83 research outputs found

    Development and characterization of treated kaolin filled polypropylene/kaolin nanocomposites

    Get PDF
    This research work focused on producing modified kaolin filler in polypropylene/kaolin (PP/K) nanocomposite by melt compounding process in order to improve its mechanical and thermal properties for industrial applications. The surface treatments of micron sized Malaysian kaolin were conducted to produce nano sized kaolin by acidification of kaolin fillers with sulphuric acid and planetary milling using urea (mechanochemical milling). Testing on both surface treated kaolin were carried out with the aid of Field Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), Brunauer–Emmett–Teller (BET), X-ray Diffraction (XRD) and Particle Size Analyser and results of both treated kaolin were compared. However, the surface treated kaolin using acidification was unsuccessful as shown by XRD, FTIR and BET results. A successful delamination of micron sized into nano sized kaolin was achieved by mechanochemical milling. The additional bands at 3624, 3445 and 3388 cm-1 and illite phase at lower 2θ by FTIR and XRD studies respectively, indicated delamination of kaolin. Surface area increased by 400% from BET results. The PP/K nanocomposite was produced by incorporating low weight (1-7%) percentages of organically modified nanokaolin into PP by melt compounding with polypropylene grafted maleic anhydride (PP-g-MA) as coupling agent. The FTIR and XRD analyses on chemical structure showed successful synthesis of PP/K nanocomposites by the vanishing of characteristic of OH bands and peaks of kaolin respectively. The tensile and impact strength, tan δ, loss modulus and melt flow index of PP/K nanocomposite decreases by 17, 27, 36, 32 and 78% respectively. Conversely, the results show that incorporation of nanokaolin clay into PP causes increase in thermal degradation (200%), crystalinity (17%), nucleation effect (17%), storage modulus (10%), surface roughness (87%), and optical (262%). Whereas, TEM of PP/K nanocomposite exhibit nanokaolin dispersion with nanoscale sizes. Therefore, the PP/K nanocomposites formulated shall be a potential candidate for manufacturing novel new materials of attraction in many sectors

    Pool-based electricity market model for Malaysia electricity supply industry considering minimum generation capacity payment

    Get PDF
    Malaysia is improving its electricity supply industry to become more transparent, productive and competitive with the introduction of the single buyer market model. However, since the electricity demand is lower than the reserved capacity, the implementation of this market model does not provide transparent competition as Tenaga Nasional Berhad (TNB) has suffered massive profit erosion because of monthly capacity payment that should be paid to Independent Power Producers (IPP) regardless of electricity usage. Since 2005, the Malaysia Electricity Supply Industry (MESI) has planned to change to the pool market model as it is recognized as a model which could overcome the shortcomings of the single buyer market model. However, there are a few issues on introducing the pool model such as price fluctuation and market power exercises which could influence the welfare of generators as well as the consumers. Some researchers have developed pool-based market models with the aim to overcome the aforementioned issues, but the efficiency and the energy price offered from the generators are not considered. Therefore, this research developed a model introducing the minimum generation capacity payment involving the efficiency of the generators and base load sharing approaches. The proposed model was tested using the 2, 16 and 24 generator test systems involving IPPs and Tenaga Nasional Berhad Generation (TNBG) around Peninsular Malaysia for an economic analysis to highlight the merits of the proposed model in terms of generation revenue and demand payment. The results have shown that the proposed market model ensures the intermediate value of total generation revenue which decreased from 1.99% to 4.67% and 3% to 9.62% during the weekday and weekend, respectively. The demand payment decreased as it is proportional to the generation revenue. However, this proposed model did not consider market uncertainties. This findings can be applied for MESI and globally, in assisting and creating a new policy to achieve a better electricity market model

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    MODELING, OPTIMISATION AND ANALYSIS OF RE-ENTRANT FLOWSHOP JOB SCHEDULING WITH FUZZY PROCESSING TIMES

    Get PDF
    This paper presents a makespan minimization of -jobs -machines re-entrant flow shop scheduling problem (RFSP) under fuzzy uncertainties using Genetic Algorithm. The RFSP objective is formulated as a mathematical programme constrained by number of jobs and resources availability with traditional scheduling policies of First Come First Serve (FCFS) and the First Buffer First Serve (FBFS). Jobs processing times were specified by fuzzy numbers and modelled using triangular membership function representations. The modified centroid defuzzification technique was used at different alpha-cuts to obtain fuzzy processing times (FPT) of jobs to explore the importance of uncertainty. The traditional GA schemes and operators were used together with roulette wheel algorithm without elitism in the selection process based on job fuzzy completion times. A test problem of five jobs with specified Job Processing and Transit Times between service centres, Job Start Times and Job Due times was posed. Results obtained using the deterministic and fuzzy processing times were compared for the two different scheduling policies, FCFS and FBFS. The deterministic optimal makespan for FBFS schedule was 61.2% in excess of the FCFS policy schedule.  The results also show that schedules with fuzzy uncertainty processing times provides shorter makespans than those for deterministic processing times and those under FCFS performing better than those under FBFS policy for early jobs while on the long run the FBFS policy performs better. The results underscore the need to take account of comprehensive fuzzy uncertainties in job processing times as a trade-off between time and costs influenced by production makespan. http://dx.doi.org/10.4314/njt.v36i3.2

    Research problems

    Get PDF

    Scheduling of Batch Processors in Semiconductor Manufacturing – A Review

    Get PDF
    In this paper a review on scheduling of batch processors (SBP) in semiconductor manufacturing (SM) is presented. It classifies SBP in SM into 12 groups. The suggested classification scheme organizes the SBP in SM literature, summarizes the current research results for different problem types. The classification results are presented based on various distributions and various methodologies applied for SBP in SM are briefly highlighted. A comprehensive list of references is presented. It is hoped that, this review will provide a source for other researchers/readers interested in SBP in SM research and help simulate further interest.Singapore-MIT Alliance (SMA

    Makespan Minimization in Re-entrant Permutation Flow Shops

    Get PDF
    Re-entrant permutation flow shop problems occur in practical applications such as wafer manufacturing, paint shops, mold and die processes and textile industry. A re-entrant material flow means that the production jobs need to visit at least one working station multiple times. A comprehensive review gives an overview of the literature on re-entrant scheduling. The influence of missing operations received just little attention so far and splitting the jobs into sublots was not examined in re-entrant permutation flow shops before. The computational complexity of makespan minimization in re-entrant permutation flow shop problems requires heuristic solution approaches for large problem sizes. The problem provides promising structural properties for the application of a variable neighborhood search because of the repeated processing of jobs on several machines. Furthermore the different characteristics of lot streaming and their impact on the makespan of a schedule are examined in this thesis and the heuristic solution methods are adjusted to manage the problem’s extension
    • …
    corecore