102 research outputs found

    Sähköbussin nopeuden ja ohjauskulman säätö edellä ajavan ajoneuvon liike-radan seuraamisessa

    Get PDF
    Buses face problems when the capacity of a bus is limited but it should be larger to be able to carry more passengers. The capacity of a bus is already increased to its maximum that is allowed by the infrastructure. The capacity of a bus line could be increased by driving buses more frequently but it would increase costs, that is unwanted. Costs could be reduced by driving buses as platoons consisting of two buses where only the first bus would be operated by a professional driver and the second would be driven autonomously. Autonomous driving requires longitudinal and lateral control of a vehicle. The follower bus should be able to follow the path driven by the leader bus precisely and avoid inter-vehicular collisions while still driving as close together as possible to indicate other traffic that they move as a platoon. Lateral control is usually divided into path following and direct following methods in the literature. Path following methods include obtaining the path of the leader vehicle and following of that path. Path following methods are usually accurate in terms of lateral error but are complex and require a lot of computational capacity. Direct following methods are easy to compute but they do not guarantee precise path following. A simulation model consisting of two identical buses was developed. One longitudinal controller and four lateral control laws were proposed. Longitudinal controller was designed to work also in tight turns which is not usually investigated. Lateral control laws proposed were geometrical in nature and required only input as the relative position of the leader bus. Therefore, they did not require inter-vehicular communication. Longitudinal controller worked well for initialization of the system with inter-vehicular distances from 2 to 10 m. It worked well in acceleration and deceleration tests when both buses were loaded similarly but failed to prevent collisions when follower bus was loaded more heavily than the leader. In lateral controller tests, Pure Pursuit and Modified Pure Pursuit methods were able to follow the leader producing following lateral errors: 0,8 m and 1,1 m (steady-state tests), 0,8 m and 0,7 m (u-turn maneuver) and 0,3 m/0,4 m and 0,4 m/0,5 m (double lane change maneuver, 5 m/s/10 m/s respectively). Spline Pursuit method showed oscillatory behavior and did not follow the leader well. Circular Pursuit method showed also oscillatory behavior and did not follow the leader well. However, it showed better performance than the Spline Pursuit. It remains to be studied whether Pure Pursuit or Modified Pure Pursuit can challenge more sophisticated path following methods.Linja-autojen matkustajakapasiteetti on rajallinen, mikä aiheuttaa ongelmia, sillä sen tulisi olla suurempi. Kapasiteetti on jo nostettu suurimmalle mahdolliselle tasolle, mitä nykyinen infrastruktuuri mahdollistaa. Linja-autolinjan kapasiteettia voisi nostaa ajamalla linja-autoja tiheämmin. Tämä kuitenkin johtaa suurempiin kustannuksiin. Kustannuksia voisi vähentää ajamalla linja-autoja kahden ajoneuvon jonoina, joissa ensimmäistä ajo-neuvoa ohjaisi ammattilaiskuljettaja ja toinen olisi autonomisesti ohjattu. Autonominen ajaminen vaatii ajoneuvon nopeuden ja ohjauskulman säätöä. Seuraajalinja-auton pitää pystyä seuraamaan johtajalinja-auton ajamaa ajouraa tarkasti ja välttää törmäämistä johtajaan. Linja-autojen välinen etäisyys on kuitenkin oltava riittävän pieni, jotta se viestisi muulle liikenteelle, että ajoneuvot ajavat jonona. Kirjallisuus jakaa ohjauskulman säädön yleensä ajouran seuraamiseen ja suoraan seuraamiseen. Ajouran seuraaminen koostuu johtaja-ajoneuvon ajouran saamisesta ja tämän uran seuraamisesta. Ajouran seuraamisen metodit ovat yleensä tarkkoja poikittaisen virheen suhteen, mutta ovat monimutkaisia ja vaativat paljon laskennallista kapasiteettia. Suoran seuraamisen metodit ovat laskennallisesti kevyitä, mutta eivät takaa tarkkaa ajouran seuraamista. Kahdesta identtisestä linja-autosta koostuva simulaatiomalli kehitettiin. Yksi nopeussäädin ja neljä ohjauskulman säätölakia esitettiin. Nopeussäädin suunniteltiin toimimaan myös tiukoissa käännöksissä, mitä ei ole yleensä tutkittu. Ohjauskulman säätölait perustuivat geometriseen päättelyyn ja ne tarvitsivat vain johtajalinja-auton suhteellisen asentotiedon. Säätölait eivät vaatineet ajoneuvojen välistä kommunikaatiota. Nopeussäädin toimi järjestelmän alustamisessa ajoneuvojen välisen etäisyyden ollessa 2-10 m. Se toimi hyvin kiihdytys- ja jarrutustesteissä, kun molemmat linja-autot olivat lastattu identtisellä kuormalla, mutta epäonnistui estämään törmäämisen, kun seuraajalinja-auto oli lastattu suuremmalla kuormalla kuin johtaja. Ohjauskulman säädön testeissä Pure Pursuit ja Modified Pure Pursuit pystyivät seuraamaan johtajaa seuraavilla poikittaissuuntaisilla virheillä: 0,8 m ja 1,1 m (steady-state-testit), 0,8 m ja 0,7 m (u-käännös) ja 0,3 m/0,4 m ja 0,4 m/0,5 m (kaksoiskaistanvaihto, 5 m/s/10 m/s vastaavasti). Spline Pursuit käyttäytyi värähtelevästi eikä seurannut johtajaa hyvin. Circular Pursuit käyttäytyi värähtelevästi eikä seurannut johtajaa hyvin, mutta kuitenkin paremmin kuin Spline Pursuit. Jää nähtäväksi pystyykö Pure Pursuit tai Modified Pure Pursuit haastamaan monimutkaisempia ajouran seuraamisen metodeja

    Improved information flow topology for vehicle convoy control

    Get PDF
    A vehicle convoy is a string of inter-connected vehicles moving together for mutual support, minimizing traffic congestion, facilitating people safety, ensuring string stability and maximizing ride comfort. There exists a trade-off among the convoy's performance indices, which is inherent in any existing vehicle convoy. The use of unrealistic information flow topology (IFT) in vehicle convoy control, generally affects the overall performance of the convoy, due to the undesired changes in dynamic parameters (relative position, speed, acceleration and jerk) experienced by the following vehicle. This thesis proposes an improved information flow topology for vehicle convoy control. The improved topology is of the two-vehicle look-ahead and rear-vehicle control that aimed to cut-off the trade-off with a more robust control structure, which can handle constraints, wider range of control regions and provide acceptable performance simultaneously. The proposed improved topology has been designed in three sections. The first section explores the single vehicle's dynamic equations describing the derived internal and external disturbances modeled together as a unit. In the second section, the vehicle model is then integrated into the control strategy of the improved topology in order to improve the performance of the convoy to two look-ahead and rear. The changes in parameters of the improved convoy topology are compared through simulation with the most widely used conventional convoy topologies of one-vehicle look-ahead and that of the most human-driver like (the two-vehicle look-ahead) convoy topology. The results showed that the proposed convoy control topology has an improved performance with an increase in the intervehicular spacing by 19.45% and 18.20% reduction in acceleration by 20.28% and 15.17% reduction in jerk by 25.09% and 6.25% as against the one-look-ahead and twolook- ahead respectively. Finally, a model predictive control (MPC) system was designed and combined with the improved convoy topology to strictly control the following vehicle. The MPC serves the purpose of handling constraints, providing smoother and satisfactory responses and providing ride comfort with no trade-off in terms of performance or stability. The performance of the proposed MPC based improved convoy topology was then investigated via simulation and the results were compared with the previously improved convoy topology without MPC. The improved convoy topology with MPC provides safer inter-vehicular spacing by 13.86% refined the steady speed to maneuvering speed, provided reduction in acceleration by 32.11% and a huge achievement was recorded in reduction in jerk by 55.12% as against that without MPC. This shows that the MPC based improved convoy control topology gave enough spacing for any uncertain application of brake by the two look-ahead or further acceleration from the rear-vehicle. Similarly, manoeuvering speed was seen to ensure safety ahead and rear, ride comfort was achieved due to the low acceleration and jerk of the following vehicle. The controlling vehicle responded to changes, hence good handling was achieved

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios

    A self-learning intersection control system for connected and automated vehicles

    Get PDF
    This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based on Deep Reinforcement Learning (DRL) to control intersections under the Connected and Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided into small areas; vehicles try to reserve their desired area ahead of time, based on having a common desired area with other CAVs; the vehicles would be in an independent or coordinated state. Individual CAVs are set accountable for decision-making at each step in both coordinated and independent states. In the training process, CAVs learn to minimize the overall delay at the intersection. Due to the chain impact of taking random actions in the training course, the trained model can deal with unprecedented volume circumstances, the main challenge in intersection management. Application of the model to a single-lane intersection with no turning movement as a proof-of-concept test reveals noticeable improvements in traffic measures compared to three other intersection control systems. A Spring Mass Damper (SMD) model is developed to control platooning behavior of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding vehicle with a spring and a damper. The spring constant and damper coefficient control the interaction between vehicles. Limitations on communication range and the number of vehicles in each platoon are applied in this model, and the SMD model controls intra-platoon and inter-platoon interactions. The simulation result for a regular highway section reveals that the proposed platooning algorithm increases the maximum throughput by 29% and 63% under 50% and 100% market penetration rate of CAVs. A merging section with different volume combinations on the main section and merging section and different market penetration rates of CAVs is also modeled to test inter-platoon spacing performance in accommodating merging vehicles. Noticeable travel time reduction is observed in both mainline and merging lanes and under all volume combinations in 80% and higher MPR of CAVs. For a more reliable assessment of the DSCLS, the model is applied to a more realistic intersection, including three approaching lanes in each direction and turning movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, high, and extreme volume regimes, improving travel time accordingly. Comparison of safety measures reveals 28% improvement in Post Encroachment Time (PET) in the extreme volume regime and minor improvements in high and moderate volume regimes. Due to the limited acceleration and deceleration rates, the proposed model does not show a better performance in environmental measures, including fuel consumption and CO2 emission, compared to the conventional control systems. However, the DSCLS noticeably outperforms the other pixel-reservation counterpart control system, with limited acceleration and deceleration rates. The application of the model to a corridor of four interactions shows the same trends in traffic, safety, and environmental measures as the single intersection experiment. An automated intersection control system for platooning CAVs is developed by combining the two proposed models, which remarkably improves traffic and safety measures, specifically in extreme volume regimes compared to the regular DSCLS model

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    A New Powertrain Architecture: From Electromagnetic-Structural Dynamics to Platooning

    Full text link
    Electrification and vehicle-to-vehicle connectivity have become two of the major areas of vehicle development in recent years. Electrified vehicles show significant advantages because of their high performance in fuel economy and low emissions compared to conventional vehicles. Although hybrid electric vehicle (HEV) development has resulted in a variety of powertrain architectures, novel high-performance powertrain solutions with fewer components and low cost remain an important need. In addition, common HEV configurations use small internal combustion engines, which can suffer from high torque fluctuations detrimental for NVH performance and safety. Advanced powertrains that absorb these fluctuations efficiently are needed. This thesis presents a novel HEV powertrain architecture without any planetary gears or clutches. Using physics-based component model, a proof-of-concept powertrain model is implemented and demonstrated ability to remove over 99.5% torque fluctuation and fulfill vehicle driving demands. A comprehensive design and control optimization for the novel powertrain is performed. A single utility function is designed by combining multiple objectives, and is tuned using the Pareto front of the novel powertrain performance to obtain different optimal powertrain designs. Optimal novel powertrain designs show comparable performance with optimal designs of commercially available power-split benchmark powertrains. Torque fluctuations in HEVs may result in electromagnetic-structural (EMS) phenomena within the electric machines of the powertrain. Periodic forces generated by permanent magnets or windings and other disturbances to the EM device can lead to excitation of specific structural resonances due to EMS coupling. Existing EMS models are usually 2D and do not capture the EMS coupling. Thus, a model that accurately and efficiently captures EMS phenomena is required. To capture the EMS phenomena, displacement-dependent EM forces are introduced in the modal space to the structural dynamics of electric machines. Both linear and nonlinear approximations of EM forces are calculated using high-fidelity FEA models, forming a reduced-order model (ROM) with EMS coupling, namely the EMS ROM. The dynamics of the EMS ROM is similar to a damped dynamical system governed by Mathieu's equation, which exhibits parametric excitation. The EMS ROM is used to compute the stability transition threshold for the parametric excitation. Parametric resonance peaks are revealed in the responses from an unstable device with EMS. In addition, a frequency shift of the primary resonance peak caused by (nonlinear) EM force harmonics is detected. Time-domain analyses using the high-fidelity FEA model confirm the EMS phenomena and accuracy of the EMS ROM. Multiple vehicles, each with an advanced powertrain can be used in platoons to enhance fuel economy, road capacity, and safety compared to a single vehicle. Studies that focus on platooning usually do not focus on task-based longitudinal planning and do not capture detailed powertrain operations, which impact the control and energy consumption of the overall platoon. In this thesis, multiple vehicles, each equipped with the novel powertrain, are investigated when they form a platoon and drive on a specified path. The drive schedule and vehicle controllers are optimized to minimize the total energy consumption of the platoon. Energy optimization requires an integrated vehicle-following model and a high-fidelity powertrain model. In addition, component-level, vehicle-level, and platoon-level constraints are applied. Parametric studies are performed for both homogeneous and heterogeneous platoons. Optimization is shown to effectively reduce the maximum headway error by an order of magnitude and enhance energy saving of 17% to 37%.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166142/1/albertyi_1.pd

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la última década ha surgido una tendencia creciente hacia la automatización de los vehículos, generando un cambio significativo en la movilidad, que afectará profundamente el modo de vida de las personas, la logística de mercancías y otros sectores dependientes del transporte. En el desarrollo de la conducción automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducción, aún no se describen de forma estandarizada. Dado que los métodos de prueba utilizan cada vez más las técnicas de simulación, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologías de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehículo y la estimación de parámetros. Además, las tecnologías en el vehículo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operación a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseño y la implementación de un marco para lograr Sistemas de Conducción Automatizados (ADS) considerando aspectos cruciales, como la ejecución en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parámetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologías de alta automatización de conducción. Luego, se propone un método de dos pasos que aborda la validación de ambos modelos de vehículos de simulación y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por último, se evalúan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimación de posicionamiento para minimizar las condiciones de riesgo
    corecore