44 research outputs found

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Performance analysis of wormhole switched interconnection networks with virtual channels and finite buffers

    Get PDF
    An efficient interconnection network that provides high bandwidth and low latency interprocessor communication is critical to harness fully the computational power of large scale multicomputer. K-ary n-cube networks have been widely adopted in contemporary multicomputers due to their desirable properties. As such, the present study focuses on a performance analysis of K-ary n-cubes employing wormhole switching, virtual channels, and adaptive routing. The objective of this dissertation is twofold: to examine the performance of these networks, and to compare the performance merits of various topologies under different working conditions, by means of analytical modelling. Most existing analytical models reported in the literature have used a method originally proposed by Dally to capture the effects of virtual channels on network performance. This method is based on a Markov chain and it has been shown that its prediction accuracy degrades as traffic increases. Moreover, these studies have also constrained the buffer capacity to a single flit per channel, a simplifying assumption that has often been invoked to ease the derivation of the analytical models. Motivated by these observations, the first part of this research proposes a new method for modelling virtual channels, based on an M/G/1 queue. Owing to the generality of this method. Daily's method is shown to be a special case when the message service time is exponentially distributed. The second part of this research uses theoretical results of queuing systems to relax the single-flit buffer assumption. New analytical models are then proposed to capture the effects of deploying arbitrary size buffers on the performance of deterministic and adaptive routing algorithms. Simulation experiments reveal that results from the proposed analytical models are in close agreement with those obtained through simulation. Building on these new analytical models, the third part of this research compares the relative performance merits of K-ary n-cubes under different operating conditions, in the presence of finite size buffers and multiple virtual channels. Namely, the analysis first revisits the relative performance merits of the well-known 2D torus, 3D torus and hypercube under different implementation constraints. The analysis has then been extended to investigate the performance impact of arranging the total buffer space, allocated to a physical channel, into multiple virtual channels. Finally, the performance of adaptive routing has been compared to that of deterministic routing. While previous similar studies have only taken account of channel and router costs, the present analysis incorporates different intra-router delays, as well, and thus generates more realistic results. In fact, the results of this research differ notably from those reported in previous studies, illustrating the sensitivity of such studies to the level of detail, degree of accuracy and the realism of the assumptions adopted

    Processor allocator for chip multiprocessors

    Full text link
    Chip MultiProcessor (CMP) architectures consisting of many cores connected through Network-on-Chip (NoC) are becoming main computing platforms for research and computer centers, and in the future for commercial solutions. In order to effectively use CMPs, operating system is an important factor and it should support a multiuser environment in which many parallel jobs are executed simultaneously. It is done by the processor management system of the operating system, which consists of two components: Job Scheduler (JS) and Processor Allocator (PA). The JS is responsible for job scheduling that deals with selection of the next job to be executed, while the task of the PA is processor allocation that selects a set of processors for the job selected by the JS. In this thesis, the PA architecture for the NoC-based CMP is explored. The idea of the PA hardware implementation and its integration on one die together with processing elements of CMP is presented. Such an approach requires the PA to be fast as well as area and energy efficient, because it is only a small component of the CMP. The architecture of hardware version of a PA is presented. The main factor of the structure is a type of processor allocation algorithm, employed inside. Thus, all important allocation techniques are intensively investigated and new schemes are proposed. All of them are compared using experimentation system. The PA driven by the described allocation techniques is synthesized on FPGA and crucial energy and area consumption together with performance parameters are extracted. The proposed CMP uses NoC as interconnection architecture. Therefore, all main NoC structures are studied and tested. Most important parameters such as topology, flow control and routing algorithms are presented and discussed. For the proposed NoC structures, an energy model is proposed and described. Finally, the synthesized PAs and NoCs are evaluated in a simulation system, where NoC-based CMP is created. The experimental environment took into consideration energy and traffic balance characteristics. As a result, the most efficient PA and NoC for CMP are presented

    Predictive and distributed routing balancing (PR-DRB) : high speed interconnection networks

    Get PDF
    Current parallel applications running on clusters require the use of an interconnection network to perform communications among all computing nodes available. Imbalance of communications can produce network congestion, reducing throughput and increasing latency, degrading the overall system performance. On the other hand, parallel applications running on these networks posses representative stages which allow their characterization, as well as repetitive behavior that can be identified on the basis of this characterization. This work presents the Predictive and Distributed Routing Balancing (PR-DRB), a new method developed to gradually control network congestion, based on paths expansion, traffic distribution and effective traffic load, in order to maintain low latency values. PR-DRB monitors messages latencies on intermediate routers, makes decisions about alternative paths and record communication pattern information encountered during congestion situation. Based on the concept of applications repetitiveness, best solution recorded are reapplied when saved communication pattern re-appears. Traffic congestion experiments were conducted in order to evaluate the performance of the method, and improvements were observed.Les aplicacions paral·leles actuals en els Clústers requereixen l'ús d'una xarxa d'interconnexió per comunicar a tots els nodes de còmput disponibles. El desequilibri en la càrrega de comunicacions pot congestionar la xarxa, incrementant la latència i disminuint el throughput, degradant el rendiment total del sistema. D'altra banda, les aplicacions paral·leles que s'executen sobre aquestes xarxes contenen etapes representatives durant la seva execució les quals permeten caracteritzar-les, a més d'extraure un comportament repetitiu que pot ser identificat en base a aquesta caracterització. Aquest treball presenta el Balanceig Predictiu de Encaminament Distribuït (PR-DRB), un nou mètode desenvolupat per controlar la congestió a la xarxa en forma gradual, basat en l'expansió de camins, la distribució de trànsit i càrrega efectiva actual per tal de mantenir una latència baixa. PR-DRB monitoritza la latència dels missatges en els encaminadors, pren decisions sobre els camins alternatius a utilitzar i registra la informació de la congestió sobre la base del patró de comunicacions detectat, utilitzant com a concepte base la repetitivitat de les aplicacions per després tornar a aplicar la millor solució quan aquest patró es repeteixi. Experiments de trànsit amb congestió van ser portats a terme per avaluar el rendiment del mètode, els quals van mostrar la bondat del mateix.Las aplicaciones paralelas actuales en los Clústeres requieren el uso de una red de interconexión para comunicar a todos los nodos de cómputo disponibles. El desbalance en la carga de comunicaciones puede congestionar la red, incrementando la latencia y disminuyendo el throughput, degradando el rendimiento total del sistema. Por otro lado, las aplicaciones paralelas que corren sobre estas redes contienen etapas representativas durante su ejecución las cuales permiten caracterizarlas, además de un comportamiento repetitivo que puede ser identificado en base a dicha caracterización. Este trabajo presenta el Balanceo Predictivo de Encaminamiento Distribuido (PR-DRB), un nuevo método desarrollado para controlar la congestión en la red en forma gradual; basado en la expansión de caminos, la distribución de tráfico y carga efectiva actual, a fin de mantener una latencia baja. PR-DRB monitorea la latencia de los mensajes en los encaminadores, toma decisiones sobre los caminos alternativos a utilizar y registra la información de la congestión en base al patrón de comunicaciones detectado, usando como concepto base la repetitividad de las aplicaciones para luego volver a aplicar la mejor solución cuando dicho patrón se repita. Experimentos de tráfico con congestión fueron llevados a cabo para evaluar el rendimiento del método, los cuales mostraron la bondad del mismo

    A low-latency modular switch for CMP systems

    Full text link
    [EN] As technology advances, the number of cores in Chip MultiProcessor systems and MultiProcessor Systems-on-Chips keeps increasing. The network must provide sustained throughput and ultra-low latencies. In this paper we propose new pipelined switch designs focused in reducing the switch latency. We identify the switch components that limit the switch frequency: the arbiter. Then, we simplify the arbiter logic by using multiple smaller arbiters, but increasing greatly the switch area. To solve this problem, a second design is presented where the routing traversal and arbitrations tasks are mixed. Results demonstrate a switch latency reduction ranging from 10% to 21%. Network latency is reduced in a range from 11% to 15%. © 2011 Elsevier B.V. All rights reserved.This work was supported by the Spanish MEC and MICINN, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. It was also partly supported by the project NaNoC (Project Label 248972) which is funded by the European Commission within the Research Programme FP7.Roca Pérez, A.; Flich Cardo, J.; Silla Jiménez, F.; Duato Marín, JF. (2011). A low-latency modular switch for CMP systems. Microprocessors and Microsystems. 35(8):742-754. https://doi.org/10.1016/j.micpro.2011.08.011S74275435

    Performance Analysis of Different Interconnect Networks for Network on Chip

    Get PDF
    Nowadays, every electronic system, ranging from a small mobile phone to a satellite sent into space, has a System-on-Chip (SoC). SoCs have undergone rapid evolution and are still progressing at a swift pace. Due to explosive evolution of semiconductor industry, the devices are scaling down at a rapid rate and hence, the SoCs today have become communication-centric and shared bus system and crossbar system were fail to performed communication in side SoC. Interconnection networks offer an alternate solution to this communication paradigm and are becoming persistent in SoC. A NoC based interconnect network is a well-organized and efficiently use of limited communication channel while maintaining low packet latency, high saturation throughput, high communication bandwidth amongst different IPs core with a minimum area and low power-dissipation. In this thesis we present details performance analysis of four interconnect network mesh, torus, fat tree and butterfly in term of latency and throughput under uniform, tornado, neighbour, bit reversal and bit complement traffic using cycle accurate simulator. We also implement NoC interconnect networks on FPGA and see the effect of NoC parameters(FDW,FBD,VC) on FPGA, and validate their performance through FPGA synthesis . We found that the FDW and buffer depth have the great effect on FPGA resources, Virtual Channels (VCs) with all NoC parameter have considerably effect on buffer size and routing and logic requirements at NoC. We also analysis all interconnect networks in term of power and area at 65 nm technology by using synopsis tool. We found that butterfly interconnect network has highest power and Area efficient interconnect network but it will suffer heavily degradation on performance at high load so fat tree network is efficient network among all interconnect network

    On Near Optimal Time and Dynamic Delay and Delay Variation Multicast Algorithms

    Get PDF
    Multicast is one of the most prevalent communication modes in computer networks. A plethora of systems and applications today rely on multicast communication to disseminate traffic including but not limited to teleconferencing, videoconferencing, stock exchanges, supercomputers, software update distribution, distributed database systems, and gaming. This dissertation elaborates and addresses key research challenges and problems related to the design and implementation of multicast algorithms. In particular, it investigates the problems of (1) Designing near optimal multicast time algorithms for mesh and torus connected systems and (2) Designing efficient algorithms for Delay and Delay Variation Bounded Multicast (DVBM). To achieve the first goal, improvements on four tree based multicast algorithms are made: Modified PAIR (MPAIR), Modified DIAG (MDIAG), Modified MIN (MMIN), and Modified DIST (MDIST). The proof that MDIAG generates optimal or optimal plus one multicast time in 2-Dimensional (2D) mesh networks is provided. The hybrid version of MDIAG (HMDIAG) is designed, that gives a 3-additive approximation algorithm on multicast time in 2D torus networks. To make HMDIAG applicable on systems using higher dimensional meshes and tori, it is extended and the proof that it gives a (2n-1)-additive approximation algorithm on multicast time in nD torus networks is given. To address the second goal, Directional Core Selection (DCS) algorithm for core selection and DVBM Tree generation is designed. To further reduce the delay variation of trees generated by DCS, a k-shortest-path based algorithm, Build Lower Variation Tree (BLVT) is designed. To tackle dynamic join/leave requests to the ongoing multicast session, the dynamic version of both algorithms is given that responds to requests by reorganizing the tree and avoiding session disruption. To solve cases where single-core based algorithms fail to construct a DVBM tree, a dynamic three-phase algorithm, Multi-core DVBM Trees (MCDVBMT) is designed, that semi-matches group members to core nodes
    corecore