Order” to solve the FF2(Pm1,Pm2)//Cmax and

24

FF3(Pm1,Pm2,Pm3)//Cmax problems. He also considered the two-stage FFS with

uniform machines at each stage (FF2(Qm1,Qm2)//Cmax) and developed a solution

procedure adapted from Johnson's rule. Additionally, he proved that his heuristic

has a worst case performance Bound1 (w.c.p.b) for the FF2(Qm1,Qm2) problem

as 1+max{ ,)1,)(1(
1

1,

11

1
∑

=

−
m

n
n

m

v

vm

∑
=

−
2

2

22

1

,

)2,)(1(
m

n
n

m

v

vm } where vm is the speed of machine m,

and ms is the number of machines in stage s. Further, he developed two

heuristics for FF3(Pm1=1,Pm2,Pm3=1)//Cmax. Riane and Artiba (1997) and Riane

et al. (1998) studied FF3(Pm1,Pm2,Pm3)//Cmax problems, and developed two

heuristics to cope with realistic problems. The experimental results indicated that

their heuristics can solve problems with up to 130 jobs with a relative errors less

than 1% of the lower bound.

 Multiple stage cases : FFs(Pm1,Pm2, …, PmS)//Cmax)

In 1994, Ding and Kittichartphayak developed three heuristics for

scheduling in FFs(Pm1,Pm2, …, PmS)//Cmax. The computational results showed

that one of their heuristics, called the combined approach, is the best and can

solve problem sets with number of jobs up to 8 with an average error less than

3% of the optimal solutions.

Multiple stage cases : FFs(Qm1,Qm2, …, QmS)//Cmax)

A multi-stage FFS scheduling problem in which jobs are identical and

machines are uniform at each stage was considered by Verma and Dessouky

(1999) with the objective of minimizing the makespan. They compared the Latest

Start Time (LST) rule with other heuristics: the Fastest Available Machine

1 An index that indicates the deviation of the performance values yielded by an algorithm, in the worst case, from the
optimal solution for a given problem, or in some cases, from the values of the best known solutions or lower bounds.

25

Heuristic (FAMH), the Earliest Completion Time Heuristic (ECTH), and the Mix

Heuristic (MH). Their results indicated that the FAMH had a worst case absolute

bound that was twice as large as the ECTH, LSTH, and MH heuristics.

3.3.2 Flowshop Scheduling Models with SDST Consideration

3.3.2.1 General Flowshop Scheduling (Fm/ sipm /Cmax)

Allahverdi et al. (1999) presented a review of scheduling problems

involving setup considerations. They classified scheduling into batch and

non-batch, sequence-dependent, and sequence-independent setup. They also

summarized the results from the existing research and provided guidelines for

future research.

3.3.2.1.1Exact Approaches

 Two-machine cases (F2/ sipm /Cmax)

Prior to the research of the multiple machine problem, the two-machine

scheduling problem had been investigated by several researchers (e.g. Corwin &

Esogbue, 1974; Gupta, 1986, etc.). Corwin and Esogbue (1974) considered two

different flowshop scheduling problems with one of the machines having no setup

times. The objective of their study was to find the minimum makespan. After

establishing the optimality of permutation schedules, they solved the problem

using a dynamic programming formulation. Their findings showed that, from

computational standpoint, their formulation was comparable to that of the

traveling salesman problem (TSP). On the other hand, Gupta (1986) formulated

the Fm/sipm,no wait/Cmax problem as a TSP for the case in which jobs are

processed continuously through the shop. He showed that the flowshop

scheduling problem with SDST is NP-hard for the cases of limited or infinite

intermediate storage space available to store partially completed jobs. The

26

results from the TSP formulation of the continuous processing case were used to

describe an approximate solution for the cases in which the storage spaces were

limited or finite.

In addition to Corwin & Esogbue’s and Gupta’s studies, one of the studies

of Szwarc and Gupta (1987) was in terms of a special flowshop scheduling

problem with sequence dependent additive setup times. They developed a

polynomially bounded approximate method with the objective of minimizing

makespan.

Multiple machine cases (Fm/ sipm /Cmax)

Excellent efforts to solve the SDST for the m-machine flowshop problem

to optimality were performed by Srikar and Ghosh (1986). They developed a

method to reduce the number of constraints and binary variables in a MILP

formulation of the m-machine flowshop in order to minimize the makespan. They

could solve problems with up to six machines and six jobs; however, the time

required to solve problem was too large (22 minutes of CPU on a Prime 550

computer). Stafford and Tseng (1990) later discovered an error in Srikar and

Ghosh's model. They corrected it and solved the problem using LINDO. They

developed new MIP formulations for the regular flowshop problem and for the no

intermediate queues (NIQ) flowshop problem.

Exact optimization schemes are mostly based on the application of a

branch and bound (B&B) algorithm. The important part of a successful B&B

procedure lies in the computation of the lower bounds. In 1997, Rios-Mercado

developed several inequalities for two MIP formulations of the Fm/sipm/Cmax

problem. He used a branch and cut (B&C) procedure and found that this

procedure is effective compared to a branch and bound (B&B) algorithm. The

27

main difference between the B&C and B&B procedures is that B&C algorithms

reduce the problem size (or a set of unevaluated nodes) by adjoining valid

inequalities (cutting planes or cuts). This, in turn, provides a stronger linear

programming-representation.

Recently, Rios-Mercado (1997) and Rios-Mercado and Bard (1999)

presented a branch and bound scheme for the SDST permutation flowshop

scheduling problem in order to minimize the makespan. Their algorithm included

the implementation of lower bounds and upper bounds and a dominance

elimination criterion, and yielded a significantly better performance over previous

work. They also could solve 100%, 43%, and 23% of 10-, 15-, and 20-job

problems, respectively, within a 1 % optimality gap. Gupta (1982) proposed a

branch and bound algorithm for the solution of the SDST flowshop with the

objective of minimizing the total setup times of machines. Unfortunately, the

computational results from the experiments were not reported. Because of the

complexity of the multiple machine scheduling problem, thus far no approach has

been found to solve the SDST flowshop to optimality for large-size problems.

3.3.2.1.2 Heuristic Approaches

Heuristic algorithms for the Fm/sipm/Cmax problem were developed by

Simons (1992), Rios-Mercado (1997), and Rios-Mercado (1999). Simons (1992)

developed four heuristics and compared them with three existing approaches (or

benchmark) that represent generally practiced approaches to scheduling in this

environment. However, only two of their proposed heuristics (called SETUP and

TOTAL) produced better results than the other heuristics tested. In addition,

computational experiments showed that problems with up to 15 machines and 15

jobs could be solved.

28

Evidently, the most relevant work on heuristics for the Fm/sipm/Cmax

problem was conducted by Rios-Mercado (1997; 1999). They developed two

heuristics called HYBRID and GRASP to solve the problem. Experimental

results showed that the HYBRID heuristic outperforms GRASP when the number

of machines is small and when setup time fluctuations are large.

Moreover, Rios-Mercado and Bard (1998) made a comparison between

Simons's and Rios-Mercado and Bard's heuristics in relation to the Fm/sipm/Cmax

problems and concluded that, in general, Rios-Mercado and Bard’s heuristics

outperformed Simons’s SETUP heuristic. Nonetheless, in terms of better

solutions for the cases in which both setup and processing times are identically

distributed, Simons’s SETUP heuristic is relatively superior to Rios-Mercado and

Bard’s algorithms.

Another performance measure investigated by several researchers is the

minimization of the sum of weighted tardiness. Scheduling jobs on parallel

machines with SDST considerations were considered by Lee and Pinedo (1997).

They developed a three-phase heuristic, and a local search technique using SA

that is applied at the last phase. Additionally, Randhawa and Smith (1995)

investigated the factors that affected scheduling environments consisting of

parallel and non-identical processors. These factors are the processing capacity

relationships, sequencing and assignment rules, job sizes, and demand

distributions. They measured the effects of variables by comparing the mean flow

time, processor utilization spread, and proportion of tardy jobs. Computational

experiments showed that, setup times and system loading parameters were

important factors in the system performance.

29

3.3.2.2. Flexible Flowshop Scheduling (FFs/sipm /Cmax)

To date, no literature in the flexible flowshop with sequence dependent

setup time has been found. However, some literature is available on flexible

flowshops with independent time for the FFs(Pm1,Pm2,…,PmS)/ /Cmax problem as

presented below.

Setup times may simply be included in the processing times in the

situations where the entire batch of products is processed on one machine.

Conversely, if the same batch of products is partly assigned to several machines,

the same amount of setup time is still needed for the machines they are partly

assigned to and cannot be simply added to the processing times.

Li (1997) considered a two-stage FFS with a single machine at the first

stage and several identical machines at the second stage, and independent

setup times with the objective of minimizing the makespan, FF2(Pm1=1,Pm2)/ /Cmax.

He developed two heuristics adapted from previous work to solve the problem.

Gupta and Tunc (1994) developed polynomial heuristics for the two-stage FFS

scheduling problems in which there is only one machine in stage 1 and identical

machines in stage 2 but the number of machines at this stage is equal to or

larger than the total number of jobs. They also considered setup and removal

times independent from the processing times. The computational results

indicated that the effectiveness of the proposed algorithms increases when the

number of jobs increases. The contributions found in the literature for the FFS

scheduling problem are summarized in Table 3.1.

Exact algorithms based on branch and bound (B&B) and mixed integer

programming (MIP) were found in the literature to solve the problem. However,

the results of the computational experiments showed that B&B algorithms

become inefficient with more than 20 jobs. Also, the MIP models are impractical

30

because of their large size even for a small number of jobs and machines.

Hence, approximation methods such as TS have been paid attention to recently.

Table 3.1: Summary of Previous Research on FFS Scheduling Problems.

Problem Type

References

Methodology

Problem size

FF2(Pm1,Pm2=1)//Cmax

1. Arthanary and Ramaswany (1971)

2. Gupta (1988)

Branch and Bound (B&B)

Hueristic (w.c.p.b)

6-8 jobs

3 - (2 / m)

FF2((Pm1,Pm2=1)//Cmax

Gupta and Tunc (1991)

Heuristic

FF2(Pm1,Cm) //Cmax

(Cm= continuous

flowshop)

Gupta (1997)

Heuristic (w.c.p.b)

2- (1 / m)

FF2(Pm1,Pm2)//Cmax

1. Brah and Hunsucker (1991)

2. Lee and Vairaktarakis (1994)

3. Rajendran and Chaudhari (1992)

4. Moursli (1995)

5. Guinet et al. (1996)

6. Haouari and Hallah (1997)

7. Soewandi (1998)

B&B

Heuristic (w.c.p.b)

B&B

B&B

Heuristic

Heuristic

Heuristic (w.c.p.b)

≤8 jobs

2- (1/max{m1,m2})

≤ 8 jobs

≤ 20 jobs

2 –(1/max{m1,m2})

FF2(1,Pm2)/ /Cmax

(independent setup is

considered)

Li (1997)

Heuristic

FF2(1,Pm2)/ /Cmax

(both independent setup

and removal items are

considered)

Gupta and Tunc (1994)

Heuristic

31

Table 3.1: Summary of Previous Research on FFS Scheduling Problems (continued).

Problem Type

References

Methodology

Problem size

FFs(Pm1,Pm2,…,Pms)//Cmax

1. Lee and Vairaktarakis

(1994)

2. Moursli (1995)

3. Vignier et al. (1996)

4. Portmann et al. (1998)

5. Soewandi (1998)

6. Ding and Kittchartphayak

(1996)

7. Novicki and Smutnicki

(1996)

8. Franca et al. (1996)

9. Novicki and Smutnicki

(1998)

Heuristic (w.c.p.b)

B&B

B&B

B&B and B&B+GA

Heuristic (w.c.p.b)

Heuristic

Heuristic (TS approach)

Heuristic (TS approach)

Heuristic (TS approach)

S-(1/max{m1,m2}) - … -

(1/max{m1-1,mS}

≤ 6 jobs for 5 stages

≤ 15 jobs

≤ 15 jobs for 5 stages

4- 1/max{m1,m2} – 1/m3 for

Proc. SP1

10/3- 1/max{m1,m2} –

1/3m3 for Proc. SP2

8 jobs

≤ 500 jobs , 20 machines

≤ 50 jobs , 5 machines

≤ 150 jobs , 60 machines

FF2(Qm1,Qm2)//Cmax

Soewandi (1998)

Heuristic (w.c.p.b)

{1+ (m-1)vm}/V

FFs(Qm1,Qm2,…,QmS)//Cmax

(for jobs are identical only)

Verma and Dessouly (1999)

Heuristic

32

3.3.3 Applications of Tabu Search (TS) to the Flowshop Scheduling Problem

 3.3.3.1 Introduction and Overview

Tabu search is a heuristic designed for finding a near optimal solution for

combinatorial problems. It is considered as a metaheuristic (Hertez and Werra 1989,

1990, and Skorin-Kapov and Vakharia, 1993). This heuristic was first proposed by

Glover in 1989. It attempts to find a better solution than an initial. A key difference

between TS algorithm and other hill-climbing algorithms is that TS is not trapped at local

minima. The search process is provided with a mechanism that allows the objective

function to deteriorate and, in a controlled way, allows it to escape from local minima.

Researchers have shown that many combinatorial problems are NP-hard; hence,

near-optimal solutions are obtained. A heuristic method is often used to find an initial

solution which is then improved in an effort to find a near-optimal solution. Basically, the

application of TS is characterized by several components such as a move,

neighborhood, memory, initial solution, tabu list, aspiration level, and stopping criteria.

A move, a neighborhood, and a tabu list

A move is a function that transforms one solution to another. The subset of

moves applicable to a given solution generates a collection of solutions called the

neighborhood. TS begins with an initial solution which may be obtained from a heuristic

or from a random generation. At each step, the neighborhood of the current solution is

examined in order to find an appropriate neighbor. Typically, there are two fundamental

methods to examine an appropriate neighborhood. The first method is to examine the

entire neighborhood and select the best neighbor. This method is appropriate for

problems with small neighborhoods. The second method, which is useful with large

neighborhoods, is to examine a smaller neighborhood determined by some appropriate

technique. A trade-off exists between the effort spent in searching the neighborhood

and the quality of the neighbor selected. The move that leads to this neighbor is

33

performed and the resulting solution becomes the new current solution to initiate the

next iteration. The search allows for moves that yield solutions inferior to the best

solution obtained so far in order to avoid being trapped at a local optimum.

Since the search always chooses the best new movement, it may well fall back

into the local minimum from which it previously emerged. At any stage of the process, a

tabu list of mutation that the procedure is not allowed to perform is kept. The goal of

utilizing the tabu list is to exclude moves that would bring us back to the point where we

were at some previous iterations and keep us trapped in a local minimum. To avoid

cycling, the reverse of a movement that has been recently performed is forbidden (tabu)

and inserted on the top of tabu list. All other entries are pushed down one position and

the bottom entry is deleted. In other words, a tabu list is operated as a FIFO strategy.

The length of the tabu list is an important parameter. If the number of entries in the tabu

list is too small, cycling may occur. Conversely, if the number of entries is too large, the

computation time may increase significantly. The tabu list may be of several types such

as position of jobs or pairs of jobs that may not be interchanged (Tillard,1990).

Memory

Normally, there are three types of memories: short-term, intermediate, and

long-term memories. A fundamental component of the TS algorithm is a short-term

strategy called “simple TS” (Glover,1989; Glover, 1990; Werra & Hertz, 1989).

The fundamental memory structure in the simple TS algorithm is the so-called

tabu list. As mentioned earlier, each move in a tabu list is memorized after each

iteration. The best move is selected among the set of candidates which are not in the

tabu list. Normally, a short-term memory is a method that keeps limited track of a search

trajectory in order to guide the search out of a local optimum. The functions of

intermediate and long-term memories are employed within tabu search to achieve

regional intensification and global diversification of the search. When a region of the

34

solution space produces good solutions, then it is good to intensify the search in that

region (intensification). Conversely, instead of inducing the search to focus more

intensively on regions that contain good solutions previously found, the long-term

memory (diversification) guides the process to regions that markedly contrast with those

examined so far.

Aspiration level condition

An improvement can be realized in the TS is due to the fact that too many

solutions may be forbidden. An aspiration level is defined as the value of the best

schedule obtained so far. The aspiration level provides flexibility to choose good moves

by allowing the tabu status of a move to be overridden, after comparing the values of the

schedules, if it seems desirable to do so. Criteria for removing the tabu status will be

expressed by aspiration level condition.

Stopping criteria

Stopping criteria are rules to stop the search. Some stopping rules are defined

such as maximum number of iterations, maximum computation time, maximum CPU

time, or the maximum number of iterations have been performed without improving the

best solution obtained so far. Figures 3.1 and 3.2 describe the process of the tabu

search with short-term memory (Glover, 1990).

3.3.3.2 Review of TS Applications

During the last two decades, the Tabu Search (TS) technique has been

found to be a remarkably effective approach to solve combinatorial optimization

problems. Barnes and Laguna (1993) reviewed some of the research related to

TS applications in production scheduling and provided synthesis of the TS

methods that have been employed. Some suggestions for future research were

also provided in their study.

35

Terminate Globally or Transfer

A transfer initiates an long term memory
components (intensification or diversification).

Generate An Initial Solution

It may be obtained from:
! an improvement heuristic
! a randomization.

Create a candidate list of moves (neighborhood)
! It is either not tabu or it is. If it is tabu, it can be

overridden by the aspiration criteria.

! Each move would generate a new solution from

the current solution.

Choose the best admissible move by evaluation
each candidate move

! Select the best admissible move leading to the

next solution
! record it as the new best solution if it improves

on the previous best.
(Note: Detail is presented in Figure 3.2)

Stopping criteria
Stop the search if:
! a specified maximum number of iterations

between two improvements of the objective
function has reached

! a specified maximum number of iterations has
reached, or

! the last best solution was found

Update Admissibility conditions

! Update Tabu restrictions, and
! Update aspiration level criteria

allowing the tabu status of a move to
be overridden under appropriate
circumstances

STOP CONTINUE

Figure 3.1 : The General Tabu Search Technique

36

Figure 3.2: Selecting the Best Admissible Move

Evaluate each candidate move

Does the move give the better solution than
any other move found from the set of
admissible candidates?

Check Tabu Status

Is the candidate is forbidden (tabu)?

YES

YES NO

Check Aspiration level

Does the move meet the
aspiration level?

Move is admissible

The move is recorded as the best
admissible candidate.

YES

Candidate List Check

Is there any probability of better move
left, or should candidate list be
extended?

NO

NO

Record and Update The Best Admissible Move

YES

NO

37

In 1993, Laguna et al. applied TS to a single machine problem in order to

minimize the sum of the setup costs and linear delay penalties when N jobs,

arriving at time zero, are to be scheduled for sequential processing on a

continuously available machine. Their experimental results showed that the TS

heuristic succeeded in finding optimal solutions to all problems (with up to 22

jobs) to which the solutions are known. A fast and easy approximation approach

based on the TS technique was developed by Novicki and Smutnicki (1996) for

the permutation flowshop problem with the objective of minimizing makespan.

Their results showed that the algorithm was effective and could solve problems

with up to 500 jobs and 20 machines. Also, Franca et al. (1996) proposed a

three-phase heuristic for solving the scheduling problem with identical parallel

processors in order to minimize the makespan. The TS algorithm was applied for

solving the problem in phase 2 which improves the initial solution obtained from

the first phase. They then attempted to further improve the solution in phase 3.

The number of jobs and machines that their method could solve within

reasonable running time were up to 50 jobs and 5 machines.

The best efforts to apply the TS algorithm for solving large-size FFs

problems with identical parallel machines at each stage have been performed by

Nowicki and Smutnicki (1998). They developed an algorithm to solve problems

with the objective of minimizing makespan. They used their algorithm to solve

problems with up to 150 jobs and 60 machines. Another study was done by

Norman (1999), who investigated flowshop scheduling problems with both

sequence-dependent setup times and finite buffers by applying the TS approach.

His findings showed that a TS heuristic procedure can give a good solution for

problems with up to 200 jobs and 20 machines.

38

Because of the reported success of the TS in previous research with

similar problems, it has been selected for application in this research.

39

CHAPTER 4

EXACT ALGORITHM

4.1 Introduction

Even though the flexible flowshop problem with sequence dependent setup times

is difficult to solve optimally for large-size problems, an exact procedure using a

mathematical programming formulation, is generally accepted for solving small-size

problems. There are two main reasons for formulating a mathematical programming

model:

• The mathematical programming formulation provides a better understanding of the

problem, which will be useful in formulating relaxed problems and in developing

heuristic solution procedures.

• Even though existing computing devices cannot solve large problems in an

acceptable time, development of these devices is improving with a fast pace.

Faster computers are developed, with larger memories, and may be able to solve

practical size problems in the near future.

4.2 Mathematical Formulation

A brief description of the problem is reviewed in order to help in understanding

the mathematical formulation. The problem involves the scheduling of multiple products

in a flexible flowshop environment with sequence dependent setup times

(FFS(Qm1,Qm2,…, QmS)/sipm/Cmax). In this research, there is only one production line

considered. The production line consists of many stages, which may have one or more

non-identical (uniform) parallel machines. In each stage, machines can process all

products but they differ in their performances, and the machines cannot process a new

product until the previous product has been completely finished.

40

 The products have to be manufactured on only one of the machines in each

stage, and the processing of products cannot start until the products are completed in

the previous stage. Each product, e.g., product i of family j, requires PTime(j,i,s,m)

units processing time on machine m of stage s. Machine setup times are needed

between any two products. In this study, it is assumed that setup times are equal for all

machines in the same stage when changing from one product to another.

 This chapter presents a 0-1 mixed integer programming model with the objective

of minimizing makespan for the problem. The model is presented below with a brief

explanation of each constraint. Parameters and decision variables used in formulating

the model are defined in Table 4.1.

The objective function:

Min E

Constraints:

! Completion time forcing constraints:

This set of constraints ensures that all products are scheduled and the

completion time of any product on any machine of the first stage is at least the sum

of setup time from idling and processing time required for the product on that

machine.

 FT(j,i,1,m) ≥ ch(0,0,j,i,s) + {PTime(j,i,1,m) ⋅ x(j,i,1,m)} (1)

 j = 1,2,…,N; i = 1,2,…,fj ; and m=1,2,…,m(1)

41

Table 4.1: The Notation Used in the Mixed Integer Programming Model

Type of

Variables

Notation

Explanation

FTime(j,i,s,m)

Finish time of product i, family j on machine m of stage s Decision

variables
E

The makespan

x(j,i,s,m)

= 1 , if product i, family j is assigned to machine m of stage s
= 0 , otherwise
 Binary decision

variables
w(j,i,q,p,s,m)

= 1 , if product i, family j immediately precedes product p, family q
 on machine m of stage s
= 0 , otherwise

i,p

Product indices

j,q Family indices

s Stage index

m Machine index

fj The number of products in family j

m(s) The number of machines in stage s

N Total number of families

M(s) The set of machines in stage s ; M(s) = {1,2,..,m(s)}

S The number of stages in the production line

PTime(j,i,s,m) The processing time of product i, family j on machine m of stage s

Parameters

ch(j,i,q,p,s) The number of time units required to changeover from product i,

family j to product p, family q at stage s

! Stage link constraints:

 Constraints (2) ensure that the completion time of product i of family j

produced on machine m in the current stage (stage s) must be greater than its

completion time in a previous stage (stage s-1). The difference must be equal to or

greater than the amount of processing time required in the current stage.

42

FTime(j,i,s,m) ≥ FTime(j,i,s-1,mp) + {PTime(j,i,s,m) ⋅ x(j,i,s,m)} (2)

j = 1,2,…,N, i = 1,2,…,fj ; s = 2,3,…,S, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1)

 Setup times are not considered here because the machine in the current

stage may be setup for the product while the product is being processed in the

previous stage.

! Constraints about product sequencing on all the S stages:

 FTime(j,i,s,m)-FTime(q,p,s,m)-ch(q,p,j,i,s)+(V)(1-w(q,p,j,i,s,m)) ≥ {PTime(j,i,s,m) ⋅ x(j,i,s,m)} (3)

j = 1,2,…,N, q = 1,2,…,N, i = 1,2,…,fj ; p = 1,2,…,fq, s = 1,2,…,S, m = 1,2,…,m(s),

and V is a very large positive number.

If product p of family q is processed on machine m at stage s immediately

before product i of family j, then the value of w(q,p,j,i,s,m) equals to one. Hence, the

completion time of product i, family j must be greater than the completion time of

product p, family q. The difference must be equal to or greater than the sum of the

setup time from product p, family q to product i, family j and the required processing

time of product i, family j on that machine.

! Sequence completion time constraint:

These constraints are needed to ensure that the makespan is equal to or

greater than the completion time of each of the products in the last stage.

FT(j,i,S,m) ≤ E (4)

j = 1,2,…,N, i = 1,2,…,fj ; and m = 1,2,…,m(S)

43

! Constraints (5) ensure that each product is processed on exactly one machine in

each stage.

∑
=

)s(m

1m
)m,s,i,j(x = 1 (5)

 j = 1,2,…,N, i = 1,2,…, fj ; and s = 1,2,…,S

! Except for the first product, a product scheduled on a machine must be immediately

preceded by exactly one different product.

x(q,p,s,m) – w(0,0,q,p,s,m) – ∑∑
= =

N

1j

fj

1i
m)s,p,q,i,w(j, = 0 (6)

q = 1,2,…,N; p = 1,2,…, fq; s = 1,2,…,S; and m = 1,2,…,m(s)

! Except for the last product, a product scheduled on a machine must be immediately

followed by exactly one product.

x(j,i,s,m) – w(j,i,0,0,s,m) – ∑∑
= =

N

q

fj

1p
m)s,p,q,i,w(j,

1
 = 0 (7)

j = 1,2,…,N; i = 1,2,…,fj ; s = 1,2,…,S; and m = 1,2,…,m(s)

! A machine can have exactly one first and one last product:

∑∑
= =

N

1q

fj

1p
m)s,p,q,w(0,0, = 1 (8)

s = 1,2,…,S; and m = 1,2,…,m(s)

∑∑
= =

N

1j

fj

1i
m)s,i,0,0,w(j, = 1 (9)

s = 1,2,…,S; and m = 1,2,…,m(s)

44

The above formulation is illustrated using the following simple problem. The

problem data are shown below and the computer model is listed in Appendix B.

Number of families: N = 2

Number of stages: S = 3

Number of products: fj = 2; j = 1,2

Number of machines: m(1) = 1, m(2) = 1, and m(3) = 2

Speed of machines at each stage ~ U(0.85,1.15), resulting in the speeds shown in

Table 4.2.

Processing time of each product on the standard machine at each stage ~ U(10,50),

resulting in the processing times shown in Table 4.3.

Setup time from idling in stage 1 for each product, as a percentage of the processing

time ~ U(5%,15%), resulting in the setup times shown in Table 4.4.

Changeover time between two products at each stage (ch(q,p,j,i,s)), as a percentage of

the processing time ~U(10%,40%) and ~U(5%,15%) for major and minor setup times

respectively, resulting in the times shown in Table 4.5.

Table 4.2: Speeds of Machines at Each Stage

Speed of Machine

m=1 m=2

Stage 1 1.1 -

Stage 2 1.15 -

Stage 3 1.0 0.98

45

Table 4.3: Processing Time of Each Product at Each Stage on the Standard Machine

Processing Time of Products
Stage Family

Product 1

Product 2

j = 1
18.28 33.81 s =1

j = 2
48.95 25.1

j = 1
31.57 28.24 s =2

j = 2
26.09 17.39

j = 1
23.68 44.87 s =3

j = 2
19.09 49.26

Table 4.4: Setup Time from Idling for Each Product in Stage 1

Setup Time from Idling of products
Family

ch(0,0,j,1,1)

ch(0,0,j,1,2)

j = 1 3.89 1.52

j = 2 2.26 3.99

46

Table 4.5: Changeover Times between Products at each Stage (ch(q,p,j,i,s))

Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s))

Family q=1

Family q=2 Stage s Family j Product i

p=1

p=2

p=1

p=2

1 1
0.00 4.24 5.88 4.90

 2
2.49 0.00 6.54 4.52

2 1
5.33 6.22 0.00 4.20

1

 2
5.91 5.51 3.48 0.00

1 1
0.00 2.96 6.45 10.29

 2
2.20 0.00 11.25 7.87

2 1
9.39 10.24 0.00 2.41

2

 2
10.58 6.98 3.07 0.00

1 1
0.00 3.22 6.64 10.63

 2
3.13 0.00 10.17 6.15

2 1
9.79 9.95 0.00 3.46

3

 2
6.63 11.50 1.65 0.00

The model has 188 constraints, 556 continuous variables, and 96 integer

variables for this problem. It is necessary to use a software which can handle a large

number of variables. The MPL/CPLEX software was used to solve this problem. The

makespan of this solution is 172.32 time units. The optimal product sequences on the

different machines and stages are presented below.

Stage 1: Machine1: (1,2)-> (1,1) -> (2,2) -> (2,1)

Stage 2: Machine 1: (1,2)-> (1,1) -> (2,2) -> (1,1)

Stage 3: Machine 1: (1,2)-> (1,1) -> (2,1)

Machine 2: (2,2)

 where (j,i) is product i of family j.

47

Although an optimal solution was obtained for the problem, the computational

time was excessive. Attempts to solve larger problems were unsuccessful as they

required too much CPU times. Hence, a heuristic algorithm is developed to obtain a

near-optimal solution for realistic sized problems.

48
CHAPTER 5

HEURISTIC ALGORITHMS

The flexible flowshop problem with sequence-dependent setup times is known to

be NP-hard (Allahverdi et. al, 1999). In general, the computational effort required to find

an optimal solution grows exponentially with the size of the problem. In an effort to find

a near optimal solution for problems with average or large sizes, a two-phase algorithm

was developed. The first phase consists of a constructive heuristic developed to obtain

an initial solution. This heuristic will be termed as the “Flexible Flowshop with Sequence

Dependent Setup Times Heuristic” (FFSDSTH). The second phase, referred to as the

Tabu Search Heuristic (TSH), uses the well-known Tabu Search meta-heuristic to

improve on the solution obtained from the first phase. The algorithm process flow for

both phases is shown in Figure 5.1.

The detailed description of the two-phase heuristic is presented in the following

three sections. A detailed description of the FFSDSTH is presented in Section 5.1, and

is followed by a numerical illustration in Section 5.2. The TSH is described in Section

5.3.

5.1 Phase 1: Obtaining an Initial Solution Using the FFSDSTH Algorithm

The heuristic developed in this phase schedules one family at a time on the

machines of the first stage. The algorithm then proceeds by scheduling products to the

machines of all other stages. Prior to the presentation of the FFSDSTH algorithm, the

notation and variables used are defined.

Notation:

Let

i,p = product indices

j,q = family indices

49

Phase 1: Obtaining an Initial Solution
Using the FFSDSTH Algorithm

Step 2: Determine the “Final Difference”
(FD(j)) for each family

Step 3: Assign families to the first-stage
machines

Step 5: Schedule products of the m* family

on machines at the first stage

Step 6: Schedule products of the remaining
families on the machines at the first stage

Step 4: Assign the remaining families to the
machines at the first stage

Step1: Make the initial arrangement of
products in each family

Part 1: Assigning Families to Machines
at the First Stage

Part 2: Sequencing Products on
Machines at the First Stage

Part 3: Balancing Production Times of
Machines at the First Stage

Step 7: Balance the production times of all
machines at the first stage

Step 8: Schedule all the products on all

other stages and calculate the makespan

GO TO PHASE 2

Part 4: Scheduling All the Products on
All Other Stages (i.e., stages 2, 3,…, S),

and Calculate the Makespan

Figure 5.1: A Process Flow of the FFSDSTH and TSH Algorithms

50

Figure 5.1: A Process Flow of the FFSDSTH and TSH Algorithms (continued)

Phase 2: Improving the Initial Solution Using the TSH
Algorithm

Step 12: Move families between (or within) the machines

Step 11: Check if the search
should be stopped.

YES NO

Part 6: Moving Products between (and within) Machines at
the First Stage

Step 16: Moving product between (or within) the machines

Step 15: Check if the search
should be stopped.

NO

Step 17: Determine the makespan at the last stage and the best
sequence found so far

YES

Part 5: Moving Families between Machines (and within a
machine) at the First Stage

Step 10: Update the number of current iterations

Step 14: Update the number of current iterations

Step 9: Initialize all parameters used in this part

Step 13: Initialize all parameters used in this part

51
s = stage index

J = set of all families; J = {1,2,…,N}

Fj = set of products in family j; j ∈ J

 = {1,2,…,fj}

fj = number of products in family j; j ∈ J

Ψ = set of stages in a production line

= {1,2,…,S}

m(s) = number of machines in stage s; s ∈ Ψ

M(s) = set of machines in stage s

 = {1,2,…,m(s)}

vs,m = speed of machine m at stage s

ch(q,p,j,i,s) = The number of time units required to changeover from

product i of family j to product p of family q at stage s

STime(j,i,s,m) = start time of product i of family j on machine m of stage s.

There are 8 possible ways of determining the value of

STime(j,i,s,m). A detailed description of these ways is

presented in section 5.1.1.

PTime(j,i,s,m) = processing time of product i of family j on machine m of

stage s; j ∈ J, i ∈ Fj, s ∈ Ψ, and m ∈ M(s).

T(j,i) = processing time of product i of family j on the standard

machine in stage 1

FTime(j,i,s,m) = finish time of product i, family j on machine m of stage s.

This time is equal to the sum of its start time and

processing time.

52

FTime(j,i,s,m) = STime(j,i,s,m) + PTime(j,i,s,m); j ∈ J, i ∈ Fj, s ∈ Ψ, and

m ∈ M(s)

x = the largest integer less than or equal to x

avg_proc/prd/mc(j) = the average processing time per product per machine for

family j at the first stage; j ∈ J

COT(q,j) = the average changeover time from family q to family j; q,

j ∈ J and q ≠ j. The value of COT(q,j) is obtained by

calculating the average of the total changeover times from

all products of family q to all products of family j.

avg_COT(j) = the average changeover time from all other families to

family j; j ∈ J. The value of avg_COT(j) is obtained by

dividing the sum of the average changeover times from all

other families to family j by N-1.

W1j = the ratio between avg_proc/prd/mc(j) and

min avg_proct/prd/mc(q); j ∈ J
 q ∈ J

W2j = the ratio between avg_COT(j) and

Jq∈
min COT(q); j ∈ J

m* = the minimum value of m(s); m* =

ψ∈s
min m(s)

FD(j) = the “final difference” value for family j; j ∈ J, calculated as

{W1j x avg_proc/prd/mc(j)} – {W2j x avg_COT (j)}. This

value is used to assign the first m* families to machines in

the first stage at the start of scheduling.

R = set of the m* families with the lowest values of FD(j),

|R| = m* and R = { f1, f2, …, fm*} where fj is the family with

53

∑
∈ Rj

jWKL)(

the jth lowest FD value. These families will be assigned

first at the start of the scheduling.

WKL(j) = the total processing time and setup time (or workload) of

family j in stage 1, j ∈ R, using a standard machine (i.e.,

speed = 100%). The value of WKL(j) is obtained by

summing the processing times of all products on a

standard machine at the first stage and the setup times of

all products using the products order determined in Step

1, as explained in section 5.1.2.

GT = the sum of the total processing and setup times of all

families in set R at the first stage, i.e.,

GT =

avg_GT(1) = The average processing time per machine for families in

set R, using standard machines at stage 1; i.e.,

avg_GT(1) = GT/ m(1)

num_mc(j) = total number of machines needed to process family j in

stage 1; j ∈ R. The value of num_mc(j) is obtained by

simply dividing the total processing time of family j at the

first stage (WKL(j)) by avg_GT(1).

Min_mach(j) = the minimum number of machines needed to process

family j in stage 1; j ∈ R. This value of is obtained as

follows:

 Min_mach(j) = max{ 1, num_mc(j) }

min_used = the minimum total number of machines needed to

process all families in set R in stage 1;

54

∑
∈ Rj

jmachMin)(_ min_used =

K = set of shared machines at the first stage. These

machines are the slowest m(1) – min_used machines.

Shared machines are those to which more than one

family has been assigned.

quota_time(j) = the limited production time of family j on the shared

machine; j ∈ G

Prior to the presentation of the FFSDSTH algorithm, the procedure used to

determine the start time of a product on a machine is presented below.

5.1.1 Start Time Determination

There are eight possible ways to determine the value of the start time

(STime(j,i,s,m)) as described below.

5.1.1.1 If j = the first family processed on machine m at the first stage; j ∈ J,

i = the first product scheduled in family j; i ∈ Fj, and m ∈ M(1), then:

STime(j,i,1,m) = ch(0,0,j,i,1)

5.1.1.2 If j = the first family scheduled on machine m at the first stage, i ≠ the

first product in family j processed on the machine, then:

STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)

where,

p = the product that precedes product i on machine m in the first

stage

 and j ∈ J, i, p ∈ Fj, m ∈ M(1)

5.1.1.3 If j ≠ the first family scheduled, i = the first product scheduled in family

j on machine m at the first stage. Then:

55
 STime(j,i1,m) = FTime(q,p,1,m) + ch(q,p,j,i,1)

where,

q = the family that precedes family j on machine m of stage s

p = the last product of family q scheduled on machine m of stage s

and j,q ∈ J, i ∈ Fj, p ∈ Fq, m ∈ M(1)

5.1.1.4 If j ≠ the first family scheduled, i ≠ the first product in j processed on

machine m at the first stage. Then:

 STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)

where,

p = the product in family j that precedes product i on machine m at

the first stage

 and j ∈ J, i, p ∈ Fj, m ∈ M(1)

5.1.1.5 If j = the first family scheduled, i = the first product in j processed on

machine m in stage s: s ∈ {2,3,…,S}. Then:

 STime(j,i,s,m) = FTime(j,i,s-1,mp)

where, j ∈ J, i ∈ Fj, m ∈ M(s), mp is the machine in stage s-1 on which

product i of family j was processed

5.1.1.6 If j = the first family scheduled, i ≠ the first product in family j

processed on machine m in stage s:s ∈ {2,3,…,S}. Then:

 STime(j,i,s,m) = max {FTime(j,p,s,m) + ch(j,p,j,i,s), FTime(j,i,s-1,mp)}

 where,

p = the product in family j that precedes product i on machine m

stage s

 j ∈ J, i, p ∈ Fj

 m ∈ M(s)

56
 mp is defined as above.

5.1.1.7 If j ≠ the first family scheduled, i = the first product in family j

processed on machine m in stage s:s ∈ {2,3,…,S}. Then:

 STime(j,i,s,m) = max{FTime(q,p,s,m)+ch(q,p,j,i,s), FTime(j,i,s-1,mp)}

 where,

 q = the family that precedes family j on machine m of stage s

 p = the last product of family q scheduled on machine m of stage s

 and j,q ∈ J, i ∈ Fj, p ∈ Fq, m ∈ M(s), mp is defined earlier.

5.1.1.8 If j ≠ the first family scheduled, i ≠ the first product in family j

processed on machine m in stage s:s ∈ {2,3,…,S}. Then:

 STime(j,i,s,m) = max{FTime(j,p,s,m)+ch(j,p,j,i,s), FTime(j,i,s-1,mp)}

 Where,

p = the product in family j that precedes product i on machine m

stage s

 j ∈ J, i, p ∈ Fj

m ∈ M(s)

mp is defined earlier.

If there is any change in the schedule, then the start time of all products and

families affected by the change are recalculated.

5.1.2 A Detailed Description of the FFSDSTH Algorithm

The detailed description of the FFSDSTH is presented below in Parts 1

through 4.

57
Part 1: Assigning Families to Machines at the First Stage

In order to assign families to machines at the first stage, the algorithm

starts by sorting products in an initial order within each family and calculating

some production and setup parameters for each family, as detailed in the

following steps.

Step 1: Make the initial arrangement of products in each family

Since this problem involves uniform machines, define a machine with

a standard speed (speed = 100%) for the first stage. Determine the

processing time of each product on this standard machine. For each

family, arrange the products as follows:

Calculate for each product the sum of its setup time from idling and

its processing time on the standard machine. Select as the first product

in the sequence the product with the lowest sum. Then calculate for each

remaining product the sum of its setup time from the previous product and

its processing time on the standard machine. Selected as the second

product in the sequence the product with the lowest sum. Repeat this

procedure until all products in each family have been completely ordered.

Details of the above procedure are given below.

1.1 Find the first product in the sequence.

Find i’ with:

jFi∈
min (T(j,i) + ch(0,0,j,i,1); j ∈ J

 1.2 Update Fj = Fj \ {i’}.

If Fj = φ, update J = J\ {j}. If J = φ, go to Step 2; otherwise, go to

Step 1.1.

If Fj ≠ φ, go to Step 1.3.

58

|}F|)1(m/{)m,1,i,j(PTime j
fj

1i

)1(m

1m
⋅∑ ∑

= =

|}F||F/{|)1,i,j,p,q(ch qj
fq

1p

fj

1i
⋅∑∑

= =

1.3 Find the next product.

 Find i’ with:

jFi∈

min (T(j,i) + ch(j,p,j,i,1); j ∈ J

where p is the last product scheduled so far on machine m at the

first stage.

Then, go to Step 1.2.

Step 2: Determine the “Final Difference” [FD(j)] of each family

This step determines the “Final Difference” [FD(j)] of each family,

which is used for selecting the families to be scheduled at the start of the

schedule. Calculations of some parameters must be made prior to the

determination of FD(j) as detailed below.

2.1 Calculate avg_proc/prd/mc(j):

 avg_proc/prd/mc(j) =

for j =1,2,…,N

 2.2 Calculate COT(q,j):

COT(q,j) is calculated by averaging the changeover time from all

products of family q to all products of family j.

COT(q,j) =

q, j ∈ J and q ≠ j, i ∈ Fj, p ∈ Fq

2.3 Calculate avg_COT(j):

 avg_COT(j) = ; q ≠ j, and q, j ∈ J

 N-1

∑

=

N

q

COT(q,j)
1

59
2.4 Calculate FD(j) as follows:

FD (j) = {W1j x avg_proc/prd/mc(j)} – {W2j x avg_COT (j)}

where, j ∈ J

Step 3: Assign families to the first-stage machines

 In assigning families to machines, one can either select a machine

and assign a family to it or select a family and then assign it to a machine.

The latter approach is used here.

In this step two tasks are performed. In the first task families are

selected to be assigned to the first-stage machines. In the second, these

families are assigned to machines.

3.1 Select m* families.

The first m* families are those with the lowest values of FD(j).

These families will constitute the elements of set R. At the start of the

schedule, only these m* families are assigned to the machines in

order to reduce idle times of the machines at the stage that has the

smallest number of machines.

3.2 Assign the selected families to machines.

Once the families to be scheduled at the start of the schedule

have been selected, the assignment of those families to machines is

made. The number and speeds of the machines are considered in

order to reduce machine idle times at the first stage as much as

possible. In this step, these families are assigned, one at a time, to

the first-stage machines. There are two cases to be considered.

3.2.1 Case 1: m(1) = m*

In this case, the algorithm assigns the family with the

minimum value of FD(j) on the fastest machine, the family with

60

∑
−

=
+

1

0
1)1,,,(

fj

y
yy iijch ∑

=

fj

i
ijT

1
),(

the second lowest value of FD(j) to the second fastest machine,

and so on.

3.2.2 Case 2: m(1) > m*

Since the number of machines is greater than the number

of families to be assigned to these machines, each of the m*

families may be processed on one or more than one machines,

depending on their total processing times. In addition, some of

these families may share a machine with other families. The

assignment of the m* families in this case is described as

follows.

3.2.2.1 Calculate the total processing time and setup time

(WKL(j)) for each family j; j ∈ R on the standard

machine at the first stage. This value is calculated by

summing the processing times of all products and the

setup times of all products when they have been

arranged in the order or sequence specified in Step 1.

 WKL(j) = +

j∈ R, iy, iy+1 ∈ Fj

where, iy = the product in position y. If y = 0, that

means product iy+1 is the first product in a sequence,

and both iy and j are equal to 0 when y = 0.

3.2.2.2 Calculate the grand total processing times (GT) of all

families in set R.

61

∑
∈ Rj

jmachMin)(_

∑
∈ Rj

jWKL)(

)1(_
)(

GTavg
jWKL

GT =

3.2.2.3 Calculate the average processing time to be allocated

to each machine at the first stage when using the

standard machine (avg_GT(1)).

 avg_GT(1) =

3.2.2.4 Calculate the number of machines (num_mc(j)), in

stage 1, to be assigned to each family in set R.

 num_mc(j) =

3.2.2.5 Calculate the minimum number of machines

(Min_mach(j)), needed to process family j from set R in

the first stage:

 Min_mach(j) = max{1, num_mach(j) } ; j ∈ R

3.2.2.6 Calculate the minimum number of machines

(min_used) needed to process all families in set R at

the fist stage:

 min_used =

3.2.2.7 Assign the first m* families to the first min_used

machines. This procedure starts by assigning family j

with the lowest FD(j) value to the Min_mach(j) fastest

machines. Then family q with the second lowest FD(q)

value to the next Min_mach(q) fastest machines, and

) 1 (m

GT

62
so on. This procedure is then repeated until all the

families in set R have been scheduled on the first

min_used fastest machines. For every family j with the

value of num_mach(j) –Min_mach(j) = 0, j ∈ R, update

R = R \ {j} and J = J \ {j}.

3.2.2.8 The remaining families in set R need to be scheduled

on the m(1) - min_used remaining machines. These

machines are the shared machines which form the

elements of set K.

Since the families in remaining set R have to

share machines, the limited production times

(quota_time(j)) of these families on the machines must

be determined:

 quota_time(j) = (num_mach(j) - Min_mach(j)) x

avg_GT(1) ; j ∈ R

For families not completely scheduled (i.e., those

in the remaining set R), the assignment of these

families starts with the assignment of one family to the

fastest shared machine. The procedure is then

repeated in a cyclic order, as presented below.

3.2.2.8.1 Find j’ such that

COT(j’,q) =
jq,

min (COT(j,q));q, j ∈ R and q ≠ j

63
3.2.2.8.2 Schedule family j’ on the fastest shared

machine (e.g., machine m': m' ∈ K).

3.2.2.8.3 Update R = R\{j’}, J=J\ {j’}, and K = K \ {m'}

If R ≠ φ and K ≠ φ, go back to Step

3.2.2.8.1,

 if R ≠ φ and K = φ, reset K back to its

original set value, and go to Step

3.2.2.8.4,

 and if R = φ, go to Step 4.

3.2.2.8.4 Assign the next family, i.e., family j’ to the next

fastest shared machine (i.e. machine m': m'∈ K)

where

 COT (q,j’) =
j

min COT(q,j), j ∈ R

 and q is the last family scheduled on machine

m’ so far.

 Update R = R\{j}’,J=J \ {j’}, and K = K\ {m'}.

If R ≠ φ and K ≠ φ, go back to Step 3.2.2.8.4,

if R ≠ φ and K = φ, reset K back to its original

set value, and go back to Step 3.2.2.8.4, and if

R = φ, go to Step 4.

Step 4: Assign the remaining families to the machines at the first stage

In this step, the heuristic selects a machine and then assigns one

of the remaining families to that machine. The assignment of the

remaining families to the machines at the first stage starts with scheduling

64
one family to the fastest machine. The family selection procedure

consists of finding the family with the lowest sum of the average

changeover time from the last family (e.g., family q) scheduled on that

machine (COT(q,j)) and the average processing time per product per

machine of the family at the first stage (avg_proc/prd/mc(j)). This

procedure is then repeated in a cyclic order until all remaining families

have been assigned to the machines. A description of the procedure is

given below:

4.1 Determine the fastest remaining machine (e.g., machine m)

4.2 Find family j’ in the remaining set J with:

Jj∈
min [COT(q,j) + avg_proc/prd/mc(j)]

Where, q = the last family on machine m of stage 1

4.3 Schedule family j’ on machine m.

4.4 Update J = J \ {j’} and M(1) = M(1) \ {m}.

4.5 If M(1) ≠ φ, and J ≠ φ, then go back to Step 4.1.

If M(1) = φ, and J ≠ φ, set M(1) back to its original set value and go to

Step 4.1.

If J = φ, go to Part 2.

Part 2: Sequencing Products on Machines at the First Stage

After all families are assigned to the first-stage machines, the product

scheduling is performed. There are two types of product scheduling on these

machines: 1) Product scheduling for the first m* families, and 2) product

scheduling for the remaining families. The Earliest Finish Time (EFT) rule was

65







 +

',

)',,',()',,',(
msv

msijTmsijSTime







 +

msv
msijTmsijSTime

,

),,,(),,,(

used to sequence products on machines at the first stage in an attempt to reduce

machine idle times. A description of the EFT rule is presented below:

Earliest Finish Time (EFT) Rule

The EFT rule selects from the remaining products the one that yields the

earliest finish time. The following procedure is followed to apply this rule when

scheduling the products of family j on a set of machines at stage s.

1. Initialization:

 Fj = set of unscheduled products in family j

 MU(j) = set of machines needed to process the products of family j,

MU(j) ⊂ M(s)

2. Scheduling steps:

2.1 Product i’ is selected to be processed on the machine with the

earliest finish time such that:

 FT(j,i’,s,m’) =

)(,
min

jMUmFi j ∈∈

2.2 Assign product i’ to machine m’.

2.3 Update the finish time of product i’ on machine m’

FTime(j,i’,s,m’) =

Fj = Fj\ {i’}. Go back to Step 2.1 until Fj = φ.

Step 5: Schedule products of the first m* families on machines at the first stage

5.1 For each family with no shared machine:

The products of these families are scheduled on the

corresponding machines using the EFT rule.

66
5.2 For other families scheduled on shared machines:

5.2.1 Start with products of the families assigned to the fastest

shared machine(s). The families are selected in the order in

which they were assigned to the shared machine in Steps 3

and 4 of Part 1.

5.2.2 Define MU(j) as the set of machines to which the selected

family j is assigned, including the shared machine.

5.2.3 Apply the EFT rule in sequencing these products on the

machines in MU(j). If the machine selected with the EFT

rule is the shared machine, make sure that quota_time(j) is

not exceeded; otherwise, do not schedule the selected

product on the shared machine, remove the shared machine

from MU(j), and proceed with the EFT rule.

5.2.4 Update R = R \ {j}. If R ≠ φ, update j to the following family

and go to Step 5.2.2; otherwise, go to Step 6.

Step 6: Schedule products of the remaining families

Each of the remaining families is scheduled on only one machine.

The Earliest Finish Time (EFT) rule is used to sequence the products of

each of these families on the first-stage machines.

Part 3: Balancing the Production Times of Machines at the First Stage

Step 7: Balance the production times of machines at the first stage.

Balancing the production times of machines at the first stage is

performed by moving one or more of the products of a family from the

machine with the latest completion time to other machines such that the

latest completion time of the first-stage machines is reduced. Balancing

67
is performed after the assignment of all products to machines at the first

stage has been completed. The procedure used to balance the

production times of the first-stage machines is presented below:

7.1 Find the machine with the latest completion time (e.g., machine

m’)

7.2 Remove the last product scheduled on machine m’.

7.3 Calculate the latest completion time on each of the machines after

scheduling the removed product last within its family if scheduled

on the machine; otherwise, last on the machine. Select the one

with the smallest updated completion time and the corresponding

latest completion time.

7.4 If the latest completion time is improved, perform the product re-

schedule and return to Step 7.1; otherwise, do not remove the

product from machine m’, and go to Step 7.5.

7.5 Repeat Steps 7.1 through 7.4 with the product scheduled before

the product used in the last removal attempt. If all attempts have

been exhausted, proceed with Part 4.

Part 4: Scheduling All products on All other Stages (i.e., stages 2,3,4,…,S)

After all products are completely assigned to the first-stage machines, the

assignment of these products on machines at the succeeding stages needs to be

performed. A Look Ahead (LA) rule was developed to sequence the products on

machines at stages 2 through S, in order to obtain low product finish times and a

low makespan. Prior to the presentation of the LA rule, the notation used to

explain this rule is presented and is followed by details of the rule. Figure 5.2

shows the flowchart for this rule.

68
Notation:

i, j = product i of family j, which just finished processing in the previous

stage (stage s-1). It is the current product looking for a machine to

be processed in stage s.

MU(j) = set of machines in stage s that are processing products of family j,

MU(j) ⊂ M(s)

m = the machine in set MU(j) that yields the earliest finish time for

product i of family j

m' = the machine in set M(s) that yields the earliest finish time for product

i of family j. If machine m’ is currently processing products of family

q≠j, then denote the last product of family q, processed on this

machine, as p’.

 p = a product, if any, of family q that is being processed at the previous

stage (stage s-1).

mp = the machine in stage s-1 on which product p of family q is

processed

DST(q,p) = the delay in the start time of product p of family q when it is

scheduled after product i on machine m’. The value of the DST(q,p)

is the difference between the start time of product p when it is

scheduled after product i and the start time when it is scheduled

directly after product p’ on machine m’. This value is calculated as

follows:

DST(q,p) = max {0, FTime(j,i,s,m’) + ch(j,i,q,p,s,) –

 max{FTime(q,p,s-1, mp), FTime(q,p’,s,m’) + ch(q,p’,q,p,s)}}.

69
RFT(j,i) = the reduction in the finish time of product i of family j when it is

processed on machine m’ instead of machine m.

= FTime(j,i,s,m) – FTime(j,i,s,m’).

LA-3 Apply the EFT rule to determine the
machine in MU(j) (e.g. machine m) yielding the

earliest finish time of product i of family j LA-13 Schedule product i of family j
on this machine (machine m’)

No

Yes

Determine the set of machines to which family j
is assigned (MU(j)).

Yes No

LA-5 Check whether
the machines m’ and

m are the same family.

LA-2 Check whether there
is any machine in stage s is
processing the products of

family j.

LA-12 Apply the EFT rule to
determine the machine in M(s) (e.g.

machine m’) yielding the earliest
finish time of product i of family j

LA-4 Apply the EFT rule to determine the
machine in M(s) (e.g. machine m’) yielding the

earliest finish time of product i of family j

 Initialization

Schedule steps:

LA-1 Determine the product (e.g., product i) finish first from
stage s-1

Go to Step LA-6.

Figure 5.2: Flowchart of the Look Ahead Rule

70

LA-7 Calculate the sum of finish time of product i of family j on
machine m’ (FT(j,i,s,m’)) and the changeover time from this

product to product p of family q (ch(j,i,q,p,s)).

No

Yes

LA-6 Check if there is any
incoming product of family q
(e.g., product p of family q)

being processed in the previous
stage.

Yes

No

LA-9 Check if FT(j,i,s,m’) +
ch(j,i,q,p,s,m’) ≤
STime(q,p,s,m’))

No

Yes

LA-11 Do not schedule product i of family j on machine m’.

LA-10 Check whether the value
of RFT(j,i) is greater than that of

the DST(q,p).

GO TO STEP LA-13

Figure 5.2: Flowchart of the Look Ahead Rule (continued)

LA-8 Calculate the start time of product p of family q on machine
m’ at stage s when it is scheduled after product p’

(STime(q,p,s,m’))

Go back to LA-1 to schedule this product on other machines.

71
Look Ahead (LA) Rule

The LA rule is applied when a product from a certain family (e.g., product i

from family j) has finished processing in a previous stage (stage s-1; s >1). The

algorithm starts by using the EFT rule to determine the best machine, e.g.

machine m’, for this product which yields the earliest product finish time. Th LA

rule then checks if the product that precedes product i on machine m' is from the

same family. If true, then product i is scheduled on machine m’ as soon as it

becomes available. Otherwise, the rule checks if there is an incoming product of

family q from the previous stage (e.g., product p of family q) to be processed on

machine m’ in the near future (i.e., before time Γ where Γ is equal to the finish

time of product i on machine m’, plus the changeover time to product p). If not

true, this rule schedules product i of family j on machine m’ as soon as the

machine becomes available. Otherwise, the rule schedules product i of family j

on machine m’ if either of the following conditions is true:

1. The scheduling of product i of family j on machine m’ does not delay

the start time of the incoming product of family q. In other words,

product i of family j can be scheduled on machine m’ if the value of

DST(q,p) is equal to zero. This results in an earlier finish time of

product i by FTime(j,i,s,m) – FTime(j,i,s,m’) time units.

2. The amount of RFT(j,i) is greater than that of DST(q,p). For this

condition, the machine idle time would be reduced by

RFT(j,i) – DST(q,p) time units.

As described above, the LA rule tries to reduce the machine idle time.

The detailed procedure for the LA rule is given below.

72
 Initialization:

Let H = the set of products arranged in non-decreasing order of finish

times from machines in stage s -1, s >1.

Scheduling steps.

LA-1 Let i be the next unscheduled product in set H.

LA-2 Check whether there is any machine in stage s processing products

from the same family as product i (i.e., from family j). If true,

determine the set of the machines in stage s processing the products

of family j (MU(j)) and go to LA-3. If no machine is processing

products of this family, go to LA-12.

LA-3 Apply the EFT rule to determine machine m, m ∈ MU(j), that yields

the earliest finish time for product i, family j.

LA-4 Apply the EFT rule to determine machine m’, m’ ∈ M(s), which yields

the earliest finish time of product i, family j.

LA-5 If machines m and m’ are the same machine, go to LA-13; otherwise,

go to LA-6.

LA-6 Check if there is any product of family q (e.g., product p) being

processed in the previous stage. If yes, go to LA-7; otherwise, go to

LA-13.

LA-7 Calculate the sum of the finish time of product i, family j on machine

m’ (FTime(j,i,s,m')) and the changeover time from this product to

product p of family q (ch(j,i,q,p,s)).

LA-8 Calculate the start time of product p of family q on machine m’ of

stage s when scheduled after product p’:

73
 STime(q,p,s,m’) = max {FTime(q,p,mp,s-1), FTime(q,p’,s,m’) +

ch(q,p’,q,p,s)}.

LA-9 Compare the time in LA-7 (i.e., FTime(j,i,s,m') + ch(j,j,q,p,s')} to that

in LA-8 (i.e., STime(q,p,s,m’))

 If FT(j,i,s,m') + ch(j,j,q,p,s)} ≤ STime(q,p,s,m’), go to LA-13;

otherwise, go to LA-10.

LA-10 Check whether the value of RFT(j,i) = FTime(j,i,s,m) – FTime(j,i,s,m’)

is greater than that of DST(q,p). If yes, go to LA-13; otherwise, go to

LA-11.

LA-11 Do not schedule product i of family j on machine m’. Go back to LA-1

(i.e., repeat this procedure until the product is scheduled on a

machine in this stage).

LA-12 Apply the EFT rule to determine machine m’, m’ ∈ M(s), that yields

the earliest finish time for product i, family j.

LA-13 Schedule product i of family j on machine m’.

The steps for Part 4 are given below.

Step 8: Schedule all products on all other stages (i.e., stage 2, 3, … , S) and

calculate the makespan

8.1 Set s = 2.

8.2 Set H = the set of products arranged in non-decreasing order of finish

times from machines in stage s-1.

8.3 Schedule the first product (e.g., product i) in set H on one of the

machines of stage s using the LA rule.

74

8.4 Update H = H \ {i}. If H ≠ φ, go back to Step 8.3. If H = φ, update

s = s + 1. If s ≤ S, go to Step 8.2; otherwise, calculate the makespan

and go to Phase 2.

5.2 Illustration of the FFSDSTH Algorithm

 To demonstrate how this algorithm works, the following problem was generated

and will be used as an example. The problem data are as follows.

Number of families: N = 4

Number of stages: S = 3

Number of products: fj = 3; j = 1,2,3,4

Number of machines: m(1) = 3, m(2) = 2, and m(3) = 2

Speed of machines at each stage ~ U(0.85,1.15), resulting in the speeds shown in

Table 5.1.

Processing time of each product on the standard machine at each stage ~ U(10,50),

resulting in the processing times shown in Table 5.2.

Setup time from idling in stage 1 for each product in terms of percentage of processing

time ~ U(5%,15%), resulting in the setup times shown in Table 5.3.

Changeover time between two products at each stage (ch(q,p,j,i,s)) in terms of

percentage of processing time ~U(10%,40%) and ~U(5%,15%) for major and minor

setup times respectively, resulting in the times shown in Table 5.4.

Table 5.1: Speeds of Machines at Each Stage

Speed of Machine

 1 2 3

Stage 1 1.1 1.08 0.95

Stage 2 1 0.93 -

Stage 3 1.06 1.00 -

75
Table 5.2: Processing Time of Each Product at Each Stage on the Standard Machine

Processing time of Products
Stage Family

Product 1

Product 2

Product 3

j = 1 47.68 18.19 26.55

j = 2 34.72 31.58 33.43

j = 3 21.02 27.71 32.58

s =1

j = 4 43.13 16.06 23.36

j = 1 23.74 11.07 33.01

j = 2 11.94 11.31 16.59

j = 3 14.99 43.76 25.47

s =2

j = 4 36.55 33.76 33.46

j = 1 32.47 24.8 28.59

j = 2 48.49 34.25 22.76

j = 3 33.32 12.87 20.25

s =3

j = 4 48.77 27.88 17.74

Table 5.3: Setup Time from Idling for Each Product in Stage 1

Setup time from Idling of Products
Family

ch(0,0,j,1,1)

ch(0,0,j,2,1)

ch(0,0,j,3,1)

j = 1 5.97 6.27 4.53

j = 2 7.48 6.29 7

j = 3 5.75 7.37 5.74

j = 4 5.93 6.16 5.54

76

Table 5.4: Changeover Times between Products at each Stage (ch(q,p,j,i,s))

Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s))

Family q = 1 Family q = 2 Family q = 3 Family q = 4
Stage s Family j Product i

p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3

1 - 4.19 4.28 11.06 8.60 6.51 6.43 7.19 7.82 10.61 10.91 8.94

2 1.60 - 1.93 10.98 9.00 8.90 9.19 11.77 10.31 9.05 11.15 8.65 1

3 4.27 4.13 - 6.26 8.06 11.49 9.93 11.73 8.01 8.09 8.20 6.48

1 7.80 6.23 10.05 - 3.24 3.91 10.03 11.42 11.21 10.23 8.97 6.88

2 8.32 10.58 9.33 2.34 - 3.66 7.90 11.77 9.71 7.37 9.96 7.98 2

3 9.25 10.85 11.41 2.27 4.00 - 6.01 11.02 10.41 9.19 9.32 10.21

1 8.74 9.47 6.62 8.57 9.27 6.22 - 1.97 2.02 6.15 6.94 6.02

2 8.11 7.73 6.51 10.37 9.94 11.62 2.95 - 2.90 10.89 11.24 11.08 3

3 9.44 10.27 6.55 10.83 11.19 7.79 1.57 3.52 - 6.42 11.22 11.25

1 6.35 6.94 10.08 11.30 10.59 10.22 8.90 10.95 10.99 - 4.35 4.47

2 10.64 11.63 10.19 10.78 8.63 11.82 10.32 10.77 6.24 1.65 - 3.91

1

4

3 9.78 6.57 10.74 9.97 10.73 6.26 6.21 6.98 10.22 1.82 4.30 -

1 - 3.09 2.82 7.68 9.31 8.18 9.46 11.37 11.07 8.74 7.38 9.67

2 2.34 - 3.17 7.28 7.77 11.12 8.51 9.21 9.82 10.95 10.45 7.02 1

3 4.42 4.24 - 10.17 6.84 7.02 7.54 6.90 8.54 11.93 11.60 7.76

1 10.52 11.17 7.61 - 3.83 3.89 8.74 10.64 6.23 10.63 11.63 11.75

2 6.06 6.22 8.16 3.94 - 3.82 9.93 6.34 7.45 8.5 9.03 8.81

2

2

3 11.98 10.14 11.57 2.40 4.18 - 9.76 8.92 8.37 10.14 10.79 10.88

77

Table 5.4: Changeover Times between Products at each Stage (ch(q,p,j,i,s)) (continued)

Changeover time from product p of family q to product i of family j (ch(q,p,j,i,s))

Family q = 1 Family q = 2 Family q = 3 Family q = 4
Stage s Family j Product i

p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3 p =1 p = 2 p = 3

1 7.72 7.16 8.13 6.83 10.59 6.60 - 2.98 2.94 8.50 7.36 9.26

2 6.33 9.13 8.63 7.64 11.59 7.33 3.85 - 3.41 8.74 8.11 9.61 3

3 9.38 8.99 11.18 11.39 11.83 6.05 2.19 3.72 - 10.06 11.85 10.46

1 6.06 7.80 7.56 6.65 7.31 11.40 8.24 7.47 10.48 - 2.78 3.64

2 10.21 7.30 10.16 7.77 9.52 8.01 11.94 9.07 8.53 4.36 - 1.59

2

4

3 11.66 10.94 9.82 8.07 10.57 8.57 9.20 11.04 10.50 4.36 3.92 -

1 - 3.27 2.91 10.82 8.55 9.68 9.74 6.89 9.50 10.27 6.64 11.08

2 3.14 - 1.76 11.00 6.83 7.14 11.08 10.84 9.09 6.02 6.53 9.11 1

3 3.52 4.14 - 10.12 7.05 11.74 8.52 8.91 10.81 6.98 6.50 11.94

1 10.42 7.19 11.54 - 2.33 3.18 8.34 7.27 7.37 11.98 11.65 10.44

2 10.74 10.76 8.35 1.65 - 2.58 6.83 8.96 8.48 6.12 9.77 8.64 2

3 10.8 10.31 7.99 3.93 3.47 - 6.52 11.73 6.95 10.44 6.22 10.09

1 10.04 10.93 10.84 10.04 10.54 9.06 - 3.27 3.88 11.99 6.00 8.50

2 9.44 8.38 6.11 8.76 11.74 7.54 3.73 - 2.67 11.05 10.06 11.90 3

3 11.66 11.83 6.11 8.45 8.41 7.13 2.26 1.76 - 6.34 9.52 9.84

1 6.82 8.46 9.62 9.43 10.58 7.13 9.38 6.37 8.69 - 4.10 3.69

2 10.38 9.65 11.18 8.22 10.36 8.77 6.22 11.26 8.83 2.75 - 3.44

3

4

3 8.96 9.85 10.48 8.81 9.82 7.76 11.02 6.93 8.32 3.13 3.87 -

78

Part 1: Assigning Families to Machines at the First Stage

 Step 1: Make the initial arrangement of products in each family

1.1 Find the first product.

j = 1: ch(0,0,j,1,1) + T(j,1) = 5.97 + 47.68 = 53.65

ch(0,0,j,2,1) + T(j,2) = 6.27 + 18.19 = 24.46

ch(0,0,j,3,1) + T(j,3) = 4.53 + 26.55 = 31.08

Then, the first product of the sequence in this family is product 2.

1.2 Update F1 = F1\{2} = {1,3}

1.3 Find the next product.

 ch(1,2,1,1,1) + T(1,1) = 4.19 + 47.68 = 51.87

 ch(1,2,1,3,1) + T(1,3) = 4.13 + 26.55 = 30.68

 The second product of the sequence in this family is product 3.

Since there is only one product left, the last product in the

products sequence of family 1 is product 1. This procedure is repeated

with families 2, 3 and 4, resulting in the following sequences:

Products sequence for family 1 is 2--> 3--> 1.

Products sequence for family 2 is 2--> 3--> 1.

Products sequence for family 3 is 1--> 2--> 3.

Products sequence for family 4 is 2--> 3--> 1.

Step 2: Determine the “Final Diffrence” [FD(j)] of each family.

2.1 Calculate avg_proc/prd/mc(j); j = { 1,2,3,4}

avg_proc/prd/mc(1) = {(47.68 + 18.19 + 26.55) x

 (1/1.1+1/1.08 +1/0.95)} /(3x3)

 = 29.65

79

avg_proc/prd/mc(2) = {(34.72 + 31.58 + 33.43) x

(1/1.1 + 1/1.08 +1/0.95)} /(3x3)

 = 32.00

avg_proc/prd/mc(3) = {(21.02 + 27.71 + 32.58) x

(1/1.1 + 1/1.08 +1/0.95)} /(3x3)

 = 26.09

avg_proctime/prd/mc(4) = {(43.13 + 16.06 + 23.36) x

(1/1.1 + 1/1.08 +1/0.95)} /(3x3)

 = 26.48

2.2 Calculate COT(q,j)

COT(2,1) = {11.06 +8.6 +6.51+10.98+9+8.9+6.26+8.06+11.49} /(3x3)

= 8.98

 Using the same procedures, the following values are obtained.

 COT(3,1) = 9.15, COT(4,1) = 9.12,

 COT(1,2) = 9.31, COT(3,2) = 9.94,

 COT(4,2) = 8.90, COT(1,3) = 8.16,

COT(2,3) = 9.53, COT(4,3) = 9.02,

COT(1,4) = 9.21, COT(2,4) = 10.03,

COT(3,4) = 9.06

2.3 Calculate avg_COT(j)

avg_COT(1) = (8.98 + 9.15+9.12) / 3 = 9.08

avg_COT(2) = 9.38

avg_COT(3) = 8.90

avg_COT(4) = 9.43

80

2.4 Calculate FD(j)

The minimum value of an average processing time per product

per machine at the first stage is avg_proc/prd/mc(3) = 26.09, and the

minimum value of the average changeover time at the first stage is

avg_COT(3) = 8.90. Then, the FD(j) values are obtained as follows.

FD(1) = (29.65)2/26.09 – (9.08)2/8.9 = 24.43

FD(2) = (32.00)2/26.09 – (9.38)2/8.9 = 29.36

FD(3) = (26.09)2/26.09 – (8.90)2/8.9 = 17.19

FD(4) = (26.48)2/26.09 – (9.43)2/8.9 = 16.88

Step 3: Assign some families to the first-stage machines.

3.1 m(s*) = 2, R = {4,3}

3.2 Since m(1) > m(s*), then case 2 is applied.

3.2.2.1 WKL(4) = (6.16 + 4.3+ 4.47) + (43.13+ 16.06+23.36)

 = 97.48 time units

 WKL(3) = (5.75 + 2.95+ 3.52) + (21.02+ 27.71+ 32.58)

= 93.53 time units

3.2.2.2 GT = 97.48 + 93.53 = 191.01 time units

3.2.2.3 avg_GT(1,m) = 191.01/3 = 63.67 time units

3.2.2.4 num_mc(4) = 97.48/63.67 = 1.53 machines

 num_mc(3) = 93.53/63.67 = 1.47 machines

3.2.2.5 min_mach(4) = 1 machine

 min_mach(3) =1 machine

3.2.2.6 min_used = 1+ 1 = 2 machines

3.2.2.7 Assign family 4 to machine 1, and assign family 3 to

machine 2.

81

3.2.2.8 R = {4,3}

 K= {3}

quota_time(4) = (1.53 – 1) x 63.67 = 33.75 time units

quota_time(3) = (1.47 – 1) x 63.67 = 29.92 time units

3.3.2.8.1 – 3.3.2.8.4 COT(3,4) = 9.06

 COT(4,3) = 9.02

 Since the minimum value is 9.02, schedule family 4

on the shared machine first (i.e., machine 3) and then

family 3. Go to Step 4.

Step 4: Assign the remaining families to the machines at the fist stage

 4.1 Set M(1) = {1,2}. The fastest machine in this set is 1.

 4.2 The candidate families are families 1 and 2 (set J = {1,2}).

 Calculate:

 COT(4,1) + avg_proctime/prd/mc(1) = 9.12 + 29.65

 = 38.77

COT(4,2) + avg_proctime/prd/mc(2) = 9.38 + 32.00

 = 41.38

4.3 Since the minimum value is 38.77, then schedule family 1 on machine

1.

4.4 Set J = {2} and M(1) = {2}.

4.1 The fastest remaining machine is 2.

4.2 Since family 2 is the last family to be scheduled, it is assigned to

machine 2.

Figure 5.3 shows the assignment of families to the machines at

the first stage.

82

Part 2: Sequencing products on machines at the first stage

Step 5: Schedule products of the first m* families (i.e., m* = 2)

Case 5.2 is applied.

5.2.1 Since family 4 is the first family scheduled on the shared machine

(i.e., machine 3), its products are sequenced first.

5.2.2 MU(4) = {1,3}

5.2.3 Apply the EFT rule to schedule the products of family 4.

Scheduling of the first product:

FTime(4,1,1,1) = ch(0,0,4,1,1) + PTime(4,1,1,1)

= 5.93+43.13/1.1 = 45.14

 FTime(4,2,1,1) = ch(0,0,4,2,1) + PTime (4,2,1,1)

= 6.16 + 16.06/1.1 = 20.76

FTime(4,3,1,1) = ch(0,0,4,3,1) + PTime (4,3,1,1)

= 5.54 + 23.36/1.1 = 26.78

FTime(4,1,1,3) = ch(0,0,4,1,1) + PTime (4,1,1,3)

= 5.93+43.13/0.95 = 51.33

 Machine 1:

 Machine 2:

 Machine 3:

Family 4

Family 3

Family 4 Family 3

Family 1

Family 2

 Figure 5.3: The Assignment of all Families to the First-Stage Machines

83

FTime(4,2,1,3) = ch(0,0,4,2,1) + PTime (4,2,1,3)

= 6.16 + 16.06/0.95 = 23.06

 FTime(4,3,1,3) = ch(0,0,4,3,1) + PTime (4,3,1,3)

= 5.54 + 23.36/0.95 = 30.13

Since FTime(4,2,1,1) is the minimum value, schedule

product 2 of family 4 on machine 1.

 Scheduling the next products of family 4.

 FTime(4,1,1,1) = FTime(4,2,1,1) + ch(4,2,4,1,1) + PTime (4,1,1,1)

= 20.76 + 4.35 + 43.13/1.1 = 64.32

FTime(4,3,1,1) = FTime(4,2,1,1) + ch(4,2,,4,3,1) + PTime (4,3,1,1)

= 20.76 +4.30 + 23.36/1.1 = 46.30

FTime(4,1,1,3) = ch(0,0,4,1,1) + PTime (4,1,1,3)

 = 5.93+43.13/0.95 = 51.33

FTime(4,3,1,3) = ch(0,0,4,3,1) + PTime (4,3,1,3)

 = 5.54 + 23.36/0.95 = 30.13

From the above calculations, schedule product 3 of this

family on machine 3. Since machine 3 is the shared machine,

then go back to Step 5.2.4, check whether the limited processing

time of family 4 (quota_time(4)) on the shared machine is not

exceeded, as detailed below.

quota_time(4) = (1.53 - 1) x (63.67) = 33.75 time units.

FTime(4,3,1,3) = 30.13 time units

Since the value of quota_time(4) is greater than that of

FTime(4,3,1,3), product 3 of family 4 is scheduled on machine 3,

84

and this machine can still be considered to process the remaining

products of family 4.

Scheduling of the last product of family 4.

 FTime(4,1,1,1) = FTime(4,2,1,1) + ch(4,2,4,1,1) + PTime(4,1,1,1)

= 20.76 + 4.35 + (43.13/1.1)

= 64.32

FTime(4,1,1,3) = FTime(4,3,1,3) + ch(4,3,4,1,1) + PTime(4,1,1,3)

= 30.13 + 4.47 + (43.13/0.95)

= 80.00

 Then, schedule product 1 of family on machine 1.

5.2.4 Update R = R \ {4} = {3}, and go back to Step 5.2.2 in order to

schedule the products of family 3, as presented below.

Scheduling of the products of family 3 to the machines at the first

stage.

5.2.2 MU(3) = {2,3}

 5.2 3 Apply the EFT rule to schedule the products of this family.

Scheduling of the first product of family 3.

 FTime(3,1,1,2) = ch(0,0,3,1,1) + PTime(3,1,1,2)

= 5.75 + 21.02/1.08 = 25.21

 FTime(3,2,1,2) = ch(0,0,3,2,1) + PTime(3,2,1,2)

= 7.37 + 27.71/1.08 = 33.03

 FTime(3,3,1,2) = ch(0,0,3,3,1) + PTime(3,3,1,2)

= 5.74 + 32.58/1.08 = 35.91

 FTime(3,1,1,3) = FTime(4,3,1,3)+ch(4,3,3,1,1) + T(3,1,1,3)

= 30.13 +6.02 + 21.02/0.95 = 58.28

85

 FTime(3,2,1,3) = FTime(4,3,1,3)+ch(4,3,3,2,1) + T(3,2,1,3)

= 30.13+11.08 + 27.71/0.95 = 70.38

FTime(3,3,1,3) = FTime(4,3,1,3)+ch(4,3,3,3,1) + T(3,3,1,3)

 = 30.13+11.25 + 32.58/0.95 = 75.67

 From the above calculations, schedule product 1 of family

3 on machine 2. Scheduling the remaining products of family 3 is

continued as follows.

FTime(3,2,1,2) = FTime(3,1,1,2)+ ch(3,1,3,2,1) + PTime(3,2,1,2)

 = 25.21+2.95 + 27.71/1.08 = 53.82

FTime(3,3,1,2) = FTime(3,1,1,2)+ ch(3,1,3,3,1) + PTime(3,3,1,2)

= 25.21+1.57 + 32.58/1.08 = 56.95

FTime(3,2,1,3) = FTime(4,3,1,3)+ch(4,3,3,2,1) + PTime(3,2,1,3)

= 30.13+11.08 + 27.71/0.95 = 70.38

FTime(3,3,1,3) = FTime(4,3,1,3)+ch(4,3,3,3,1) + PTime(3,3,1,3)

= 30.13+11.25 + 32.58/0.95 = 75.67

So, schedule product 2 of family 3 on machine 2. Finally, to

schedule the last product of this family:

FTime(3,3,1,2) = FTime(3,2,1,2)+ch(3,2,3,3,1) + PTime(3,3,1,2)

= 53.82+3.52 + 32.58/1.08 = 87.51

FTime(3,3,1,3) = FTime(4,3,1,3)+ch(4,3,3,3,1) + PTime(3,3,1,3)

= 30.13+11.25 + 32.58/0.95 = 75.67

Hence, schedule product 3 of family 3 on machine 2.

5.2.5 Update R = R \ {3} = φ. Since R = φ, go to Step 6.

86

 Step 6: Sequence products of the remaining families to machines at the first stage

The EFT rule is also applied to sequence the products of the

families scheduled next on each machine.

Scheduling the products of family 1.

1. Find the first product of this family to be scheduled using the EFT rule.

FTime(1,1,1,1) = FTime(4,1,1,1)+ ch(4,1,1,1,1) + PTime(1,1,1,1)

= 64.32 + 10.61 + 47.50/1.10 = 118.11

FTime(1,2,1,1) = FTime(4,1,1,1)+ ch(4,1,1,2,1) + PTime(1,2,1,1)

= 64.32 + 9.05 + 18.19/1.10 = 89.91

FTime(1,3,1,1) = FTime(4,1,1,1)+ ch(4,1,1,3,1) + PTime(1,3,1,1)

= 64.32 + 8.09 + 26.55/1.10 = 96.55

Hence, schedule product 2 of family 1 on machine 1.

2. Find the next product of the family to be scheduled.

FTime(1,1,1,1) = FTime(1,2,1,1)+ ch(1,2,1,1,1) + PTime(1,1,1,1)

= 89.91 + 4.19 + 47.50/1.10

= 137.28

FTime(1,3,1,1) = FTime(1,2,1,1)+ ch(1,2,1,3,1) + PTime(1,3,1,1)

= 89.91 + 4.13 + 26.55/1.10

= 118.18

Hence, schedule product 3 of family 1 on machine 1. Product 1 of

family 1 is then scheduled as the last product. The finish time of product

1 is determined as follows.

FTime(1,1,1,1) = FTime(1,3,1,1)+ ch(1,3,1,1,1) + PTime(1,1,1,1)

= 118.18 + 4.28 + 47.50/1.10 = 165.64

87

Scheduling the products of family 2

3. Find the first product of this family to be scheduled using the EFT rule.

FTime(2,1,1,2) = FTime(3,2,1,2)+ ch(3,2,2,1,1) + PTime(2,1,1,2)

= 53.82 + 11.42 + 34.72/1.08

= 97.39

FTime(2,2,1,2) = FTime(3,2,1,2)+ ch(3,2,2,2,1) + PTime(2,2,1,2)

= 53.82 + 11.77 + 31.58/1.08

= 94.83

FTime(2,3,1,2) = FTime(3,2,1,2)+ ch(3,2,2,3,1) + PTime(2,3,1,2)

= 53.82 + 11.02 + 33.43/1.08

= 95.79

Hence, schedule product 2 of family 2 on machine 2.

4. Find the next product of family 2 to be scheduled.

FTime(2,1,1,2) = FTime(2,2,1,2)+ ch(2,2,2,1,1) + PTime(2,1,1,2)

= 94.83 + 3.24 + 34.72/1.08

= 130.22

FTime(2,3,1,2) = FTime(2,2,1,2)+ ch(2,2,2,3,1) + PTime(2,3,1,2)

= 94.83 + 4 + 33.43/1.08

= 129.78

Hence, schedule product 3 of family 2 on machine 2. Product 2 of

family 1 is then scheduled as the last product. The finish time of product

1 of family 2 is calculated as follows.

FTime(2,1,1,2) = FTime(2,3,1,2)+ ch(2,3,2,1,1) + PTime(2,1,1,2)

= 129.78 + 3.91 + 34.72/1.08 = 165.84

88

The sequences of products on the machines at the first stage

obtained so far are presented in Figure 5.4.

Part 3: Balancing the Production Times of Machines at the First Stage

Step 7: Balance the production times of machines at the first stage

7.1 The machine with the largest finish time is 2.

7.2 Remove product 1 of family 2 from machine 2 and move it to other

machines (i.e., machines 1 and 3).

7.3 Calculate the latest completion time on machines 1 and 3 after

scheduling product 1 of family 2.

FTime(2,1,1,1) = FTime(1,1,1,1)+ ch(1,1,2,1,1) + PTime(2,1,1,1)

= 165.64 + 7.8 + 34.72/1.10 = 205.00

FTime(2,1,1,3) = FTime(3,3,1,3)+ ch(3,3,2,1,1) + PTime(2,1,1,3)

= 75.67 + 11.21 + 34.72/0.95 = 123.43

 (4,2) (4,1) (1,2) (1,3) (1,1)
Machine 1

 20.76 64.32 89.91 118.18 165.64

 (3,1) (3,2) (2,2) (2,3) (2,1)
Machine 2

 25.21 53.82 94.83 129.78 165.84

 (4,3) (3,3)
Machine 3

30.13 75.67

 Processing time

Changeover time

 (j,i) Product i of family j

 Direction of the scheduling.

Figure 5.4: Sequences of Products on the Machines at Stage 1

89

The machine yielding the shortest finish time of this product is

machine 3.

Update the finish time of all machines at the first stage.

Machine 1: latest completion time = 165.64 time units

Machine 2: latest completion time = 129.78 time units

Machine 3: latest completion time = 123.43 time units.

7.4 The new latest finish time of the first-stage machines is equal to

165.64 time units for machine 1. Go back to Step 7.1. Using the

same procedure, it was found that product 1 of family 1 could not be

moved since it results in a higher latest completion time. Go to Step

7.5.

7.5 Remove product 3 of family 1 from machine 1. The calculations of

the latest completion times on machines 2 and 3 after scheduling

product 3 of family 1 are as follows:

 FTime(1,3,1,2) = FTime(2,3,1,2)+ ch(2,3,1,3,1) + PTime(1,3,1,2)

= 129.78 + 11.49 + 26.55/1.08 = 165.85

FTime(1,3,1,3) = FTime(2,1,1,3,)+ ch(2,1,1,3,1) + PTime(2,1,1,3)

= 123.43 + 6.26 + 26.55/0.95 = 157.64

The machine yielding the earliest finish time of this product is

machine 3. Hence product 3 of family 1 is rescheduled on machine 3.

Update the finish time of all machines at the first stage.

Machine 1: latest finish time = 89.91 + ch(1,2,1,1,1) + PTime(1,1,1,1)

 = 89.91 + 4.19 + 47.68/1.1

 = 137.44 time units

90

Machine 2: latest finish time = 129.78 time units

Machine 3: latest finish time = 157.64 time units

This process is continued with all the products scheduled on

machine 3, but none can be allocated to other machines. The final

sequence of the products on the machines at the first stage is presented

in Figure 5.5.

Part 4: Scheduling All Products on All other Stages

Step 8: Sequence all products on machines at stage s : s > 1, and calculate the

makespan.

The sequences of products on machines at the first stage were

obtained at the last step as shown in Figure 5.5.

 8.1 Set s = 2.

8.2 Set H = {(4,2), (3,1), (4,3), (3,2), (4,1), (3,3), (1,2), (2,2), (2,1), (2,3),

(1,1),(1,3)}

 (4,2) (4,1) (1,2) (1,1)
Machine 1

 20.76 64.32 89.91 137.44

 (3,1) (3,2) (2,2) (2,3)
Machine 2

 25.21 53.82 94.83 129.78
 (4,3) (3,3) (2,1) (1,3)
Machine 3

 30.13 75.67 123.43 157.64

 Processing time

Changeover time

 (j,i) Product i of family j

 Direction of the scheduling.

 Figure 5.5: Final Sequences of Products on the Machines at Stage 1

91

8.3 Scheduling of the first product on one of the machines of the second

stage using the LA rule.

Schedule steps:

LA-1 The first unscheduled product in set H is product 2 of family 4.

LA-2 Since no machine is processing the products of family 4, go to

LA-12 to schedule this product to the machine yielding the

lowest finish time, as detailed below.

LA-12 FTime(4,2,2,1) = STime(4,2,2,1) + PTime(4,2,2,1)

 = 20.76 + 33.76/1.00 = 54.52 time units

FTime(4,2,2,2) = STime(4,2,2,2) + PTime(4,2,2,2)

 = 20.76 + 33.76/0.93 = 57.06 time units

Schedule this product to machine 1.

 8.4 Update H = H \ {(4,2} = {(3,1), (4,3), (3,2), (4,1), (3,3), (1,2), (2,2),

(2,1), (2,3), (1,1), (1,3)}. Then go back to Step 8.3.

 8.3 Scheduling of the first product in set H on one of the machines of

stage 2 using the LA rule:

 LA-1 The first unscheduled product in set H is product 1 of family 3.

 LA-2 Since no machine is processing the products of family 3, go

to LA-12, as follows.

 LA-12 Schedule this product to the machine yielding the lowest

finish time.

 FTime(3,1,2,1)= STime(3,1,2,1) + PTime(3,1,2,1)

 =FTime(4,2,2,1)+ch(4,2,3,1,1)+PTime(3,1,2,1)

= 54.52 + 7.36 + 14.99/1.00 = 76.87 time units

92

 FTime(3,1,2,2) = STime(3,1,2,2) + PTime(3,1,2,2)

 = 25.21 + 14.99/0.93 = 41.33 time units

LA-13 Schedule product 3, family 1 to machine 2.

8.4 Update H = H \ {(3,1} = {(4,3), (3,2), (4,1), (3,3), (1,2), (2,2), (2,1),

(2,3), (1,1), (1,3)}. Then go back to Step 8.3.

8.3 Scheduling of the first product in set H on one of the machines of

stage 2 using the LA rule:

 LA-1 The first unscheduled product in set H is product 3 of family 4.

LA-2 The machine processing the products of this family is

machine 1. Hence, MU(4) = {1}.

 LA-3 Determine machine m, m ∈ MU(4), which yields the earliest

finish time.

FTime(4,3,2,1) = STime(4,3,2,1) + PTime(4,3,2,1)

 = max{FTime(4,2,2,1)+ch(4,2,4,3,1),

FTime(4,3,1,3)} + PTime(3,1,2,1)

 = max{54.52 + 3.92, 30.13} + 33.46/1.00

 = 91.90 time units

 Hence, m = 1.

LA-4 Determine the machine m’, m’ ∈ M(2), which yields the

earliest finish time.

 FTime(4,3,2,1) = 91.90 time units (as determined in the last

step)

 FTime(4,3,2,2) = STime(4,3,2,2) + PTime(4,3,2,2)

 = max{FTime(3,1,2,2) + ch(3,1,4,3,1),

FT(4,3,1,3)} + PTime(4,3,1,3)

93

 = max{41.33 + 9.2, 30.13} + 33.46/0.93

 = 86.51 time units

 Hence, m’ = 2.

 LA-5 Since m ≠ m’, go to LA-6 to check whether there is any

incoming product of family 3 in the previous stage.

 LA-6 Product 2 of family 3 (i.e., product 2) is scheduled to finish at

time 53.82 in stage 1, so go to LA-7.

 LA-7 Calculate FTime(4,3,2,2) + ch(4,3,3,2,2) = 86.51 + 9.61 =

96.12.

LA-8 Calculate STime(3,2,2,2) = max {FTime(3,2,1,2),

FTime(3,1,2,2)+ch(3,1,3,2,2)}

 = max {53.82, 41.33+3.85}

 = 53.82

 LA-9 Since, STime(3,2,2,2) < FTime(4,3,2,2) + ch(3,1,4,3,2), go to

LA-10.

 LA-10 Check whether the amount of reduced finish time of product 3

of family 4 (RFT(4,3)) is greater than DST(3,2).

 RFT(4,3) = FTime(4,3,2,2) - FTime(4,3,2,1)

 = 91.90 – 86.51

 = 5.39 time units

DST(3,2) = FT(4,3,2,2) + ch(4,3,3,2,2) – max {FTime(3,1,2,2)

+ ch(3,1,3,2,2), FTime(3,2,1,2)}

 = 86.51+9.61 – max{53.82, 41.33 + 3.85}

 = 42.30 time units.

94

 Since the value of RFT(4,3) is less than that of DST(3,2), go

to LA-11.

LA-11 Do not schedule product 3 of family 4 on machine 2. Go back

to LA-1 and apply the EFT rule to schedule this product on

other machine(s). From the previous calculations in LA-4, it

was found that this product can be scheduled on machine 1.

 8.4 Update H = H \ {(4,3} = {(3,2), (4,1), (3,3), (1,2), (2,2), (2,1), (2,3),

(1,1), (1,3)}. Then go back to Step 8.3.

8.3 Scheduling of the first product in set H on one of the machines of

stage 2 using the LA rule:

LA-1 The first unscheduled product in set H is product 2 of family 3.

LA-2 The machine processing the products of family 3 is machine 2.

Hence, MU(3) = {2}.

LA-3 Determine the machine m, m ∈ MU(3), which yields the

earliest finish time.

 FTime(3,2,2,2) = STime(3,2,2,2) + PTime(3,2,2,2)

= max{FTime(3,1,2,2) + ch(3,1,3,2,2),

FTime(3,2,1,2)} + PTime(3,1,2,1)

= max{41.33 + 3.85, 53.82} + 43.76/0.93

= 100.87 time units

 Hence, m = 2.

LA-4 Determine the machine m’, m’ ∈ M(2), which yields the earliest

finish time.

 FTime(3,2,2,2) = 100.87 time units (as determined in the last

step)

95

 FTime(3,2,2,1) = STime(3,2,2,1) + PTime(3,2,2,1)

 = max{FTime(4,3,2,1)+ch(4,3,3,2,2),

FTime(3,2,2,1)} + PTime(4,3,1,3)

 = max{91.9 + 9.61, 53.82} + 43.76/1.0

 = 145.27 time units

 Hence, m’ = 2.

 LA-5 Since m’ = m = 2, go to LA-13.

 LA-13 Schedule product 2 of family 3 on machine 2.

 8.4 Update H = H \ {(3,2} = {(4,1), (3,3), (1,2), (2,2), (2,1), (2,3), (1,1),

(1,3)}. Then go back to Step 8.3.

8.3 Scheduling of the first product in set H on one of the machines of

stage 2 using the LA rule:

 LA-1 The first unscheduled product in set H is product 1 of family 4.

 LA-2 The machine processing the products of family 4 is machine 1.

Hence, MU(1) = {1}.

 LA-3 Determine machine m, m ∈ MU(1), which yields the earliest

finish time.

FTime(4,1,2,1) = STime(4,1,2,1) + PTime(4,1,2,1)

 = max{91.90 + 3.64, 64.32} + 36.55/1.00

= 132.09 time units

 Hence, m = 1.

 LA-4 Determine the machine m, m ∈ M(2), yielding the earliest

finish time.

 FTime(4,1,2,1) = 132.09 time units (as determined in the last

step)

96

 Hence, m = 1.

 FTime(4,1,2,2) = STime(4,1,2,2) + PTime(4,1,2,2)

 = max{100.87 + 7.47, 64.32} + 36.55/0.93

 = 147.64 time units

 Hence, m’ = 1.

 LA-5 Since m’ = m = 1, go to LA-13.

 LA-13 Schedule product 1 of family 4 on machine 1.

8.4 Update H = H \ {(4,1} = {(3,3), (1,2), (2,2), (2,1), (2,3), (1,1), (1,3)}.

Then go back to Step 8.3 to schedule the first product in set H on one

of the machines of stage 2. The process is continued until all

products in set H are scheduled on the machines in this stage. Figure

5.6 shows the product sequences obtained on the machines of

stage 2.

 (4,2) (4,3) (4,1) (2,2) (2,1) (2,3)
Machine 1

 20.76 54.52 91.90 132.09 151.90 167.67 186.66

 (3,1) (3,2) (3,3) (1,2) (1,1) (1,3)

Machine 2
 25.21 41.33 100.87 131.98 153.70 182.32 222.23

 Processing time

Changeover time

Machine idle time

 (j,i) Product i of family j

Direction of the scheduling.

Figure 5.6: Product Sequences on Machines at Stage 2

97

8.5 Update s = s+1 = 3. Since s ≤ S, go to Step 8.2. The procedure is

repeated to schedule all products on the machines of the third stage.

Figure 5.7 shows the results of the products sequence obtained for this

stage.

From Figure 5.7, the makespan of this solution is 279.53 time units.

The product sequences on each machine of each stage are presented as

follows.

Stage 1: Machine 1: (4,2) -> (4,1) -> (1,2) ->(1,1)

Machine 2: (3,1) ->(3,2)->(2,2)->(2,3)

Machine 3: (4,3)->(3,3)->(2,1)->(1,3)

Stage 2: Machine 1: (4,2) -> (4,3) ->(4,1)->(2,2)->(2,1)->(2,3)

Machine 2: (3,1) ->(3,2)->(3,3)->(1,2)->(1,1)->(1,3)

Stage 3: Machine 1: (3,1)->(3,2) -> (3,3) ->(2,2)->(2,1)->(2,3)

Machine 2: (4,2) -> (4,3)->(4,1)->(1,2)->(1,1)->(1,3)

 (3,1) (3,2) (3,3) (2,2) (2,1) (2,3)
Machine 1

 41.33 72.76 100.87 113.01 131.98 151.08 191.87 239.95 265.35

 (4,2) (4,3) (4,1) (1,2) (1,1) (1,3)

Machine 2
 54.52 82.40 91.90 109.64 132.09 180.86 211.68 247.42 279.53

 Processing time

Changeover time

Machine idle time

Direction of the scheduling.

Figure 5.7: Sequences of Products on Machines at the Last Stage

98

5.3 Phase 2: Improving the Initial Solution Using the TSH Algorithm

 The initial solution obtained from Phase 1 (using the FFSDSTH algorithm)

may not be close to the optimal solution. A different heuristic is required to

generate better schedules. The final solution of the first phase can be

considered as an initial solution that will be improved in this phase. From the

flow process presented in Figure 5.1, the heuristic of the second phase has three

main steps: 1) moving families between (or within) machines at the first stage,

2) moving products between (or within) machines at the first stage, and 3) finding

the best sequence resulting in the minimum makespan. Prior to the presentation

of the TSH algorithm, the background of the TS as implemented in this problem

is introduced in the following five sections. The implementation of the TS

heuristic with the FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax problem is introduced in Section

5.3.1. The tabu list is discussed in Section 5.3.2 and is followed by a discussion

of the neighborhood size in Section 5.3.3, the tabu restriction in Section 5.3.4,

and the admissible moves in Section 5.3.5.

5.3.1 Implementing the TS Heuristic with the FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax

Problem

In the tabu search, a decision is made from the set of admissible

candidates. The candidate decisions are evaluated and the best one is selected.

A candidate is admissible either if it is not tabu or if its tabu status can be

overridden by the aspiration criterion. As suggested by Laguna et al. (1993) and

Barnes & Laguna (1993), there are four key elements to be considered in the TS:

- To identify the attributes (i.e., the criteria used to define or

characterize a move) of a move that will be used to generate the tabu

classification. Attributes of moves, e.g., indices of jobs (or jobs

99

numbers), positions of jobs, and weights of jobs, are identified and

recorded in the tabu list in order to prevent move reversals.

- To identify the actual tabu restriction based on the attributes.

- To identify a good data structure to keep track of moves that have a

tabu status, and to free those moves from their tabu condition when

their short-term memory has expired.

- To identify an aspiration condition in an effort to allow the tabu status

of a move to be overridden if it yields a better solution.

Two popular types of moves found in the literature for the flowshop

problem are: (1) exchanging jobs (i.e., swap move) and (2) removing the job

placed at the xth position and then putting it at the yth position (i.e., insertion

move). Taillard’s (1990) experiments showed that the insertion move is the most

efficient in terms of quality and computation time. Hence, only the insertion move

will be considered in this research.

Insertion moves allow a single job to move from one machine to another.

Let P be the set of all jobs, P = {1,2,…,np} and nps,m denote the number of jobs

scheduled on machine m of stage s, m ∈ M(s) and s ∈ ψ. At each stage s, the

jobs in set P are partitioned into m(s) groups. This means that there are m(s) job

processing orders (or schedules) at stage s. The processing order of jobs on

machine m of stage s can be expressed by a permutation πs,m:

πs,m = (πs,m(1), πs,m(2), πs,m(3), …,πs,m(nps,m))

where πs,m(k) denotes the job of set P which is in position k in πs,m. Hence, the

processing order of jobs at stage s can be completely presented by the set of

100

m(s) permutations πs = {πs,1, πs,2, …, πs,m(s)}. The collection of the job processing

orders (i.e., schedules) is defined by s-tuple π = (π1, π2,…, πS).

Let s denote a stage, m1 and m2 two machines in this stage, and x, y two

positions of jobs on machine m1 and m2, respectively. For a processing order π,

the move (s,m1,x,m2,y) is defined as the insertion move in which the job at

position x is removed from machine m1 and placed on machine m2 at position y.

If the insertion-type move is performed between two machines (m1 ≠ m2) in stage

s, the deletion of job i from position x in permutation πs,m1 and its insertion in

position y in permutation πs,m2 implies the following events:

1. jobs πs,m1(x+1), …, πs,m1(nps,m1) are moved to the left by a single

position in the new permutation π’s,m1, and

2. job i is located at position y and jobs πs,m2(y), πs,m2(y+1),…, πs,m1(nps,m2)

are moved to the right by a single position in the new permutation

π’s,m2.

Conversely, if the insertion-type move is performed within the same

machine (m1 = m2) in stage s, the deletion of job i from position x and its insertion

in position y in permutation πs,m1 implies the following events:

1. If x < y, jobs πs,m1(x+1), …, πs,m1(y) are moved to the left by a single

position, and job i is located at position y in the new permutation π’s,m1,

or

2. If x > y, job i is located at position y and jobs πs,m1(y), πs,m1(y+1),…,

πs,m1(x-1) are moved to the right by a single position in the new

permutation π’s,m1.

101

5.3.2 Tabu List

The tabu list stores attributes of the performed moves. These moves are

defined by a pair (or two pairs) of adjacent jobs in a production stage, as detailed

below. The selection of the pair(s) depends on the insertion move performed. In

this research, the tabu status corresponding to the insertion move is defined as a

triple element (s, i, p) representing the pair of jobs i and p from stage s. This

representation was also used in the study of Nowicki and Smutnicki (1998). Let

T = (T1, T2, …, Tmaxtl) be a tabu list of a fixed length maxtl, where Ttl = (s, i, p) is a

triple element and tl = 1, 2, …, maxtl. The tabu list is initially empty. Every time

an insertion move is performed in a processing order π, this move is added to the

tabu list.

Details of the definition of the stored attributes of a move performed in a

processing order π are presented below. Figure 5.8 shows an illustration of the

moves. In this figure, thick arcs link the pair of jobs at stage s that will be added

to the tabu list after the move is performed.

1. Moves are performed within a machine (i.e., m1 = m2 = m)

In this case, only one triple element is added to the tabu list.

Two cases are considered here:

Case 1.1: x < y

The triple element added to the tabu list is composed of the

stage number, the index of the moved job, and the index of the job to

the right of the moved job (prior to the move). This triple element is

represented as (s, πs,m(x), πs,m(x+1)).

102

Case 1.2: x > y

The triple element added to the tabu list consists of the stage

number, the index of job to the left of the moved job (prior to the

move), and the index of the moved job. The triple element is

represented as (s, πs,m(x-1), πs,m(x)).

2. Moves are performed between two different machines (m1 ≠ m2).

 In this case, one or two triple elements may be added to

If (m1 ≠ m2)

 x- 1 x x+1

m1:

m2:

 y

If (m1 = m2 = m)

if (x<y)

x x+1 y

if (x>y)

y x-1 x

= link of pairs of jobs at stage s added to the tabu list

 = performed insertion move

Figure 5.8: Tabu List of a Move (s,m1,x,m2,y)

103

the tabu list depending on the move that has been performed,

as detailed below.

Case 2.1: The Job to be moved is not the first or the last job in πs,m1

(i.e., 1 < x < nps,m1).

Two triple elements are added to the tabu list. These are: (1)

the triple element that comprises the stage number, the index of the

moved job, and the index of job to the right of the moved job (prior to

the move) (i.e., (s, πs,m1(x), πs,m1(x+1))) and (2) the triple element that

consists of the stage number, the index of the job to the left of the

moved job (prior to the move), and the index of the moved job (i.e.,

(s, πs,m1(x-1), πs,m1(x))).

Case 2.2 The job to be moved is the first job in πs,m1 (i.e., x = 1).

Only one triple element is added to the tabu list which

consists of the stage number, the index of the moved job, and the

index of job to the right of the moved job (prior to the move) (i.e.,

(s, πs,m1(x), πs,m1(x+1))).

Case 2.3: The job to be moved is the last job in πs,m1 (i.e., x = nps,m1).

The triple element added to the tabu list is composed of the

stage number, the index of job to the left of the moved job (prior to the

move), and the index of the moved job (i.e., (s, πs,m1(x-1), πs,m1(x))).

The attributes of the performed moves in a tabu list are applied along with

the neighborhood size and the tabu restriction, as explained in the subsequent

sections (Sections 5.3.3 and 5.3.4., respectively) to prevent move reversals in

the future moves.

104

5.3.3 Neighborhood Size

The neighborhood generation is one of the important elements of TS.

The neighborhood generation usually has a very significant effect on the

efficiency of the search. In the case of FFs(Qm1,Qm2,…,Qms)/Sipm/Cmax

sequencing problems, for instance, when an insertion move is performed

within the same machine (e.g., machine m in stage s), the size of the

neighborhood (i.e., number of possible moves) can be shown to be equal to

(nps,m – 1)2. If too few neighborhoods are produced, some good solutions may

be overlooked. Conversely, if all neighborhood solutions are produced, the

search may produce better solutions but will be time consuming. The

evaluation of the entire neighborhood for large size problems may not be

practical. A procedure to curtail the length of the search (i.e., by reducing the

size of the neighborhood) is determined based on the use of the move

distance.

 Consider the case of problems where an insertion move is performed

within the same machine. Instead of examining all possible moves of job

πs,m(x) to be inserted in position y, the search is restricted to those positions

within a certain distance d from the job’s position. More precisely, job πs,m(x)

can be moved (i.e., inserted in position y) if the difference between y and x is

less than d (i.e., |y – x| < d), where d is the maximum moving distance allowed

and may be determined after experiencing with different problem settings.

In general, defining a good size of d depends on the structure of the

problem. Based on studies by Laguna et al. (1993) and Barnes and Laguna

(1993), the value of d can be obtained as follows:

105

• For nps,m ≤ 30

d = nps,m/2 -1

where h = the largest integer less than or equal to h

• For nps,m > 30

 d = (nps,m/2 / 2) x c/4

where c is determined experimentally (Laguna et al., 1993 and

Brandao & Mercer, 1997). The value of c is usually a number

between 1 and 4 (Laguna et al., (1993)).

The move distance concept was used in many studies such as in those of

Laguna et al. (1993), Barnes and Laguna (1993), Amin-Naseri (1993), Brandao

and Mercer (1997), and Nowicki and Smutnicki (1998).

5.3.4 Tabu Restriction

In order to prevent a move reversal, a tabu restriction is used to

determine if the future move is admissible. There are many ways to generate the

tabu restriction. One effective way is to apply a move distance. Consider the

case when the job is moved within the same machine. After a job πs,m(x) is

removed from position x and inserted in position y on the same machine m of

stage s where y > x, job πs,m(x) cannot be placed in the future (as long as this

move is in the tabu list) any earlier than position y. This means that the job that

was initially at position x cannot move to the left in the subsequent schedules

until the attributes of this job are removed from the tabu list (Laguna et al., 1993).

In this research, the move distance is also used to generate the tabu

restriction. The move is considered to be admissible if no triple element resulting

106

from performing a move (s, m1, x, m2, y) exists in the tabu list. The tabu

restrictions of a move (s,m1,x,m2,y) of each case are explained as follows.

 1. Jobs are moved within a machine (m1 = m2 = m)

 There are two cases considered when jobs are moved within a

machine, as detailed below. Also, Figure 5.9 shows the tabu

restriction of the move (s, m, x, m, y).

Case 1.1: x < y, where y - x < d

The tabu restrictions consist of all the triple elements resulting

from performing the move (s,m,x,m,y), which comprise the stage

number, the index of job at position k (prior to the move) where x<k≤ y,

If (x<y)
position x y

If (x>y)
position y’ y x

= Tabu restriction. Move (s,m,x,m,y) cannot be performed if at least one pair of jobs at
 stage s linked by dashed lines is in the tabu list)
= Position to be inserted

Figure 5.9: Tabu Restriction when Jobs are Moved within a Machine

107

and the index of the moved job. These triple elements are represented

as (s, πs,m(k), πs,m(x)).

Case 1.2: x > y, where x - y < d

Let y’ be the end position of the move distance. This means that

x - y’ = (d -1). The tabu restrictions consist of all the triple elements

resulting from performing the move (s, m, x, m, y), which comprise the

stage number, the index of the moved job, and the index of job at

position k (prior to the move) where y’ ≤ k < x (i.e., (s, πs,m(x), πs,m(k))).

 2. Jobs are moved between machines (m1 ≠ m2)

 When jobs are moved between two machines, the move

distance starts from position (y-y’) and ends at position (y + y”) on

machine m2 (i.e., (y” + y) – (y’ + y) = (d - 1)). Figure 5.10 shows the

tabu restriction when insertion is performed in different machines.

Details of the triple element generation for each case are presented as

follows.

 Case 2.1: y = 1

The tabu restrictions consist of all the triple elements resulting

from performing the move (s, m, x, m, 1), which comprise the stage

number, the job index at position x, and the job index at position y + z

(prior to the insertion of job πs,m1(x)), where 0 ≤ z <d (i.e., (s, πs,m1(x),

πs,m2(1 + z))).

108

Case 2.2: 1 < y ≤ d/2 , where u is the least integer greater than or

equal to u.

 The tabu restrictions consist of all the triple elements resulting

from performing the move (s, m1, x, m2, y), which for this case are:

(1) the triple elements that consist of the stage number, the job index

at position w (prior to the insertion of job πs,m1(x)), where 1 ≤ w < y,

and the job index at position x (i.e., (s, πs,m2(w), πs,m1(x))), and

(2) the triple elements that consist of the stage number, the job index

at position x, and the job index at position y + z (prior to the

insertion of job πs,m1(x)), where 0 ≤ z ≤ (d - y) (i.e., (s,πs,m1(x),

πs,m2(y+z))).

Machine1:
Position … x-1 x x+1 ..

Machine2:
Position y-y’…. y-1 y y+1 ….. y+y”

= Tabu restriction. Move (s,m1,x,m2,y) cannot be performed if at least
 one pair of jobs at stage s linked by dashed lines is in the tabu list
= position to be inserted

Figure 5.10: Tabu Restriction when Jobs are Moved between Machines

109

Case 2.3: d/2 < y < nps,m2 – d/2

 The tabu restrictions consist of all the triple elements resulting

from performing the move (s, m1, x, m2, y), which for this case are:

(1) the triple elements consisting of the stage number, the job index at

position y - w (prior to the insertion of job πs,m1(x)) where

1≤w<d/2 , and the job index at position x (i.e., (s, πs,m2(y - w),

πs,m1(x))), and

(2) the triple elements comprising the stage number, the job index at

position x, and the job index at position y + z (prior to the insertion

of job πs,m1(x)) where 0 ≤ z ≤ d/2 (i.e., (s, πs,m1(x), πs,m2(y+z))).

Case 2.4: nps,m2 – d/2 ≤ y ≤ nps,m2

The tabu restrictions consist of all the triple elements resulting

from performing the move (s,m1,x,m2,y), which for this case are:

(1) the triple elements consisting of the stage number, the job index at

position x, and the job index at position y + w (prior to the insertion

of job πs,m1(x)) where y + w ≤ nps,m2. . These triple elements are

represented as (s, πs,m1(x), πs,m2(y+w)).

(2) the triple elements comprising the stage number, the job index at

position y - z (prior to the insertion of job πs,m1(x)), where

1 ≤ z ≤ (d-1) – (nps,m2 - y), and the job index at position x. These

triple elements are represented as (s, πs,m2(y-z), πs,m1(x)).

Case 2.5: y = nps,m2 + 1

The tabu restrictions consist of all the triple elements resulting

from performing the move (s,m1,x,m2,y), which for this case comprise

the stage number, the job index at position y - z (prior to the insertion

110

of job πs,m1(x)) where 0 < z < d, and the job index at position x. These

triple elements are represented as (s,πs,m2(y-z), πs,m1(x)).

 5.3.5 Admissible Moves

The move to be performed at a given iteration may be found by examining

the value of the objective function for all candidate moves and selecting the best

one. As discussed in Sections 5.3.3 and 5.3.4, the move is considered to be

admissible if the following two conditions are satisfied.

1. If the move is within the same machine, the difference between the initial

position of the job to be moved and its new position is less than d (i.e.,

|y – x | < d), where d is the maximum moving distance allowed.

2. No triple element of a tabu restriction exists in the tabu list.

 The following example shows how to determine whether a move is admissible.

Example: Consider moving a job between two machines (m1 and m2) in stage s.

Assume that the tabu list T is initially empty. The value of m(s) is

equal to 2, and the job processing orders on the two machines are

presented below.

πs,m1 = (3, 2, 1, 4,9,10,15,16,17,18,19,24,25), and

πs,m2 = (5,7,6,8,11,12,13,14,20,21,22,23).

Consider the move (s,1,2,2,2). The value of d can be obtained

using the formula presented in Section 5.3.3. Hence, d = (12/2)–1 = 5.

The tabu restrictions resulting from the move (s,1,2,2,2) consist of the

following triple elements: (s,5,2), (s,2,7), (s,2,6), (s,2,8), and (s,2,11).

111

 Since none of these triple elements is in the tabu list, the move

(s,1,2,2,2) is admissible. Performing this move yields the following

new sequences:

π’s,m1 = (3,1,4,9,10,15,16,17,18,19,24,25), and

π’s,m2 = (5,2,7,6,8,11,12,13,14,20,21,22,23).

 The triple elements added to the tabu list after performing the

move (s,1,2,2,2) are: 1) (s,3,2), and 2) (s,2,1).

Consider the move (s,2,2,1,2). Using the formula presented in

Section 5.3.3, the value of d is equal to 5. The tabu restrictions

resulting from the move (s,2,2,1,2) consist of the following triple

elements: (s,3,2), (s,2,1), (s,2,4), (s,2,9), and (s,2,10). The move

(s,2,2,1,2) cannot be performed because the triple elements (s,3,2)

and (s,2,1) are in the tabu list.

Details of the TSH heuristic are given below.

Part 5: Moving Families between Machines (and within a Machine) at the First

Stage

In this part, the families scheduled on machines at the first stage are

moved between machines (or within a machine) in an effort to minimize the

makespan. This process is not performed for the other stages as it takes a large

amount of computation time, and yields very little improvement. The best

solution obtained from the previous Phase will be used as the initial solution. For

each iteration, all the admissible moves within the neighborhood in the current

schedule are evaluated and the best move is selected. The tabu list,

neighborhood size, and tabu restrictions are applied in the process of moving

112

families between machines at the first stage. The details of these three

components are described below, and are followed by the notation used in this

part and the detailed procedure of the TSH algorithm.

Tabu List

Let N be the total number of families. The size of the tabu list is

determined as follows:

1. m(1) =1.

Based on the studies of Laguna et al. (1993), the size of the tabu list

when jobs are moved within a machine is determined as described below.

1.1 N ≤ 12

| T | =  N / 2 

 where, | T | = size of the tabu list

1.2 N > 12

| T | = 7

2. m(1) > 1

2.1 If 2 ≤ N ≤10, 1 ≤ | T | ≤ 3.

2.2 If 11 ≤ N ≤20, 3 ≤ | T | ≤ 5.

2.3 If 21 ≤ N ≤50, 5 ≤ | T | ≤ 10.

2.4 If N > 51, 10 ≤ | T | ≤ 15.

Neighborhood Size and Tabu Restriction

1. For m1 = m2 = m

 Let nfs,m be the number of families schedule on machine m in stage s.

The value of d is determined as follows:

• If nfs,m = 2, d = 1.

• If 3 ≤ nfs,m ≤ 5, d = 2.

113

• If 6 ≤nfs,m ≤ 9, d =3.

• lf nfs,m > 9, the value of d is calculated using the formula

presented in Section 5.3.3. If nfs,m > 30, the value of c is equal

to 2.

2. For m1 ≠ m2

• If nfs,m2 = 1, or 2, d = 1.

• If nfs,m2 = 3, d = 2.

• If 4 ≤ nfs,m2 ≤ 9, d = 3.

• If nfs,m2 ≥ 10, the value of d is determined using the formula

presented in Section 5.3.3. If nfs,m2 > 30, the value of c is

equal to 2.

 Notation

 iter_fam = current iteration number for the process of moving

families between machines at the first stage

 iter_max_fam = maximum number of iterations allowed to be performed

in the family insertion move procedure

 best_value_fam = the minimum makespan found so far

 best_seq_fam = the best schedule found so far

 tor_iter_fam = maximum number of iterations allowed between two

successive improvements

 best_iter_fam = iteration where the best solution was found so far

 size_tabu_list_fam = size of tabu list

move_value_fam = the minimum makespan obtained from the evaluation of

all admissible moves in the iteration

114

 move_seq_fam = the schedule that yields the minimum makespan in the

iteration

 Figure 5.11 shows the flow of the TS search implementation when

moving families between or within machines at the first stage. Details of this part

are described below.

Step 9: Initialize all parameters used in the process of moving families between

the machines at the first stage.

 Set iter_fam = 0

best_value_fam = makespan obtained in Phase 1 (Part 4)

best_iter_fam = 0

iter_max_fam =100

tor_iter_fam = 30

size_tabu_list_fam = 3 for 12 families (50 products)

= 4 for 18 families (80 products).

 The values of parameters iter_max_fam, tor_iter_fam and

size_tabu_list_fam are a-priori fixed constants that were determined

experimentally. In this research, only two data sets (sets of 50 and 80

products, as detailed in Chapter 7) were tested with the TSH algorithm.

Computational experience showed that a value of 100 of the maximum

number of iterations (iter_max_fam) is a good value in terms of

computational time and solution quality. Likewise, a value of 30 for the

maximum number of iterations without improving the best solution

(tor_iter_fam) was found to be good. Also values of 3 and 4 are

adequate for the size of the tabu list (size_tabu_list_fam) when the

numbers of families are 12 and 18, respectively.

115

Figure 5.11: Flow Process of Moving Family between and within Machines at the First Stage

GO TO
Part 6

Initialization
! Identify the current sequence of families on the machines at the first stage (obtained from the initial

solution) and define it as the best sequence.
! Set the makespan obtained from the last stage as the minimum makespan found so far (best_sol_fam)
! Set iter_fam = 0
! Set tor_ier_fam = maximum number of iterations allowed between two successive improvements
! Set iter_max_fam = maximum number of iterations allowed to be performed
! Set best_iter_fam =0;

No

Yes

Evaluate the makespan of all moves of
this iteration. Then, record and update

the best admissible move (move_seq_fam
and move_value_fam). In order to obtain
the best admissible move, the procedure
presented in Figure 3.2 in Chapter 3 is

applied.

Is move_value_fam<
best_value_fam?

best_value_fam = move_value_fam
best_seq_fam = move_seq_fam

No

Yes

Put the attribute of the selected
family in the tabu list

Iter_fam =iter_fam+1

Is iter_fam > iter_max_fam?
or, iter_fam – iter_best_fam >

tor_iter_fam?

116

Step 10: Update the number of current iterations.

Increment the number of iterations (iter_fam) by 1.

Step 11: Check if the search should be stopped.

In this step, two stopping criteria are used:

11.1 Stop the search if the number of the current iterations (iter_fam) is

greater than max_iter_fam, or

11.2 Stop the search if the number of successive iterations without

improvement is greater than tor_iter_fam.

If the search is not stopped, go to Step 12; otherwise, go to

Part 6 to proceed with the movement of products.

Step 12: Move families between (or within) machines.

 Families that were divided between machines are treated as

individual sub-families. Sequences of products within families (or sub-

families) are not changed in this step.

 12.1 For each admissible move, perform the following:

• determine the tentative schedule of families on machines in

stage 1 after performing the move for the entire family (or

sub-family).

• tentatively re-schedule all products on machines in stages 2

through S using the procedure detailed in Step 8 and find the

corresponding makespan.

 12.2 After all admissible moves have been performed, select the move

that yields the minimum makespan. Denote the minimum

makespan as move_value_fam and the corresponding schedule

as move_seq_fam.

117

 12.3 Check whether move_value_fam is less than the

best_value_fam. If true, perform the following updates and go to

Step 12.4

 best_value_fam = move_value_fam,

 best_seq_fam = move_seq_fam.

 Otherwise, go to Step 12.4

 12.4 Put the attribute of this move in the tabu list and go back to Step

10.

Part 6: Moving Products between (and within) Machines at the First Stage

In this part, the products are moved between (and within) machines in an

effort to minimize the makespan. As in Part 5, the process of moving products

between (and within) machines is performed only in the first stage. The best

solution obtained in the previous part is used as the initial solution. The notation

used in the implementation of the TS is described below and is followed by the

procedure. Basically, the rules used to define the tabu list and to determine the

tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.

Notation

iter_prod = current iteration number for the process of moving

products between machines at the first stage

iter_max_prod = maximum number of iterations allowed to perform in the

process of products insertion procedure

best_value_prod = the minimum makespan found so far

best_seq_prod = the best schedule found so far

118

tor_iter_ prod = maximum number of iterations allowed between two

successive improvements

best_iter_prod = iteration where the best solution has been found so far

size_tabu_list_ prod = size of tabu list

move_value_ prod = the minimum makespan obtained from the evaluation of

all admissible moves in the iteration

move_ seq_prod = the schedule that yields the minimum makespan in the

iteration

Details of this part are described as follows.

Step 13: Initialize all parameters used in the process of moving product between

machines at the first stage.

Set iter_ prod = 0,

best_sol_ prod = makespan obtained in Part 5

best_iter_ prod = 0,

iter_max_ prod =100,

tor_iter_ prod = 30,

size_tabu_list_prod = 7 for 50 products

= 12 for 80 products.

The values of parameters iter_max_prod, tor_iter_prod and

size_tabu_list_prod are a-priori fixed constants that were determined

experimentally. Computational experience showed that a value of 100

for the maximum number of iterations (iter_max_prod) is a good value

in terms of computational time and solution quality. Likewise, a value of

30 for the maximum number of iterations without improving the best

119

solution (tor_iter_prod) was found to be good. Also, values of 7 and 12

are adequate for the size of the tabu list (size_tabu_list_prod) when the

numbers of products are 50 and 80, respectively.

Step 14: Update the number of current iteration.

Increment the number of (iter_prod) by 1.

Step 15: Check if the search should be stopped.

The two stopping criteria used in Step 10 are also used in this

step, as detailed below.

1. Stop the search if the maximum number of current iterations

(iter_prod) is greater than max_iter_prod, or

2. Stop the search if the number of successive iterations without

improvement is greater than tor_iter_prod.

If the search is not stopped, go to Step 16. Otherwise, go to Step

17.

Step 16: Move products between (or within) machines.

 16.1 For each admissible move, perform the following:

• determine the tentative schedule of products on machines in

stage 1 after performing a product move.

• tentatively re-schedule all products on machines in stages 2

through S using the procedure detailed in Step 8 and find the

corresponding makespan.

 16.2 After all admissible moves have been performed, select the move

that yields the minimum makespan. Denote the minimum

makespan as move_value_prod and the corresponding schedule

as move_seq_prod.

120

 16.3 Check if move_value_prod is less than best_value_prod. If true,

perform the following updates and go to Step 16.4

 best_value_prod = move_value_prod,

 best_seq_prod = move_seq_prod.

 Otherwise, go to Step 16.4

 16.4 Put the attribute of this move in the tabu list and go back to Step

14.

Step 17: Determine the best makespan at the last stage and the best sequence

found so far.

Applying the TSH algorithm to the solution obtained for the illustrated problem in

Section 5.2, the makespan was improved to 247.75 time units. The product sequences

obtained on the machines of each stage are presented below.

Stage 1: Machine1: (2,2)-> (2,1) -> (4,3) -> (4,2) -> (1,1)

Machine 2: (3,1) -> (1,2) -> (2,3)

Machine 3: (3,3) -> (4,1) -> (1,3) -> (3,2)

Stage 2: Machine 1: (3,1)-> (3,3) -> (2,1) -> (2,3) -> (4,3) -> (1,3) -> (1,1)

Machine 2: (2,2)-> (1,2) -> (4,1) -> (4,2) -> (3,2)

Stage 3: Machine 1: (3,1)-> (1,2)-> (2,1) -> (4,3) -> (4,2) -> (1,1)

Machine 2: (2,2)-> (3,3) -> (2,3) -> (4,1) -> (1,3) -> (3,2)

 where (j,i) means product i of family j.

 121
CHAPTER 6

LOWER BOUNDS

6.1 Introduction

 Normally, the quality of heuristic solutions is assessed by comparing their results

to: (1) optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained

by the best known approximation algorithms. The flexible flowshop problem with

sequence dependent setup is known to be NP-hard, and hence finding an optimal

solution for average or large-size problems will be computationally intractable. Since the

FFs(Qm1, Qm2,…, Qms)/sipm/Cmax is also relatively new, and no approximation algorithms

can be found for it in the literature, the only alternative left is to develop lower bounds for

the problem and use them to assess the quality of the TS heuristic solutions.

 Lower bounds can be obtained using a combinatorial approach as detailed

below. Other lower bounds can be obtained by relaxing the integrality constraints in the

integer programming formulation. Using the latter approach, several problems with

relaxed formulations were solved using the MPL/CPLEX software, but the results

obtained were not good enough, as the lower bounds obtained were less than fifty

percent of those obtained with the combinatorial approach. Hence, the relaxed linear

programming formulation was not considered any further.

6.2 Lower Bound Determination

 Problem parameters and notation used in the development of the lower bound

are defined below. The notation used in Chapters 4 and 5 is kept as much as possible

and supplemented with some additional variables.

Notation

i, p = product indices

j, q = family indices

 122

N = number of families

J = set of all families

= {1,2,..,N)

 (j, i) = product i of family j

Fj = set of products in family j; j∈ J

= {1, 2,…,fj}

fj = number of products in family j
ψ = set of stages in a production line

= {1,2,..,S}

 s = stage index

 np = total number of products

 NP = set of products from all families

= U
N

j
jF

1=
 ; | NP | = np

 m(s) = number of machines in stage s

 M(s) = set of machines at stage s

 = {1,2,…, m(s)}

vs,m = speed of machine m at stage s

 x = the least integer value greater than or equal to x.

 SI(i) = the setup time from idling for product i in stage 1

 P(i,s) = the processing time of product i on the fastest machine in stage s

T(i,s) = processing time of product i on a standard machine (i.e., speed = 1) in

stage s

 CT(i) = the cumulative processing time of product i on the fastest machines

from stage 1 through stage S-1

 123

 = ∑
−

=

1

1
),(

S

s
siP

 MN(i,s) = the minimum minor setup time of product i at stage s. MN(i,s) is the

lowest setup time for product i at stage s from any other product that

belongs to the same family. Let i ∈ Fj, the value of MN(i,s) is obtained

as follows.

 MN(i,s) =
jFp

pi
∈
≠ ,

min ch(j,p,j,i,s)

 MJ(i,s) = the minimum major setup time of product i at stage s. MJ(i,s) is the

lowest setup time for product i at stage s from any product that belongs

to a different family. Let i ∈ Fj, then:

 MJ(i,s) =
qFp

jq
∈
≠ ,

min ch(q,p,j,i,s)

 ICT(i) = the sum of the setup time from idling at the first stage and the

cumulative processing times of product i on the fastest machines from

stage 1 through stage S-1.

 = SI(i) + CT(i)

 λ = the minimum value between m(S) and m(1)

 = min {m(S), m(1)}

 xtra(s) = the difference between the number of machines in the last stage and

that in stage s. If negative, a value of zero is used.

 = max {0, m(S) - m(s)}

E = set of λ products with lowest values of CT(i)

A = set of λ products with lowest values of ICT(i)

B = set of np – N products yielding the lowest values of MN(i,S)

C = set of N – m(S) products yielding the lowest values of MJ(i,S)

 124
 G = set of m(1) products yielding the lowest values of SI(i)

 K = NP - A

Z = B ∩ C

 D = NP – (B ∪ C)

 LBF = the lower bound on the makespan obtained by the forward method

 LBB = the lower bound on the makespan obtained by the backward method

 BLB = the best lower bound

 = max {LBF, LBB}

Based on the flow or routing of products, two methods were developed in this

research to calculate a lower bound on the makespan: 1) the forward method and 2) the

backward method. The best lower bound (BLB) is obtained by taking the maximum

value of the LBF and LBB.

To calculate the lower bound on the makespan for the

FFS(Qm1,Qm2,…,Qms)/sipm/Cmax sequencing problem, the key idea is to consider a

flexible flowshop structure with all machines in each stage as fast as the fastest

machine. The makespan can be determined by considering the sum of two quantities:

(1) the last-stage machine total waiting and idle times and (2) the total setup and

production times on the last-stage machines. These two quantities can be divided into

five components, as presented below.

• total waiting time at the last stage (total_wait)

• total processing time of all products at the last stage (total_proc)

• total major setup time at the last stage (total_major)

• total minor setup time at the last stage (total_minor)

• adjustments to setup times at the last stage (adjust_setup)

 125

)(∑
∈ Ai

iICT

A detailed description of these components and how they are used to calculate

LBF and LBB is presented in sections 6.3.1 and 6.3.2, respectively. The optimal

makespan cannot be less than the sum of the above five components divided by the

number of machines in the last stage. Hence, using the forward method:

LBF =
)(

1
Sm

[total_wait + total_proc + total_major + total_minor +

adjust_setup]

Similarly, for the backward method:

LBB =
)1(

1
m

[total_wait + total_proc + total_major + total_minor +

adjust_setup]

6.2.1 Forward Method

1. Total waiting time at the last stage (total_wait)

The total_wait is the minimum amount of time that the machines at the

last stage have to wait until their first products are processed. This means that

the first m(S) products have to complete their processing on stage 1 through

stage S-1. Two cases are considered in calculating the total_wait.

Case 1: m(S) ≤ m(1)

The total_wait is determined by summing the first λ, λ = m(S),

smallest values of ICT(i).

 Hence:

 total_wait =

Case 2: m(S) > m(1)

 In this case, the machines in stage S are divided into two groups.

The first group contains m(1) machines, and the second contains

 126
m(S) – m(1) machines (i.e. xtra(1)). The total waiting time for the machines

in the first group (waiting_time_g1) is calculated as the sum of the first λ

smallest values of ICT(i): ∑
∈ Ai

iICT)(. For the second group, the ratio (R)

between xtra(1) and m(1) is determined and will be used to calculate the

machine waiting times (waiting_time_g2). The value of R is determined as








 −
)1(

)1()(
m

mSm
. Two cases are considered in calculating the machine

waiting times in this group: (1) R = 1, and (2) R > 1. Details for each of

these cases are described below.

2.1 R = 1

 The following procedure is followed:

Let

 Ω(i) = SI(i) + P(i,1); i ∈ NP

 β(i) = min {min{MN(p,1)}, MN(i,1)} + CT(i)

where, p ∈ A and i ∈ K

 2.1.1 Let x be the machine number in the second group, x = 1,2,…,

xtra(1). Set x = 1.

 2.1.2 Determine the machine waiting time on machine x using the

following steps.

2.1.2.1 Sort all values of Ω(i) in non-decreasing order. Let Ω[1],

Ω[2], Ω[3],…, Ω[np] be the values resulting from the order.

Then, find the product with the first lowest value of Ω(i)

(e.g., product k):

Ω(k) = Ω[1] =
NPi∈

min Ω(i)

 127
2.1.2.2 Sort all values of β(i) in non-decreasing order. Let β[1], β[2],

β[3],…, β[k] be the values resulting from the order. Then,

find the product with the first lowest value of β(i) (e.g.,

product g):

β(g) = β[1] =
Ki∈

min β(i)

 2.1.2.3 Check if k = g. If not true, calculate waiting_time(x) and

update set NP as follows.

waiting_time(x) = Ω(k) + β(g)

NP = NP \ {k}, delete β(g)

and go to step 2.1.3; otherwise, go to step 2.1.2.4.

2.1.2.4 Find the product with the second lowest value of Ω(i)

(e.g., product k’):

Ω(k’) = Ω[2] =
}{\

min
kNPi∈

 Ω(i)

2.1.2.5 Find the product with the second lowest value of β(i)

(e.g., product g’):

β(g’) = β[2] =
}{\

min
gNPi∈

β(i)

2.1.2.6 Calculate the minimum waiting time on machine x

(waiting_time(x)) as follows:

waiting_time(x) = min {Ω(k) + β(g’), Ω(k’) + β(g)}

 2.1.2.7 If Ω(k) + β(g’) < Ω(k’) + β(g), update K = K – {k} and delete

β(g’).

 Otherwise, update K = K – {k’} and delete β(g).

 128
 2.1.3 Update x = x + 1. If x is greater than m(S) - m(1), go to step 2.1.4;

otherwise, go back to step 2.1.2.

 2.1.4 Calculate total_wait as follows:

 total_wait = ∑
∈ Ai

iICT)(+ ∑
−

=

)1()(

1

)(_
mSm

x
xtimewaiting

 2.2 R > 1

For this case, the machines in the second group are divided into

smaller subgroups of m(1) machines (the last subgroup may have a smaller

number). The minimum waiting tine of the machines in the first subgroup

(i.e., machine number m(1)+1, m(1)+2, …, 2m(1)) is determined using the

procedure detailed in case 2.1 (i.e., R = 1). To calculate the minimum

waiting time for the machines of the remaining subgroups, the same

procedure is repeated with the following modifications.

(1) Function Ω(i) is replaced with function α(i, w1, w2 ,…,wr) which is defined

as follows.

α(i, w1, w2 ,…,wr) = SI(i) + P(i,1) + ∑
=

+
r

wPwMN
1

)}1,()1,({
σ

σσ

 where, i, wσ ∈ NP, σ = 1,2,…,r, i ≠ w1 ≠ w2 ,…,≠ wr

 To calculate the waiting time on each subgroup of machines in the

last stage, function α(i,w1,w2 ,…,wr) must be regenerated for each r until

the value of r reaches R-1. For instance, when r =1, the quantity α(i, w1)

is used to calculate the waiting time for the second subgroup of

machines (i.e., machines 2⋅m(1)+1, 2⋅m(1)+2,…, 3⋅m(1)). Likewise,

when r = R – 1, the quantity α(i, w1, w2 ,…,wr) is used to calculate the

 129
waiting time for the Rth subgroup of machines (i.e., machines

(R –1)⋅m(1)+1,…, m(S)).

 In step 2.1.2.1, all values of α(i, w1, w2 ,…,wr) obtained from all

combinations of i and wσ are sorted in non-decreasing order and let α[1],

α[2], α[3],…, α[np] be the values resulting from the order.

(2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member

of set ϖ, where ϖ is set of products (i, w1, w2 ,…,wr) that yielded α[1].

(3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of

α(ϖ) and β(g) such that g is not a member of ϖ, which yield the

minimum value of the sum of α(ϖ) and β(g). Step 2.1.2.7 is then

modified to update K = K – ϖ and delete β(g).

 The value total_wait when R > 1 is calculated as follows:

 total_wait = waiting_time_g1 + waiting_time_g2

 = ∑
∈ Ai

iICT)(+ ∑
−

=

)1()(

1
)(_

mSm

x
xtimewaiting

2. Total processing time of all products at the last stage (total_proc)

 A lower bound of the total processing times on the machines at the last

stage is calculated as the sum of the processing times of all products when

processed on machines with the average speed in that stage. The value of

total_proc is hence calculated as follows:

total_proc =
∑

∑

∈

∈
⋅

)(
,

)(),(

SMm

NPi
mSv

SmSiT

 130

∑
∈ Ci

 S)MJ(i,

∑
∈ Bi

SiMN),(

 A better (higher) lower bound may be calculated for total_proc by allowing

preemption and applying the “Shortest Remaining Processing Time on Fastest

Machine [SRPT-FM] rule; but this may take some effort and the improvement can

be very little, especially when the ratio of the number of products to the number

of machines is high.

 3. Total major setup time at the last stage (total_major)

 In minimizing major changeovers, the number of machines assigned to

each family should be as few as possible. Major setups can be minimized by

scheduling each family on only one machine. Thus, the minimum number of

major setups for the entire production schedule on the last-stage machines is

equal to N - m(S) setups. The value of total_major is hence determined as the

sum of the N – m(S) smallest major changeovers.

total_major =

 4. Total minor setup times at the last stage (total_minor)

 With each family assigned to only one machine, a total of np - N minor

setups would be required. The total_minor is hence determined by summing the

first np – N smallest minimum minor changeovers, as shown below.

total_minor =

 5. Adjustments to setup times at the last stage (adjust_setup)

 The lower bound on the total setup times at the last stage can be improved

if some of the products in set B are also members of set C (i.e., B ∩ C = Z ≠ φ). In

 131
this case, some members of set D must replace members of either set C (major

setup times) or set B (minor setup times), whichever yields a smaller difference.

Let z ∈ Z.

If a member d∈ D replaces z in set C, then the difference is calculated as

follows:

mj_diff(d,z) = MJ(d, S) – MJ(z, S)

The minimum value mj_diff(d*,z*) is realized by selecting
Dd∈

min (MJ(d,S)) and

Zz∈
max (MJ(z,S)). Denote

Zz∈
max (MJ(z, S)) as MJMax.

Similarly, if d replaces z in set B, then the minimum difference

mn_diff(d’,z’) =
Dd∈

min (MN(d,S) –
Zz∈

max (MN(z,S)). Denote
Zz∈

max (MN(z,S)) as

MNMax. The minimum value between mj_diff(d*,z*) and mn_diff(d’,z’) is then

added to adjust_setup (which has an initial value of zero). Product z* (or z’) is

then deleted from set Z and product d* (or d’) is deleted from set D. However,

the values of MJMax and MNMax should not be updated. This process is

repeated until set Z is void.

The overall lower bound is then calculated as follows:

LBF =
)(

1
Sm

 [total_wait + total_proc + total_major + total_minor + adjust_setup]

6.2.2 Backward Method

 Consider a schedule where products are processed from stage S to stage 1

(i.e., reverse order of machines), then its antithetical schedule (mirror image) yields

the same makespan for the original problem when no setup times are considered.

With setup times, the lower bound for the backward schedule would still remain a

 132
lower bound for the original problem, when calculated as in the forward method

with the following two adjustments:

1. Setup times from idling for the first m(S) products in stage S must not be

considered when calculating total_wait (i.e., assume SI(i) = 0 for all products,

where SI(i) in this case is the setup time for product i from idling at stage S).

2. The sum of the m(1) minimum setup times from idling in stage 1

(sum_setup_idle) should be added to total_wait.

The backward lower bound will then be calculated as follows:

LBB =
)1(

1
m

 [total_wait + total_proc + total_major + total_minor + adjust_setup]

The best lower bound (BLB) is then determined as max {LBF,LBB}.

6.3 Illustration of the Lower Bound Calculations

The problem presented in Chapter 5 is used here to demonstrate the calculation

of the lower bound.

Number of families: J = 4

Number of stages: S = 3

Number of products: fj = 3, j = 1, 2, 3, 4

Number of machines: m(1) =3, m(2) = 2, and m(3)= 2

Processing times of each product on the fastest machine at each stage (P(i,s))

and changeover times of each product in terms of setup times from idling (SI(i)), major

(MJ(i,s)) and minor (MN(i,s)) setup times in each stage are shown in Table 6.1.

 133
Table 6.1: Processing Times on the Fastest Machine at each Stage and Changeover Times of Each

Product on Each Stage

Family
1 2 3 4

Product Product Product Product Description

1 2 3 1 2 3 1 2 3 1 2 3
Processing
Time (P(i,s))

s=1 43.351 16.54 24.14 31.56 28.71 30.39 19.11 25.19 29.62 39.21 14.60 21.24
s=2 23.74 11.07 33.01 11.94 11.31 16.59 14.99 43.76 25.47 36.55 33.76 33.46
s=3 30.63 23.40 26.97 45.75 32.31 21.47 31.43 12.14 19.10 46.01 26.30 16.74
Setup time
From idle
(SI(i))

5.97 6.27 4.53 7.48 6.29 7.00 5.75 7.37 5.74 5.93 6.16 5.54

Minor
Setup time
(MN(i,s))

s=1 4.192 1.6 4.13 3.24 2.34 2.27 1.97 2.9 1.57 4.35 1.65 1.82
s=2 2.82 2.34 4.24 3.83 3.82 2.4 2.94 3.41 2.19 2.78 1.59 3.92
s=3 2.91 1.76 3.52 2.33 1.65 3.47 3.27 2.67 1.76 3.69 2.75 3.13
Major
setup time
(MJ(i,s))3

s=1 6.433 8.65 6.26 6.23 7.37 6.01 6.02 6.51 6.42 6.35 6.24 6.21
s=2 7.38 7.02 6.84 6.23 6.06 8.37 6.60 6.33 6.05 6.06 7.30 8.07
s=3 6.64 6.02 6.50 7.19 6.12 6.22 6.00 6.11 6.11 6.37 6.22 6.93

Note:

1 (47.68/1.1) = 43.35
2 MN(1,1) = min {4.19, 4.28}
3 MJ(1,1) = min {11.06, 8.6, 6.51, 6.43, 7.19, 7.82, 10.61, 10.91, 8.94}

6.3.1 Lower bound Calculations Based on Forward Method:

Calculations of the total waiting time at the last stage (total_wait)

In this problem, the value of m(3) is less than m(1), hence λ = m(3) = 2.

The total_wait is determined as:

 total_wait =)(∑
∈ Ai

iICT

From the data obtained in Table 6.1, the summations of idle time and

processing time of each product from stages s = 1 through S-1 are

presented in Table 6.2.

 134
Table 6.2: The Summations of Setup Time from Idling of the First Stage and Cumulative

Processing Times of Each Product on the Fastest Machine from Stages 1 through
S-1

Family j

(1)

Product i

(2)

SI(i)

(time units)

(3)

CT(i)

 (time units)

(4)

SI(i) + CT(i)

 (time units)

(3)+(4)

1 1 5.97 67.09 73.06

 2 6.27 27.61 33.88

 3 4.53 57.15 61.68

2 1 7.48 43.50 50.98

 2 6.29 40.02 46.31

 3 7.00 46.98 53.98

3 1 5.75 34.10 39.85

 2 7.37 68.95 76.32

 3 5.74 55.09 60.83

4 1 5.93 75.76 81.69

 2 6.16 48.36 54.52

 3 5.54 54.70 60.24

From Table 6.2, it is obvious that the lowest two values of the sum

of SI(i) and CT(i) are 33.88 and 39.85 time units. These values belong to

product 2 of family 1 and product 1 of family 3, respectively. Hence,

A = {(1,2), (3,1)}, and

total_wait = (33.88 + 39.85)

 = 73.73 time units

Calculations of the total processing time of all products at the last stage

(total_proc)

total_proc = ∑∑
∈∈

⋅
)3(

,/)]3()3,([
MmNPi

msvmiT

 135

From Tables 5.1 and 5.2 in chapter 5, the values of ∑
∈)(

,

SMm
msv and

that of ∑
∈ NPi

iT)3,(are equal to 2.06 and 352.19, respectively. Hence, the

total processing time of all products from all families at the last stage is

presented as follows:

total_proc = [2 x 352.74] / 2.06

 = 341.93 time units

Calculations of the total major setup time at the last stage (total_major)

total_major = ∑
∈ Ci

iMJ)3,(

From Table 6.1, the lowest two major setup times at the last stage

are 6.00 and 6.02 time units belonged to product 1 of family 3 and product

2 of family 1, respectively. Hence, C = {(3,1), (1,2)} and

 total_major = 6.00 + 6.02

 = 12.02 time units

 Calculations of the total minor setup time at the last stage (total_minor)

total_minor = ∑
∈ Bi

iMN)3,(

From Table 6.1, the lowest eight minor setup times at the last

stage are presented below:

 1.65 time units from product 2 of family 2,

 1.76 time units from product 2 of family 1,

 1.76 time units from product 3 of family 3,

2.33 time units from product 1 of family 2,

 2.67 time units from product 2 of family 3,

 136
 2.75 time units from product 2 of family 4,

2.91 time units from product 1 of family 1, and

 3.13 time units from product 3 of family 4.

 Hence, B = {(2,2), (1,2), (3,3), (2,1), (3,2), (4,2), (1,1), (4,3)}

total_minor = 1.65+1.76+1.76 + 2.33 + 2.67 + 2.75 + 2.91 + 3.13

 = 18.96 time units

Calculations of the adjustments to setup time at the last stage

(adjust_setup)

From the previous calculations of the major and minor setup times,

the products in the different sets are presented below:

Products in Set B: {(2,2), (1,2), (3,3), (2,1), (3,2), (4,2), (1,1), (4,3)}

Products in set C: {(3,1), (1,2)}

Products in set Z = B ∩ C: {(1,2)}

Products in set D = NP - (B ∪ C): {(2,3), (4,1), (1,3)}

The adjustments to the setup times for this problem are

calculated as follows:

 MJMax =
Zz∈

max MJ(z,3)

 = 6.02

mj_diff(d*,z*) =
Dd∈

min (MJ(d,3) – MJMax

 = min {6.5, 6.22, 6.37} – 6.02

= 0.20 time units

 d* = (4,1) and z* = (1,2)

 Similarly, MNMax =
Zz∈

max MN(z,3)

= 1.76

 137

mn_diff(d’, z’) =
Dd∈

min MN(d,3) – MNMax

= min {3.52, 3.47, 3.69} – 1.76

= 1.71 time units

d’ = (4,1) and z’ = (1,2)

Hence, adjust_setup = min {0.20, 1.71}

= 0.20 time units

And Z = φ.

After all five components have been determined, the lower bound,

using the forward method, is calculated as follows:

LBF = ½ (73.73 + 341.93 + 12.02 + 18.96 + 0.20)

 = 223.42 time units

 Hence, LBF = 224 time units

6.3.2 Lower bound Calculations Based on Backward Method

Calculations of the total waiting time at the first stage (total_wait)

In this example, m(1) > m(3), hence total_wait in this case is:

 total_wait = waiting_time_g1 + waiting_time_g2 + sum_setup_idle

 =)(∑
∈ Ei

iCT + ∑
−

=

)3()1(

1
)(_

mm

x
xtimewaiting + ∑

∈ Gi
iSI)(

From the data obtained in Table 6.1, the summations of the

processing times of each product from stages s = 3 to 2 are presented in

Table 6.3. From this table, it is obvious that the lowest two values of the

sum of the total processing times from stages 3 to stage 2 are 34.47 and

38.06 time units. These values belong to product 2 of family 1 and product

3 of family 2, respectively. Hence, E = {(1,2), (2,3)}, and

waiting_time_g1 = 34.47 + 38.06 = 72.53 time units.

 138
Table 6.3: The Values of CT(i) and β(i) Used to Calculate the Backward Lower Bound

Family j

(1)

Product i

(2)

min {1.76,

MN(i,1)}

(time units)

(3)

P(i,2)

(time units)

(4)

P(i,3)

(time units)

(5)

CT(i)

(time units)

(4) +(5)

ββββ(i)

(time units)

(3) + (4) + (5)

1 1 1.76 23.74 30.63 54.37 56.13

 2 1.76 11.07 23.40 34.47 36.23

 3 1.76 33.01 26.97 59.98 61.74

2 1 1.76 11.94 45.75 57.69 59.45

 2 1.65 11.31 32.31 43.62 45.27

 3 1.76 16.59 21.47 38.06 39.82

3 1 1.76 14.99 31.43 46.42 48.18

 2 1.76 43.76 12.14 55.90 57.66

 3 1.76 25.47 19.10 44.57 46.33

4 1 1.76 36.55 46.01 82.56 84.32

 2 1.76 33.76 26.30 60.06 61.82

 3 1.76 33.46 16.74 50.20 51.96

 The waiting time on the second group machines is determined as

follows.

R =  (3-2)/2 = 1, hence case 2.1 is applied.

 Ω(i) = SI(i) + P(i,1); i ∈ NP

 β(i) = min {min{MN(p,1)}, MN(i,1)} + CT(i)

where, p ∈ A and i ∈ K

2.1.1 Set x = 1.

2.1.2 Calculation steps:

2.1.2.1 Since the setup time from idling in the last stage is

not considered, the value of Ω(i) is P(i,1). Hence, the

 139
lowest value of Ω(i) is Ω((3,2)) which is equal to

12.14.

2.1.2.2 To determine the value of β(i), the minimum value of

MN(p,1) is 1.76 time units. The values of β(i) are

shown in Table 6.3. From this table, the lowest value

of β(i) (i.e., β(g)) is β((1,2)) which is equal to 36.23

time units.

2.1.2.3 Since (3,2) ≠ (1,2), then the waiting time on the

second group machine is determined below.

waiting_time(1) = 12.14 + 36.23

 = 48.37 time units

 Then, go to step 2.1.3.

2.1.3 Update x = x+1 = 2. Since x is greater than m(1) – m(S), go

to 2.1.4.

2.1.4 The sum of the lowest three setup times from idling at

stage 1 (∑
∈ Gi

iSI)() is equal to 15.81 (i.e., 4.53 + 5.54 + 5.74

= 15.81) time units. The value of total_wait is calculated as

follows:

total_wait = 72.53 + 48.23 + 15.81

 = 136.57 time units

Calculations of the total processing time of all products at the first stage

(total_proc)

total_proc = ∑∑
∈∈

⋅
)1(

]/[)1()1,(,

MmNPi
msvmiT

 140

From Tables 5.1 and 5.2 in chapter 5, the values of ∑
∈)1(

,1

mm
mv and

∑
∈ NPi

iT)1,(are 3.13 and 356.01, respectively. Hence, the total processing

time of all products from all families at the last stage is calculated as

follows:

total_proc = (356.01 x 3)/ 3.13

 = 341.22 time units

Calculations of the total major setup time at the first stage (total_major)

total_major = ∑
∈ Ci

iMJ)1,(

 where, C has 4 – 3 = 1 family.

From Table 6.1, the lowest major setup time at the first stage is 6.01

time units belonged to product 3 of family 2. Hence, C = {(2,3)}, and

 total_major = 6.01 time units

Calculations of the total minor setup time at the first stage (total_minor)

total_minor = ∑
∈ Bi

iMN)1,(

where, B has 12 – 4 = 8 products.

From Table 6.1, the lowest eight minor setup times at the first stage

are presented below:

 1.57 time units from product 3 of family 3,

 1.60 time units from product 2 of family 1,

 1.65 time units from product 2 of family 4,

 1.82 time units from product 3 of family 4,

 1.97 time units from product 1 of family 3,

 141
 2.27 time units from product 3 of family 2,

2.34 time units from product 2 of family 2, and

 2.90 time units from product 2 of family 3.

 Hence, B = {(3,3), (1,2), (4,2), (4,3), (3,1), (2,3), (2,2), (3,2)}

total_minor = 1.57 + 1.60 + 1.65 + 1.82 + 1.97 + 2.27 + 2.34 + 2.90

= 16.12 time units

Calculations of the total adjustments to setup times at the first stage

(adjust_setup)

From the previous calculations of the major and minor setup times, the

products in the different sets are presented below:

Products in Set B: {(3,3), (1,2), (4,2), (4,3), (3,1), (2,3), (2,2), (3,2)}

Products in set C: {(2,3)}

Products in Set D: {(1,1), (1,3), (2,1), (4,1)}

Products in set Z: {(2,3)}

The adjustments to the setup times for this problem are

calculated as follows:

 MJMax =
Zz∈

max MJ(z,1)

 = 6.01

mj_diff(d*,z*) =
Dd∈

min (MJ(d,1) – MJMax

 = 6.23 – 6.01

= 0.22 time units

 d* = (2,1) and z* = (2,3)

 Similarly, MNMax =
Zz∈

max MN(z,1)

= 2.27

 142

mn_diff(d’, z’) =
Dd∈

min MN(d,1) – MNMax

= 3.24 – 2.27

= 0.97 time units

d’ = (2,1) and z’ = (2,3)

Hence, adjust_setup = min {0.22, 0.97}

= 0.22 time units

And Z = φ.

LBB = 1/3 [136.57 + 341.22 + 6.01 + 16.12 + 0.22]

= 166.71 time units

 Hence, LBB = 167 time units.

 The best lower bound for this problem (BLB) = max { LBF, LBB}

 = max {224, 167}

 = 224 time units

 143
CHAPTER 7

COMPUTATIONAL EXPERIMENTS

7.1 Introduction

 The flexible flowshop with sequence dependent setup time is known to be NP-

hard. Obtaining an optimal solution using mathematical formulation would require large

computational effort; hence, optimal solutions will not be investigated further. This

chapter will focus on computational experience with the heuristic algorithms (FFSDSTH

and TSH). Two quantities are investigated: (1) the performance of the heuristic

algorithms, obtained by comparing their solutions to the lower bound and (2) the relative

improvement of the solutions obtained by the FFSDSTH algorithm with respect to those

of the TSH algorithm.

 Two sets of problems, with six types of data characteristics in each set, were

generated to evaluate the above two quantities:

Set 1: 50 products (12 families)

Set 2: 80 products (18 families)

Six types (A, B, C, D, E, and F) of data characteristics were generated for each

set, and 10 test problems were generated for each data type. The parameters for each

data type, processing times of products on a standard machine (speed = 1) at each

stage (PTime(j,i,s,m)), machine speed deviations (vs,m), changeover times between

products at each stage (ch(j,i,q,p,s)), and setup times from idling of products at the first

stage (ch(0,0,j,i,s)), were randomly selected from different uniform distributions as

shown in Table 7.1

 144
Table 7.1: Values of Parameters Used with the Different Data Types

Type Parameter

A

B

C

D

E

F

Total number

of machines

and stages

9 machines,

3 stages

(3,3,3)

20 machines,

5 stages

(4,4,4,4,4)

11 machines,

3 stages

(4,2,5)

9 machines,

3 stages

(3,3,3)

20 machines,

5 stages

(4,4,4,4,4)

11 machines,

3 stages

(4,2,5)

PTime(j,i,s,m)

U[10,50]

U[10,50]

U[10,50]

U[10,50]

U[10,50]

U[10,50]

vs,m

U[0.85, 1.15]

U[0.85, 1.15]

U[0.85, 1.15]

U[0.75, 1.25]

[0.75, 1.25]

U[0.75, 1.25]

ch(j,i,q,p,s)

U[20%, 40%]

of PTime(j,i,s,m)

U[20%, 40%]

of PTime(j,i,s,m)

U[20%, 40%]

of PTime(j,i,s,m)

U[20%, 40%]

of PTime(j,i,s,m)

U[20%, 40%]

of PTime(j,i,s,m)

U[20%, 40%]

of PTime(j,i,s,m)

ch(j,i,j,p,s)

U[5%, 15%]

of PTime(j,i,s,m)

U[5%, 15%]

of PTime(j,i,s,m)

U[5%, 15%]

of PTime(j,i,s,m)

U[5%, 15%]

of PTime(j,i,s,m)

U[5%, 15%]

of PTime(j,i,s,m)

U[5%, 15%]

of PTime(j,i,s,m)

ch(0,0,j,i,s)

U[15%, 25%]

of PTime(j,i,s,m)

U[15%, 25%]

of PTime(j,i,s,m)

U[15%, 25%]

of PTime(j,i,s,m)

U[15%, 25%]

of PTime(j,i,s,m)

U[15%, 25%]

of PTime(j,i,s,m)

U[15%, 25%]

of PTime(j,i,s,m)

 Changeover times between products at each stage (ch(j,i,q,p,s) and setup times

from idling at the first stage (ch(0,0,j,i,s)) are identical on all machines at the same stage.

Types A, B, and C generate problems with small deviations in the speed of machines.

Conversely, types D, E, and F generate problems with large deviations in the speeds.

Characteristics of the data types can be summarized as follows:

 A: A small number of stages, small deviations in machine speeds, and small,

identical number of machines in each stage.

 B: A large number of stages, small deviations in machine speeds, and large,

identical number of machines in each stage.

 145
 C: A small number of stages, small deviations in machine speeds, and small,

non-identical number of machines in each stage.

 D: A small number of stages, large deviations in machine speeds, and small,

identical number of machines in each stage.

 E: A large number of stages, large deviations in machine speeds, and large,

identical number of machines in each stage.

 F: A small number of stages, large deviations in machine speeds, and small,

non-identical number of machines in each stage.

In section 7.2, the computational results obtained with the heuristics are

presented and compared to the lower bounds for the large size problems. Section 7.3

presents the relative improvement of the solutions obtained by the FFSDSTH algorithm

with the application of the TSH algorithm.

7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds

 The heuristic algorithms were coded in C++ and run on a 300 MHz PC, with 96

MegaBytes of RAM, for testing and evaluation. In this section, the heuristic algorithms

are evaluated using two performance measures: (1) solution quality, and (2)

computational speed. The quality of a solution generated by the heuristics is measured

in terms of their performance (HP), as presented below.

 HP = (solLB/solheu) x 100

 where,

 HP = the heuristic performance (%)

 solLB = the lower bound of the solution

 solheu = the solution obtained from the heuristic algorithms

 The computational speed of the algorithms is measured by the amount of CPU

time required to execute the algorithms. The CPU time includes compiling, linking, and

 146
execution times, and is reported in seconds and seconds per iteration for the FFSDSTH

and TSH algorithms, respectively.

 For each combination of problem set and data type, ten different test problems

were generated. The solution of each test problem using the heuristic algorithm and its

lower bound were obtained for all combinations of sets and data types. The results of

these computations are presented in Tables 7.2-7.13. Table 7.14 shows the averages

obtained for these results.

Table 7.2: Computational Results for Set 1 Type A:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSH Problem

Number
FFSDSTH
(seconds)

seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.2 10.90 50 81.463 88.485
2 1.3 10.60 48 74.322 79.616
3 1.3 10.60 45 85.698 91.364
4 1.2 10.40 69 79.576 85.127
5 1.4 10.90 91 74.400 80.286
6 1.5 10.80 38 85.392 90.700
7 1.3 10.70 43 85.243 92.651
8 1.4 10.60 44 82.684 90.368
9 1.4 10.60 89 80.403 86.788
10 1.2 10.50 66 82.049 90.265

 147
Table 7.3: Computational Results for Set 1 Type B:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.4 29.20 63 79.611 89.156

2 1.3 28.70 48 80.244 87.251

3 1.4 28.80 47 80.756 86.361

4 1.5 28.70 60 79.442 84.660

5 1.4 29.30 58 79.245 84.955

6 1.5 28.90 58 81.353 86.972

7 1.3 29.50 80 76.119 82.724

8 1.4 29.70 49 74.618 80.249

9 1.6 28.50 42 82.102 88.748

10 1.5 29.90 65 79.576 86.824

Table 7.4: Computational Results for Set 1 Type C:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.8 11.50 52 86.812 91.170

2 1.6 11.20 49 80.613 85.890

3 1.7 11.30 65 83.836 88.659

4 1.9 11.40 65 81.935 88.358

5 1.8 10.90 49 80.302 86.184

6 1.9 11.10 84 80.852 86.725

7 1.8 11.40 38 80.916 88.698

8 1.6 11.60 68 84.384 90.345

9 1.6 11.50 55 85.291 90.926

10 1.7 11.20 33 81.817 87.446

 148
Table 7.5: Computational Results for Set 1 Type D:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.4 10.80 51 81.463 88.485

2 1.5 10.60 63 74.322 79.616

3 1.3 10.70 39 85.698 91.364

4 1.5 10.80 52 79.576 85.127

5 1.2 10.80 67 74.400 80.286

6 1.5 10.60 80 85.392 90.700

7 1.4 11.10 34 85.243 92.651

8 1.2 11.00 36 82.684 90.368

9 1.3 10.70 52 80.403 86.788

10 1.6 10.70 64 82.049 90.265

Table 7.6: Computational Results for Set 1 Type E:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.9 30.20 47 72.721 81.117

2 1.8 29.80 47 71.241 77.730

3 1.8 29.90 79 77.481 83.921

4 2.0 30.10 70 73.650 78.533

5 2.1 30.00 77 76.324 81.758

6 1.8 29.70 40 73.338 82.765

7 1.7 29.20 39 70.361 79.638

8 1.6 30.40 64 74.031 82.585

9 1.6 30.50 46 70.099 79.522

10 2.1 29.50 36 73.438 79.352

 149
Table 7.7: Computational Results for Set 1 Type F:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.4 12.00 53 74.972 81.550

2 1.5 12.00 55 79.406 87.135

3 1.3 11.70 32 78.046 83.117

4 1.5 11.80 78 76.516 83.759

5 1.5 12.00 64 75.047 83.983

6 1.7 12.00 79 79.438 87.860

7 1.4 11.80 38 73.959 83.066

8 1.6 11.60 48 80.097 84.536

9 1.7 11.50 50 73.708 81.224

10 1.3 11.60 52 77.924 87.810

Table 7.8: Computational Results for Set 2 Type A:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.9 42.00 35 82.545 86.052

2 2.0 42.30 73 89.203 93.335

3 2.2 42.30 68 79.945 83.556

4 2.0 41.80 34 82.587 85.287

5 2.1 41.70 42 81.262 83.822

6 1.8 41.90 68 85.502 89.785

7 1.7 42.00 92 83.549 87.084

8 2.0 42.00 80 84.135 87.464

9 1.9 42.50 65 80.573 84.459

10 1.8 42.10 69 83.306 86.599

 150
Table 7.9: Computational Results for Set 2 Type B:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 2.4 121.00 40 77.985 82.079

2 2.3 122.40 47 76.963 81.000

3 2.7 119.80 80 76.169 81.784

4 2.1 119.40 32 78.279 83.382

5 2.2 119.80 37 73.902 79.459

6 2.4 121.40 54 76.708 81.632

7 2.5 119.10 39 71.015 77.274

8 2.6 122.00 40 75.044 78.824

9 2.7 119.00 39 77.164 81.636

10 2.3 120.00 80 74.787 79.803

Table 7.10: Computational Results for Set 2 Type C:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.8 54.30 54 79.432 84.766

2 2.0 55.00 59 79.921 85.334

3 2.1 55.10 66 79.689 83.490

4 2.0 55.20 94 90.751 95.583

5 2.1 55.00 80 78.983 82.120

6 2.2 54.30 33 79.306 84.550

7 2.3 56.10 61 78.511 84.095

8 1.9 49.70 42 80.116 85.185

9 2.1 55.00 34 80.083 84.636

10 1.8 55.00 57 79.041 83.844

 151
Table 7.11: Computational Results for Set 2 Type D:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 1.9 44.00 62 76.373 81.358

2 1.8 44.00 38 75.985 80.374

3 2.1 44.50 80 84.538 87.975

4 2.0 44.20 96 75.046 79.265

5 2.2 43.90 52 79.512 84.750

6 2.1 43.80 42 80.065 87.427

7 2.1 44.00 34 72.910 77.382

8 1.9 44.10 41 75.276 80.168

9 1.9 44.50 98 80.829 87.815

10 2.0 44.30 92 79.116 83.524

Table 7.12: Computational Results for Set 2 Type E:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 2.3 123.00 39 69.419 74.763

2 2.2 123.70 40 73.694 81.635

3 2.4 123.30 54 73.802 80.123

4 2.1 123.90 33 72.369 79.595

5 2.3 122.80 80 71.746 77.625

6 2.1 122.50 42 73.947 78.457

7 2.2 123.00 63 72.906 79.426

8 2.3 123.70 65 68.858 74.331

9 2.2 122.00 54 64.291 70.117

10 2.1 122.70 53 69.923 75.175

 152
Table 7.13: Computational Results for Set 2 Type F:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance
(%)

TSH Problem Number

FFSDSTH
(seconds) seconds/iteration

Number of Iterations

(iterations)

FFSDSTH

TSH

1 2.5 57.00 38 72.073 77.789

2 2.5 57.40 45 72.914 79.415

3 2.6 57.10 76 74.506 79.341

4 2.8 56.90 68 73.253 80.775

5 2.9 57.00 80 75.267 79.050

6 2.5 56.80 40 74.360 81.395

7 2.5 56.40 47 70.350 77.351

8 2.6 57.00 70 70.000 76.455

9 2.8 57.00 57 75.491 79.847

10 2.5 57.30 47 74.442 80.141

Table 7.14: Averages of Computational Results for Sets 1 and 2 for all Data Types:
Heuristic Algorithms vs. Lower Bound

CPU time

Heuristic Performance

(%)

TSH

Set Type
FFSDSTH
(seconds) seconds/iteration

Number of iterations
(iterations)

FFSDSTH

TSH

1 A 1.3 10.66 59 86.309 90.876

 B 1.7 29.12 57 79.307 88.790

 C 1.4 11.31 56 82.676 88.440

 D 1.4 10.78 54 81.123 87.565

 E 1.5 29.93 55 73.268 80.692

 F 1.8 11.80 55 76.911 84.404

2 A 1.9 42.06 63 83.261 86.744

 B 2.4 120.39 49 75.802 80.687

 C 2.0 54.47 58 80.583 85.360

 D 2.0 44.13 64 77.965 83.004

 E 2.6 123.06 53 71.096 77.125

 F 2.2 56.99 57 73.266 79.156

 153
 Based on these results, the average performance for set 1 ranges between

73.3-86.3% for the FFSDSTH algorithm and 80.7-90.9% for the TSH algorithm. For set

2, the average performance is lower than that of set 1, and ranges between 71.1-83.3%

for the FFSDSTH algorithm and 77.1-86.7% for the TSH algorithm.

 The computational times for the FFSDSTH are extremely small-- less than 3

seconds. These times do not significantly increase with the size of the problem. This

means that the FFSDSTH algorithm is very efficient, and more importantly it is not

sensitive to the problem size. In contrast, computational times for the TSH algorithm

seem to be high-- between 10 and 30 seconds per iteration for data set 1 and between

42 and 124 seconds per iteration for data set 2. These times increase significantly with

the size of the problem in terms of numbers of products (families), stages, and

machines.

 A Factorial Design was used to evaluate the performance of the heuristic

algorithms (HP). The design has three factors: deviations in machine speeds, number of

products, and number of machines and stages. The analysis was performed using SAS

Software V8 for Windows and the results are presented in Appendix C. The statistical

results show a significant effect for each of the three factors on the heuristic

performance. Tukey’s test was performed to compare between the three means

obtained with different number of machines and stages. Results of the test (see

Appendix C, Section C.3) indicate that the three means are different from each other.

 The statistical results obtained from ANOVA and Tukey’s test show that the

heuristic performance declines with the increase of: (1) number of products, (2) number

of machines and stages, and (3) deviation in machine speeds. This decline is due mainly

to the decrement in the value of the lower bound rather than the performance of the

heuristics. The lower bound value may be affected by the following factors:

 154
(1) the difference between the actual processing times and the smallest

processing times of products used to calculate the first component of lower

bound. The difference in processing times gets larger when the difference in

the speeds between the fastest and the slowest machines increases.

(2) the difference between actual processing times and the processing times on

the average speed machine of products used to calculate the second

component of the lower bound, and

(3) the difference between actual setup times (both major and minor setup

times) and the smallest setup times of the products, used to calculate

components 3,4, and 5 of the lower bound.

If the differences were small, the lower bound would be relatively high resulting in higher

algorithm performance, and vice versa. Larger deviations in machine speeds, a number

of products (families), and of machines and stages would most probably cause larger

differences in processing times and setup times.

7.3 Comparison between the FFSDSTH Algorithm and the TSH Algorithm

 In this section, the relative improvement of the solutions obtained from the

FFSDSTH algorithm after applying the TSH is evaluated and presented below.

 Let RI = {(solFFSDSTH/ - solTSH) / solFFSDSTH} x 100

 where,

 RI = the relative improvement (%) between solFFSDSTH and solTSH

 solFFSDSTH = the solution obtained from the FFSDSTH algorithm

 solTSH = the solution obtained from the TSH algorithm

 Two sets of relatively large size problems are used in this section. These sets

are identical to those described in Section 7.2. For each combination of problem set and

data type, 10 different test problems were generated. The solutions of each test

 155
problem using the FFSDSTH and TSH algorithms were obtained for all combinations of

sets and data types. The results obtained are presented in Tables 7.15 and 7.16. Table

7.17 shows the averages obtained for these results.

Table 7.15: Relative Improvement Results for the Different Data Types in Set 1:

Relative Improvement (%)

Type

Problem Number

A B C D E F

1 4.220 10.706 4.780 7.936 10.351 8.066

2 7.706 8.031 6.143 6.650 8.348 8.870

3 5.649 6.490 5.440 6.201 7.675 6.102

4 3.992 6.164 7.269 6.521 6.218 8.647

5 5.945 6.721 6.825 7.331 6.647 10.639

6 3.573 6.461 6.771 5.853 11.390 9.586

7 2.948 7.985 8.774 7.995 11.649 10.963

8 5.601 7.017 6.598 8.503 10.358 5.250

9 7.511 7.489 6.198 7.357 11.850 9.253

10 3.059 8.348 6.437 9.102 7.453 11.258

Table 7.16: Relative Improvement Results for the Different Data Types in Set 2:

Relative Improvement (%)

Type

Problem Number

A B C D E F

1 4.075 4.987 6.293 6.127 7.148 7.348

2 4.427 4.983 6.344 5.460 9.728 8.186

3 4.322 6.865 4.552 3.907 7.889 6.093

4 3.166 6.120 5.055 5.322 9.078 9.313

5 3.054 6.994 3.820 6.180 7.573 4.786

6 4.771 6.032 6.202 8.420 5.749 8.643

7 4.059 8.100 6.640 5.779 8.208 9.051

8 3.806 4.795 5.951 6.102 7.363 8.442

9 4.601 5.478 5.380 7.955 8.309 5.455

10 3.802 6.286 5.729 5.278 6.987 7.111

 156
Table 7.17: Averages of Relative Improvement Results for Sets 1 and 2

Relative Improvement (%)

Type

Set

A

B

C

D

E

F

1

5.02

7.54

6.52

7.35

9.20

8.86

2

4.01

6.06

5.60

6.05

7.80

7.44

 As shown in Tables 7.15 and 7.16, the TSH algorithm provides better makespan

values than the FFSDSTH algorithm by 2.95-11.85% in the individual test runs. A

Factorial Design was used to evaluate the relative improvement (RI) of the solutions

obtained by the FFSDTSH algorithm with the application of the TSH algorithm. The

design has three factors: deviations in machine speeds, number of products, and

number of machines and stages. The analysis was performed using SAS Software V8

for Windows and the results are presented in Appendix C. The statistical results show a

significant effect for each of the three factors on the RI. Tukey’s test was performed to

compare between the three means. Results of the test (see Appendix C, Section C.4)

show no difference in the relative improvement (RI) obtained with the (4,2,5) and the

(4,4,4,4,4) configurations, and a smaller RI for the (3,3,3) configuration. This can be

expected as the quality obtained when applying the FFSDSTH algorithm to problems

with larger number of stages and machines (e.g.,(4,4,4,4,4) configuration) or different

number of machines per stage (e.g., (4,2,5)) may suffer, thus leaving more room for the

TSH to improve the solutions. Results obtained in the ANOVA tables and Tukey’s test

 157
show that the relative improvement increases with the increase of the number of

machines and stages and the deviations in machine speeds. In contrast, the relative

improvement declines as the size of number of products (or families) increases.

 158
CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

A comprehensive research was undertaken to minimize the makespan for the

“flexible flowshop with sequence dependent setup times” problem. An exact algorithm

was first developed and used to solve small problems. Two heuristic algorithms

(FFSDSTH and TSH) were then developed to solve larger and more practical problems.

In order to evaluate the performance of the heuristic algorithms, two lower bounds were

developed for the solution of the problem. In this chapter, a summary of the research

performed and the conclusions obtained are presented and followed by its contributions

and recommendations for future research.

8.2 Summary of the Research

 In Chapter 2, the flexible flowshop with sequence-dependent setup time problem

(FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax) was introduced in details. The problem investigated

in this research consists of one production line with S stages. Each stage has one or

more non-identical parallel machines (uniform). Machine setup times are required to

change over from one product to another. The objective of this research was to

minimize the makespan. A review of the relevant literature was presented in Chapter 3

for flexible flowshop scheduling with no setup time consideration, and flowshop

scheduling with sequence dependent setup times (SDST). No work was found in the

literature for the flexible flowshop scheduling with SDST. A brief review and description

of the “Tabu Search” was also given in the same chapter.

 In Chapter 4, a 0-1 mixed integer programming model was developed. Since the

optimal solution can be obtained for only small size problems, two heuristic algorithms

(FFSDSTH and TSH) were developed in Chapter 5. The first algorithm (FFSDSTH) was

 159
developed to obtain a good initial solution. This algorithm starts by assigning families to

machines at the first stage, and then proceeds by sequencing the products on the

machines. Once all products have been scheduled on the first-stage machines, the

algorithm tries to move individual products between machines in an effort to reduce the

latest completion time of all products in the first stage. After completing the schedule for

the first-stage machines, the assignments of products to machines at the succeeding

stages are performed. A Look Ahead (LA) rule was developed to sequence the products

on machines at stages 2 through S.

 The solution obtained from the first phase algorithm (FFSDSTH) is improved in

the second phase using the TSH algorithm. The TSH algorithm has 3 main steps:

(1) moving families between machines (and within a machine) at the first stage,

(2) moving products between machines (and within a machine) at the first stage, and

(3) finding a good sequence that results in a low makespan. The processes of moving

families and products are not performed for other stages as their computations take

large amount of times and they yield very little improvement.

 In Chapter 6, two methods were presented for obtaining a lower bound for the

flexible flowshop with sequence dependent setup times problems: (1) forward method

and (2) backward method. Machine waiting time, idle time, and the total setup and

processing times on machines at the last stage were used to obtain the lower bounds.

 In Chapter 7, the computational experience obtained with the application of the

heuristic procedures was presented. Two data sets with six problem configurations for

each set were generated, and ten test problems were generated for each configuration.

The performances of the heuristics were presented and evaluated using two measures:

(1) solution quality and (2) computational speed. The quality of heuristic solutions was

evaluated using lower bounds. The results showed a performance for the FFSDSTH

algorithm between 76.9-86.3% for data set 1 and 71.1-83.3% for data set 2. The

 160
performance for the TSH algorithm ranged between 80.7-90.9% for data set 1 and

79.2-86.7% for data set 2. The performance of the algorithms declined with the increase

of: (1) deviation in machine speeds (2) number of products, and (3) number of machines

and stages.

The computational times were very small for the FFSDSTH algorithm, indicating

that this algorithm is very efficient and not sensitive to problem size. Conversely, the

computational times of the TSH algorithm increased significantly with problem size--

number of products, stages, and machines. For the relative improvement realized when

applying the TSH algorithm to the results obtained with the FFSDSTH algorithm, the

results indicated an improvement between 2.95 and 11.85%. This improvement

increased as the deviations in machine speeds, number of stages, and machines

increased. On the other hand, it decreased as the number of products (families)

increased.

8.3 Contribution of the Research

 According to the literature review, the flexible flowshop with sequence-dependent

setup time problem has never been studied. This is true for both cases with identical

and uniform processing. The exact algorithm as well as the heuristic algorithm and the

lower bound methods developed for the FFSDSTH can also be applied to both identical

and uniform parallel processing problems with or without dependent setup times.

Computational experience showed that both heuristic algorithms are effective in solving

the problem.

8.4 Recommendations for Future Research

 The following recommendations are made for future research:

 161
• Additional research may be performed for flexible flowshop with sequence-

dependent setup time problems that have several production lines and unrelated

machines.

• The calculation of the lower bounds may be further enhanced. In this research, the

performance of the lower bound developed declined as deviations in speeds, number

of products, number of stages, and number of machines increased. Further research

needs to be performed to develop better ways to calculate more accurate lower

bounds rather than taking the smallest setup times or the smallest processing times.

In this research, the lower bounds were determined by summing two quantities:

machine waiting time and total of setup and processing times at the last stage.

These lower bounds may be improved by determining these two quantities on every

stage rather than just the last stage.

• Improvements may be made to the TSH algorithm. The Tabu search was utilized in

this research without using intensification or diversification strategies. These

strategies, which are used to guide the search in a more intelligent way, need to be

further studied.

• Other search methods (e.g., Neural Network or Genetic Algorithm) may be applied to

solve this problem. Their performances may be compared to that of the Tabu

Search algorithm.

 162
Bibliography

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A Review of Scheduling.
Research Involving Setup Considerations, OMEGA, The International Journal of
Management Science, 27: 219-239.

Amin-Narseri, Mohammad Reza (1993). Pre-Emptive Job Scheduling on a Single

Processor with Difference Release Dates to Minimize Total Weighted Flow Time
Doctoral Dissertation, West Virginia University, West Virginia.

Arthanary, T. S. & Ramaswamy, K. G. (1971). An Extension of Two Machine Sequencing

Problem. Opsearch, 8, 10-22.

Baker, K. R. (1974). Introduction to Sequencing and Scheduling., John Wiley & Sons,

New York.

Barns, J. W. & Laguna, M. (1993). A Tabu Search Experience in Production Scheduling,

Annals of Operations Research, 41, 141-156.

Barns, J. W. & Laguna, M. (1993). Solving the Multiple-Machine Weighted Flow Time

Problem Using Tabu search. IIE Transactions, 25(2), 121-128.

Brah, S. A. & Hunsucker, J. L. (1991). Branch and Bound Algorithm for the Flow Shop

with Multiple Processors. European Journal of Operational Research, 51, 88-99.

Brandao, J. & Mercer, A. (1997). A Tabu Search Algorithm for the Multi-Trip Vehicle

Routing and Scheduling Problem. European Journal of Operational Research,
100, 180-191.

Campbell, H. G., Dudek, R. A. & Smith, M. L. (1970). A Heuristic Algorithm for the n job m

Machine Sequencing Problem, Management Science, 16, B630-B637.

Chen, C. H. (1997). Scheduling in a Flowline Manufacturing Cells System Considering

Intercellular Pats: The Tabu Search Approach. Doctoral Dissertation, University of
Texas at Arlington, Texas.

Cheng, T. C. E. & Sin, C. C. S. (1990). A State-of-the-Art Review of Parallel-Machine

Scheduling Research. European Journal of Operational Research, 47, 271-292.

Corwin, B.D. & Esogbue, A.O. (1974). Two Machine Flowshop Scheduling Problems with

Sequence Dependent Setup Times: a Dynamic Programming Approach. Naval
Research Logistics Quarterly, 21(3), 515-524.

Cutright, K. W. (1990). Scheduling Production Lines with Changeover Costs and

Dependent Parallel Processors. Doctoral Dissertation, West Virginia University,
West Virginia.

Day. J. E. & Hottenstien, M. P. (1970). Review of Sequencing Research. Naval Research

Logistics Quarterly, 17(1),11-39.

 163
De Werra, D. & Hertz, A. (1989). Tabu Search Techniques: A Tutorial and an Application

to Neural Networks, OR Spektrum. 11, 131-141.

Ding, Fong-Yeun & Kittichartphayak, D. (1994). Heuristics for Scheduling Flexible Flow

Lines. Computers Industrial Engineering, 26(1), 27-34.

Dudek, R, A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop

Scheduling Research, Operations Research, 40(1), 7-13.

Egbelu, P. J. (1991). Concurrent Specification of Unit Load Sizes and Autonomated

Guided Vehicle Fleet Size in Manufacturing System. International Journal of
Production Economics, 29, 49-64.

Franca, P. M., Gendreau, M., Laporte, G. & Muller, F. M. (1996). A Tabu Search

Heuristic for the Multiprocessor Scheduling Problem with Sequence Dependent
Setup Times, International Journal of Production Economics, 43, 79-89.

Glover, F. (1989). Tabu Search part I, ORSA Journal on Computing, 1(3), 190-206.

Glover, F. (1990). Tabu Search part II, ORSA Journal on Computing, 2(1), 4-32.

Goldratt , E. M. (1990). What’s This Thing Called Theory of Constraints?, North-River

Press, Milford, Connecticut.

Guinet, A., Solomon, M.M., Kedia, P.K. & Dussauchoy, A. (1996). A Computational Study

of Heuristics for Two-Stage Flexible Flowshops, International of Production
Research, 34(5), 1399-1415.

Gupta, J. N. D. (1977). Optimal Flowshop Schedules with no Intermediate Storage, Naval

Research Logistics Quarterly, 12, 235-242.

Gupta, S. K. (1982). N Jobs and m Machines Job-Shop Problems with Sequence

Dependent Set-up Times. International Journal of Production Research, 20(5),
643-656.

Gupta, J. N. D. (1986). Flowshop Schedules with Sequence Dependent Setup Times.

Journal of the Operational Research Society of Japan, 29(3), 206-219.

Gupta, J. N. D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the

Operation Research Society, 39, 359-364.

Gupta, J. N. D. & Tunc, E. A. (1991). Schedules for a Two-Stage Hybrid Flowshop with

Parallel Machine at the Second Stage. International Journal of Production
Research, 29(7), 1489-1502.

Gupta, J. N. D. & Tunc, E. A. (1994). Scheduling a Two-Stage Hybrid Flowshop with

Separable Setup and Removal Time. European Journal of Operational Research,
77, 415-428.

Haouari, M. & M’Hallah R. (1997). Heuristic Algorithms for the Two-Stage Hybrid

Flowshop Problem. Operations Research Letters, 21, 43-53.

 164

Hertz, A. & De Werra, D. (1990). The Search Metaheuristic: How We Used It. Annals of

Mathematics and Artificial Intelligence, 1, 111-121.
Ho, J.C & Chang, Y.L. (1991). A New Heuristic for the n-Job, m-Machine Flow-Shop

Problem. European Journal of Operational Research, 52(2), 194-202.

Johnson, S. M. (1954). Optimal Two- and Three-Stage Production Schedules with Setup
Times Included. Naval Research Logistics Quarterly, 1(1), 61-68.

Laguna, M. & Barns, J. W. & Glover, F. (1993). Intelligent Scheduling with Tabu Search:

An Application to Jobs with Linear Delay Penalties and Sequence-Dependent
Setup Costs and Times. Journal of Applied Intelligence, 3, 159-172.

Lee, C. Y. & Vairaktarakis, G. (1994). Minimizing makespan in Hybrid flowshops.

Operations Research Letters, 16, 149-158.

Lee, Y-. H. & Pinedo, M., (1997). Theory and Methodology: Scheduling Jobs on Parallel
Machines with Sequence-Dependent Setup Times, European Journal of
Operational Research, 100, 464-474.

Li, S. (1997). Theory and Methodology: A Hybrid Two-Stage Flowshop with Part Family,
Batch Production, Major and Minor Setup Times, European Journal of Operation
Research, 102, 142-156.

Moursli, O. (1995). Branch and Bound Lower Bounds for the Hybrid Flowshop. Intelligent
Manufacturing Systems, 4th IFAC Workshop, 31-36.

Nawaz, M., Emory, E. E. Jr., Ham, I. (1983). A Heuristic Algorithm for the m-Machine,

n-Job Flowshop Sequencing Problem, OMEGA, The International Journal of
Management Science, 11(1), 91-95.

Norman, B. A. (1999). Scheduling Flowshops with Finite Buffers and Sequence-

Dependent Setup Times. Computers & Industrial Engineering, 36, 163-177.

Nowicki, E. and Smutnicki, C. (1996). A Fast Tabu Search Algorithm for the Permutation
Flow-shop Problem. European Journal of Operational Research, 91, 160-175.

Nowicki, E. & Smutnicki, C. (1998). The Flowshop with Parallel Machines: A Tabu Search
Approach, European Journal of Operational Research, 106, 226-253.

Osman, I. H.& Potts, C. N. (1989). Simulated Annealing for Permutation Flowshop

Scheduling, OMEGA, The International Journal of Management Science, 17(6):
551-557.

Pinedo, M., (1995). Theory, Algorithm, and Systems., Prentice-Hall, Englewood Cliffs,
New Jersey.

Portmann, M-. C., Vignier, A., Dardilhac, D. & Dezalay, D. (1998). Branch and Bound
Crossed with GA to Solve Hybrid Flowshops, European Journal of Operational
Research, 107, 384-400.

 165
Riane, F., & Artiba, A. (1997). A Hybrid Heuristic for Scheduling a Hybrid Flowshop

Maximum Completion Time Problem. International Conference on Neural Network
Information Processing and Intelligence Information Systems, New Zealand,
1021-1024.

Riane, F., Artiba, A. & Elmaghraby, S. E. (1998). A Hybrid Three-Stage Flowshop

Problem: Efficient Heuristics to Minimize Makespan, European Journal of
Operational Research, 109, 321-329.

Rajendran, C. & Chaudhuri, D. (1992). Scheduling in n-job, m-machine Flowshop with

Parallel Processors to Minimize makespan, International Journal of Production
Economics, 27, 137-143.

Randhawa, S. U. & Smith, T.A. (1995). An Experiment Investigation of Scheduling
Non-Identical, Parallel Processors with Sequence-Dependent Setup Times and
Due Date, International Journal of Production Research, 33(1), 59-69.

Randhawa, S. U. & Kuo, C. H. (1997). Evaluation Scheduling Heuristic for Non-Identical
Parallel Processors, International Journal of Production Research, 35(4), 969-981.

Rios-Mercado, R. Z. (1997). Optimization of the Flowshop Scheduling Problem with
Setup Times. Doctoral Dissertation, University of Texas at Austin, Texas.

Rios-Mercado, R. Z. & Bard, J.F. (1998). Heuristic for the Flowline Problem with Setup
Costs, European Journal of Operational Research, 110(1), 76-98.

Rios-Mercado, R. Z. & Bard, J.F. (1999). A Branch-and-Bound Algorithm for Permutation
Flow Shops with Sequence-Dependent Setup Times. IIE Transactions, 31,
721-731.

Rios-Mercado, R. Z. & Bard, J.F. (1999). An Enhanced TSP-Based Heuristic for

Makespan Minimization in a Flow Shop with Setup Times. Journal of Heuristics, 5,
53-70.

Sarin, S. & Lefoka, M. (1993). Scheduling Heuristics for the n-Job m-Machine Flow Shop.
OMEGA, The International Journal of Management Science, 21(2): 229-234.

Simons Jr.,J. V., (1992). Heuristics in Flowshop Scheduling with Sequence Dependent
Setup Times. OMEGA, The International Journal of Management Science, 20(2):
215-225.

Skorin-Kapov, J. & Vakharia, A., J. (1993). Scheduling a Flow-Line Manufacturing Cell: A

Tabu Search Approach. International Journal of Production Research, 31(7),
1721-1734.

Soewadi, H. (1998). Sequencing Jobs on Two-and Three-Stage Hybrid Flowshop to
Minimize Makespan, Doctoral Dissertation, North Carolina State University, North
Carolina.

 166
Srikar, B. N. & Ghosh, S. (1986). A MILP Model for the n-job, m-stage Flowshop with

Sequence Dependent Set-up Times. International Journal of Production Research,
24(6), 1459-1474.

Stafford, E. F. & Tseng, F. T. (1990). On Srikar-Ghosh MILP Model for the NxM SDST
Flowshop Problem. International Journal of Production Research, 28(10),
1817-1830.

Szwarc, W. & Gupta, J. N. D. (1987). A Flow-Shop with Sequence-Dependent Additive
Setup Times. Naval Research Logistics Quarterly, 34(5), 619-627.

Tillard, E. (1990). Some Efficient Heuristic Methods for the Flow Shop Sequencing
Problem. European Journal of Operational Research, 47(1), 65-74.

Umbel, M. M. & Srikanth, M. L. (1992). Synchronous Manufacturing: Principle for World
Class Excellence, South-western publishing Co, Cincinnati, OH.

Verma, S. & Dessouky, M. (1999). Multistage Hybrid Flowshop Scheduling with Identical
Jobs and Uniform Parallel Machines. Journal of Scheduling., 2, 135-150.

Vignier A., Dardilhac, D., Dezalay, D., & Proust C. (1996). A Branch and Bound Approach
to Minimize the Total Completion Time in a k-Stage Hybrid Flowshop, IEEE
Conference on Engineering Technologies and Factory Automation, November,
Kauai, Hawaii, 18-21.

Vollman, T. E., Berry, W. L. & Whybark, D. C. (1992). Manufacturing Planning and Control

Systems., Richard D. Irwin, INC, Boston, Massachusetts.

Wilbrecht, J. K. & Prescott, W. B. (1969). The Influence of Setup Time on Job Shop
Performance, Management Science, 16, B274-B280.

Wortman, D. B. (1992). Managing Capacity: Getting the most From Your Company
Assets, Industrial Engineering, 24, 47-49.

 167

APPENDICIES

 168
APPENDIX A

Sequencing Notation Used in This Research

Normally, a notation of scheduling problems has the form which consists of three

parameters, α/β/γ. The first parameter (α) describes a machine environment and

contains a single entry. The second parameter (β) is a field providing the details of

processing characteristics and constraints. The β field may contain no entry, a single

entry, or multiple entries. The last parameter (γ) contains the objective to be minimized

and usually contains a single entry. Additionally, the number of jobs and machines are

denoted by n and m, respectively. Both m and n are assumed to be finite. In this

research, subscripts i and p refer to jobs, whereas subscript k refer to machines.

There are two sections presented in this appendix. The first section describes

data associated with jobs, and the second section presents descriptions of possible

entries of the fields in the triple form (α/β/γ) that are used in this research. The notation

described in this appendix is adapted from Pinedo (1995).

A.1 Fundamental Data Associated with Jobs

The following pieces of data are associated with job i.

! Processing time (t(i,k)). The t(i,k) represents the processing time of job i on machine

k. The subscript i is dropped if the processing time of job i does not depend on the

machine or if job i is only to be processed on one given machine. In this research,

both products and families are considered. Products are grouped within a family.

The t(j,i,k,s)denotes the processing time of product i of family j on machine k on

stage s.

 169
! Due date (di). The due date di of job i represents the committed shipping or

completion date (the date of the job that is promised to the customers).

! Weight (wi). The weight wi of job i is a priority factor denoting the importance of job i

relative to the other jobs in the system.

A.2 Problem Description

 In this section, the possible entries for each of the fields in a triplet α/β/γ of a

scheduling problem are presented.

Field αααα. This field describes the machine environment and contains a single entry. The

following examples are possible machine environments contained in the α field.

! Flowshop (Fm). There are m machines in series. Each job has to be processed on

each one of the machines. All jobs have the same routing; that is, they have to be

processed first on machine 1, then on machine 2, and so on and so forth. After

completion on one machine, a job joins the queue at the next machine. Normally, all

queues are assumed to operate under the first-in-first-out (FIFO) discipline; that is, a

job cannot “pass” another while waiting in a queue. If the FIFO discipline is in effect,

the flowshop is referred to as a permutation flowshop, and the β field includes the

entry prmu. Often, when a general m-machine case is considered, the m identifier

may be dropped such that F//Cmax, for instance, refers to the m-machine flowshop

with the objective of minimizing makespan.

! Flexible flowshop (FFs). A flexible flowshop is a generalization of the flowshop and

the parallel machine environments. A flexible flowshop consists of S production

stages in series with a number of machines in parallel at each stage. Each job is

 170
processed first at stage 1, then at stage 2, and so on. Normally, job i requires only 1

machine at each stage and any machine can process any job.

! Identical machines in parallel (Pm). There are m identical machines in parallel. Job i

requires a single operation and may be processed on any one of the m machines or

on any one belonging to a given subset. If job i is not allowed to be processed on

just any one, but rather only on any one belonging to a given subset, that is, Mi, then

the entry Mi appears in the β field. In this environment, if the unit processing time of

job i on machine k is denoted by t(i,k), then t(1,k)= t(2,k)= … = t(i,k) = t(i,m) for

i = 1,2,…,n.

! Machines in parallel with different speeds (Qm). There are m machines in parallel

with different speeds. The speed of machine k is denoted by vk. If job i is assumed

to process only on machine k, the time t(i) job i spends on machine k is equal to

t(i)/vk. This environment is also called uniform machines. If all machines have the

same speed, that means vk = 1 for all k and t(i,k) = t(k), then this environment is

identical to the identical machines in parallel (Pm).

! Unrelated machines in parallel (Rm). This environment is a generalization of the

machines in parallel with different speed (Qm) environment. There are m different

machines in parallel. Machine k can process job i at speed vki. The time t(i,k) job i

spends on machine k is equal to t(i)i/vki. If the speeds of the machines are

independent of the jobs, that means vki = vk for all i and k, then the environment is

identical to the machines in parallel with different speed (Qm) environment.

Field ββββ. This field provides details of processing characteristics and constraints and

may contain no entries, a single entry, or multiple entries. Possible entries are described

as follows:

 171
! Sequence dependent setup times (s(i,p)). The s(i,p) represent the setup time

between jobs i and p. s(i,p) denotes the setup time for job p if job p is first in the

sequence and s(i,0) denotes the clean-up time after job i if job i is the last in the

sequence. However, s(0,p) and s(i,0) may be zero. If the setup time between job i

and p depends on the machine, then the subscript m is included, that is, s(i,p,m). If

no s(i,p) appears in the β field, all setup times are assumed to be zero or sequence

independent, in which case they can simply be added to the processing times.

In this research, both end products and families are considered. This means

there are many end products within each family and both major and minor setup

times are considered. If the previous product belongs to the same family, setup time

is minor. On the other hand, if the product is of a different family, a major setup time

is needed. The s(j,i,j,p) denotes the minor setup time between product i and product

p from the same family j. The s(j,i,q,p) denotes the major setup time between

product i family j and product p family q. If the setup time between two products

depends on the machine of any stage s, then the subscripts m and s are included.

For instance, s(j,i,q,p,s,m) denotes the major setup time between product i family j

and product p family q on machine m stage s.

! Permutation (prmu). A constraint that may appear in the flowshop is that the queues

in form of each machine operate according to the FIFO discipline. This means that

the order (or permutation) in which the jobs go through the first machine is

maintained throughout the system.

! No-wait (nwt). The no-wait requirement is another phenomenon which may occur in

flowshops. Jobs are not allowed to wait between two successive machines. This

means that the starting time of a job at the first machine has to be delayed to ensure

that the job can go through the flowshop without having to wait for any machine. An

example of such an operation is a steel-rolling mill in which a slab of steel is not

 172



 >

otherwise,0
dIfC,1 ii

allowed to wait because it would cool off. In other words, under no-wait the

machines also operate under the FIFO discipline.

Field γγγγ. This field contains the objective to be minimized and usually contains a single

entry. In order to minimize the objective, it is always a function of the completion times

of the jobs which depend on the schedule. The completion time of job i on machine m is

represented by Cim. The time of job i exits the system (i.e. its completion time on the last

machine on which it requires processing) is denoted by Ci. The objective may also be a

function of the due dates. The lateness of job i is defined as

Li = Ci-di (A.1)

Which is positive when job i is completed late and negative when it is completed early.

The tardiness of job i is defined as

Ti = max(Ci – di, 0) = max (Li, 0). (A.2)

The difference between tardiness and lateness lies in the fact that tardiness is never

negative. The unit penalty of job i is defined as

 Uj = (A.3)

! Makespan (Cmax). The makespan, defined as
i

max {Ci}: i=1,2,3,..,n, is equivalent to

the completion time of the last job to leave the system. A minimum makespan

usually indicates a high utilization of the machine(s).

! Total weighted completion time (∑wiCi). The minimization of ∑wiCi is equivalent to

the minimization of the in-process inventory cost for the shop.

 173

! Total weighted tardiness (∑wiTi). The total weighted tardiness may be used as a

measure for meeting due dates.

 174
APPENDIX B

Listing of the 0-1 Mixed Integer Programming Model for the Problem
Illustrated in Chapter 4

MINIMIZE
 Z: E
SUBJECT TO
 FT1111 - 16.61818181818 x1111 >= 3.89
 FT1211 - 30.73636363636 x1211 >= 1.52
 FT2111 - 44.5 x2111 >= 2.26
 FT2211 - 22.81818181818 x2211 >= 3.99
 - FT1111 + FT1121 - 27.45217391304 x1121 >= 0
 - FT1121 + FT1131 - 23.68 x1131 >= 0
 - FT1121 + FT1132 - 24.16326530612 x1132 >= 0
 - FT1211 + FT1221 - 24.55652173913 x1221 >= 0
 - FT1221 + FT1231 - 44.87 x1231 >= 0
 - FT1221 + FT1232 - 45.78571428571 x1232 >= 0
 - FT2111 + FT2121 - 22.68695652173 x2121 >= 0
 - FT2121 + FT2131 - 19.09 x2131 >= 0
 - FT2121 + FT2132 - 19.47959183673 x2132 >= 0
 - FT2211 + FT2221 - 15.12173913043 x2221 >= 0
 - FT2221 + FT2231 - 49.26 x2231 >= 0
 - FT2221 + FT2232 - 50.26530612244 x2232 >= 0
 - E + FT1131 <= 0
 - E + FT1132 <= 0
 - E + FT1231 <= 0
 - E + FT1232 <= 0
 - E + FT2131 <= 0
 - E + FT2132 <= 0
 - E + FT2231 <= 0
 - E + FT2232 <= 0
 FT1111 - FT1211 - 5000 w121111 - 16.61818181818 x1111 >= - 4995.76
 FT1121 - FT1221 - 5000 w121121 - 27.45217391304 x1121 >= - 4997.04
 FT1131 - FT1231 - 5000 w121131 - 23.68 x1131 >= - 4996.78
 FT1132 - FT1232 - 5000 w121132 - 24.16326530612 x1132 >= - 4996.78
 FT1111 - FT2111 - 5000 w211111 - 16.61818181818 x1111 >= - 4994.12
 FT1121 - FT2121 - 5000 w211121 - 27.45217391304 x1121 >= - 4993.55
 FT1131 - FT2131 - 5000 w211131 - 23.68 x1131 >= - 4993.36
 FT1132 - FT2132 - 5000 w211132 - 24.16326530612 x1132 >= - 4993.36
 FT1111 - FT2211 - 5000 w221111 - 16.61818181818 x1111 >= - 4995.1
 FT1121 - FT2221 - 5000 w221121 - 27.45217391304 x1121 >= - 4989.71
 FT1131 - FT2231 - 5000 w221131 - 23.68 x1131 >= - 4989.37
 FT1132 - FT2232 - 5000 w221132 - 24.16326530612 x1132 >= - 4989.37
 - FT1111 + FT1211 - 5000 w111211 - 30.73636363636 x1211 >= - 4997.51
 - FT1121 + FT1221 - 5000 w111221 - 24.55652173913 x1221 >= - 4997.8
 - FT1131 + FT1231 - 5000 w111231 - 44.87 x1231 >= - 4996.87
 - FT1132 + FT1232 - 5000 w111232 - 45.78571428571 x1232 >= - 4996.87
 FT1211 - FT2111 - 5000 w211211 - 30.73636363636 x1211 >= - 4993.46
 FT1221 - FT2121 - 5000 w211221 - 24.55652173913 x1221 >= - 4988.75
 FT1231 - FT2131 - 5000 w211231 - 44.87 x1231 >= - 4989.83
 FT1232 - FT2132 - 5000 w211232 - 45.78571428571 x1232 >= - 4989.83
 FT1211 - FT2211 - 5000 w221211 - 30.73636363636 x1211 >= - 4995.48
 FT1221 - FT2221 - 5000 w221221 - 24.55652173913 x1221 >= - 4992.13
 FT1231 - FT2231 - 5000 w221231 - 44.87 x1231 >= - 4993.85
 FT1232 - FT2232 - 5000 w221232 - 45.78571428571 x1232 >= - 4993.85
 - FT1111 + FT2111 - 5000 w112111 - 44.5 x2111 >= - 4994.67
 - FT1121 + FT2121 - 5000 w112121 - 22.68695652173 x2121 >= - 4990.61
 - FT1131 + FT2131 - 5000 w112131 - 19.09 x2131 >= - 4990.21
 - FT1132 + FT2132 - 5000 w112132 - 19.47959183673 x2132 >= - 4990.21
 - FT1211 + FT2111 - 5000 w122111 - 44.5 x2111 >= - 4993.78
 - FT1221 + FT2121 - 5000 w122121 - 22.68695652173 x2121 >= - 4989.76
 - FT1231 + FT2131 - 5000 w122131 - 19.09 x2131 >= - 4990.05
 - FT1232 + FT2132 - 5000 w122132 - 19.47959183673 x2132 >= - 4990.05
 FT2111 - FT2211 - 5000 w222111 - 44.5 x2111 >= - 4995.8
 FT2121 - FT2221 - 5000 w222121 - 22.68695652173 x2121 >= - 4997.59

 175
 FT2131 - FT2231 - 5000 w222131 - 19.09 x2131 >= - 4996.54
 FT2132 - FT2232 - 5000 w222132 - 19.47959183673 x2132 >= - 4996.54
 - FT1111 + FT2211 - 5000 w112211 - 22.81818181818 x2211 >= - 4994.09
 - FT1121 + FT2221 - 5000 w112221 - 15.12173913043 x2221 >= - 4989.42
 - FT1131 + FT2231 - 5000 w112231 - 49.26 x2231 >= - 4993.37
 - FT1132 + FT2232 - 5000 w112232 - 50.26530612244 x2232 >= - 4993.37
 - FT1211 + FT2211 - 5000 w122211 - 22.81818181818 x2211 >= - 4994.49
 - FT1221 + FT2221 - 5000 w122221 - 15.12173913043 x2221 >= - 4993.02
 - FT1231 + FT2231 - 5000 w122231 - 49.26 x2231 >= - 4988.5
 - FT1232 + FT2232 - 5000 w122232 - 50.26530612244 x2232 >= - 4988.5
 - FT2111 + FT2211 - 5000 w212211 - 22.81818181818 x2211 >= - 4996.52
 - FT2121 + FT2221 - 5000 w212221 - 15.12173913043 x2221 >= - 4996.93
 - FT2131 + FT2231 - 5000 w212231 - 49.26 x2231 >= - 4998.35
 - FT2132 + FT2232 - 5000 w212232 - 50.26530612244 x2232 >= - 4998.35
 x1111 = 1
 x1121 = 1
 x1131 + x1132 = 1
 x1211 = 1
 x1221 = 1
 x1231 + x1232 = 1
 x2111 = 1
 x2121 = 1
 x2131 + x2132 = 1
 x2211 = 1
 x2221 = 1
 x2231 + x2232 = 1
 - w001111 - w121111 - w211111 - w221111 + x1111 = 0
 - w001121 - w121121 - w211121 - w221121 + x1121 = 0
 - w001131 - w121131 - w211131 - w221131 + x1131 = 0
 - w001132 - w121132 - w211132 - w221132 + x1132 = 0
 - w001211 - w111211 - w211211 - w221211 + x1211 = 0
 - w001221 - w111221 - w211221 - w221221 + x1221 = 0
 - w001231 - w111231 - w211231 - w221231 + x1231 = 0
 - w001232 - w111232 - w211232 - w221232 + x1232 = 0
 - w002111 - w112111 - w122111 - w222111 + x2111 = 0
 - w002121 - w112121 - w122121 - w222121 + x2121 = 0
 - w002131 - w112131 - w122131 - w222131 + x2131 = 0
 - w002132 - w112132 - w122132 - w222132 + x2132 = 0
 - w002211 - w112211 - w122211 - w212211 + x2211 = 0
 - w002221 - w112221 - w122221 - w212221 + x2221 = 0
 - w002231 - w112231 - w122231 - w212231 + x2231 = 0
 - w002232 - w112232 - w122232 - w212232 + x2232 = 0
 - w110011 - w111211 - w112111 - w112211 + x1111 = 0
 - w110021 - w111221 - w112121 - w112221 + x1121 = 0
 - w110031 - w111231 - w112131 - w112231 + x1131 = 0
 - w110032 - w111232 - w112132 - w112232 + x1132 = 0
 - w120011 - w121111 - w122111 - w122211 + x1211 = 0
 - w120021 - w121121 - w122121 - w122221 + x1221 = 0
 - w120031 - w121131 - w122131 - w122231 + x1231 = 0
 - w120032 - w121132 - w122132 - w122232 + x1232 = 0
 - w210011 - w211111 - w211211 - w212211 + x2111 = 0
 - w210021 - w211121 - w211221 - w212221 + x2121 = 0
 - w210031 - w211131 - w211231 - w212231 + x2131 = 0
 - w210032 - w211132 - w211232 - w212232 + x2132 = 0
 - w220011 - w221111 - w221211 - w222111 + x2211 = 0
 - w220021 - w221121 - w221221 - w222121 + x2221 = 0
 - w220031 - w221131 - w221231 - w222131 + x2231 = 0
 - w220032 - w221132 - w221232 - w222132 + x2232 = 0
 w001111 + w001211 + w002111 + w002211 = 1
 w001121 + w001221 + w002121 + w002221 = 1
 w001131 + w001231 + w002131 + w002231 = 1
 w001132 + w001232 + w002132 + w002232 = 1
 w110011 + w120011 + w210011 + w220011 = 1
 w110021 + w120021 + w210021 + w220021 = 1
 w110031 + w120031 + w210031 + w220031 = 1
 w110032 + w120032 + w210032 + w220032 = 1

INTEGERS
 w001111
 w001121
 w001131

 176
 w001132
 w001211
 w001221
 w001231
 w001232
 w002111
 w002121
 w002131
 w002132
 w002211
 w002221
 w002231
 w002232
 w110011
 w110021
 w110031
 w110032
 w120011
 w120021
 w120031
 w120032
 w210011
 w210021
 w210031
 w210032
 w220011
 w220021
 w220031
 w220032
 w111211
 w111221
 w111231
 w111232
 w112111
 w112121
 w112131
 w112132
 w112211
 w112221
 w112231
 w112232
 w121111
 w121121
 w121131
 w121132
 w122111
 w122121
 w122131
 w122132
 w122211
 w122221
 w122231
 w122232
 w211111
 w211121
 w211131
 w211132
 w211211
 w211221
 w211231
 w211232
 w212211
 w212221
 w212231
 w212232
 w221111
 w221121
 w221131
 w221132
 w221211
 w221221

 177
 w221231
 w221232
 w222111
 w222121
 w222131
 w222132
 x1111
 x1121
 x1131
 x1132
 x1211
 x1221
 x1231
 x1232
 x2111
 x2121
 x2131
 x2132
 x2211
 x2221
 x2231
 x2232

 178
APPENDIX C

Statistical Results for the Evaluations of the Heuristic Performance

and the Relative Improvement

 C.1 Statistical Results for the Evaluation of the Heuristic Performance (HP)

 Dependent Variable: HPTSH

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 11 1858.360009 168.941819 19.14 <.0001

 Error 108 953.486950 8.828583

 Corrected Total 119 2811.846959

 R-Square Coeff Var Root MSE TSH Mean

 0.660904 3.530798 2.971293 84.15358

 Source DF Type I SS Mean Square F Value Pr > F

 prod 1 550.1085408 550.1085408 62.31 <.0001
 mach 2 715.8530017 357.9265008 40.54 <.0001
 prod*mach 2 0.2084017 0.1042008 0.01 0.9883
 speed 1 561.2985075 561.2985075 63.58 <.0001
 prod*speed 1 0.9451875 0.9451875 0.11 0.7441
 mach*speed 2 12.7282850 6.3641425 0.72 0.4887
 prod*mach*speed 2 17.2180850 8.6090425 0.98 0.3804

 Dependent Variable: HPFFSDSTH
 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 11 2326.077143 211.461558 25.93 <.0001

 Error 108 880.626070 8.153945

 Corrected Total 119 3206.703212

 R-Square Coeff Var Root MSE FFS Mean

 0.725380 3.639275 2.855511 78.46375

 179

 Source DF Type I SS Mean Square F Value Pr > F

 prod 1 258.867188 258.867188 31.75 <.0001
 mach 2 1065.433460 532.716730 65.33 <.0001
 prod*mach 2 0.413180 0.206590 0.03 0.9750
 speed 1 980.579841 980.579841 120.26 <.0001
 prod*speed 1 0.088021 0.088021 0.01 0.9174
 mach*speed 2 10.255287 5.127643 0.63 0.5351
 prod*mach*speed 2 10.440167 5.220083 0.64 0.5292

 C.2 Statistical Results for the Evaluation of the Relative Improvement (RI)

 Dependent Variable: RI

 Sum of
 Source DF Squares Mean Square F Value Pr > F

 Model 11 258.3741492 23.4885590 12.11 <.0001

 Error 108 209.5162300 1.9399651

 Corrected Total 119 467.8903792

 R-Square Coeff Var Root MSE IMP Mean

 0.552211 20.51920 1.392826 6.787917

 Source DF Type I SS Mean Square F Value Pr > F

 prod 1 47.0877408 47.0877408 24.27 <.0001
 mach 2 89.6388867 44.8194433 23.10 <.0001
 prod*mach 2 0.4924867 0.2462433 0.13 0.8809
 speed 1 118.9821675 118.9821675 61.33 <.0001
 prod*speed 1 0.3933075 0.3933075 0.20 0.6534
 mach*speed 2 1.3467800 0.6733900 0.35 0.7075
 prod*mach*speed 2 0.4327800 0.2163900 0.11 0.8946

C.3 Results of Tukey’s test for Comparing the Means for the Heuristic
Performance

 Since the number of products and deviations in machine speeds have only 2

levels, the comparison of their means for the heuristic performance (HP) can be

interpreted using the ANOVA tables in Section C.1 and the summary of the averages of

the heuristic performance in Table 7.14. Hence, Tukey’s test was performed only to

 180
compare between the three means obtained with different number of machines and

stages (mach).

Tukey's Studentized Range (HSD) Test for HPTSH

 Alpha 0.05
 Error Degrees of Freedom 108
 Error Mean Square 8.828583
 Critical Value of Studentized Range 3.36085
 Minimum Significant Difference 1.5789

 Means with the same letter are not significantly different.

 Tukey Grouping Mean N mach

 A 87.0475 40 1

 B 84.3397 40 3

 C 81.0735 40 2

Tukey's Studentized Range (HSD) Test for HPFFSDSTH

 Alpha 0.05
 Error Degrees of Freedom 108
 Error Mean Square 8.153945
 Critical Value of Studentized Range 3.36085
 Minimum Significant Difference 1.5174

 Means with the same letter are not significantly different.

 Tukey Grouping Mean N mach

 A 82.1642 40 1

 B 78.3593 40 3

 C 74.8678 40 2

 181
C.4 Results of the Tukey’s Test for Comparing the Means for the Relative

Improvement (RI)

 As in Section C.3, Tukey’s test was used only to compare between the means

obtained with different number of machines and stages (mach).

Tukey's Studentized Range (HSD) Test for RI

 Alpha 0.05
 Error Degrees of Freedom 108
 Error Mean Square 1.939965
 Critical Value of Studentized Range 3.36085
 Minimum Significant Difference 0.7401

 Means with the same letter are not significantly different.

 Tukey Grouping Mean N mach

 A 7.6507 40 2
 A
 A 7.1063 40 3

 B 5.6068 40 1

	Scheduling flexible flowshops with sequence -dependent setup times
	Recommended Citation

	Title page
	Abstract
	Table of contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography
	Appendix A
	Appendix B
	Appendix C

