
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236376736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fakultät Wirtschaftswissenschaften

Makespan Minimization in

Re-entrant Permutation Flow Shops

Dissertation

to achieve the academic degree

Doctor rerum politicarum (Dr. rer. pol.)

by

Richard Hinze

born on 02.05.1987 in Dresden

First reviewer: Prof. Dr. Udo Buscher

Second reviewer: Prof. Dr. Rainer Lasch

Date of submission: 01.02.2017

Date of defense: 29.08.2017

Contents

List of Figures V

List of Tables IX

List of Algorithms XII

List of Abbreviations XIV

List of Symbols XVI

1 Introduction 1

1.1 Motivation . 1

1.2 Structure and Methodology . 2

2 Machine Scheduling 6

2.1 Introduction . 6

2.2 Classification of Machine Scheduling Problems 7

2.3 Solution Approaches . 11

3 Re-entrant Scheduling Problems 27

3.1 Problem Assumptions and Classification 27

3.2 Literature Review . 30

3.2.1 Search Methodology . 31

3.2.2 Re-entrant Flow Shops . 33

3.2.3 Re-entrant Job Shops . 38

3.2.4 Re-entrant Line Problems . 41

3.3 A Mathematical Formulation for Re-entrant Permutation Flow Shops . . 51

4 Re-entrant Permutation Flow Shop Problems with Mixed Levels and Missing

Operations 56

4.1 Introduction . 56

4.2 Mixed Levels . 57

4.3 Missing Operations . 60

II

CONTENTS III

4.4 Mathematical Models . 63

4.4.1 Comparison of Sequence Variables 63

4.4.2 Basic Job Sequence . 80

4.4.3 Influence of Missing Operations 85

4.5 Initialization Methods . 88

4.5.1 Constructive Heuristics for Separated Levels 89

4.5.2 Constructive Heuristics for Mixed Levels 92

4.5.3 Computational Experiments . 95

4.6 Neighborhood Structures in Re-entrant Permutation Flow Shops 98

4.6.1 Swap Moves . 98

4.6.2 Insertion Moves . 100

4.6.3 Block Neighborhoods . 101

4.6.4 Computational Experiments . 108

4.7 Improvement Methods . 111

4.7.1 Simple Local Search Algorithms 111

4.7.2 Variable Neighborhood Search . 113

4.7.3 Tabu Search . 116

4.7.4 Simulated Annealing . 119

4.7.5 Computational Experiments . 121

4.7.6 Improvement of Metaheuristics 131

4.8 Application on Job Shop Problems . 134

5 Re-entrant Permutation Flow Shop Problems with Mixed Levels, Missing

Operations and Lot Streaming 139

5.1 Introduction . 139

5.2 Mathematical Models . 144

5.2.1 Consistent Sublots . 144

5.2.2 Consecutive Sublots . 155

5.2.3 Equal Sublots . 161

5.2.4 Consecutive Equal Sublots . 168

5.2.5 Resizing Sublots . 173

5.2.6 Summary of Sublot Properties . 182

5.3 Neighborhoods in Re-entrant Permutation Flow Shops with Lot Streaming 184

5.4 A Variable Neighborhood Search for a Re-entrant Permutation Flow Shop

with Lot Streaming . 186

5.4.1 Calibration . 187

5.4.2 Computational Experiments . 189

CONTENTS IV

6 Conclusion 196

A Literature Review Search Methodology 200

B Test Instances 203

C Additional Computational Results of Metaheuristics 206

D Lot Streaming Results for Inc 3 Instances 209

Bibliography 210

List of Figures

1.1 Structure of the thesis . 5

2.1 Classification of solution methods . 12

2.2 First improvement . 17

2.3 Best neighbor . 18

2.4 Simulated annealing . 19

2.5 Tabu search . 23

2.6 Variable neighborhood search . 24

3.1 Example of a machine sequence with re-entrant 29

3.2 Example of a permutation of three jobs in a regular flow shop 52

3.3 Example of a permutation of three jobs in a re-entrant flow shop 52

4.1 Solution to the example with separated levels 58

4.2 Solution to the example with mixed levels 59

4.3 Example of missing operations case 1 . 60

4.4 Example of missing operations case 2 . 60

4.5 Example of missing operations case 3 . 60

4.6 Solution to the example if missing operations are not properly managed . . . 61

4.7 Solution to the example if missing operations are appropriately managed . . 62

4.8 Starting times for job i in level l: invalid on the left and valid on the right . 64

4.9 Invalid starting times for a job i changing from level l to l + 1 65

4.10 Valid starting times for a job i changing from level l to l + 1 65

4.11 Invalid starting times if yili′l′ = 1 . 66

4.12 Valid starting times if yili′l′ = 1 . 67

4.13 Valid starting times if yili′l′ = 0. 67

4.14 Average makespan deviations between model X and Y 73

4.15 Average computation times of models X and Y for n = 2 75

4.16 Average computation times of models X and Y for n = 3 76

4.17 Average computation times of models X and Y for n = 4 77

4.18 Average computation times of models X and Y for n = 5 78

V

LIST OF FIGURES VI

4.19 Average makespan deviations between model Y and model BS 82

4.20 Average computation times of models Y and BS for n = 2 83

4.21 Average computation times of models Y and BS for n = 5 84

4.22 Illustration of the swap move limits of a level 99

4.23 Example of an invalid level swap . 99

4.24 Illustration of relevant and irrelevant level swap moves 99

4.25 Example of the number of possible level swap moves (I) 99

4.26 Example of the number of possible level swap moves (II) 99

4.27 Example of a job swap . 100

4.28 Illustration of the insertion move limits and valid moves of a level 100

4.29 Example of a job insertion move . 101

4.30 Resulting permutation after the job insertion move 101

4.31 Example of identifying the critical path of operations 102

4.32 Example of a Nowicki intra block swap if jil is not a block border 103

4.33 Example of a Chen intra block swap if jil is not a block border 103

4.34 Example of a Nowicki intra block swap if jil is a block border 104

4.35 Example of a Chen intra block swap if jil is a block border 104

4.36 Example of a Nowicki intra block insertion if jil is not a block border 104

4.37 Example of a Chen intra block insertion if jil is not part of the critical path 104

4.38 Example of a Nowicki intra block insertion if jil is a block border 105

4.39 Example of a Chen intra block insertion if jil is a block border 105

4.40 Example of a Nowicki across block swap if jil is not a block border 105

4.41 Example of a Chen across block swap if jil is not a block border 106

4.42 Example of a Nowicki across block swap if jil is a block border 106

4.43 Example of a Chen across block swap if jil is a block border 106

4.44 Example of a Nowicki across block insertion if jil is not a block border . . . 106

4.45 Example of a Chen across block insertion if jil is not a block border 107

4.46 Example of a Nowicki across block insertion if jil is a block border 107

4.47 Example of a Chen across block insertion if jil is a block border 107

4.48 Frequency of obtaining best solutions for large Inc 1 problems 127

4.49 Frequency of obtaining best solutions for large Inc 3 problems 127

4.50 Average computation times for large Inc 1 instances (I) 129

4.51 Average computation times for large Inc 1 instances (II) 130

4.52 Average computation times with changed neighborhood structures 133

4.53 Solution to the job shop example . 136

4.54 Average number of CPLEX iterations for job shops 137

4.55 Average computation times for job shops . 138

LIST OF FIGURES VII

5.1 Example of lot streaming . 140

5.2 Solution to the example with consistent sublots 147

5.3 Average makespan of consistent sublots compared to using no sublots (Inc 1) 149

5.4 Average makespan of consistent sublots compared to using no sublots (Inc 2) 150

5.5 Average computation time with consistent sublots (Inc 1) 152

5.6 Average computation time with consistent sublots (Inc 2) 153

5.7 Solution to the example with consecutive sublots 157

5.8 Average makespan deviations with consecutive sublots (Inc 1) 158

5.9 Average makespan deviations with consecutive sublots (Inc 2) 159

5.10 Average computation times with consecutive sublots (Inc 1) 160

5.11 Average computation times with consecutive sublots (Inc 2) 161

5.12 Solution to the example with equal sublots 163

5.13 Average makespan deviations with equal sublots (Inc 1) 164

5.14 Average makespan deviations with equal sublots (Inc 2) 165

5.15 Average computation times with equal sublots (Inc 1) 166

5.16 Average computation times with equal sublots (Inc 2) 167

5.17 Solution to the example with consecutive equal sublots 169

5.18 Average makespan deviations with consecutive equal sublots (Inc 1) 170

5.19 Average makespan deviations with consecutive equal sublots (Inc 2) 171

5.20 Average computation times with consecutive equal sublots (Inc 1) 172

5.21 Average computation times with consecutive equal sublots (Inc 2) 173

5.22 Solution to the example without resizing of sublots 175

5.23 Solution to the example with resizing of sublots 176

5.24 Average makespan deviations with resizing of sublots (Inc 1) 181

5.25 Average computation times with resizing of sublots (Inc 1) 182

5.26 Example of a level swap of i = 1, l = 1 and i′ = 3, l′ = 1 185

5.27 Example of a job swap of i = 1 and i′ = 3 186

5.28 Example of a level insertion of i = 1, l = 1 to the positions of i′ = 3, l′ = 1 . . 186

5.29 Example of a job insertion of i = 1 to the positions of i′ = 3 186

5.30 Lot streaming framework with equal sublots 187

5.31 Average makespan deviation to MIP solutions (Inc 1) 190

5.32 Average number of sublots per job in best solution (Inc 1) 192

5.33 Average improvement of the Q = 3 STPTL solutions (Inc 1) 193

5.34 Average makespan reductions compared to Q = 1 solutions (Inc 1) 194

C.1 Average computation times for large Inc 3 instances (I) 207

C.2 Average computation times for large Inc 3 instances (II) 208

LIST OF FIGURES VIII

D.1 Average improvement of the Q = 3 STPTL solutions (Inc 3) 210

D.2 Average makespan reductions compared to Q = 1 solutions (Inc 3) 210

List of Tables

3.1 Number of articles per year . 32

3.2 Number of articles per journal . 32

3.3 List of machine characteristics . 45

3.4 List of job characteristics . 46

3.5 List of objectives . 46

3.6 List of solution methods . 46

3.7 Literature Review 2010–2015 . 47

3.8 Numbers of constraints of the Pan/Chen (2003) model 55

4.1 Parameters and variables in the re-entrant permutation flow shop models . . 57

4.2 Optimal permutation of the example with separated levels 58

4.3 Optimal permutation of the example with mixed levels 58

4.4 Number of possible permutations . 59

4.5 Number of constraints of model Y . 68

4.6 Number of constraints of model X . 71

4.7 List of symbols in the model comparison . 72

4.8 Influence of the number of machines on the models X and Y 74

4.9 Influence of the number of levels per job on the models X and Y 74

4.10 Influence of the number of jobs on the models X and Y 75

4.11 List of symbols for the evaluation of mixed and separated levels 79

4.12 Influence of the number of machines on the models Y and PC 79

4.13 Influence of the number of levels per job on the models Y and PC 80

4.14 Influence of the number of jobs on the models Y and PC 80

4.15 List of symbols in evaluation tables concerning basic sequence 81

4.16 Influence of the number of jobs on model Y with basic sequence 84

4.17 Influence of the number of levels per job on model Y with basic sequence . . 85

4.18 Influence of the number of machines on model Y with basic sequence 85

4.19 Number of later entries / earlier exits . 86

4.20 List of symbols in evaluation tables concerning missing operations 86

4.21 The influence of missing operations depending on the number of machines . 87

IX

LIST OF TABLES X

4.22 The influence of missing operations depending on the number of levels . . . 87

4.23 The influence of missing operations depending on the number of jobs 88

4.24 Comparison of makespan of the constructive heuristics 96

4.25 Best makespan frequencies of the constructive heuristics 97

4.26 Mean makespan deviations ∆C init
max [%] of best neighbors for small problems . 109

4.27 Mean makespan deviations ∆C init
max [%] of best neighbors for large problems . 110

4.28 Average computation times [s] of best neighbor algorithms 111

4.29 Examined neighborhood hierarchies . 115

4.30 Average makespan deviation ∆CMIP
max [%] for small problems 123

4.31 Average makespan deviation ∆Cbest
max [%] for large problems 124

4.32 Average makespan reductions ∆C init
max [%] for large problems 126

4.33 Average makespan reductions ∆C∗
max [%] for large problems 132

5.1 Optimal permutation of the example with consistent sublots 147

5.2 Influence of m on makespan if the sublots are consistent 151

5.3 Influence of m on CPLEX iterations if the sublots are consistent 153

5.4 Influence of L on makespan if the sublots are consistent 154

5.5 Influence of L on CPLEX iterations if the sublots are consistent 154

5.6 Influence of n on makespan if the sublots are consistent 155

5.7 Influence of n on CPLEX iterations if the sublots are consistent 155

5.8 Optimal permutation of the example with consecutive consistent sublots . . 156

5.9 Solution quality of consistent (I) and consecutive (II) sublots 159

5.10 Influence of consecutive sublots on CPLEX iterations 161

5.11 Optimal permutation of the example with equal sublots 162

5.12 Solution quality of consistent (I) and equal (II) sublots 165

5.13 Influence of equal sublots on CPLEX iterations 167

5.14 Optimal permutation of the example with consecutive equal sublots 168

5.15 Solution quality of consistent (I) and consecutive equal (II) sublots 171

5.16 Influence of consecutive equal sublots on CPLEX iterations 173

5.17 Optimal permutation of the example with consistent sublots 174

5.18 Optimal permutation of the example with sublot resizing 175

5.19 Number of constraints for lot streaming with consistent sublots 183

5.20 Number of constraints for lot streaming with sublot resizing 184

5.21 Neighborhood hierarchies with lot streaming 188

5.22 Average makespan reductions ∆CLS
max [%] with lot streaming 191

5.23 Number of sublots per job in the best solutions of small problems (Inc 1) . . 191

5.24 Number of sublots per job in the best solution of large problems (Inc 1) . . . 192

5.25 Average computation times [s] with Q = 3 sublots per job 195

LIST OF TABLES XI

B.1 Incomplete level scheme . 203

B.2 Parameter settings of the test instances without lot streaming 204

B.3 Parameter settings of the test instances with lot streaming 205

C.1 Average makespan deviations ∆C init
max for small problems 206

D.1 Number of sublots per job in the best solutions of small problems (Inc 3) . . 209

D.2 Number of sublots per job in the best solutions of large problems (Inc 3) . . 209

List of Algorithms

4.1 Longest total processing time jobs first rule 89

4.2 Shortest total processing time jobs first rule 90

4.3 NEH job algorithm . 91

4.4 Service in random order job . 92

4.5 Longest and shortest total processing time level first rule 93

4.6 NEH level algorithm . 94

4.7 Service in random order level . 95

4.8 Identifying a critical path in a re-entrant flow shop 102

4.9 First improvement . 112

4.10 Best neighbor . 113

4.11 Variable neighborhood search . 114

4.12 Tabu search . 117

4.13 Finding the value of the aspiration function 119

4.14 Simulated annealing . 120

XII

List of Abbreviations

ABC Artificial bee colony

ACO Ant colony optimization

B&B Branch and bound

B&C Branch and cut

BN Best neighbor

B&P Branch and price

CDS Algorithm of Campbell, Dudek and Smith

EA Evolutionary algorithms

EDD Earliest due date

FI First improvement

FL Fuzzy logic

GA Genetic algorithm

GRASP Greedy randomized search procedure

LB Limited buffer capacity

LPT Longest processing time first

LTPT Longest total processing time first

LTPTJ Longest total processing time job first

LTPTL Longest total processing time level first

MA Memetic algorithm

MIP Mixed integer programming

MO Missing operations

NEH Algorithm of Nawaz, Enscore and Ham

NEHJ NEH job

NEHL NEH level

NNC Non-negativity constraints

PN Petri nets

PR Priority rules

PSO Particle swarm optimization

RFS Re-entrant flow shop

RJS Re-entrant job shop

XIII

LIST OF ABBREVIATIONS XIV

RPFS Re-entrant permutation flow shop

SA Simulated annealing

SI Swarm intelligence

SIRO Service in random order

SIROJ Service in random order job

SIROL Service in random order level

SPT Shortest processing time first

ST Setup times

STPT Shortest total processing time first

STPTJ Shortest total processing time job first

STPTL Shortest total processing time level first

TA Threshold accepting

TP Throughput

TS Tabu search

VNS Variable neighborhood search

WIP Work-in-process

List of Symbols

A A sufficiently large number

a Neighborhood hierarchy index

b Block index

B Number of blocks in a permutation

BS Label indicating values concerning model Y with basic sequence

batch Batch processing

CBS
max Makespan obtained by model Y with basic sequence

Ci Completion time of job i

CI
max (πt) Income makespan value of a permutation

Cmax Makespan

Cmax (π) Makespan of permutation π

CO
max (πt) Outcome makespan value of a permutation

CPC
max Makespan obtained by the model of Pan/Chen (2003)

CQ, consistent
max Makespan with Q consistent sublots per job

CQ, consecutive
max Makespan with Q consistent consecutive sublots

CQ, consecutive equal
max Makespan with Q consecutive equal sublots per job

CQ, equal
max Makespan with Q equal sublots per job

CQ
max Makespan obtained by the model with Q consistent sublots per job

CQ, resize
max Makespan with resizing of Q sublots per job

CQ, resize consecutive
max Makespan with resizing of Q consecutive sublots per job

CX
max Makespan obtained by model X

CY0
max Makespan obtained by model Y with missing operations

CY
max Makespan obtained by model Y

∆C∗
max Makespan reduction obtained by a metaheuristic

with a changed neighborhood setting

∆C3|1
max Makespan reduction with Q = 3 instead of Q = 1 sublots per job

∆Cbest
max Makespan deviation between a certain solution and the best

of the generated solutions

∆C init
max Makespan deviation between the initial solution

and the solution obtained by an improvement method

XV

LIST OF SYMBOLS XVI

∆CLS
max Makespan reduction of using lot streaming without

predetermined number of sublots per job

∆Cmax Makespan deviation

∆CMIP
max Makespan deviation between the MIP solution

and the solution obtained by a metaheuristic

∆CQ
max Makespan deviation between any tested lot streaming model and

a model with simple consistent sublots with Q sublots per job

∆CQ|Q−1
max Makespan deviation if there is one sublot more per job

chains Chain precedence constraints

ct Computation time

ctBS Computation time with model Y with basic sequence

ctPC Computation time with the model of Pan/Chen (2003)

ctX Computation time with model X

ctY Computation time with model Y

ctY0 Computation time with model Y with missing operations

∆ct Computation time difference

D Number of parts in a job / lot size of a job

Di Number of parts in job i / lot size of job i

di Due date of job i

Di Absolute deviation between a job i’s completion and its due date di

Ei Earliness of job i

F Indicating a flow shop if α1 = F

F Total flow time

F asp Function value of an aspiration function in a tabu search

FI Income value of an aspiration function in a tabu search

fi (Ci) Sum objective function based on the on completions time of jobs

FI (Cmax (πt)) Income makespan value of a permutation πt

fmax (Ci) Bottleneck objective function based on completions time of jobs

FO Outcome value of an aspiration function in a tabu search

FO (Cmax (πt)) Outcome makespan value of a permutation πt

F ω Total weighted flow time

G Indicating a general shop if α1 = G

g, g′ Operation indices

G Graph representing precedence constraints

GQ Gap value for problems with a maximum of Q sublots per job

hkj Starting time of the jth member of a permutation of jobs

on machine k

LIST OF SYMBOLS XVII

i, i′, i′′ Job indices

I Total idle time of all machines

Inc 1 Set of test instances 1

Inc 2 Set of test instances 2

Inc 3 Set of test instances 3

Inc 4 Set of test instances 4

Inc 5 Set of test instances 5

intree Intree precedence constraints

It Number of CPLEX iterations

ItBS Number of CPLEX iterations with model Y with basic sequence

ItPC Number of CPLEX iterations with the model of Pan/Chen (2003)

ItQ Number of CPLEX iterations with a model with Q sublots per job

ItX Number of CPLEX iterations with model X

ItY Number of CPLEX iterations with model Y

ItY0 Number of CPLEX iterations with model Y with missing operations

∆It Difference of the numbers of iterations

J Number of positions in a permutation

J Indicating a job shop if α1 = J

j, j′, j′′, j′′′ Sequence position indices

ji Sequence of position of job i

jil Sequence of position of job i’ level l

jiql Sequence of position of job i’ sublot q in level l

k, k′, k′′ Machine indices

K, K Parameters used to calculate a new temperature

l, l′ Level indices

L Number of levels per job

Li Lateness of job i

m Number of machines

MRTk Machine ready time of machine k

n Number of jobs

N Neighborhood, denoted with “N” in figures

Navailable Set of available jobs

N a
t Neighborhood t in neighborhood hierarchy a

N ready Set of ready jobs

Nt Neighborhood t

N (π) Neighborhood of permutation π

O Indicating an open shop if α1 = O

LIST OF SYMBOLS XVIII

oi Number of operations of job i

outtree Outtree precedence constraints

Par Parallel machines

P Identical parallel machines

P Probability

p Processing time

PC Label indicating values concerning model Pan/Chen (2003)

pig Processing time of the gth operation of job i

pilk In Chapters 3 and 4:

Processing time of job i in level l on machine k

pilk In Chapter 5:

Processing time of one unit of job i in level l on machine k

plk Processing time of level l on machine k in an one-job problem

PMPM Multipurpose machines with identical processing speed

pmtn Job preemption

prec Precedence constraints

q, q′, q′′ Sublot indices

Q In Chapters 2: Denoting uniform parallel

machines in the α1 field of the 3-field classification scheme

Q In Chapters 5: Maximum number of sublots per job

Qmax Limit for incrementing the number of sublots per job level

QMPM Multipurpose machines with uniform processing speed

R Unrelated parallel machines

r Uniformly distributed random number, 0 ≤ r ≤ 1

recrc Re-entrant material flow

res Resource constraints

ri Release date of job i

Riqq′l Binary variable, takes the value 1 if sublot q of job i starts

into level l + 1 before sublot q′ of the same job finished level l

RTi Ready time of job i

RTil Ready time of job i’s level l

Si Squared deviation between completion time and due date of job i

sig Starting time of the gth operation of job i

silk Starting time of job i in level l on machine k

siqlk Starting time of job i’s sublot q in level l on machine k

slk Starting time of level l on machine k

t, t′ Iteration indices and subiterition indices

LIST OF SYMBOLS XIX

(Neighborhood indices for the variable neighborhood search)

Ti Tardiness of job i

tmax Maximum number of iterations of an heuristic

Tmin Minimum temperature in a simulated annealing algorithm

TPTi Total processing time of job i

TPTil Total processing time of level l of job i

T t Temperature in iteration t in a simulated annealing algorithm

t′tmax Maximum number of iteration on the tth temperature level

ub Last member of block b

Ui Unit penalty of job i

VNSa BN Variable neighborhood search with neighborhood hierarchy a and

best neighbor local search

VNSa BN* Variable neighborhood search with neighborhood hierarchy a and

best neighbor local search and Nowicki across block moves

VNSa FI Variable neighborhood search with neighborhood hierarchy a and

first improvement local search

VNSa FI* Variable neighborhood search with neighborhood hierarchy a and

first improvement local search and Nowicki across block moves

W Matrix containing all parameters wi
g

wig Integer parameter indicating on which machine

the gth operation of job i is performed

X Indicating a mixed shop if α1 = X

X Label indicating values concerning model X

X Remainder of parts after dividing the lot size of the job by Q

x, x′ Specific solutions of optimization problems

xilj Binary variable, takes the value 1

if level l of job i is scheduled on position j

X iq Size of job i’s sublot q

X iq
l Size of job i’s sublot q in level l

Xq Size of sublot q

Y Label indicating values concerning model Y

Y0 Label indicating model Y with missing operations

yii′ Binary variable, takes the value 1

if level l of job i is scheduled before the same level of job i′

yii′k Binary variable, takes the value 1

if job i is scheduled before job i′ on machine k

yili′l′ Binary variable, takes the value 1

LIST OF SYMBOLS XX

if level l of job i is scheduled before level l′ of job i′

yi
′q′l′

iql Binary variable, takes the value 1 if sublot q of job i

in level l is scheduled before sublot q′ of job i′ in level l′

α Machine characteristics

β Job characteristics

γ Objective characteristics

π, π′ Permutations of job levels

πbest Best known permutation of job levels

πbest
init Best initial permutation of job levels

πBN Permutation of job levels obtained by a best neighbor search

πinit Initial permutation of job levels

πmeta Permutation of job levels obtained by a metaheuristic

πmeta∗ Permutation of job levels obtained by a metaheuristic

with changed neighborhood setting

πLS
meta Permutation of job level sublots obtained by a metaheuristic

with a framework dependent number of sublots per job

πQ
meta Permutation of job level sublots obtained

by a metaheuristic with Q sublots per job

πQ
MIP Permutation of job level sublots obtained by

a mixed integer model with Q sublots per job

πt Permutation of job levels in iteration t

ωi Weight of job i in the objective value

◦ No value for a problem characteristic

1 Introduction

1.1 Motivation

Flow shops have received much research interest since 1954 when Johnson1 first addressed

the problem. The fundamental characteristic of a flow shop is that the sequence of

working stations to visit is the same for each production job. Common objectives for

defining the sequences of operations for all machines are to increase the machine usage

and to minimize the throughput times of production jobs in the manufacturing system.

Both objectives are competing.2 There is a multitude of extensions for the flow shop

problem, e.g. Setup times (ST) or sequence-dependent setup times, batch processing,

waiting time restrictions and lot streaming. An extension that receives great attention,

especially in the semiconductor industry, is a re-entrant material flow. This means that

the jobs need to visit at least one working station multiple times. The rising complexity of

production environments and material flows leads to a growing importance of re-entrant

characteristics in scheduling problems.

The literature review of Danping/Lee (2011) on re-entrant scheduling problems of

for the period between 1994 and 2009 contains 61 journal articles.3 After conducting

search queries for the time between 2010 and 2015, 94 journal articles on re-entrant

scheduling problems were found, indicating the emerging relevance of the topic. The

fields of applications are numerous. Specifically, Re-entrant flow shop (RFS) scheduling

problems occur in practical applications, such as the manufacturing of semiconductors

and electronic devices, airplane engines, and petrochemical production.4 In integrated

circuit manufacturing, a particular integrated circuit may return several times to the

photo-lithographic process in order to place several layers of patterns on the wafer.5 In

a painting shop, parts may move back and forth between the painting and baking de-

partments for successive coats of paint.6 Further occurrences of Re-entrant permutation

1 See Johnson (1954): Optimal two- and three-stage production schedules , pp. 61–68.
2 See Gutenberg (1983): Produktion, p. 216.
3 See Danping/Lee (2011): Review of research for re-entrant scheduling , p. 2222.
4 See Hekmatfar/Fatemi Ghomi/Karimi (2011): Reentrant flow shops with setup times , p. 4530.
5 See Kang/Lee (2007): Make-to-order scheduling in foundry semiconductor fabrication, p. 616.
6 See Emmons/Vairaktarakis (2013): Flow shop scheduling , p. 271.

1

1.2 STRUCTURE AND METHODOLOGY 2

flow shop (RPFS) are found in the automotive industry7, weapon production8, mold and

die processes9, and the textile industry10.

The computational complexity of RPFS problems requires heuristic solution approaches

for large problem sizes. The problem provides interesting structural properties for the

application of a Variable neighborhood search (VNS) because of the repeated process-

ing of jobs on several machines. In addition, the effects of lot streaming have not been

investigated in connection with re-entrant characteristics for permutation flow shops un-

til now, despite the massive savings in makespan provided by applying lot streaming

in regular flow shop and job shop problems. Hence, the different characteristics of job

sublots and their impact on the makespan of a schedule are examined in this thesis and

the heuristic solution methods are adjusted to manage the problem’s extension.

1.2 Structure and Methodology

The aim of this work is to examine re-entrant permutation flow shops regarding makespan

minimization.

An overview of the current literature is provided, which has been selected based on a

search methodology described in Section 3.2. Within the literature review, the occurrence

of certain problem characteristics is quantified based on the 3-field classification scheme

for machine scheduling problems of Graham et al. (1979).11 An overview is also given

of the different methods of modeling and solving scheduling optimization problems that

are applied to re-entrant permutation flow shop problems. These methods can be divided

into exact methods, including Mixed integer programming (MIP) models, that are used

in connection with commercial solver software, such as CPLEX or Gurobi by applying

Branch and bound (B&B) or Branch and cut (B&C) algorithms. The second group of

solution methods contains heuristics. Within this group of solution methods constructive

heuristics can be differentiated from metaheuristics. Constructive heuristics also include

Priority rules (PR), which can be used to provide initial solutions for metaheuristic

improvement methods, such as Tabu search (TS), Simulated annealing (SA) and variable

neighborhood search.

Two modeling approaches are tested regarding their computational performance in

different problem sizes. The approaches differ in the kind of binary variables used to

7 See Chong/Jingshan (2010): Approximate Analysis of Reentrant Lines , p. 708 and See Liu/Li/
Chiang (2010): Re-entrant lines with unreliable machines and finite buffers , p. 1151.

8 See Chen et al. (2012): Flexible job shop scheduling , p. 10016.
9 See Gomes/Barbosa-Póvoa/Novais (2013): Reactive scheduling , pp. 5120–5121.

10 See Topaloglu/Kilincli (2010): Shifting bottleneck heuristic for reentrant job shops , p. 790.
11 See Graham et al. (1979): Optimization and approximation in sequencing and scheduling , pp. 288–

290.

1.2 STRUCTURE AND METHODOLOGY 3

represent the permutation. The models in Chapter 5 are based on the formulation that

performed best in the computational experiments in Section 4.4.1. Furthermore, the

necessity of including Missing operations (MO) in re-entrant permutation flow shops is

constituted. The structure of the permutation is justified based on the makespan values

achieved. The impact of both the structure of the permutation and the appropriate

management of missing operations on the makespan is examined with different MIP

models.

Various heuristics are developed due to the complexity of scheduling problems. The

solutions obtained by heuristics are compared to each other and to the results deliv-

ered by applying solver software to the suggested MIP models. The first group of the

proposed heuristics contains priority rules, mainly used for the initialization of the later

used metaheuristic improvement methods. The tested metaheuristics are tabu search,

simulated annealing, variable neighborhood search and simple local search approaches

such as Best neighbor (BN) and First improvement (FI). As suggested by a variable

neighborhood search, several mechanisms for modifying a solution are developed for the

problem and implemented within each improvement method. The computational exper-

iments compare the solution methods regarding solution quality and computation time.

All experiments are performed on a 64-bit Windows 10 system with a 2.5 GHz Intel

i7-4710HQ quad core processor and 16 GB RAM. IBM CPLEX 12.4 is used as the MIP

solver and the examined heuristics are coded in C++.

The models are extended to include lot streaming, which allows different modes of

sublots regarding size and processing sequence in re-entrant permutation flow shops.

The different constraints determining the characteristics of sublots are tested in different

MIP models. Additionally, the heuristic solution approaches are adjusted and tested for

the RPFS with lot streaming and the preferred form of sublots.

The examined research questions in this thesis are:

Q1: What is the state of research for re-entrant permutation flow shops?

Q2: How can missing operations and mixed levels be formulated in a mathematical

model and what are the effects on the optimal makespan of a schedule? What

problem sizes can be solved optimally?

Q3: How does the application of problem-specific constructive heuristics and adjusted

metaheuristics affect the solution quality and computational performance in re-

entrant permutation flow shop problems?

Q4: What is the impact of different forms of lot streaming on the makespan?

Q5: What numbers of sublots per job dependent on the problem size are suitable for

1.2 STRUCTURE AND METHODOLOGY 4

metaheuristics?

The structure of the thesis is shown in Figure 1.1. Chapter 1 discusses the motivation

for the work and explains the methodology. Chapter 2 describes the fundamentals in

scheduling and introduces expressions used in the following chapters. Chapter 3 contains

a survey on literature concerning the examined problem and answers research question

Q1. A model and heuristics for solving the re-entrant permutation flow shop problem

with missing operations are proposed and examined in Chapter 4 answering research

questions Q2 and Q3. The research questions Q4 and Q5 are answered in Chapter 5,

followed by the conclusion in Chapter 6.

1.2 STRUCTURE AND METHODOLOGY 5

Figure 1.1: Structure of the thesis

Chapter 1 – Introduction

• Motivation

• Research questions

• Structure

Chapter 2 – Machine Scheduling

• Scheduling problem types

• Solution methods

Chapter 3 – Re-entrant Scheduling Problems

• Literature review

⇒ Research question Q1

Re-entrant Permutation Flow Shops: Analysis of Characteristics and Solution Methods

Chapter 4

Mixed Levels and Missing Operations

• Mixed levels

→ Selection of sequence variable

• Missing operations

→ Model and analysis

⇒ Research question Q2

• Initialization methods

→ Pre-selection

• Metaheuristics

→ Calibration and selection

⇒ Research question Q3

Chapter 5

Lot Streaming

• Model extension

⇒ Research question Q4

• Adjustment of heuristics

⇒ Research question Q5

Chapter 6 – Conclusion

• Concluding remarks

• Further research

2 Machine Scheduling

This chapter provides insight into the problem classification and solution methods for

machine scheduling problems.

2.1 Introduction

Scheduling generally is a decision making process, which assigns limited resources to

tasks in the course of time to achieve predefined objectives.1 This assignment decision is

a combinatorial search problem under parameters describing the problem and its specific

characteristics. The combinatorial search problem becomes an optimization problem, if

an objective function is added.2

Pinedo (2002) listed five different cases for scheduling in manufacturing: i) project

scheduling, ii) machine scheduling, iii) scheduling of flexible assembly systems, iv) eco-

nomic lot scheduling and v) scheduling in supply chains.3 This work focuses on machine

scheduling. The machines of a production environment are the limited resources in this

problem class.4 The tasks that need to be assigned to machines are the operations to

finish production jobs. Hence the set of tasks can be divided into n subsets, each con-

taining all necessary operations to finish a single job. Sequencing the operations of all

jobs is the combinatorial search problem in machine scheduling.

This is one of the scheduling problems in manufacturing companies. B lażewicz et al.

(1996) described the instance of machine scheduling problems with three main parameter

sets, which are the set of tasks that need to be performed, the processors and the set

of additional resources necessary for production process. Machine scheduling problems,

considering an objective function, are optimization problems.5 The set of processors

includes all machines, which are operating the tasks. In the following the processors are

called machines.

Graham et al. (1979) proposed the 3-field classification scheme for machine schedul-

1 See Pinedo (2002): Scheduling: theory, algorithms, and systems , p. 1.
2 See B lażewicz et al. (1996): Scheduling Computer and Manufacturing Processes , p. 11.
3 See Pinedo (2005): Planning and Scheduling in Manufacturing and Services , p. 14.
4 See Pinedo (2002): Scheduling: theory, algorithms, and systems , p. 1.
5 See B lażewicz et al. (1996): Scheduling Computer and Manufacturing Processes , p. 57.

6

2.2 CLASSIFICATION OF MACHINE SCHEDULING PROBLEMS 7

ing problems α|β|γ.6 The scheme considers the fields machine environment (α), job

characteristics (β) and optimality criteria (γ) that can be represented by an objective

function. This categorization was extended by Brucker (1995) and B lażewicz et al.

(1996),7 and is further described in Section 2.2.

2.2 Classification of Machine Scheduling Problems

This section describes the extended 3-field categorization scheme of Brucker (1995) and

B lażewicz et al. (1996), explains the main expressions and problem types in machine

scheduling, and categorizes the examined problem of re-entrant permutation flow shops.

Machine Environment

The machine environment is described by the α-field and its two subcategories α1 and

α2. α1 describes which machines are able to process which jobs and the directions of

possible material flows. α2 indicates the number of processors.

α1 can take the symbols ◦, P, Q, R, PMPM, QMPM, G, X, O, J, and F . The

status of the machine environment in which each job consists of only one operation and

needs to be processed on a dedicated machine is represented by α = ◦. P, Q, R indicate

parallel machines. Each job needs to be processed just once on any of the machines to

be finished. P represents an environment with identical parallel machines, which means

that the processing times of a job are the same on each machine. Q indicates uniform

parallel machines. The processing speed differs between machines, but the relation of

processing speeds is independent from the jobs. Unrelated parallel machines (R) are

also characterized by different processing times for each job’s operation, but those time

variations depend on the assigned job.

PMPM,QMPM stand for multi-purpose environments. That means the machines

can perform different processing functions depending on the tools, they are equipped

with. The two forms vary in the two kinds of processing speed: identical (PMPM) and

uniform processing speed (QMPM).

A general shop (G) is a multi-operation model with dedicated machines. A certain set

of processing steps is defined for each job that should be operated by the machines. It

contains the three sub-forms open shop (O), job shop (J), flow shop (F) and mixed shop

(X). There are no precedence constraints on the jobs’ operations in open shops. The

set of operations needs to be processed, but it does not matter in which sequence.8 The

6 Graham et al. (1979): Optimization and approximation in sequencing and scheduling , pp. 288–291.
7 See Brucker (1995): Scheduling algorithms , pp. 2–7 and B lażewicz et al. (1996): Scheduling
Computer and Manufacturing Processes , pp. 68–69.

8 See Gonzalez/Sahni (1976): Open Shop Scheduling to Minimize Finish Time, p. 665.

2.2 CLASSIFICATION OF MACHINE SCHEDULING PROBLEMS 8

operations of each job need to follow a certain sequence in a job shop. The predecessors

and successors of each operation are defined and may differ from job to job. Also in

flow shops, there is a defined order of operations, which is identical for each job. So, the

sequence of the machines to be processed on is the same for each job. The problem is

called permutation flow shop if the job sequence is the same on all machines. A mixed

shop environment is a combination of open and job shop. An additional class of flow

shop problems are hybrid or flexible flow shop problems. In this class of problems multi-

ple parallel machine resources are available for at least one processing step.9 The second

characterization parameter α2 can be a positive integer number or ◦. α2 indicates the

number of machines, i.e. the system contains two machines if α2 = 2. For α2 = ◦, the

number of machines is variable.

For the problem covered in this work, the α-parameters are: α1 = F and α2 = m. The

problem considered is a permutation flow shop with a number of dedicated machines m.

Job Characteristics

The job characteristics can be divided into six categories; hence there are β1, . . . , β9.

There are two options for β1. Job preemption, β1 = pmtn, allows interruptions and the

later resumption of any operation that needs to be processed. If interruptions are not

allowed, then β1 is not mentioned in the problem description or is represented by ◦.

β2 determines whether any additional resources are necessary to process the jobs in

addition to the machines. Such resources can be renewable, non-renewable and doubly

constrained. Renewable resources are only available at certain points of time, but the

amount of usage is not limited. Non-renewable resources are limited in quantity but not

connected to availability times. Doubly constrained resources are limited in availability

time and quantity. The requirement of additional resources is indicated with β2 = res,

otherwise β2 = ◦.

The precedence constraints between the jobs are represented by β3. To explain these

constraints, a graph G is used, which is acyclic and directed. The set of nodes in G

represents the jobs or the jobs’ operations, and the set of arcs A illustrates the precedence

relations between the jobs. If there is an arc i→ i′, then job i needs to be finished before

job i′ is allowed to begin. The parameter β3 = prec indicates precedence constraints

between jobs in general. If there is at most one successor for each job, then β3 = intree.

Hence, only the roots of the tree have an outdegree of zero, and all other nodes have

an outdegree of one. For β3 = outtree, all jobs have at most one direct predecessor

9 See Linn/Zhang (1999): Hybrid flow shop scheduling: a survey , p. 57 and Sriskandarajah/
Sethi (1989): Scheduling algorithms for flexible flowshops , p. 143.

2.2 CLASSIFICATION OF MACHINE SCHEDULING PROBLEMS 9

that they need to wait for. In that case, the roots of G have no predecessor, and all

other nodes have only one predecessor. For the form β3 = chains there is a maximum

of one predecessor and one successor for each job. Another form of β3 is series-parallel.

Series parallel graphs include vertices, which can have more than one successor and

predecessor. The classification scheme is extended at this point by adding β3 = reentr

for jobs that enter the production environment multiple times. β3 = ◦ indicates no

precedence constraints between jobs.

If there is a release date ri given for any job i, β4 will be ri. The fifth job characteristic

β5 is related to the processing times. The jobs have a unit processing requirement if β5

is equal to 1. A β5 of p ≥ 0 indicates possible missing operations.

Due dates di for the jobs are represented in β6 = di.

β7 states the maximum number of operations necessary to finish a job in a job shop.

β7 = ◦ indicates no limits to the number of operations. When β7 = (oi ≤ m), the number

of operations for each job i = 1, . . . , n is not allowed to exceed m.

β8 indicates whether job waiting times are permitted or not. β8 = ◦ declares waiting

times as permitted, and β8 = no−wait indicates, that waiting times are not allowed. This

means that the processing of a job needs to start at a machine k+1 immediately after it

has been finished on machine k. B lażewicz et al. (1996) proposed a statement on the

buffer capacities of the machine environment within parameter β8.
10 The buffers have an

unlimited capacity in the case of β8 = ◦. However, waiting times of jobs can also occur

in the case of Limited buffer capacity (LB) between machines. No buffer is necessary, if

β8 = no− wait. Grouping jobs into batches is indicated by β9 = batch. A batch of jobs

is processed on a machine without being interrupted by the processing of jobs of another

batch. Brucker (1995) indicates batch criteria with β6
11, B lażewicz et al. (1996) do

not indicate batch characteristics.

Preemptions are forbidden, and no resource constraints are required. Therefore, β1

and β2 are omitted. The re-entrant material flow is indicated by β3 = recrc. Drießel/

Mönch (2012a) and Eskandari/Hosseinzadeh (2014) used the same notation to

indicate job re-entrants.12 Alternatively the scheduling of jobs in a re-entrant permuta-

tion flow shop can be characterized with β3 = chains if the permutation consists of the

(re-)entry levels of the jobs, since a level l+1 can just begin after level l is finished. The

occurrence of missing operations and the maximum processing time in the test instances

leads to a β5 of0 ≤ p ≤ 99. Ready times and deadlines are not considered, leading to

β4 = β6 = ◦. Also, β7, β8 and β9 are omitted, since the problem is not a job shop and

10 See B lażewicz et al. (1996): Scheduling Computer and Manufacturing Processes , p. 69.
11 See Brucker (1995): Scheduling algorithms , pp. 6–7.
12 See Drießel/Mönch (2012a): Integrated scheduling and material-handling , p. 5968 and Eskan-

dari/Hosseinzadeh (2014, p. 3).

2.2 CLASSIFICATION OF MACHINE SCHEDULING PROBLEMS 10

the material buffers between the machines are not limited.

Optimality Criteria

The optimality criteria of scheduling problems are their objective functions. Two main

types of objective functions are categorized by Graham et al. (1979)13, which are called

bottleneck and sum objectives by Brucker (1995).14 Both types use cost functions,

fmax (C) and fi (Ci), which for each job are based on the completion times Ci of the n

jobs. The completion time is the point of time when a job is finished. The scheduling

problem is to find a valid solution that minimizes the cost function.

Bottleneck objectives are generally formulated with a cost function, which uses the

maximum cost value among all jobs as the objective value:

fmax (C) := max
i=1,...,n

fi (Ci) . (2.1)

The sum objectives use the total cost value over all jobs as objective value:

∑

fi (Ci) :=
n
∑

i=1

fi (Ci) . (2.2)

In the 3-field categorization scheme, γ can take the values fmax and
∑

fi. Common

concrete objective values that are minimized are makespan Cmax = maxi=1,...,n Ci, the

total flow time
∑n

i=1 Ci denoted with F , weighted total flow time F ω as
∑n

i=1 ωiCi. The

makespan is the time between the start of the first operation of the schedule and the

end of the last operation. It is equal to the maximum flow time. Flow time is measured

per job and is also called completion time for jobs with release dates equal to 0. Flow

time begins with the release time of a job and ends for each job with the end of the last

operation of the job. Other common objectives include:

• Total lateness:
∑n

i=1 Li with Li := Ci − di

• Total earliness:
∑n

i=1 Ei with Ei := max {0, di − Ci}

• Total tardiness:
∑n

i=1 Ti with Ti := max {0, Ci − di}

• Total absolute deviation:
∑n

i=1 Di with Di := |Ci − di|

• Total squared deviation:
∑n

i=1 Si with Si := (Ci − di)
2

• Total unit penalty:
∑n

i=1 Ui with Ui := 0 if Ci ≤ di and Ui := 1 if Ci > di

13 See Graham et al. (1979): Optimization and approximation in sequencing and scheduling , p. 290.
14 See Brucker (1995): Scheduling algorithms , p. 6.

2.3 SOLUTION APPROACHES 11

The minimization of the total unit penalty is equal to minimizing the number of tardy

jobs. All of these objective functions can also be formulated as weighted sum objectives.

In addition, it is also possible to use the variables Li, Ei, Ti, Di, Si in bottleneck (weighted

bottleneck) formulations. This means that the maximum values of lateness, earliness,

tardiness and absolute or squared deviation can be minimized. Linear combinations of

the different objective functions are also possible optimization targets. In consideration of

the objective functions and constraints, a schedule is described as active, if the operations

cannot be scheduled earlier without violating any constraint. Semi-active schedules do

not allow an operation to be processed earlier without changing the processing sequence

or obtaining an invalid solution. An open γ field means, that a feasible solution should

be generated, without respect to any objective value.

The γ-parameter to classify the examined problem is γ = Cmax.

2.3 Solution Approaches

Solution methods for machine scheduling problems, as for other optimization problems,

can be divided into exact methods and heuristics. Heuristic solution approaches are used

to generate valid solutions with good objective values, since exact methods like branch

and bound, branch and cut and Branch and price (B&P) are not always appropriate

to solve the problem in an acceptable time. This section will give an overview of the

heuristics used for scheduling. Common methods for obtaining valid schedules for flow

shops are priority rules15, also called dispatching rules.16 Examples of these rules are

Shortest processing time first (SPT), Longest processing time first (LPT) and Earliest

due date (EDD). Random schedules are created with Service in random order (SIRO)

rules. As the considered problem within this thesis is a permutation flow shop problem,

the described priority rules are global rules. Furthermore, the Algorithm of Nawaz,

Enscore and Ham (NEH) and the Algorithm of Campbell, Dudek and Smith (CDS) are

other explained constructive heuristics. Metaheuristic solution approaches are performed

either on a single solution generated by constructive methods or on multiple solutions

generated by one or multiple constructive methods. The group of metaheuristics can be

divided into two main groups:17

• Trajectory methods,

• Population based methods.

15 See Hunsucker/Shah (1994): Analysis of priority rules in a constrained flow shop, p. 105.
16 See Ruiz/Maroto (2005): Review and evaluation of permutation flowshop heuristics , p. 486.
17 See Blum/Roli (2003): Metaheuristics in combinatorial optimization, pp. 272–292.

2.3 SOLUTION APPROACHES 12

Trajectory methods are performed on a single solution and apply changes to this sin-

gle solution successively. Simple trajectory methods are first improvement and best

neighbor, while simulated annealing, tabu search, variable neighborhood search, Greedy

randomized search procedure (GRASP) and Threshold accepting (TA) are more sophis-

ticated approaches. Population based algorithms work with multiple solutions in each

iteration by applying changing evaluation patterns and combination schemes to multi-

ple solutions. They can be divided into Evolutionary algorithms (EA) (e.g. Genetic

algorithm (GA) and Memetic algorithm (MA)) and Swarm intelligence (SI) algorithms

(e.g. Artificial bee colony (ABC), Ant colony optimization (ACO) and Particle swarm

optimization (PSO)).

This work focuses on trajectory methods.

The explained classification of some solution methods is summarized in Figure 2.1.

Figure 2.1: Classification of solution methods

Solution Methods

for Machine Scheduling Problems

Exact

• Complete enumeration

• B&B

• B&P

• Cutting planes

• Dynamic programming

• B&C

• Johnson’s rule in m = 2 flow shops

Heuristic

Constructive

• Priority rules:

– SPT

– LPT

– EDD

• SIRO

• NEH

• CDS

• Problem

• specific

Metaheuristics

• Trajectory:

– BN

– FI

– SA

– TA

– TS

– VNS

– GRASP

• Population

• based:

– EA:

• GA

• MA

– SI:

• ABC

• ACO

• PSO

2.3 SOLUTION APPROACHES 13

The terms “move”, “neighbor” and “neighborhood” are briefly explained here because

they are used to describe different solution methods in this thesis. The changes applied to

modify solutions are called moves. Two basic move strategies for permutation flow shops

are to swap the sequence positions of different permutation members (swap moves)18 or

to place an item at another position in the permutation (insertion moves)19. There

are different names for these move strategies: swap moves are also called exchange

moves20, interchange moves21, E-moves22 or S-moves23. Synonym names for insertion

moves are shift moves24 and I-moves25. The preferred terms in this thesis are swap and

insertion moves. The new solution obtained by moving is called neighbor. The set of all

(valid) neighbors that can be obtained by a specified move or set of moves is called a

neighborhood. A class of moves for makespan minimization problems that is based on

the critical path of a solution are block moves. All the moves considered for a re-entrant

permutation flow shop are explained in detail in Section 4.6.

Problem modeling and exact methods

This section gives an overview of the exact methods for solving machine scheduling

problems, specifically the methods used in the IBM ILOG CPLEX optimization studio

12.4 to solve optimization problems formulated as a mathematical programming model.

Machine scheduling problems are often formulated as MIP models26, which are math-

ematical programming models that involve integer variables. CPLEX uses linear pro-

gramming relaxations for its branch and cut algorithm. Linear programming relaxations

allow an MIP’s integer variables to be continuous. Heuristics are used to repair invalid

continuous solutions into valid integer solutions.27

There are three main groups of exact methods for solving combinatorial optimization

problems:

• Search tree methods / enumeration tree: explicit enumeration, implicit enumera-

tion (branch and bound, branch and price, dynamic programming)

• Cutting planes methods

18 See Grabowski/Pempera (2005): Local search algorithms for no-wait flow-shop problem, p. 2199.
19 See Ogbu/Smith (1990): Simulated annealing for the n/m/C max flowshop problem, p. 246.
20 See Chen/Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 357.
21 See Osman/Potts (1989): Simulated annealing for permutation flow-shop scheduling , p. 552.
22 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 162.
23 See Grabowski/Pempera (2005): Local search algorithms for no-wait flow-shop problem, p. 2199.
24 See Osman/Potts (1989): Simulated annealing for permutation flow-shop scheduling , p. 552.
25 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 162.
26 See Table 3.7 in Section 3.2.
27 See IBM (2011): CPLEX user’s manual , pp. 215–216.

2.3 SOLUTION APPROACHES 14

• Hybrid methods (branch and cut).

The explicit enumeration evaluates every possible solution. The best valid solution found

is the global optimum. Evaluating all possible solutions requires long computation times

for large NP-hard problems. Therefore, more structured enumerations can be used to

reduce the computational effort. Branch and bound is a structured implicit enumerative

approach to solve combinatorial optimization problems.

Implicit enumeration approaches are branch and bound, branch and price and dynamic

programming.28 Branch and bound algorithms divide optimization problems into sub-

problems. Based on the solutions of the subproblems, the lower / upper bounds of the

global solutions are calculated by solving either relaxations or specified bounds on the

specific problem. A common relaxation for combinatorial problems is the linear program-

ming relaxation29. A global minimum (maximum) is found if the lower (upper) bound

is equal to or higher (lower) than the objective value of the solution found. A lower

bound gives an approximation of the best possible objective value in a minimization if

the solution of the subproblem is extended to the complete problem. An upper bound is

the estimation of the best possible objective value in a maximization. A further search

for a better solution is not necessary if the gap between the bound and incumbent solu-

tion is closed. In the worst case, all combinatorial possibilities need to be evaluated. In

all other cases, at least one solution is evaluated implicitly. Ignall/Schrage (1965)

introduced a branch and bound procedure for two and three machine flow shop problems

in order to minimize the makespan or total completion time.30

Branch and price is a method of using column generation to generate new branches dur-

ing a branch and bound algorithm but is not explained in this thesis since it is not part

of the solver software CPLEX used.31 Further information on branch and price can be

found in Barnhart et al. (1998).32

Dynamic programming works by using recursion relations between solutions of different

problem sizes. The recursion used determines the type of dynamic programming. There

are forward and backward dynamic programming. Forward dynamic programming builds

a sequence from the beginning, whereas backward dynamic programming starts to build

a sequence at the rear end. Pinedo (2005) shows an example of both approaches for the

minimization of objective functions similar to the total flow time for a single machine

scheduling problem without preemption.33

The cutting plane approach tries to find additional constraints to an integer optimization

28 See B lażewicz et al. (2007): Handbook on Scheduling: From Theory to Applications , p. 33.
29 See Domschke/Scholl/Voß (1997): Produktionsplanung , p. 42.
30 See Ignall/Schrage (1965): Branch and bound technique to flow-shop scheduling , pp. 401–406.
31 See IBM (2011): CPLEX user’s manual , p. 215.
32 See Barnhart et al. (1998): Column generation for solving huge integer programs , pp. 316–329.
33 See Pinedo (2005): Planning and Scheduling in Manufacturing and Services , pp. 397–399.

2.3 SOLUTION APPROACHES 15

problem in order to cut off non-integer solutions.34 An early cutting plane approach was

introduced by Gomory (1958). It applies the simplex algorithm to a linear MIP and

generates additional inequalities if the solution obtained is not an integer. Additional

inequalities are not allowed to affect the validity of the unknown integer optimal solution,

but exclude the current optimal continuous solution.35

The combination of cutting planes and branch and bound is called branch and cut.36

Johnson’s rule provides optimal solutions for the makespan minimization in two-machine

permutation flow shop problems in every case. The job with the shortest processing time

of all jobs is determined. If the corresponding operation is performed on the first ma-

chine, then the job is assigned to the first free position of the job sequence; otherwise

the job is placed on the last non-occupied position. This job’s processing times are then

removed from the list and the shortest processing time is searched again. The process

repeats until all jobs are assigned to sequence positions.37

Constructive heuristics

Priority rules, also called dispatching rules, are a group of constructive heuristics. This

group of solution methods can be divided based on their influence on the schedule. Local

priority rules determine which operation should be selected next for a single machine.

Global priority rules determine a sequence of jobs for machines at once.38 This subsection

introduces some priority rules. The focus is on global priority rules since the job sequence

in permutation flow shops does not differ between machines.

A global dispatching is the Shortest total processing time first (STPT) rule, which is

derived from the local SPT rule. The local rule says that if several jobs are available to

be processed on a machine, the job with the lowest processing time is preferred. The

global STPT rule determines a job sequence by sequencing the jobs in a non-increasing

order of each job’s total processing time. The rule is suggested to obtain a low total

completion time of jobs.

Longest total processing time first (LTPT) is another global rule. It operates in the

opposite way to the STPT rule because it sequences the jobs in a non-decreasing order

of their total processing time on all machines. The local equivalent is the LPT rule.

The SIRO rule can be used to check whether other priority rules have a relevant influence

on objective values. It puts operations (local version) or jobs (global version) in a random

sequence.

34 See Korte/Vygen (2012): Kombinatorische Optimierung: Theorie und Algorithmen, p. 129.
35 See Gomory (1958): Outline of an algorithm for integer solutions to linear programs , p. 275.
36 See Korte/Vygen (2012): Kombinatorische Optimierung: Theorie und Algorithmen, p. 624.
37 See Johnson (1954): Optimal two- and three-stage production schedules , pp. 61–64.
38 See Pinedo (2002): Scheduling: theory, algorithms, and systems , p. 336.

2.3 SOLUTION APPROACHES 16

A priority that is useful to achieve relatively low values of total tardiness is the EDD

rule. It sorts the jobs in a non-increasing order of their due date / delivery date. The

local version decides to perform the operation of the available job with the lowest due

date on a specific machine. Another priority rule based on due dates is the slack time

remaining rule. The remaining slack time of a job is calculated by subtracting the current

time, when the machine is empty, from the due dates of the single available jobs for the

machine. The job with the lowest slack time value is chosen to be processed on the

machine.

The first come first serve rule schedules the job amongst the available jobs on a machine

that becomes available first. The first come first serve rule is automatically a global rule

in all permutation flow shops, which provide job release dates different from zero, since

the job sequence of the first machine is the same for all other machines.

The CDS method divides the m > 3 machine flow shop into m − 1 subproblems

and applies the rule of Johnson to the problems. In every kth subproblem, with k =

1, . . . ,m − 1, the sum of the processing times of the machines k′ = 1, . . . , k represents

the processing times of the surrogate machine 1. The processing times of the second

surrogate machine are represented by the sum of processing times of the machine k′′ =

m+ 1− k, . . . ,m. The makespan values for m− 1 solutions are calculated and the best

solution selected.39

The NEH heuristic sequences jobs in a non-increasing order of the total processing

times of each job. The first job is selected and scheduled on the m machines. Each job

that is added to the sequence is inserted in all possible sequence positions and the best

configuration is chosen, then the next job is selected.40

Another constructive heuristic for the permutation flow shop is an insertion heuristic

proposed by Widmer/Hertz (1989) to obtain an initial solution for a tabu search.41

Eight different constructive heuristics are used to initialize the meta heuristics in

Chapters 4 and 5. These eight heuristics are based on the LTPT rule, STPT rule,

NEH algorithm and SIRO rule. The LTPT and STPT rule are selected because they

are common and simple. The NEH algorithm is tested to examine the influence of a

more sophisticated constructive heuristic on the initial solution. The solutions of the six

constructive heuristics based on the STPT rule, the LTPT rule and the NEH method

are compared to two randomly generated solutions per problem instance.

39 See Campbell/Dudek/Smith (1970): The n job, m machine sequencing problem, p. 631.
40 See Nawaz/Enscore/Ham (1983): Heuristic for m-machine, n-job flow-shops , pp. 92–94.
41 See Widmer/Hertz (1989): A new heuristic method for flow shops , pp. 187–188.

2.3 SOLUTION APPROACHES 17

Metaheuristics

Basic improvement methods like FI and BN are explained within this section as they

are part of the tested methods SA, TS and VNS, which are explained here in general.

Additionally the GRASP and TA are briefly explained because they are mentioned in the

literature review in section 3.2 The general elements of some population based algorithms

are also described to show the difference with trajectory methods.

First Improvement

The first improvement method is a fast local search. A random valid neighbor of a given

solution is selected, and the objective value calculated. The solution is accepted, and

the method terminates if an improvement of the initial objective value is achieved or the

objective values of all valid neighbors in the selected neighborhood are calculated and

no improvement has been found. The general procedure is shown in Figure 2.2.

Figure 2.2: First improvement

Start Input data

Initial solution

List of all valid neighbors in N

Choose random neighbor from list

Delete neighbor from list

Improved

y

n
List empty

n

y

Output

best solution
End

Best Neighbor

The best neighbor local search calculates the objective values of all valid neighbors within

a given neighborhood and chooses the solution with the best objective value if it improves

the initial solution. A list with all valid moves is created and the list’s items respectively

the resulting solutions are successively evaluated as shown in Figure 2.3.

2.3 SOLUTION APPROACHES 18

Figure 2.3: Best neighbor

Start Input data

Initial solution

List of all valid neighbors in N

Choose next neighbor from list

Best

improved

y

n

Update solution

t = tmax

n

y

Output

best solution
End

Simulated Annealing

Simulated annealing is a metaheuristic improvement method first mentioned by Kirk-

patrick/Gelatt/Vecchi (1983) to solve traveling salesman problems.42 Černỳ

(1985) developed the method independently from Kirkpatrick/Gelatt/Vecchi (1983)

and also applied it to the traveling salesman problem.43 The method is based on calcu-

lating the energetic state or thermodynamic equilibrium of a fluid or solid with a given

temperature. The energetic state is based on probabilistic behavior. A high energy

state can be reached by a material with a certain probability depending on the material

temperature. This behavior is applied to finding the solution in optimization problems.

A neighbor of an incumbent solution is selected and evaluated regarding the objective

value. The neighbor is accepted as a new incumbent solution if its objective value is bet-

ter than the objective value of the incumbent solution. If the neighbor delivers a worse

result, it can also be accepted with the probability P , i.e. if a uniformly distributed

random number r is lower or equal to P . Parameter t counts the temperature states,

i.e. the main iterations of the algorithm. P depends on the current temperature value

T t. The initial temperature is given by T 1. It is not allowed to fall below a temperature

42 See Kirkpatrick/Gelatt/Vecchi (1983): Optimization by Simulated Annealing , pp. 671-680.
43 See B lażewicz/Kobler (2002): Properties of precedence graphs for scheduling problems , p. 41,

Černỳ (1985): Thermodynamical approach to the traveling salesman problem, pp. 41-51 and Ogbu/
Smith (1990): Simulated annealing for the n/m/C max flowshop problem, p. 244.

2.3 SOLUTION APPROACHES 19

Tmin. A solution is denoted with x and a newly generated neighboring solution is called

x′. f (x) is the objective value of solution x. t′ counts the iterations per temperature

level t. Figure 2.4 gives an overview of the procedure.

Figure 2.4: Simulated annealing

Start Input data

Initial solution

t = 0

t = t+ 1, t′ = 0

t′ = t′ + 1

Random neighbor

Improved
y

n

Best improved
n

y

Update best solution

Update solution
r[0; 1] ≤ P

y

n

t′ < t′tmax

y

n

T t+1 ≥ Tmin
y

n

Output

best solution
End

Osman/Potts (1989) determined the initial temperature in a simulated annealing

for a permutation flow shop dependent on the total processing time of all jobs, the num-

ber of jobs n as well as the number of machines m. The temperature follows a geometric

annealing scheme. The lowest possible temperature is set equal to 1. The number of

iterations with the same temperature was estimated by Osman/Potts (1989) to be the

2.3 SOLUTION APPROACHES 20

maximum of either 2000 or 3300 ln n + 7500 lnm − 18250, if n ≤ 100 and m ≤ 20. For

higher values of the number of jobs and machines, the number of iterations needs to be

less than 7500(lnm+ ln n) and less than 15.000ln(m+n). In one version, the neighbors

are selected via forward insertion moves. That means a job at position j of the permu-

tation will be placed at a position j′ > j. The job changes to any position j′ < j− 1 if a

backward insertion move is applied. Also swap moves are tested. The initial solution is

created by the NEH algorithm. The insertion moves deliver better results than the swap

moves.44 Ogbu/Smith (1990) initialized an SA with randomly generated solutions.

A candidate is created by applying the last improvement scheme to a neighborhood

that combines insertion and swap moves. A neighborhood consisting solely of insertion

moves delivered better results than that consisting of swap moves. The neighborhood

is searched in random sequence to find improvements. The latest found improvement

of the incumbent solution is selected after the last neighbor is evaluated. The initial

temperature is calculated during the first iteration and is based on the mean improve-

ment of the makespan over all possible candidates.45 The SA algorithms of Osman/

Potts (1989) and Ogbu/Smith (1990) are compared in Ogbu/Smith (1991). The

SA of Osman/Potts (1989) obtained better results than the version of Ogbu/Smith

(1990) but requires longer computation time.46 Zegordi/Itoh/Enkawa (1995) used

a restricted swap neighborhood in their SA approach. The initial temperature was also

calculated based on objective changes within the first iteration. The objective within

this problem is the makespan minimization.47

Threshold Accepting

Threshold accepting is similar to simulated annealing but with the difference of an equal

probability of accepting solutions that do not lead to improvement of the incumbent

objective value.48

Tabu Search

Tabu search was initially proposed by Glover (1986).49 Tabu search creates a list

of candidates within a specified neighborhood of the incumbent solution. One of the

candidates is selected to replace the current solution. The chosen candidate has the

best objective value amongst all the created candidates and the objective value of the

44 See Osman/Potts (1989): Simulated annealing for permutation flow-shop scheduling , pp. 553–556.
45 See Ogbu/Smith (1990): Simulated annealing for the n/m/C max flowshop problem, pp. 244–252.
46 See Ogbu/Smith (1991): Simulated annealing for the permutation flowshop problem, pp. 64–66.
47 See Zegordi/Itoh/Enkawa (1995): Minimizing makespan for flow shop scheduling , pp. 517–523.
48 See Dueck/Scheuer (1990): Threshold accepting , pp. 161–164.
49 See Glover (1986): Integer programming and links to artificial intelligence, pp. 541–546.

2.3 SOLUTION APPROACHES 21

new solution does not necessarily need to be better than the current best solution. To

prevent falling back to previous solutions, certain moves are forbidden and noted in a

tabu list. If a candidate includes a forbidden change, it must not be selected. Either a

candidate is selected randomly via first improvement or the best candidate is selected.

A forbidden candidate can be accepted depending on an aspiration function.50,51 The

function allows the acceptance of forbidden moves, if a certain improvement is achieved.

This will prevent the algorithm from rejecting relatively large improvements. The tabu

tenure, which means the number of iterations a move is forbidden, may be constant

or may depend on the number of the current iteration of the algorithm. A restriction

of the neighborhood in a tabu search was proposed by Adenso-D́ıaz (1992) for the

minimization of weighted tardiness in a proportionate permutation flow shop.52 The

initial solution is created by prioritizing jobs based on their influence on machine idle

time. A swap neighborhood is limited to moves within a certain range, which is defined

as the positions in the permutation between possible swap partners. The limits on the

range are changed depending on the current iteration.53 Armentano/Ronconi (1999)

also applied a tabu search to minimize total tardiness in permutation flow shops. The

initial solution is created by using a modified due date rule. The selected neighborhood

is an insertion neighborhood. The aspiration function allows a forbidden move to be

made, if the best solution found will be improved by the move. The tabu tenure is

variable and is adjusted every 20 iterations. The tabu search terminates after a certain

computation time depending on the problem size. The results are compared to the

ones achieved with the NEH algorithm and show improvements.54 Ben-Daya/Al-

Fawzan (1998) compared a tabu search approach for minimizing the makespan in a

permutation flow shop with a simulated annealing from Ogbu/Smith (1990). In this

tabu search approach, the neighborhood consisted of three parts. The first part contains

all the solutions that can be obtained by pairwise swaps of jobs. The second part

of the neighborhood can be accessed by performing insertion moves. The third part

considers inserting multiple jobs in a certain position of the permutation. A significant

improvement of results could not be registered, if a variable tabu list size is used. Thus,

the size of the tabu list and the tabu tenure are fixed in the suggested tabu search. The

aspiration criterion is the same as that in the tabu search of Armentano/Ronconi

50 See Glover (1986): Integer programming and links to artificial intelligence, p. 543.
51 Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 166.
52 According to Ow (1985): Focused scheduling in proportionate flowshops , p. 852, the processing times

of jobs on a machine are similar to the processing times of other jobs on the same machine, i.e. there
are machines with a tendency to be visited for a relatively short processing time by all jobs, and
machines with relatively long processing times in a proportionate flow shop.

53 See Adenso-D́ıaz (1992): Restricted neighborhood for the flowshop problem, pp. 28–30.
54 See Armentano/Ronconi (1999): Total tardiness minimization in flowshops , pp. 224–225.

2.3 SOLUTION APPROACHES 22

(1999).55

A tabu search approach, especially for re-entrant flow shop and permutation flow

shop problems, was proposed by Chen/Pan/Wu (2007) and Chen/Pan/Wu (2008).

The proposed algorithms are hybrid tabu search algorithms, which is a traditional tabu

search combined with another heuristic. The objective of both algorithms is to reduce

the makespan. Within the first tabu search, the block criteria of Nowicki/Smut-

nicki (1996) were applied to identify promising moves. Although Nowicki/Smut-

nicki (1996) used insertion moves of operations to another block, Chen/Pan/Wu

(2007) used swap moves within the same block.56 The method is hybridized by apply-

ing constructive heuristics to random parts of the permutation of operations if the tabu

search cannot find improvements within a given number of iterations. The second hy-

brid TS is based on the approach of Chen/Pan/Wu (2007) but uses NEH to create

an initial solution and to hybridize the method.57

Grabowski/Pempera (2001) and Grabowski/Wodecki (2004) proposed a tabu

search for reducing the makespan in a permutation flow shop using block criteria based

on the critical path of the solution. The suggested promising moves are insertion moves

that place a job out of its block into a neighboring block. The neighborhood size is

reduced even further than by Nowicki/Smutnicki (1996).58

Furthermore, Solimanpur/Vrat/Shankar (2004) used the block criteria to iden-

tify promising neighborhoods for the reduction of the makespan in permutation flow

shops. This approach is an extension of the tabu search of Nowicki/Smutnicki (1996)

and also uses insertion moves to positions in another block. The algorithm is initialized

with a solution obtained by applying the NEH algorithm.59

The general tabu search procedure with its elements is shown in Figure 2.5, where t

counts the algorithm’s iterations.

55 See Ben-Daya/Al-Fawzan (1998): A tabu search for the flow shop scheduling problem, pp. 90–92.
56 See Chen/Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 356.
57 See Chen/Pan/Wu (2008): Hybrid tabu search for re-entrant flow-shops , pp. 1925–1927.
58 See Grabowski/Pempera (2001): New block properties for the permutation flow shop problem,

pp. 210–220 and Grabowski/Wodecki (2004): A very fast tabu search for the permutation flow
shop problem, pp. 1891–1909.

59 See Solimanpur/Vrat/Shankar (2004): A neuro-tabu search for flow shops , pp. 2151–2164.

2.3 SOLUTION APPROACHES 23

Figure 2.5: Tabu search

Start Input data

Create initial solution

Candidate list

No candidate

n

y

Select best candidate

Delete first tabu

T. list overfull

y

n
In Tabu List

n

y
Profitable

n

y

Add to tabu list

Delete candidate

Update solution

Best improved

n

y
Update best solution

t < tmax

n

y

t = t+ 1

Output

best solution
End

Variable Neighborhood Search

Mladenović/Hansen (1997) introduced the VNS for improving initial solutions. The

problem considered was a traveling salesman problem. A variable neighborhood search

defines different ways to change an existing solution. These different modification op-

tions are the variable neighborhoods. The procedure includes a local search method,

e.g. best neighbor or first improvement, and combines it with random moves within dif-

ferent neighborhoods. The neighborhood hierarchy is defined by the sequence in which

the neighborhoods are changed. Beginning with neighborhood N1, the algorithm then

2.3 SOLUTION APPROACHES 24

switches to a neighborhood Nt+1 if no improvement of the best solution is found in Nt.

A random neighborhood move is applied to the current best solution, after changing the

neighborhood. This happens to escape local optima. If an improvement to the current

best solution is found, the neighborhood is set back to N1.
60 The method was applied

to a location problem in 1997.61

Figure 2.6: Variable neighborhood search

Start Input data

Initial solution

t = 1

t+ 1

Random neighbor in Nt

Local search

Best improved
y n

Update solution t = tmax

n

y
Output

best solution
End

GRASP

GRASP is a metaheuristic solution approach, which requires the construction of an

initial solution based on randomly choosing a construction step from a list of preselected

construction steps. The pre-selection of construction steps per iteration is done based on

the solution quality of the partial solutions, which would be obtained by performing the

construction steps. The approach further applies a local search mechanism to the initial

solution to achieve improvement of the objective values.62 In permutation flow shops,

the partial solution during the construction may be a permutation of a subset of jobs,

which are selected based on their influence on the makespan of the partial solution. The

construction steps can be adding additional jobs step-by-step to the permutation.63

60 See Mladenović/Hansen (1997): Variable neighborhood search, pp. 1097–1100.
61 See Hansen/Mladenović (1997): Variable neighborhood search for the p-median, pp. 207–226.
62 See Feo/Resende (1995): Greedy randomized adaptive search procedures , pp. 109–113.
63 See Prabhaharan/Khan/Rakesh (2006): Grasp in flow shops , pp. 1026–1028.

2.3 SOLUTION APPROACHES 25

Genetic Algorithm

Genetic algorithms and also memetic or hybrid genetic algorithms are based on the

genetic operations performed by chromosomes. The initial point of the procedure is a

parent generation, where each parent represents a particular solution of an optimization

problem. These solutions do not necessarily need to be a valid solution to the problem.

A parent is “genetically” coded as a chromosome. Different operations can be applied to

the chromosomes to achieve a generation of children, i.e. a new solution of the problem.

Each child is evaluated by a fitness function that measures the performance of the solution

regarding a given objective. So, new solutions can be accepted or rejected depending

on their performance. The options to modify a parent generation are mutation and

cross-over. Cross-over operations combine existing solutions, i.e. different individuals

to generate new solutions (children generation), while mutations modify an existing

solution in selected characteristics.64 Transferring a solution unchanged to the next

iteration (next generation) is called reproduction.65

Ant Colony Optimization

Ant colony optimization generates multiple solutions step by step. A process of gener-

ating a solution is performed by a so-called artificial ant. The ant adds a component to

a partial solution in each iteration. The selection of an additional solution component

is based on probability functions. The values of the probability functions depend on a

component’s position in the new solution and its appearance in other promising solutions

at a proximal position. Promising solutions are identified by comparing their objective

values to other existing solutions. Multiple ants can operate in parallel, generating mul-

tiple solutions. For permutation flow shops, this means that jobs are subsequently added

to one or more sequences.66 Another artificial swarm intelligence algorithm is the ABC

algorithm, which is similar to ACO.67

Particle Swarm Optimization

The PSO generates multiple solutions in each iteration, and the solutions are called

particles. The particles are evaluated regarding an objective function. The solutions

not delivering the so far best result are adjusted to change the solution structure to

obtain a partial higher similarity to the best solution found at that time. The degree

of adjustment is called velocity in most PSO approaches. The different velocities in

64 See Pinedo (2005): Planning and Scheduling in Manufacturing and Services , pp. 431–432.
65 See B lażewicz et al. (2007): Handbook on Scheduling: From Theory to Applications , p. 49.
66 See Rajendran/Ziegler (2004): Ant-colony algorithms for permutation flowshops , pp. 428–438.
67 See Karaboga/Akay (2009): A comparative study of artificial bee colony algorithm, pp. 113–114.

2.3 SOLUTION APPROACHES 26

each iteration depend on the differences in objective values between the solutions, the

previous velocity and random influences.68

Method selection

This thesis compares different configurations of the SA, TS and VNS, including first

improvement and best neighbor as integrated local search. The different configurations

of SA and the TS are mainly restricted to the neighborhoods included for choosing moves.

The VNS is chosen, because it can use different altering neighborhood structures that

exploit the problem’s specifications. The other methods are implemented since they are

common in scheduling and deliver results to evaluate the solution quality of the VNS.

Genetic algorithms are not considered in this thesis because they have been examined

in several publications.69

68 See Eberhart/Kennedy (1995): An optimizer using particle swarm theory , pp. 39–45.
69 See section 3.2 for an overview of literature.

3 Re-entrant Scheduling Problems

This chapter describes the characteristics of re-entrant permutation flow shops and their

consideration in current literature. Section 3.3 describes a MIP model that is frequently

used as the basis for extended model formulations in re-entrant scheduling problems.

3.1 Problem Assumptions and Classification

The considered problem is classified with: α1 = F , α2 = m, β1 = ◦, β2 = ◦, β3 = chains

or β3 = recrc, β4 = ◦ for the first levels of each job, the ready times of the following

levels depend on the schedule, β5 = ◦ (for the test instances β5 = 0 ≤ p ≤ 99 is chosen),

β6 = ◦, β7 = ◦, β8 = ◦. The objective is γ = Cmax.

Within the 3-field classification scheme, the considered problem is denoted as

F,m|recrc, 0 ≤ p ≤ 99|Cmax or F,m|chains, 0 ≤ p ≤ 99|Cmax.

The general assumptions on flow shop problems are given in the following, since the

examined problem is a flow shop problem. These assumptions are also summarized in

Gupta/Stafford Jr (2006).1

The requirements and characteristics of the machine environment are described in

detail:

• There is only one machine available for each operation.

• All machines are available at the time 0.

• All machines operate independently.

• A machine cannot process more than one job at a time.

• No breakdowns or other causes of machine unavailability are assumed.

The assumptions regarding the jobs are:

• No release dates different from 0.

• Due dates cannot be changed.

1 See Gupta/Stafford Jr (2006): Flowshop scheduling research after five decades , pp. 701–703.

27

3.1 PROBLEM ASSUMPTIONS AND CLASSIFICATION 28

• The jobs are independent of each other.

• Each operation necessary to finish a job is dedicated to a single machine.

• Setup and transportation time are included within deterministic, finite processing

times, if not stated differently.

• Each job is not allowed to visit a machine multiple times.

• Waiting times are allowed.

• Operations are not postponed if all requirements to perform the operation are

fulfilled.

• Jobs are not allowed to be split into several sub-jobs.

• Jobs need to be finished.

• Operations are not allowed to be interrupted, so preemption is not allowed.

• Jobs cannot be on more than one machine at a time.

• There are no limits to buffer areas between machines.

• The machine environment is used exclusively by the jobs that need to be scheduled

within the considered period of time.

• The job sequence for each machine is the same (permutation flow shop).

The characteristic feature of a re-entrant flow shop is that jobs are processed more than

once on some machines due to repetitive processes, also known as levels2, layers3, loops4

or cycles5. After one level is finished, the job re-enters the manufacturing system to be

repeatedly processed and to accomplish the remaining levels. The jobs are not finished

until every level is completed. In general, a re-entrant flow shop differs from a simple

flow shop by the requirement that one or more jobs may need to be processed repeatedly

at one or more stations. The re-entrant may be determined initially by the process

flow or it may be caused by quality reasons. As described in Section 2.2, the problem

considered is different from the general flow shop assumptions of Gupta/Stafford Jr

(2006) based on several points:

2 See Lee et al. (2011): A genetic algorithm for bi-objective flow shops with re-entrants , p. 1106.
3 See Chen/Chao-Hsien Pan (2006): Models for the re-entrant shop scheduling , p. 578.
4 See Rifai/Nguyen/Dawal (2016): Large neighborhood search, p. 43.
5 See Choi et al. (2009): Minimizing makespan under the maximum allowable due dates , p. 965.

3.1 PROBLEM ASSUMPTIONS AND CLASSIFICATION 29

• The members of a permutation are not independent of each other, since the struc-

ture is a β3 = chains.

• Jobs visit machines multiple times, since it is a re-entrant scheduling problem.

• Skipping of machines is allowed.

• Jobs are allowed to be split into several sublots in Chapter 5.

These assumptions are based on the problem characteristics in Arisha/Young/

El Baradie (2002).6 An example of a machine sequence for jobs in a re-entrant flow

is shown for a three-machine flow shop with two levels per job in Figure 3.1.

Figure 3.1: Example of a machine sequence with re-entrant

l k = 1 k = 2 k = 3

1

2

Emmons/Vairaktarakis (2013) identified five classes of re-entrant flow shop prob-

lems:7

• Cyclic re-entrants: All jobs are processed several times on every machine. There-

fore, the jobs move through the production system in levels, where each level starts

at the first machine and ends at machine m.

• Chain re-entrants: Each job needs to return to the first machine to be finished

after it has been processed on all m machines.

• Hub re-entrants: A central machine needs to be attended by each job before moving

to the next machine.

• V-re-entrants: The jobs start in the first machine and move to machine m step-

by-step. After being processed on machine m, the job moves successively back to

the first machine by attending all other machines in the reverse sequence.

• (1-2-1) re-entrants: The production system of this type consists of two machines.

Each job is operated once on the second machine and twice on the first one.

6 See Arisha/Young/El Baradie (2002): Flow shop scheduling , p. 544.
7 See Emmons/Vairaktarakis (2013): Flow shop scheduling , pp. 270–271.

3.2 LITERATURE REVIEW 30

Wang/Sethi/van de Velde (1997) showed that (1-2-1)-re-entrant flow shop prob-

lems considering a makespan minimization, which belong to the simplest class of re-

entrants, are already NP-hard. The makespan minimization in other classes of re-entrant

flow shop problems is an NP-hard problem as well. This causes high computation times

for solving the model exactly. However, the model proposed in this thesis has the ability

to represent every form of re-entrant listed above.8

3.2 Literature Review

Graves et al. (1983) first proposed a scheduling problem called the re-entrant flow shop

problem and described an integrated circuit production in the early 1980s, which consists

of 69 working stations performing about 185 operations on each job. Some facilities need

to operate a single job up to eight times until it is completely finished.9 Uzsoy/Lee/

Martin-Vega (1992) and Uzsoy/Lee/Martin-Vega (1994) provided reviews of the

production planning in the semiconductor industry.10 These reviews also cover publica-

tions on re-entrant scheduling problems since they were first mentioned in Graves et al.

(1983). Later, Danping/Lee (2011) gave a survey on publications between 1994 and

2009 regarding re-entrant scheduling problems.11

In regard to queuing theory, Kumar (1993) introduced the term “re-entrant line”

and described this line as a closed shop scheduling problem, as mentioned by Graves

(1981), with the additional re-entrant product flow.12 Re-entrant line problems such as

closed shop problems require the calculation of lot or batch sizes and inventory position-

ing between different work stations beside the sequencing decisions.13 Re-entrant line

scheduling problems are cyclic scheduling problems according to Chu/Chu/Desprez

(2010). The problem focuses on determining job releases into a production system as

well as queuing theoretical aspects like finite buffer capacities and buffer sizing. The per-

formance measures for re-entrant lines are Work-in-process (WIP), Throughput (TP),

production rate, tardiness and cycle time.14

The task in re-entrant flow shop and job shop scheduling problems is to sequence

jobs on the machines of the production system. The main objectives are the makespan,

flow time, completion time, throughput time, and due date related targets such as the

tardiness or earliness of jobs.

8 See Wang/Sethi/van de Velde (1997): Minimizing makespan in reentrant shops , pp. 703–704.
9 See Graves et al. (1983): Scheduling of re-entrant flow shops , pp. 197–207.

10 See Uzsoy/Lee/Martin-Vega (1992): Semiconductor industry part I , pp. 47–60 and Uzsoy/
Lee/Martin-Vega (1994): Semiconductor industry part II , pp. 44–55.

11 See Danping/Lee (2011): Review of research for re-entrant scheduling , pp. 2221–2242.
12 See Kumar (1993): Re-entrant lines , p. 106.
13 See Graves (1981): A review of production scheduling , p. 655.
14 See Chu/Chu/Desprez (2010): Series production in a basic re-entrant shop, p. 257.

3.2 LITERATURE REVIEW 31

Danping/Lee (2011) gave an overview of re-entrant scheduling between 1994 and

2009. Hence, this section will cover the literature published from 2010 until 2015, dis-

tinguishing between re-entrant shop problems and re-entrant lines.

3.2.1 Search Methodology

The years reviewed are 2010 until June 2015. Several data-bases and search engines

have been used to search the title, keywords and the abstract of articles for the following

phrases:

• “scheduling”,

• “flow shop” and “flowshop”,

• “job shop” and “jobshop”,

• “reentrant” and “re-entrant”.

The databases and search engines used to get an overview on recent literature are:

• Google Scholar

• Web of Science

• ScienceDirect

• Ebscohost

• Taylor and Francis

• IEEE Xplore

The detailed query logic for the search engines and databases is presented in Appendix

A.

The numbers of articles published between 2010 and June 2015 are given in Table 3.1.

The numbers in parentheses for Google Scholar are values that include inproceedings,

considering that Google Scholar had no filter to select journal articles only.

3.2 LITERATURE REVIEW 32

Table 3.1: Number of articles per year

Source Hits 2010 2011 2012 2013 2014 2015

Google Scholar 53 (78) 10 (15) 15 (18) 7 (13) 8 (15) 12 (15) 2 (2)

Web of Science 68 8 16 14 12 12 6

ScienceDirect 22 5 7 6 1 2 1

Ebscohost 23 4 6 4 4 2 3

IEEE Xplore 7 2 1 1 3 0 0

Taylor and Francis 3 1 0 1 0 1 0

Total (no redundancies) 94 16 20 21 16 15 6

Table 3.2: Number of articles per journal

Journal Hits

International Journal of Production Research 20

International Journal of Advanced Manufacturing Technology 7

IEEE Transactions on Semiconductor Manufacturing 5

Computers & Industrial Engineering 5

IEEE Transactions on Automation Science & Engineering 4

Applied Mechanics and Materials 3 (0)

European Journal of Operational Research 3

Expert Systems with Applications 3

Applied Soft Computing 2

CIRP Annals Manufacturing Research 2

Computer Integrated Manufacturing Systems 2 (0)

Advanced Materials Research 2

Journal of the Operational Research Society 1

Others 35

Total 94

More than 5000 articles containing the term “scheduling” in the title, abstract or as

a keyword were found in Science Direct. 59 articles with the term “reentrant” and 58

with “re-entrant” were found.

Contrary to the review by Danping/Lee (2011), the search does not include the term

“cyclic”, due to the definition given on cyclic scheduling in Hanen (1994).15 The search

query found 105 articles, which were mainly published in the International Journal of

Production Research, The International Journal of Advanced Manufacturing Technology,

15 See Hanen (1994): The recurrent job-shop, p. 83.

3.2 LITERATURE REVIEW 33

Computers & Industrial Engineering, IEEE Transactions on Semiconductor Manufactur-

ing, European Journal of Operational Research and Expert Systems with Applications.

The articles Cao/Peng/Wu (2010) and Qiao et al. (2010) in Computer Integrated

Manufacturing Research are written in Chinese. The articles by Bareduan/Gani

(2014) Pan/Ye/Zhou (2011) and Ye et al. (2014) are not relevant; therefore, no

articles in Applied Mechanics and Materials are relevant. The article by Danping/Lee

(2011) is included in the number of publications found but is not classified in the review

table 3.7 because it is a literature review itself.

The publications found are described in Sections 3.2.2, 3.2.3 and 3.2.4. The literature

reviewed in this section includes conference articles if they are closely related to the

research published in journal articles.

3.2.2 Re-entrant Flow Shops

Chu/Chu/Desprez (2010) examined the optimality criteria for the minimization of

the makespan and total flow time in a (1-2-1) re-entrant flow shop problem. Therefore

the number of machines is limited to m = 2. The jobs are processed on two machines

once and return to the first machine to be finished. Chu/Chu/Desprez (2010) tackled

the problem of minimizing the makespan by applying a rule to avoid idle time on the

first machine, since it is identified as the bottleneck machine of the (1-2-1) RFS. The

first operation of a job is called the A-operation, the last operation the C-operation, and

both are performed on machine k = 1. The rule of Chu/Chu/Desprez (2010) is to

not allow C-operations on machine k = 1 before all A-operations are performed. For

the minimization of total flow time, the C-operation of a job is performed before the

A-operation of its direct successor.16

Lee et al. (2011) performed a bi-objective optimization in a stochastic RFS. Therefore

a MIP model is suggested to minimize the total weighted tardiness of jobs and the

makespan of the schedule. The solution is generated in two phases. The first phase is to

generate a job sequence to minimize tardiness. The total weighted tardiness obtained is

added as a constraint to the model for the second phase, which minimizes the makespan

for the given tardiness value. Also a genetic algorithm is proposed to obtain near optimal

job sequences.17

Yan/Wang (2012) proposed a scheduling framework for a dynamic RFS. It consists

of two parts: the first one is to select a scheduling rule from a pool of given rules,

while the second part is to apply it in real time. The problem is modeled as a series of

discrete events. These events are the ends of each performed operation. The schedule

16 See Chu/Chu/Desprez (2010): Series production in a basic re-entrant shop, pp. 258–259.
17 See Lee et al. (2011): A genetic algorithm for bi-objective flow shops with re-entrants , pp. 1105–1113.

3.2 LITERATURE REVIEW 34

is recalculated after an operation is finished. The aim is to minimize the tardiness and

earliness of jobs. Both values are connected with weights in a joint objective function.18

Eskandari/Hosseinzadeh (2014) proposed a MIP for a rework-related hybrid RFS

with parallel-unrelated machines. The formulation is operation-based, since the problem

considered is not a permutation flow shop. Additionally, a variable neighborhood search

is suggested for this hybrid re-entrant permutation flow shop with sequence-dependent

setup times. The re-entry feature of the problem appears through a rework probability

and is limited to a maximum of one rework operation per job. The initial solutions for

the VNS are created via dispatching rules. The integrated local search algorithm is a

first improvement method. The stochastic nature of the rework problem is simulated

with a Monte Carlo simulation module. The VNS is tested in two different versions: a

VNS, where the jobs are scheduled at the machines with the shortest queue, and a VNS

that assigns the jobs to machines with the shortest processing times. Both approaches

have been compared with several dispatching rules that have been outperformed.19

Dugardin/Amodeo/Yalaoui (2010) considered a hybrid re-entrant flow shop prob-

lem with the objectives makespan and total tardiness. The proposed solution method

is a so-called strength Pareto20 evolutionary algorithm, which is a special variation of

a genetic algorithm.21 This method is used to handle multiple objectives.22 The ap-

proach is improved by using Fuzzy logic (FL).23 The membership values of solutions in

previous iterations to fuzzy sets based on the obtained objective values and the degree

of how much a solution changed during an iteration determine the crossover and mu-

tation probabilities in the current iteration. In a later article, Dugardin/Amodeo/

Yalaoui (2011) compared a multi-objective ant colony system algorithm and fuzzy

ant colony system, showing that the implementation of a fuzzy logic controller also im-

proves the ant colony algorithm.24 For another multi-objective (bottleneck utilization

and makespan) hybrid RFS with stochastic characteristics regarding rework and machine

repairing, Dugardin/Yalaoui/Amodeo (2010) proposed a dominance relationship

genetic algorithm. It outperformed a strength Pareto evolutionary algorithm and a vari-

ation of a genetic algorithm as a specific evolutionary algorithm.25

18 See Yan/Wang (2012): Minimising earliness and tardiness of a re-entrant line, pp. 499–515.
19 See Eskandari/Hosseinzadeh (2014): Variable neighbourhood search for flow-shops , pp. 1–10.
20 Pareto optimality means that there is no possibility to improve one objective value without deteri-

orating another objective See Censor (1977): Pareto optimality in multiobjective problems , p. 43.
21 See Dugardin/Amodeo/Yalaoui (2010): FLC-archive, pp. 324–327.
22 See Zitzler/Laumanns/Thiele (2001): Strength Pareto Evolutionary Algorithm 2 , p. 2.
23 The fuzzy set theory was introduced by Zadeh (1965). It assigns objects gradually to sets or classes

by determining a membership value. The membership value is between, at minimum (not assigned
a considered set), 0 and 1 at maximum (only assigned to the considered set).

24 See Dugardin/Amodeo/Yalaoui (2011): Fuzzy Lorenz Ant Colony System, pp. 1–6.
25 See Dugardin/Yalaoui/Amodeo (2010): Multi-objective method for reentrant hybrid flow shops ,

pp. 22–31.

3.2 LITERATURE REVIEW 35

Yalaoui et al. (2010) also applied a fuzzy logic controller on a hybrid re-entrant

flow shop problem in the framework of particle swarm optimization. Their publication

focuses on the minimization of total tardiness. The solutions obtained by particle swarm

optimization with a fuzzy logic controller are better than the solution without a fuzzy

logic controller.26

Chamnanlor et al. (2014) examined a re-entrant permutation flow shop problem

with missing operations and due windows in the context of hard disk drive manufacturing

with job families based on the results of Chamnanlor et al. (2012). The job families

differ in the machine sequence that they need to follow. The due windows are not allowed

to be infringed. The missing operations are necessary to model the possibility to re-enter

the production system on a machine different from k = 1 and to end a level on machine

different from k = m. The makespan is the considered objective. A hybrid genetic

algorithm with fuzzy logic is applied to the problem.27

For a two-stage flexible re-entrant flow shop problem, a hybrid genetic algorithm and

another modified genetic algorithm, called a random key genetic algorithm, have been

compared to modified versions of the SPT rule, LPT rule and NEH algorithm by Hek-

matfar/Fatemi Ghomi/Karimi (2011). The hybrid genetic algorithm obtained the

best results for makespan minimization. Additionally, an MIP model is suggested to

represent the problem.28

The same problem was also examined by Huang/Yu/Kuo (2014) and extended

with due dates for the jobs that need to be processed. Three algorithms are assessed for

the problem: an ant colonization algorithm, a particle swarm optimization and a tuned

particle swarm optimization approach. The latter outperformed the first two in regards

to the minimization of the total weighted earliness and tardiness.29

Also, Cho et al. (2011) examined the hybrid RFS with minimizing the makespan

and total tardiness as target functions in a multi-objective optimization. To solve this

problem, a genetic algorithm with a Pareto objective function is used. The algorithm is

compared to another variation of the genetic algorithm. The Pareto approach reaches

better objective values, but needs longer computation times.30

Pareto criteria for multi-objective optimization are also used by Ying/Lin/Wan

(2014). A greedy algorithm with Pareto criteria is suggested to minimize the makespan

and total tardiness of jobs in a hybrid re-entrant flow shop. Initial solutions are created

26 See Yalaoui et al. (2010): Particle swarm optimization for a hybrid Reentrant Flow Shops , pp. 1–6.
27 See Chamnanlor et al. (2014): Re-entrant flow shops with time windows , pp. 2612–2629.
28 See Hekmatfar/Fatemi Ghomi/Karimi (2011): Reentrant flow shops with setup times , pp. 4530–

4539.
29 See Huang/Yu/Kuo (2014): Reentrant multiprocessor flow shop with due windows , pp. 1263–1276.
30 See Cho et al. (2011): Bi-objective scheduling for reentrant hybrid flow shop, pp. 529–541.

3.2 LITERATURE REVIEW 36

randomly.31

The problem of scheduling the production of stacked chips in semiconductor manufac-

turing has been identified as a re-entrant flow shop problem under stochastic influences

by Han/Choi (2010), who tackled the problem with a framework based on Petri nets

(PN) 32 to maximize the system throughput.33

In Lin/Lee/Wu (2011) and Lin/Lee/Wu (2012), a genetic algorithm with an

integrated analytic hierarchy process34 was applied on a hybrid re-entrant flow shop. The

analytic hierarchy process is used to identify promising parents for the genetic operations

in order to optimize multiple criteria. These criteria are the total cost, total tardiness,

the number of tardy jobs and makespan. The proposed combination outperformed the

pure genetic algorithm. It was also compared to a first in first out dispatching rule,

which attempts to schedule the re-entering job as soon as possible in the job sequence.35

The objective in Lin/Lee/Wu (2012) is total weighted tardiness.36

The sequencing of moves of a robot arm in semiconductor test facilities was examined

by Sangsawang et al. (2015). The associated problem is modeled as hybrid no-wait

RFS with identical parallel machines. The re-entries occur on the robot arm since the

parts need to be repeatedly handled by the robot arm to be moved to different places

of the facility, which makes it a hub re-entrant problem. The schedules are created with

a hybrid genetic algorithm and a hybrid particle swarm optimization with makespan as

the objective.37

A Lagrangian decomposition algorithm was used by Kaihara/Kurose/Fujii (2012)

to solve a real-world semiconductor hybrid / flexible RFS problem with due dates and

identical parallel machines to minimize tardiness. The algorithm proposed is based on

the relaxation of the machine capacity constraint of a suggested MIP model.38

Choi/Kim/Lee (2011) suggested real-time dispatching rules for a five stage hybrid

31 See Ying/Lin/Wan (2014): Bi-objective reentrant hybrid flowshop scheduling , pp. 5735–5747.
32 Petri nets are graphs that represent events and conditions. Conditions are represented by a set of

nodes, which are called places. Events are represented by a set of nodes, which are called transitions.
The sets of nodes differ in their graphical representation. The status of a system is described by
the tokens at each place. Arcs connect places and transitions and describe possible changes in the
modeled system, i.e. a change in the number of tokens at specific places. For further information,
see Murata (1989): Petri nets: Properties, analysis and applications .

33 See Han/Choi (2010): A GSPN-based approach to stacked chips scheduling problem, pp. 4–12.
34 The analytical hierarchy process is a structured way to evaluate alternative options in a decision

making process. The weights of evaluation criteria are determined by pairwise comparisons of the
criteria. The evaluations of the alternatives’ characteristics are also based on pairwise comparisons
of the alternatives. The total decision values are obtained over the eigenvectors of the evaluation
matrix and the criteria weight matrix. For more information see e.g. Saaty (1990): The analytic
hierarchy process .

35 See Lin/Lee/Wu (2011): Integrated GA and AHP for re-entrant flow shops , pp. 496–500.
36 See Lin/Lee/Wu (2012): Analytical hierarchy process and genetic algorithm, pp. 1813–1824.
37 See Sangsawang et al. (2015): Reentrant flexible flow shop with blocking , pp. 2395–2410.
38 See Kaihara/Kurose/Fujii (2012): Actual-scale semiconductor manufacturing , pp. 467–470.

3.2 LITERATURE REVIEW 37

re-entrant flow shop in thin film transistor display manufacturing. The scheduling is

dynamic due to possible machine break downs. The considered objectives are flow time

and tardiness related values.39

The minimization of total tardiness is the objective in a (1-2-1) hybrid re-entrant flow

shop problem in the semiconductor industry investigated by Kim et al. (2011). The first

stage consists of multiple material handling machines. These machines load chips into

holding boards, which proceed to the machines in the second stage. These machines are

workstations to test the chips. After being tested the chips need to be unloaded by stage

one again. Several priority rules are suggested to create promising schedules.40

Lee/Lin (2010) minimized the makespan and total tardiness for a re-entrant per-

mutation no-wait flow shop without any hybrid characteristics. Within the objective

function, the tardiness of each job is multiplied with a special weight. A hybrid genetic

algorithm is used to solve the problem. Specific job weights are calculated according

to the number of re-entries of a job. The suggested methods are tested in a simulation

environment.41 The results have also been published in Lee et al. (2011).42

A multi-level genetic algorithm for makespan minimization in a resource constraint

re-entrant flow shop was proposed by Lin/Lee (2012) and Lin/Lee/Ho (2013). The

limited resources in these cases can be human resources.43,44

Qian et al. (2013b) proposed a so-called differential evolution algorithm for re-entrant

permutation flow shop problems in order to minimize the makespan. The results of the

suggested method show significant improvements compared to a hybrid genetic algorithm

developed by Chen/Pan/Lin (2008).45,46

A special case for a four-machine RFS was examined in Bareduan/Hasan (2010)

and Bareduan/Hasan (2012). Each job is operated twice on machines k = 3 and

k = 4. Therefore, a heuristic to minimize the makespan based on the identification of

bottleneck machines is developed. The identified bottlenecks in that system are machines

k = 1 and k = 4. The method produces improved results compared with the NEH

heuristic.47

Jeong/Kim (2014) developed a branch and bound algorithm for minimizing total tar-

diness in a two-machine re-entrant flow shop with sequence-dependent setup times for

39 See Choi/Kim/Lee (2011): Real-time scheduling for reentrant hybrid flow shops , pp. 3514–3521.
40 See Kim et al. (2011): Minimizing tardiness in a semiconductor manufacturing system, pp. 14–26.
41 See Lee/Lin (2010): Bi-objective flow shops with re-entrant jobs , pp. 1240–1245.
42 See Lee et al. (2011): A genetic algorithm for bi-objective flow shops with re-entrants , pp. 1105–1113.
43 See Lin/Lee (2012): Resource-Constrained Re-Entrant Flow Shop Scheduling Problem, pp. 653–657.
44 See Lin/Lee/Ho (2013): Resource-constrained re-entrant scheduling , pp. 1282–1290.
45 See Qian et al. (2013b): Reentrant permutation flow-shops with different job reentrants , pp. 22–27.
46 See Chen/Pan/Lin (2008): A hybrid genetic algorithm for re-entrant flow-shops , pp. 572–572.
47 See Bareduan/Hasan (2010): Internet-Based Collaborative Manufacturing , pp. 91–97 and See

Bareduan/Hasan (2012): Re-Entrant Flow Shop With Dominant Machines , pp. 81–93.

3.2 LITERATURE REVIEW 38

the second machine. The branch and bound procedure is compared to some dispatch-

ing rules and modified versions of the NEH algorithm and to an algorithm suggested in

Framinan/Leisten (2003), which is designed to minimize the total flow time in per-

mutation flow shops.48 The branch and bound procedure could find optimal solutions

for problems with ten jobs and one re-entry for each job.49

The makespan minimization in a re-entrant permutation flow shop problem with mixed

levels was examined in Li et al. (2013). A population-based algorithm combined with a

first improvement local search was used to solve the problem. The results are compared to

the solutions of a rebuilt genetic algorithm of Chen/Pan/Lin (2008) in computational

experiments. The suggested combination of a population-based solution scheme and the

simple local search obtained better results for the tested instances.50

Kaihara et al. (2010) examined the scheduling of jobs and maintenance operations

in an RFS. The objective in the suggested model and proposed Lagrangian relaxation

method is the total tardiness of jobs and maintenance operations. The approach was

tested in a simulation study and resulted in near optimal solutions.51

A memetic algorithm as a form of hybrid genetic algorithm is suggested for a re-entrant

permutation flow shop with separated job levels in Xu et al. (2014). It is a combination

of the operations cross-over and mutation of a genetic algorithm and the integration of

a local search phase. The initial population is generated randomly, while one individual

is generated by an NEH procedure. The results are compared to MIP solutions and are

near optimal for small instances.52

3.2.3 Re-entrant Job Shops

Re-entrant job shop (RJS) scheduling problems do not require the jobs to be processed

with the same machine sequence. Hence, a minimum of one machine needs to be visited

more than once by one or more jobs, since the problem is re-entrant. Hybrid or flexible

job shop problems have multiple parallel machines available on at least one production

stage, which is similar to hybrid / flexible flow shops.

Elmi et al. (2011) proposed an MIP for re-entrant job shops with manufacturing cells

to minimize the makespan. Furthermore, a simulated annealing algorithm is suggested

for the problem.53

An ant colony optimization algorithm for the re-entrant job shop with batch processing

48 See Framinan/Leisten (2003): Flowtime minimisation in permutation flow shops , pp. 311–317.
49 See Jeong/Kim (2014): Two-machine re-entrant flowshop with setup times , pp. 72–80.
50 See Li et al. (2013): Population-Based Learning Algorithm, pp. 1636–1641.
51 See Kaihara et al. (2010): Proactive maintenance scheduling in a re-entrant flow shop, pp. 453–456.
52 See Xu et al. (2014): A memetic algorithm for the re-entrant permutation flowshop, pp. 277–283.
53 See Elmi et al. (2011): A simulated annealing algorithm for the job shop cell scheduling , pp. 171–178.

3.2 LITERATURE REVIEW 39

machines was proposed by Guo et al. (2012). The algorithm and underlying MIP aim

for a minimization of the makespan.54

Jung/Lee (2012) suggested a Petri net based solution approach for a hub re-entrant

job shop with finite buffer capacities between the machines in order to minimize the

makespan in a robotic cell. The robot arm in a robotic manufacturing cell is the re-

entrant machine, which the jobs need to use multiple times.55

Topaloglu/Kilincli (2010) tested a shifting bottleneck heuristic56 for a re-entrant

job shop in the textile industry. The target is to minimize the makespan, where the

shifting bottleneck heuristic is proposed for a regular job shop. The solution quality and

computational performance are compared to an MIP solved by LINGO 8.0.57

Bard et al. (2013) proposed an MIP for a flexible re-entrant job shop with precedence

constraints, setup times and due dates. The machines are assumed to be multi-tools,

which means that different machines are able to perform the same operation in the

flexible re-entrant job shop. The operation does not necessarily take the same amount of

time to be completed on different machines. The considered objectives are the makespan,

job waiting times and tardiness. Also, a GRASP is tested.58 An enhancement of the

approach is suggested by Bard et al. (2015).59

Assembly processes have strong precedence constraints since the job relations are an

intree. An MIP for a flexible re-entrant job shop in assembly is proposed by Gomes/

Barbosa-Póvoa/Novais (2013). The objective is to minimize total waiting times

and the earliness and tardiness of jobs. Also, different reactive scheduling strategies are

compared in a predictive way for the case of new jobs entering the production system.

These strategies include partial changes, complete rescheduling and applying no changes

to the schedule.60

A flexible re-entrant job shop with setup times for identical parallel machines and

job due dates is considered by Chen et al. (2012). Makespan, machine idle time and

tardiness are optimized with a genetic algorithm.61

Drießel/Mönch (2012a) decomposed a hybrid RJS problem for automated ma-

terial handling systems in semiconductor manufacturing in job-related and transport

subproblems. The job-related subproblems are re-entrant job shops with precedence

54 See Guo et al. (2012): Decomposition-based classified ant colony optimization, pp. 141–151.
55 See Jung/Lee (2012): Model for Cluster Tool Scheduling Problems , pp. 186–199.
56 The shifting bottleneck heuristic was proposed by See Adams et al. (1988): The Shifting Bottleneck

Procedure for Job Shop Scheduling , pp. 392–397 for job shop problems. The method sequences the
jobs on each machine separately.

57 See Topaloglu/Kilincli (2010): Shifting bottleneck heuristic for reentrant job shops , pp. 785–792.
58 See Bard et al. (2013): Scheduling at assembly and test facilities , pp. 7047–7070.
59 See Bard et al. (2015): Optimisation and simulation for assembly and test operations , pp. 2617–2632.
60 See Gomes/Barbosa-Póvoa/Novais (2013): Reactive scheduling , pp. 5120–5141.
61 See Chen et al. (2012): Flexible job shop scheduling , pp. 10016–10021.

3.2 LITERATURE REVIEW 40

constraints, release dates, setup times, due dates and batch processing. The transport

related subproblems are transformed into a scheduling problem with identical paral-

lel machines and setup times. The objective is to minimize the tardiness of jobs. A

shifting bottleneck heuristic is used to solve the job-related problems, while a VNS is

used to solve the transport related subproblems.62 The neighborhoods used in the VNS

are based on swap and insertion moves of operations on either a single machine or all

possible machines. These neighborhoods were examined for a non re-entrant job shop

in Drießel/Mönch (2011).63 Shifting bottleneck heuristics are also applied to com-

plex job shops including re-entrant features by Drießel et al. (2010) and Drießel/

Mönch (2012b). Complex job shops include sequence-dependent setup times, parallel

machines, batch processing, machine breakdowns and re-entrant product flows. For test-

ing the solution approach, a simulation environment designed by INTEL, called INTEL

minifab, was used. The optimization objective was the weighted tardiness.64,65

A hybrid re-entrant job shop scheduling problem with job release dates and batch

processing was investigated by Jampani/Mason (2010). The objective function of the

proposed MIP is the total weighted completion time. A column generation heuristic

based on the MIP is developed, due to the problem complexity. The objective gap to the

global optimal solution of the problem is between 2 and 13 % for the test instances.66

Johnson’s rule is the basis for a heuristic developed by Xie/Tang/Li (2011) to

schedule jobs in a hub re-entrant job shop and a hybrid hub re-entrant shop job. The

objective is makespan minimization. The re-entrant machine in the underlying practical

case is a crane in a packing process in the steel industry. The proposed heuristic in the

worst case is 20 % weaker than the optimal solution.67

Chen/Wang (2013) examined an RJS problem in the wafer manufacturing industry.

They considered uncertain re-entry numbers and processing times. A fuzzy logic was

applied to a dispatching rule to minimize the average flow time, flow time standard

deviation, maximum lateness and the number of tardy jobs. This method is considered

to lead to a disadvantageous schedule if the estimation of processing times and re-entries

is not accurate enough.68

Dispatching rules are suggested by Chiang/Fu (2012) to minimize mean tardiness

and maximum tardiness or to maximize the on-time delivery rate in a flexible RJS.69

62 See Drießel/Mönch (2012a): Integrated scheduling and material-handling , pp. 5966–5985.
63 See Drießel/Mönch (2011): Jobs with precedence constraints and ready times , pp. 336–340.
64 See Drießel et al. (2010): A parallel shifting bottleneck heuristic for complex job shops , pp. 81–86.
65 See Drießel/Mönch (2012a): Integrated scheduling and material-handling , pp. 413–418.
66 See Jampani/Mason (2010): A column generation heuristic for complex job shop, pp. 108–118.
67 See Xie/Tang/Li (2011): Hub reentrant job shop, pp. 743–753.
68 See Chen/Wang (2013): A Fuzzy Rule for Multiobjective Job Dispatching , pp. 1–18.
69 See Chiang/Fu (2012): Rule-based scheduling in wafer fabrication, pp. 2820–2835.

3.2 LITERATURE REVIEW 41

This approach was extended by Chiang (2013).70

A disjunctive graph model for an RJS with sequence-dependent setup times was devel-

oped by Dehghanian/Homayouni (2013). The applied solution method is a genetic

algorithm with an integrated fuzzy logic controller. The new method outperformed the

simple genetic algorithm with, on average, 5 % lower makespan values.71

Li/Linhao/Yunfeng (2012) developed three algorithms for makespan minimiza-

tion in a real re-entrant job shop. These include a genetic algorithm, memetic-climbing

algorithm and memetic simulated annealing algorithm. Memetic algorithms are genetic

algorithms combined with a trajectory method. The integration of local search algo-

rithms lead to better objective values.72

Beside the application on re-entrant flow shop problems, Qian et al. (2013a) also used

a differential evolution algorithm for re-entrant job shops, which they combined with a

problem-dependent local search for a multi-objective minimizing of total machine idle

time and maximum tardiness.73

Fattahi et al. (2010) proposed a mixed integer programming model for a bi-objective

re-entrant flexible job shop problem. The first objective is to minimize the working

load of the bottleneck machines by minimizing their idle time; the second one concerns

minimizing the WIP by reducing the total flow time of jobs.74

Yugma et al. (2012) developed an MIP formulation for a wafer fabrication scheduling

problem, which includes re-entrant characteristics. They proposed a priority-rule based

insertion method for job scheduling.75

3.2.4 Re-entrant Line Problems

The focus of a re-entrant line problem is on the increase of throughput rate, with low

and smooth WIP over the course of time. A main research point is the identification of

bottleneck machines and performance measurement. In some cases, a predefined order

of job release is given, but the jobs need to be assigned to parallel machines and the

activities of material handling devices, e.g. robot arms, need to be scheduled.76

Choi/Kim (2012) proposed a method to estimate the throughput in a re-entrant line

problem achieved by a greedy scheduling method if new jobs enter the system randomly.

The material flow is assumed to be re-entrant with finite buffer capacity between the

70 See Chiang (2013): Enhancing rule-based scheduling by evolutionary algorithms , pp. 524–535.
71 See Dehghanian/Homayouni (2013): Re-entrant job shops with setup times , pp. 1–5.
72 See Li/Linhao/Yunfeng (2012): Release control , pp. 977–990.
73 See Qian et al. (2013a): Multi-objective reentrant job-shop scheduling problem, pp. 485–489.
74 See Fattahi et al. (2010): A hybrid algorithm for re-entrant manufacturing systems , pp. 268–278.
75 See Yugma et al. (2012): A batching and scheduling algorithm, pp. 2118–2132.
76 See Wikborg/Lee (2013): Scheduling single-armed cluster tools , p. 700.

3.2 LITERATURE REVIEW 42

stages of the production system. Each stage consists of parallel identical machines.77

The determination of release dates of jobs in a re-entrant line with finite buffer capac-

ities was investigated by Dong/He (2012). Partial differential equations were used to

control the WIP and throughput.78

To reach a smooth WIP level over the course of time in a semiconductor wafer fab-

rication system, Hu et al. (2010) proposed a genetic algorithm. Avoiding idle times on

bottleneck machines was used to achieve a target level of WIP. The problem is described

for machines with stochastic break-downs. Side objectives are the minimization of tardy

jobs as well as jobs being finished too early.79

Jia/Jiang/Li (2013) considered identical parallel batch processing machines in a

re-entrant line. The set of jobs is segmented into job families with release and due dates.

The waiting times of jobs are not allowed to exceed a predetermined value. A genetic

algorithm and priority rules based on a Petri net formulation are applied to the problem

to minimize total weighted tardiness. The solution method is tested in a simulation

study. Further performance indices are flow time and WIP level.80 Also in Jia/Jiang/

Li (2015), a genetic algorithm was developed for a re-entrant line problem to sequence

job batches. The objective was also to minimize total weighted tardiness.81

A re-entrant line problem with stochastic processing times and machine break-downs

in the semiconductor industry with a given target flow time and throughput rate was

examined by Kim/Cox/Mabin (2010). A simulation study was used to determine how

much WIP and buffer capacity is necessary to reach certain target values.82

Liu/Li/Chiang (2010) considered a re-entrant line in the automotive industry with

exponentially distributed machine break downs. A method for estimating the production

rate is suggested. A dispatching rule for job assignment is applied which prefers jobs

that have spent the longest time in the production system.83 In a later publication,

methods were developed to identify bottlenecks and to approximate the throughput for

a system with machine break-downs, which are assumed to be exponentially distributed.

The average deviation from a target throughput obtained in 100 simulations is about 2

%. The bottleneck machine is identified by comparing scenarios with additional capacity

on different machines. The configuration with the highest improvement of throughput

indicates the bottleneck machine.84

77 See Choi/Kim (2012): Capacitated re-entrant line scheduling problem, pp. 2353–2362.
78 See Dong/He (2012): A new continuous model for re-entrant manufacturing systems , pp. 659–668.
79 See Hu et al. (2010): A decomposition based algorithm for scheduling , pp. 2066–2070.
80 See Jia/Jiang/Li (2013): Real-time dispatching on parallel batch machines , pp. 4570–4584.
81 See Jia/Jiang/Li (2015): Re-entrant batch-processing machines , pp. 4570–4584.
82 See Kim/Cox/Mabin (2010): Protective inventory in a re-entrant line, pp. 4153–4178.
83 See Liu/Li/Chiang (2010): Re-entrant lines with unreliable machines and finite buffers , pp. 1151–

1159.
84 See Liu/Li/Chiang (2012): Performance approximation and bottleneck identification, pp. 977–990.

3.2 LITERATURE REVIEW 43

Petri net-based dispatching rules were used by Shin (2015) to increase the quality of

work in a re-entrant line problem with a single stage production system consisting of

multiple identical parallel machines. The performance measures are the process capa-

bility index, tardiness and cycle time. The process capability index shows the degree to

which it is possible to achieve a specified output level within a limited time.85

A re-entrant line problem with limited resources was considered by Liu et al. (2010).

The impact of dispatching rules on machine utilization and throughput in an example

system is examined in a simulation.86

Chong/Jingshan (2010) tested an approach to measure the performance in re-

entrant lines. The performance index is the system throughput. Also the estimation

of different WIP was examined.87 The estimation of flow time in re-entrant lines to

give information on due date assignments was examined by Tai/Pearn/Lee (2012).88

Another publication on performance estimation was prepared by Starkov et al. (2013),

who consider a re-entrant line scheduling problem with infinite buffer capacity. The in-

fluence of the buffer inventory on how the production output follows changes in demand

was examined, but sequencing decisions were not examined.89

A re-entrant line in a layer coating process was examined by Wu et al. (2011). A robot

arm handles the parts in a cluster tool with multiple workstations that perform coating

operations on wafers. The coating process places integrated circuits on the wafer. The

workstations and the robot are visited multiple times by the jobs. A Petri net model

represents the work-flow. The problem concerns the work station where the wafer needs

to be placed in order to have short movements for the robot. The target is to obtain a

schedule with the minimal makespan of a cyclic schedule.90

Yan/Hassoun/Meerkov (2012) analyzed two dispatching rules for loading a bot-

tleneck work-center with down times. The jobs are repeatedly processed at the work-

center without visiting other workstations between the operations. The work-center has

different buffers for different levels of re-entries. The first dispatching rule prefers jobs

from lower levels, while the other one prefers jobs on higher levels. The rule preferring

the lower levels yielded better results regarding WIP and the production rate.91

The decision about the size of limited buffers and individual release dates of jobs in

a re-entrant line was considered by Yang/Hsieh/Cheng (2011). By applying a drum

85 See Shin (2015): Dispatching in re-entrant production lines , pp. 249–259.
86 See Liu et al. (2010): Dynamic reentrant scheduling simulation, pp. 2418-2422.
87 See Chong/Jingshan (2010): Approximate Analysis of Reentrant Lines , pp. 708–715.
88 See Tai/Pearn/Lee (2012): Cycle time estimation, pp. 581–592.
89 See Starkov et al. (2013): Performance analysis of re-entrant manufacturing , pp. 1563–1586.
90 See Wu et al. (2011): Petri Net-Based Scheduling , pp. 42–55.
91 See Yan/Hassoun/Meerkov (2012): Equilibria, stability, and transients in re-entrant lines ,

pp. 211–229.

3.2 LITERATURE REVIEW 44

buffer rope scheduling method92 to the problem, the WIP, buffer occupation and flow

time are reduced in connection with an increase of the production rate for a thin-film

transistor liquid-crystal display manufacturing plant.93 A simplified drum buffer rope

approach to influence the performance of a so-called stochastic re-entrant flow shop is

suggested by Chang/Huang (2014). Despite referring to a flow shop in the title of the

publication, the problem is more related to re-entrant lines than to a classical re-entrant

flow shop. The performance measures to evaluate the simplified drum buffer rope are due

date related values, the average queue length of the capacity constraint resource, WIP,

throughput and flow time. These measures are influenced by assigning due dates and

release dates to jobs. The job sequence on every machine is determined by dispatching

rules. The simplified drum buffer rope control is tested in simulation with uniformly

distributed processing times and random machine breakdowns. The main result is an

increased utilization of the capacity constraint resource compared to previous methods.94

A machine learning approach for a single stage re-entrant line problem with parallel

machines in semiconductor test facilities is suggested by Zhang et al. (2011). The jobs

are processed in batches and require setup times. The objective is to minimize the total

weighted unsatisfied demand. The heuristic was able to reduce the objective values by

an average of 65 % in experiments compared to the industrial method.95

The determination of job release dates is the focus of Qiao/Wu (2013). Therefore, a

mechanism to identify the system bottleneck in a re-entrant line manufacturing system is

proposed. The throughput of the system bottleneck and, therefore, of the whole system

is increased by determining the job releases into the different parts of the manufacturing

system.96 In addition, Hu et al. (2013) examined the bottleneck identification in re-

entrant lines. Machine break downs are a special characteristic of the considered line.

They aim to protect the bottlenecks from being empty by smoothing the capacity usage

in non-bottleneck machines in order to increase the system throughput.97

Choi (2015) tested a mechanism to avoid deadlocks in a re-entrant line clustertool

with limited buffer capacity. The aim of the deadlock analysis and avoidance policy is

to increase system throughput.98

92 Drum buffer rope is a control policy that determines a series of operations by utilizing the resource
with the tightest constraints. Such a resource or machine should not be empty, since its processing
time is considered the most valuable. The schedule of this machine is determined first and is called
drum. The materials required for this operation are provided by the operation of the schedule on
previous working stations. Their schedule is derived from the drum. This mechanism is called rope.
For more information, see Schragenheim/Ronen (1990).

93 See Yang/Hsieh/Cheng (2011): Lean-pull strategy in a re-entrant manufacturing , pp. 1511–1529.
94 See Chang/Huang (2014): SDBR in a random reentrant flow shop environment , pp. 1808–1826.
95 See Zhang et al. (2011): Semiconductor final test scheduling , pp. 446–458.
96 See Qiao/Wu (2013): Layered Drum-Buffer-Rope-Based , pp. 178–187.
97 See Hu et al. (2013): Multiple bottlenecks in wafer fabrication, pp. 111–120.
98 See Choi (2015): Banker’s algorithm, pp. 2605–2616.

3.2 LITERATURE REVIEW 45

Optimality criteria for moves of a robot arm regarding total flow time in a cyclic sched-

ule for robotic cells were estimated by Foumani/Jenab (2012). A special characteristic

of the studied problem is the ability of the robot arm to exchange parts with a machine

without a loadlock being involved.99

Yan et al. (2013) aimed for smooth capacity usage, setup avoidance and a postponed

expiration of additional manufacturing equipment by applying a branch and cut approach

for a re-entrant lines problem in wafer manufacturing with litho machines.100

Comprehensive review

A comprehensive overview of the articles is provided in Table 3.7. The publications in-

cluded are journal articles only. The classification of the problem has a similar structure

to the 3-field classification scheme as presented in Section 2.2. Parallel machines are

denoted with Par. Parallel identical, uniform and unrelated machines are not distin-

guished. The last character in the column “Machines” tells the number of machines in

non-flexible / non-hybrid problems or the number of stages in the case of flexible shops.

Precedence constraints on the jobs are abbreviated with prec in the following Table 3.3.

No distinction is made between intree, outtree and series parallel precedence constraints.

All articles in Table 3.7 concern re-entrant scheduling problems.

The additional problem characteristics are abbreviated by the symbols shown in Tables

3.3, 3.4, 3.5 and 3.6.

Table 3.3 shows the symbols used to describe the machine characteristics.

Table 3.3: List of machine characteristics

Par Parallel machines

F Flow shop

J Job shop

m Arbitrary number of machines

The symbols addressing job properties are shown in Table 3.4.

99 See Foumani/Jenab (2012): Cycle time analysis in reentrant robotic cells , pp. 6372–6387.
100 See Yan et al. (2013): Litho Machine Scheduling , pp. 928–937.

3.2 LITERATURE REVIEW 46

Table 3.4: List of job characteristics

prec Precedence constraints between the jobs

ri Release dates

batch Batch processing

ST Setup times

res Resource constraints

MO Missing operations

LB Limited buffer capacity

The third group of characteristics contains the objectives. An overview on the symbols

used for this group is given by Table 3.5.

Table 3.5: List of objectives

Cmax Makespan

Ci Total completion / cycle / flow time

WIP Work-in-process

I Total idle time / machine utilization

TP Through put

Ei / Ti Earliness / tardiness related objectives

The literature review in Table 3.7 uses the abbreviations of solution methods provided

by Table 3.6.

Table 3.6: List of solution methods

MIP Mixed integer programming

PN Petri nets

EA Evolutionary algorithms

SA Simulated annealing

PR Dispatching rules

VNS Variable neighborhood search

SI Swarm intelligence algorithms

FL Fuzzy logic

3
.2

L
IT

E
R
A
T
U
R
E
R
E
V
IE

W
47

Table 3.7: Literature Review 2010–2015

Job Characteristics Objectives Solution Method

Author Machines pr
ec

r i ba
tc
h

S
T

re
s

M
O

L
B

C
m
a
x

C
i

W
IP

I T
P

E
i
/
T
i

ot
h
er

M
IP

P
N

E
A

S
A

P
R

V
N
S

S
I

F
L

ot
h
er

Bard et al. (2013) Par/J/m x x x x x x x x

Bard et al. (2015) Par/J/m x x x x x x x x

Chamnanlor et al. (2014) F/m x x x x

Chang/Huang (2014) m x x x x x

Chen et al. (2012) Par/J/m x x x x x

Cho et al. (2011) Par/F/m x x x x x

Choi/Kim/Lee (2011) Par/F/m x x x x x x x

Choi/Kim (2012) Par/m x x x

Choi (2015) Par/m x x x

Chong/Jingshan (2010) m x x x

Chu/Chu/Desprez (2010) F/2 x x x x

Dong/He (2012) Par/m x x x x x

Drießel/Mönch (2012a) Par/J/m x x x x x x x x

Dugardin/Yalaoui/Amodeo

(2010)

Par/F/2 x x x

Elmi et al. (2011) J/m x x x

Eskandari/Hosseinzadeh

(2014)

Par/F/m x x x x x x x x

Foumani/Jenab (2012) 2 x

3
.2

L
IT

E
R
A
T
U
R
E
R
E
V
IE

W
48

Job Characteristics Objectives Solution Method

Author Machines pr
ec

r i ba
tc
h

S
T

re
s

M
O

L
B

C
m
a
x

C
i

W
IP

I T
P

E
i
/
T
i

ot
h
er

M
IP

P
N

E
A

S
A

P
R

V
N
S

S
I

F
L

ot
h
er

Gomes/Barbosa-Póvoa/

Novais (2013)

Par/J/m x x x x

Guo et al. (2012) J/m x x x x x

Han/Choi (2010) Par/F/6 x x x x x

Hekmatfar/Fatemi Ghomi/

Karimi (2011)

Par/F/2 x x x

Hu et al. (2013) m x x x x x x

Huang/Yu/Kuo (2014) Par/F/2 x x x

Jampani/Mason (2010) Par/J/m x x x x x

Jia/Jiang/Li (2013) Par/3 x x x x x x x

Jia/Jiang/Li (2015) Par/4 x x x x

Jung/Lee (2012) J/m x x x x

Kaihara et al. (2010) F/m x x x

Kaihara/Kurose/Fujii (2012) F/m x x x x

Kim/Cox/Mabin (2010) m x x

Kim et al. (2011) Par/F/2 x x

Lee et al. (2011) F/m x x x x

Li et al. (2013) F/m x x

Lin/Lee/Wu (2012) F/m x x x x

Liu et al. (2010) Par/m x x x x x x

Liu/Li/Chiang (2010) m x x

3
.2

L
IT

E
R
A
T
U
R
E
R
E
V
IE

W
49

Job Characteristics Objectives Solution Method

Author Machines pr
ec

r i ba
tc
h

S
T

re
s

M
O

L
B

C
m
a
x

C
i

W
IP

I T
P

E
i
/
T
i

ot
h
er

M
IP

P
N

E
A

S
A

P
R

V
N
S

S
I

F
L

ot
h
er

Liu/Li/Chiang (2012) m x x

Qiao/Wu (2013) Par/m x x x x x x

Sangsawang et al. (2015) Par/F/2 x x x

Shin (2015) Par/1 x x x x x x x

Starkov et al. (2013) m

Tai/Pearn/Lee (2012) m x

Topaloglu/Kilincli (2010) J/m x x x

Wikborg/Lee (2013) Par/m x x x x

Wu et al. (2011) m x x x

Xie/Tang/Li (2011) Par/J/3 x x

Xu et al. (2014) F/m x x

Yan/Wang (2012) F/m x x x x

Yan/Hassoun/Meerkov

(2012)

m x x x x

Yan et al. (2013) Par/1 x x x x x

Yang/Hsieh/Cheng (2011) Par/m x x x x x

Ying/Lin/Wan (2014) Par/F/m x x x

Zhang et al. (2011) Par/1 x x x x x x

Total 6 7 7 10 4 7 14 22 9 6 7 16 21 9 17 5 10 1 16 2 3 2 21

3.2 LITERATURE REVIEW 50

Problem categories and applications

A strong motivation for investigating solution approaches and the modeling of re-entrant

scheduling problems comes from the semiconductor industry. Of 33 articles related to

real semiconductor factories or simulation tools, 4 articles deal with the production

and repair of electric components and machines as well as electronic devices, and 2

publications provide a background to the automotive industry. Specially discussed in this

content are hub re-entrants, which occur in the cluster tools of wafer fabrication facilities.

A robot serves several processing stations at once. It picks wafers, puts them into a

processing station and passes them to another processing station after the operation is

completed. The wafers, considered as manufacturing jobs, return to the robot before

they can be processed at another station/machine. The objectives of the considered

problems are the makespan, flow time, earliness/tardiness and work in process related in

equal proportions. Maximizing the utilization of a bottleneck machine is used to increase

the throughput rate. Another field of research in re-entrant scheduling problems is the

scheduling of rework, with 5 publications in the observed period. Rework cases are

mainly examined in flow shop environments. The re-entry for repair operations of a

job needs to be scheduled. The objective functions considered are the makespan, total

flow time, total idle time, and total earliness / tardiness. 19 articles consider flow shop

problems, 11 publications deal with job shops, and 23 articles are related to re-entrant

line problems. In 32 articles, parallel machines are considered. The ability to split jobs

into sublots and sequence the sublots, i.e. lot streaming, is not discussed in the reviewed

articles. Minimization of the makespan is the most frequently pursued objective, with 22

appearances, followed by due-date related objectives with 21 appearances. Re-entrant

line scheduling problems are often investigated in connection with limited buffer capacity

between workstations (14 times). Setup times are required for the operations to finish

the production lots in 10 publications. The work on re-entrant flow shops considers either

scheduling single operations or sequencing complete jobs. The sequencing of single job

levels has received little attention, although it represents a detailed permutation in re-

entrant permutation flow shops. Only 4 journal articles (Chamnanlor et al. (2014),

Cho et al. (2011), Kaihara/Kurose/Fujii (2012) and Eskandari/Hosseinzadeh

(2014)) consider skipping of machines in re-entrant flow shops. The suggested models

and algorithms schedule single operations but do not necessarily deliver a permutation

schedule. Specifically, the use of binary sequence variables for every single operation

instead of complete jobs or job levels in MIP results in high computational effort.

3.3 A MATHEMATICAL FORMULATION FOR RPFS 51

Solution methods

The nine major methods applied to the re-entrant scheduling problem in the reviewed

articles are listed in Table 3.7 under “Solution Method”. Other methods with just one

appearance are summarized in the column “other”. The most common exact method in

the context of optimizing one or more objective values is mathematical programming.

17 MIP models have been developed for problems with different characteristics, oper-

ating to sequence either complete jobs or single operations. For re-entrant scheduling

problems, dispatching rules are the most common heuristic approach to create sched-

ules. Shortest processing time, longest processing, earliest due date, individual designed

dispatching rules, etc. are applied in 16 articles. In 8 of the 16 articles, the rules are

used to create initial solutions for improvement methods. Most of the effort is put into

developing evolutionary algorithms (in 10 articles) and swarm intelligence algorithms (3

articles). A promising approach is the variable neighborhood search, because it is able to

integrate other solution methods. Drießel/Mönch (2012a) and Eskandari/Hos-

seinzadeh (2014) used the approach either to solve the subproblem for a total tardiness

minimization or for makespan minimization.101 Tabu search, as another common solu-

tion method, is not applied in any of the 53 articles between 2010 and June 2015. The

author of this thesis proposed an iterated local search for the considered problem in

Hinze/Sackmann (2016).102

The literature review shows that, regarding problem characteristics, a permutation of

single job levels has not been examined deeply. The makespan is an eligible criterion to

compare solution approaches. Due to the structure of re-entrant permutation flow shops

and the possibility to schedule all levels of a job or only a single job level, the variable

neighborhood search seems to be a promising approach. Furthermore, it has not received

much attention in re-entrant scheduling problems until now.

3.3 A Mathematical Formulation for Re-entrant

Permutation Flow Shops

Three MIP formulations for the re-entrant permutation flow shop have been suggested

by Pan/Chen (2003). These formulations are based on the classic flow shop and job

shop MIP models of Wagner (1959), Manne (1960) and Wilson (1989).103 These

101 See Drießel/Mönch (2012a): Integrated scheduling and material-handling , pp. 5968–5977 and
Eskandari/Hosseinzadeh (2014): Variable neighbourhood search for flow-shops , pp. 5–7.

102 See Hinze/Sackmann (2016): An Iterated Local Search for a Re-entrant Flow Shop, pp. 221–226.
103 See Wagner (1959): An integer programming model for machine scheduling , pp. 137–138,

Manne (1960): On the job-shop scheduling problem, pp. 220–221 and Wilson (1989): Alternative
formulations of a flow-shop scheduling problem, pp. 396–397.

3.3 A MATHEMATICAL FORMULATION FOR RPFS 52

re-entrant scheduling models are used many times in research.104 The proposed models

determine a permutation of jobs for the flow shop105, but permutations in re-entrant

permutation flow shop problems actually consist of job levels. These levels represent

the different (re)-entries of the same job into the production environment. Pan/Chen

(2004) proposed a model for sequencing single operations in a re-entrant flow shop, which

does not guarantee the same permutation of job levels on every machine.106 In Chen/

Chao-Hsien Pan (2006), several integer programming models are suggested for re-

entrant non-permutation flow shops.107 An example of a permutation of three jobs in a

regular flow shop is shown in Figure 3.2. The symbol ji indicates the sequence position

of job i. The total number of different permutations in a regular permutation flow shop

is n!.

Figure 3.2: Example of a permutation of three jobs in a regular flow shop

j1 j2 j3

Contrarily, a permutation of three jobs in three levels in an RPFS is shown in Figure

3.3. The number of sequence positions increased from n to n ·L. The sequence position

of job i’s level l is represented by jil.

Figure 3.3: Example of a permutation of three jobs in a re-entrant flow shop

j11 j21 j31 j12 j22 j32 j13 j23 j33

To give a short introduction to modeling RPFS, the approach of Pan/Chen (2003)

based on the model of Manne (1960) is described in detail below. The variable used

to determine a sequence of jobs and their loops through the production system is yii′ ∈

{0; 1}. It equals 1, if job i precedes job i′ in every loop l = 1, . . . , L, otherwise it equals

0. The indexing of the sequence variables in connection with the restrictions (3.4) leads

to a schedule with separated job levels. The permutation begins with all levels l = 1 of

the n jobs. Then, the levels l = 2 follow, and so on. It is not allowed that a job’s level

l + 1 precedes another job’s level l. The total number of different permutations in a re-

entrant permutation flow shop with separated levels equals the number of permutations

104 See Chen/Pan/Wu (2008): Hybrid tabu search for re-entrant flow-shops , pp. 223–224 and
Lee et al. (2011): A genetic algorithm for bi-objective flow shops with re-entrants , pp. 1107–1108.

105 See Pan/Chen (2003): Minimizing makespan in re-entrant permutation flow-shops , pp. 643–647.
106 See Pan/Chen (2004): Schedule-generation procedures for the reentrant shops , p. 316.
107 See Chen/Chao-Hsien Pan (2006): Models for the re-entrant shop scheduling , pp. 584–588.

3.3 A MATHEMATICAL FORMULATION FOR RPFS 53

in a regular flow shop. The objective is to minimize the makespan:

minCmax. (3.1)

The jobs i = 1, . . . , n are operated by the machines k = 1, . . . ,m as in a regular flow

shop. Since the jobs are processed multiple times on each machine, it is necessary to

introduce a level index l = 1, . . . , L. A level represents a loop of the job within the

production system. The inequalities (3.2) describe a job level passing from machine to

machine. A level l of a job i starts on machine k = 1 and ends on machine k = m.

The passing from one machine k to a machine k + 1 is only possible after the operation

on machine k is finished. The end of the operation of job level i, l on machine k is

calculated by silk + pilk, thus the starting time of the next operation of the same level has

to be greater than or equal to the end time of the current operation.

silk + pilk ≤ sil,k+1 (3.2)

∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m− 1.

The re-entry of a job i, i.e. the change from one level l to the next level l+1 is controlled

by the constraints (3.3). The last operation of a job on level l is performed on machine

m. The end time of this operation is given by silm + pilm. The re-entry of a job on its

next level, l + 1, on the first machine must be greater than or equal to the end time of

the current level l.

silm + pilm ≤ sil+1,1 (3.3)

∀i = 1, . . . , n; l = 1, . . . , L− 1.

The relation between different levels l and l + 1 of different jobs i, i′ is regulated by the

inequalities (3.4). Without these restrictions, two succeeding levels of different jobs can

be assigned to machine k at the same time. A level l+1 of any job i′ is allowed to start

on a machine k if all levels l of all jobs i = 1, . . . , n have already been processed on that

machine.

silk + pilk ≤ si
′

l+1,k (3.4)

∀i, i′ = 1, . . . , n; l = 1, . . . , L− 1; k = 1, . . . ,m.

The relation between different jobs on the same level l is regulated by the restrictions

(3.5) and (3.6). Variable yii′ equals 1 if job i precedes job i′, and the difference between

the starting of job i′ on machine k and the starting time of i on the same machine is

3.3 A MATHEMATICAL FORMULATION FOR RPFS 54

greater than or equal to the processing time pilk. This is ensured by inequalities (3.5).

The constraints (3.6) take effect in the contrary case, since the equations (3.5) have no

impact if the levels of job i′ precede the levels with the same level index l of job i. If i

does not precede i′, the difference between silk and si
′

lk must be greater than or equal to

pi
′

lk since i is only allowed to start on machine k when i′ is finished. The job index i is

not allowed to equal i′ as this would lead to a contradiction, where i must wait to start

on machine k until i is finished.

A (1− yii′) +
(

si
′

lk − silk
)

≥ pilk, (3.5)

Ayii′ +
(

silk − si
′

lk

)

≥ pi
′

lk (3.6)

∀i = 1, . . . , n; i′ = 1, . . . , n, (i′ < i) ; l = 1, . . . , L; k = 1, . . . ,m.

The original model of Pan/Chen (2003) considers the makespan as an objective. The

last operation of any job needs to be performed on the last machine k = m and during

a job’s last loop l = L in the production system. Thus, makespan Cmax needs to be

greater than or equal to the end of the last operation of each job i = 1, . . . , n.

siLm + piLm ≤ Cmax (3.7)

∀i = 1, . . . , n.

An alternative objective function is total flow time. The constraints (3.8) measure the

completion times of the jobs i = 1, . . . , n. Completion is described as the end of the last

operation of each job. The last operation in a regular re-entrant permutation flow shop

is performed on machine k = m and must be part of a job’s level L.

siLm + piLm ≤ Ci (3.8)

∀i = 1, . . . , n.

The inequalities (3.9) are the Non-negativity constraints (NNC).

silk ≥ 0 (3.9)

∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

The binary constraints are given by the restrictions (3.3).

yii′ ∈ {0; 1} ∀i, i
′ = 1, . . . , n, (i′ < i) .

Table 3.8 gives an overview of the number of constraints of the Pan/Chen (2003)

3.3 A MATHEMATICAL FORMULATION FOR RPFS 55

model. The rows Cmax and Ci refer to the constraints necessary to measure the makespan

and job completion times.

Table 3.8: Numbers of constraints of the Pan/Chen (2003) model

Constraints Number

(3.2) n · L · (m− 1)

(3.3) n · (L− 1)

(3.4) n2 · (L− 1) ·m

(3.6) 1
2
n · (n− 1) ·m · L

(3.7) 1
2
n · (n− 1) ·m · L

Total n2 · (2L− 1) ·m− n

Cmax n

Ci n

NNC n · L ·m

Binary n · (n− 1)

4 Re-entrant Permutation Flow Shop

Problems with Mixed Levels and

Missing Operations

4.1 Introduction

The re-entries of a job are considered levels. A job enters a new level, when it leaves

the machine sequence 1, . . . ,m and returns to a machine to be processed again. The

permutation of a re-entrant permutation flow shop is a sequence of job levels. A sequence

of separated levels does not allow scheduling of single levels. In contrast to separated

level schedules, mixed levels allow processing of a level l + 1 of a job i before a level l

of a job i′ (i 6= i′). Missing operations allow the jobs to skip machines, re-entries into

the productions system on machines k > 1, and exits on machines k < m. Existing

approaches do have some weaknesses in time calculations if missing operations occur, as

is shown in subsection 4.4.3.

Sections 4.2 and 4.3 explain the mixed levels and missing operations in detail. Then

section (4.4) compares two different approaches to model mixed level permutation sched-

ules without using an operation index for the single processing steps of the jobs. The

preferred approach to model mixed levels is adjusted to deal with missing operations cor-

rectly. Furthermore, the reduction of the makespan by applying mixed levels and dealing

appropriately with missing operations is examined in computational experiments.

The models presented for a re-entrant permutation flow shop are based on the re-

entrant flow shop formulations of Pan/Chen (2003).1 They are originally derived from

a job shop formulation by Manne (1960)2 and a flow shop model proposed by Wilson

(1989)3. The number of possible permutations for problems with separated levels is n!,

which increases for a problem with mixed levels to (n · L)!/ (L!)n.4

Sections 4.5, 4.6 and 4.7 examine heuristic solution methods for the re-entrant permu-

1 See Pan/Chen (2003): Minimizing makespan in re-entrant permutation flow-shops , pp. 643–647.
2 See Manne (1960): On the job-shop scheduling problem, pp. 219–221.
3 See Wilson (1989): Alternative formulations of a flow-shop scheduling problem, pp. 395–397.
4 See Li et al. (2013): Population-Based Learning Algorithm, p. 1637.

56

4.2 MIXED LEVELS 57

Table 4.1: Parameters and variables in the re-entrant permutation flow shop models

A Sufficiently large number
Cmax Makespan
Ci Completion / cycle / flow time of job i
i, i′ Job indices
j, j′, j′′ Sequence position indices
k, k′ Machine indices
L Total number of levels per job
m Total number of machines
n Total number of jobs
pilk Processing time of job i on machine k in level l
silk Starting time of job i on machine k in level l
xilj Binary variable, takes the value 1 if level l of job i is on position j
yili′l′ Binary variable, takes the value 1 if level l of job i is scheduled

before level l′ of job i′

tation flow shop with mixed levels and missing operations to obtain promising solutions

for larger problems. The problem with separated levels is already NP-hard as a regular

permutation flow shop, and the number of possible permutations increases for mixed

level schedules.

The preferred re-entrant permutation flow shop model is also able to solve job shop

problems. Section 4.8 compares the model with a traditional job shop model regarding

the performance in solving job shop problems.

The symbols used for modeling a re-entrant permutation flow shop with mixed levels

are summarized in Table 4.1.

4.2 Mixed Levels

An example that shows the effects of mixing levels consists of n = 3 jobs, which are

processed twice (L = 2) on each of the m = 2 machines. The processing times are given

by pilk:

p1lk =





1 1

1 2



 , p2lk =





4 4

3 1



 , p3lk =





1 1

4 3



 .

The permutation resulting from applying the model of Pan/Chen (2003) to the

problem is shown in Table 4.2. First, all jobs start start on level l = 1, which is followed

by a section of the same jobs in level l = 2.

4.2 MIXED LEVELS 58

Table 4.2: Optimal permutation of the example with separated levels

Position 1 2 3 4 5 6

Job 1 3 2 1 3 2

Level 1 1 1 2 2 2

The starting times of every operation are summarized by the values of silk.

s1lk =





0 1

6 10



 , s2lk =





2 6

11 15



 , s3lk =





1 2

7 12





The resulting Gantt chart in Figure 4.1 visualizes the permutation and the start and

end times of every operation.

Figure 4.1: Solution to the example with separated levels

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

The makespan Cmax in this solution of the problem is 16 time units.

Applying an approach that allows mixed levels leads to a different optimal solution

from the one presented above. The permutation of the solution is presented in Table 4.3.

The job levels on the permutation positions j = 3 and j = 4 switched their positions.

The second level of job i = 1 starts after the level l = 1 of job i = 3 and before the level

l = 1 of job i = 2.

Table 4.3: Optimal permutation of the example with mixed levels

Position 1 2 3 4 5 6

Job 1 3 1 2 3 2

Level 1 1 2 1 2 2

Figure 4.2 shows the solution achieved using a model that allows mixed levels. The

starting times of the single operations are given below by the values silk. The makespan

of this solution is Cmax = 15. So, the objective value is reduced using a mixed levels

4.2 MIXED LEVELS 59

model. The problem itself still is a permutation flow since the sequence of job levels is

the same on each machine.

Figure 4.2: Solution to the example with mixed levels

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

The starting times for the jobs are provided by the values silk:

s1lk =





0 1

2 3



 , s2lk =





3 7

11 14



 , s3lk =





1 2

7 11



 .

The possible reduction of objective values, while maintaining the structural benefits

of a permutation flow shop, is the motivation to examine a mixed level re-entrant per-

mutation flow shop.

Some examples of the numbers of possible sequences are presented in Table 4.4 to give

an impression of the problem size.

Table 4.4: Number of possible permutations

n L Separated levels Mixed levels

2 2 2 6

3 2 20

4 2 70

3 2 6 90

3 6 1680

4 6 34650

4 2 24 2520

3 24 369600

4 24 63063000

10 2 3628800 2.38 · 1015

5 3628800 4.91 · 1043

Changes in the number of jobs n have a greater effect on the number of possible

permutations than changes in the number of levels L. For instance there are 20 possible

4.3 MISSING OPERATIONS 60

permutations for a problem with n = 2 jobs and L = 3 levels facing 90 permutations for

n = 3 and L = 2.

4.3 Missing Operations

Missing operations can occur in three different ways in re-entrant flow shops:

1. Jobs re-enter the production system on a machine k > 1,

2. A level of processing is finished on a machine k < m,

3. The job skips one or more machines in a row on a specific level of processing.

The three cases are shown in Figures 4.3, 4.4 and 4.5 for a system withm = 3 machines,

which is passed by jobs in two levels (L = 2):

Figure 4.3: Example of missing operations case 1

l k = 1 k = 2 k = 3

1

2

Figure 4.4: Example of missing operations case 2

l k = 1 k = 2 k = 3

1

2

Figure 4.5: Example of missing operations case 3

l k = 1 k = 2 k = 3

1

2

4.3 MISSING OPERATIONS 61

To explain the impact of dealing appropriately with missing operations the following

example is considered. There are two jobs, i = 1 and i = 2, that need to be scheduled

on m = 3 machines. Both jobs run L = 2 times through the production system. During

the second level machine, k = 1 is skipped, so the jobs re-enter the system on machine

k = 2. The processing times p121 and p221 are set to 0 to represent the missing operation.

p1lk =





1 1 1

0 1 2



 , p2lk =





4 2 2

0 1 2



 .

The result of a makespan minimization, if missing operations are not considered as a

model property, is shown in Figure 4.6. The starting times of the operations are given

by the values silk. The minimum makespan in such a model would be Cmax = 13.

s1lk =





0 1 6

7 8 9



 , s2lk =





1 5 7

9 10 11



 .

It is necessary for the jobs’ operations in level l = 2 on k = 2 to wait to be processed

on machine k = 1 in the same levels, although the processing time is zero. The missing

operations are performed by machine k = 1 after seven and nine time units, which delays

the schedule compared to the optimal solution.

Figure 4.6: Solution to the example if missing operations are not properly managed

Time

3

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

The best possible solution results in a makespan of Cmax = 12 if a job does not need

to wait for an operation with a processing time of zero.

s1lk =





0 1 3

0 4 5



 , s2lk =





1 5 7

1 9 10



 .

4.3 MISSING OPERATIONS 62

Figure 4.7: Solution to the example if missing operations are appropriately managed

Time

3

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Models with the possibility of scheduling particular job levels and that do not require

a free machine for missing operations are able to solve the different forms of re-entrant

flow shop problems mentioned by Emmons/Vairaktarakis (2013) and described in

Section 3.1. These problems are cyclic re-entrants, chain re-entrants, hub re-entrants,

V re-entrants and (1-2-1) re-entrants. The following examples show how to model these

forms with zero processing times.

Cyclic re-entrants:

A job is processed L times on every machine.

plk =





1 1 1 1

1 1 1 1





Chain re-entrants:

A job needs a finishing operation on machine k = 1.

plk =





1 1 1 1

1 0 0 0





Hub re-entrants:

The jobs return to a central machine before they are passed to the next machine.

plk =











1 1 0 0

1 0 1 0

1 0 0 1











V re-entrants:

The jobs pass from machine k = 1 step by step to machine k = m and in the reverse

4.4 MATHEMATICAL MODELS 63

order to machine k = 1.

plk =

















1 1 1 1

0 0 1 0

0 1 0 0

1 0 0 0

















(1-2-1) re-entrants:

The jobs are processed twice on machine k = 1 and once on machine k = 2 in a two-

machine system.

plk =





1 1

1 0





4.4 Mathematical Models

This section introduces two different approaches for modeling a re-entrant permutation

flow shop with mixed levels. The models differ in the kind of sequence variable that

is used. The first model is called model Y, while the second model is model X. Both

formulations are evaluated regarding their computational performance. Additionally, a

problem property called basic job sequence is examined regarding its influence on the

computation time and solution quality. One configuration of model Y in connection with

makespan and total flow time minimization was also published by Hinze et al. (2013).5

4.4.1 Comparison of Sequence Variables

Model Y

Model Y is tested regarding makespan minimization. The objective function is given by

equation (4.1).

minCmax. (4.1)

The time restrictions (4.2) and (4.4) are explained by describing the simplified non-

missing operation compatible restrictions (4.3) and (4.5).

pilk′
(

silk′ + pilk′
)

pilk ≤ pilrs
i
lkp

i
lk (4.2)

∀i = 1, . . . , n; l = 1, . . . , L; k = 2, . . . ,m; k′ = 1, . . . ,m− 1, (k′ < k).

5 See Hinze et al. (2013): A contribution to the reentrant flow-shop scheduling problem, pp. 718–723.

4.4 MATHEMATICAL MODELS 64

The inequalities (4.2) describe how a job i proceeds from machine 1 to machine m

within one level l. The inequalities (4.3) illustrate the restriction set of (4.2).

silk + pilk ≤ sil,k+1 (4.3)

∀i = 1, . . . , n; l = 1, . . . , L; k = 2, . . . ,m; k′ = 1, . . . ,m− 1, (k′ < k).

Figure 4.8 shows an example of how the constraints (4.2) can be violated by a job i on

its lth level in a machine environment with three machines. The left side of the figure is

an invalid schedule. The operation on the second machine starts before the operation on

the first machine is finished. The right part of the figure shows a possible valid schedule

for the considered job level.

Figure 4.8: Starting times for job i in level l: invalid on the left and valid on the right

Time

3

2

1

Machine

si
l2 � si

l1 + pi
l1

Time

Machine

3

2

1

The job’s starting time on a machine k has to be greater than or equal to the end time

of all prior operations 1, . . . , k′ and k′ < k. The end time is computed by adding the

processing time pilk′ to the starting time silk′ of the operation. The multiplication of the

processing times of the job’s operation on machine k′ and k triggers the constraint. The

constraint does not take effect if any of these processing times equals 0. A zero operation

time stands for a missing operation. Both sides of the inequality equal zero if one of the

two considered operations is missing. There is no need to set any requirements to the

operation of the job on a machine k if the operation does not take place. On the other

hand, the starting time of the operation on machine k cannot be determined on the end

time of the operation on machine k′ if job i is not operated on machine k′ in level l. The

end time of the last operation with pilk′ > 0 before the job is processed on machine k is

checked by running the index k′ from 1 to k − 1. The processing times in previous job

levels are checked in the inequalities (4.4) if there are no operations with pilk′ > 0 in the

4.4 MATHEMATICAL MODELS 65

current level before silk.

pilk′
(

silk′ + pilk′
)

pil+1,k ≤ pilk′s
i
l+1,kp

i
l+1,k (4.4)

∀i = 1, . . . , n; l = 1, . . . , L− 1; k, k′ = 1, . . . ,m.

The constraints (4.4) regulate the level transition from l to l + 1 for all jobs. The

simple form of this constraint is presented in the inequalities (4.5).

silk′ + pilk′ ≤ sil+1,k (4.5)

∀i = 1, . . . , n; l = 1, . . . , L− 1; k, k′ = 1, . . . ,m.

Job i is not allowed to start on any machine k in level l+1 before all of its processing

steps on the machines k = 1, . . . ,m in level l are completed. Again, the multiplication

of the processing times pilk′ and pil+1,k in the constraints (4.4) triggers the restrictions.

Figures 4.9 and 4.10 illustrate the functionality of the constraints (4.5) on level transi-

tion. The operation of level l on machine k = 3 and level l+1 on machine k = 1 overlap

in the schedule shown in Figure 4.9, which leads to invalid starting times.

Figure 4.9: Invalid starting times for a job i changing from level l to l + 1

Time

3

2

1

Machine

l

l

l

l+ 1

l+ 1

l+ 1

si
l+1,1 � si

l3 + pi
l3

Figure 4.10: Valid starting times for a job i changing from level l to l + 1

Time

3

2

1

Machine

l

l

l

l+ 1

l+ 1

l+ 1

The inequality sets (4.6) and (4.7) ensure that only one job at a time can be processed

4.4 MATHEMATICAL MODELS 66

on a machine k. Therefore, the variables yili′l′ describe the job sequence. yili′l′ equals 1

if level l of job i precedes level l′ of i′ on all machines; otherwise, the variable 0. The

difference between the starting times of the two jobs i and i′ in their levels l and l′ on a

machine k should be greater than or equal to the processing time of the preceding job.

The term A(1− yili′l′) in the constraint set (4.6) equals 0 if level l of job i precedes level l′

of i′, because of yili′l′ = 1. In this case, level l′ of job i has to wait at least pilk time units

after the start of job i’s level l on machine k to start on the same machine. A(1− yili′l′) is

equal to A if level l of job i succeeds level l′ of i′. Then, the left side of the constraint is

greater than pilk, since A is a large enough number. In the case of yili′l′ = 0, level l′ of job

i′ precedes level l of job i. The inequalities (4.7) include the term Ayili′l′ , which becomes

zero if yili′l′ = 0. Then, job i’s level l needs to wait at least for job i′’s level l′ to finish

on machine k. The difference between both starting times silk and si
′

l′k should be greater

than or equal to the processing time, pi
′

l′k, of the job level that is scheduled on an earlier

sequence position.

A(1− yili′l′) + (si
′

l′k − silk) ≥ pilk (4.6)

Ayili′l′ + (silk − si
′

l′k) ≥ pi
′

l′k (4.7)

∀i, i′ = 1, . . . , n; (i′ < i); l, l′ = 1, . . . , L; k = 1, . . . ,m.

Figure 4.11 shows an invalid assignment of operations if level l of job i precedes job

i′’s level l′, i.e. yili′l′ = 1. The operation of i′l′ on machine k = 2 is not allowed to start

(si
′

l′2) before the operation of il on this machine is finished (sil2+ pil2). The valid schedule

for the same precedence relation of the two job levels is shown in Figure 4.12.

Figure 4.11: Invalid starting times if yili′l′ = 1

Time

3

2

1

Machine

il

il

il

i′l′

i′l′

i′l′

s
j

l′,2
� si

l2 + pi
l2

4.4 MATHEMATICAL MODELS 67

Figure 4.12: Valid starting times if yili′l′ = 1

Time

3

2

1

Machine

il

il

il

i′l′

i′l′

i′l′

The valid Gantt chart for the case of job i’s level l not preceding level l′ of job i′, i.e.

yi
′l′

il = 0, is presented in Figure 4.13. All operations of il on the machines k = 1, 2, 3 are

necessary to start after the processing of i′l′ is finished.

Figure 4.13: Valid starting times if yili′l′ = 0.

Time

3

2

1

Machine

i′l′

i′l′

i′l′

il

il

il

The constraints (4.8) determine the makespan. The end times of all operations need

to be checked due to the fact that some jobs may not have their last processing time

greater than zero in the last level or on the last machine.

silk + pilk ≤ Cmax (4.8)

∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

The starting times and makespan need to be greater than or equal to 0.

Cmax ≥ 0 (4.9)

silk ≥ 0 (4.10)

∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

4.4 MATHEMATICAL MODELS 68

yili′l′ is a binary variable as previously described.

yili′l′ ∈ {0; 1} (4.11)

∀ i = 1, . . . , n; i′ = 1, . . . , n− 1, (j < i); l, l′ = 1, . . . , L.

Table 4.5: Number of constraints of model Y

Constraints Without missing operations With missing operations

(4.2) n · L · (m− 1) 1
2
n · L ·m · (m− 1)

(4.4) n · (L− 1) n · (L− 1)m2

(4.6) 1
2
n · (n− 1) ·m · L · (L+ 1) 1

2
n · (n− 1) ·m · L · (L+ 1)

(4.7) 1
2
n · (n− 1) ·m · L · (L+ 1) 1

2
n · (n− 1) ·m · L · (L+ 1)

Total L (L ·m (n− 1) · n+m · n2)− n m · n ·
(

m ·
(

3
2
L− 1

)

+L ·
(

n− 3
2
+ L · (n− 1)

))

Cmax n n · L ·m

Ci n n · L ·m

NNC n · L ·m n · L ·m

Binary n · L · (n · L− 1) n · L · (n · L− 1)

Basic Sequence 1
2
n · (n− 1) · L 1

2
n · (n− 1) · L

Model X

This model contains variables different from the ones used in model Y. The sequence

assignment is done by the variables xilj. The variable equals 1 if job i on level l is

assigned to position j and is 0 otherwise. The starting times for the jth job level on

the kth machine are represented by the variable hkj ∀k = 1, . . . ,m; j = 1, . . . , n · L.

The model X is capable of generating an optimal sequence with mixed levels, but not

for problems with missing operations. Nevertheless, its computational performance is

compared to the model Y’s concerning instances without missing operations in order to

find the superior sequence variable for extended formulations.

The objective is to minimize the makespan ((4.12)).

minCmax. (4.12)

Each sequence position j has to be assigned to exactly one job level i, l, so the sum of

4.4 MATHEMATICAL MODELS 69

binary sequence variables over all jobs and levels must be 1 in the equations (4.13).

n
∑

i=1

L
∑

l=1

xilj = 1 (4.13)

∀j = 1, . . . , n · L;

Further, each job level must be assigned to exactly one sequence position, so the sum of

sequence variables over all positions j = 1, . . . , n · L needs to be 1 for every job level in

the constraints (4.14).

n·L
∑

j=1

xilj = 1 (4.14)

∀i = 1, . . . , n; l = 1, . . . , L;

A level l + 1 of a job i needs be scheduled after the lth level of the same job. This

is ensured with the inequalities (4.15). The left side of the equation is 1 if level l + 1

is scheduled on one of the positions j = 1, . . . , j′, and level l on a later position j =

j′ + 1, . . . , n · L. This situation is not allowed.

j′
∑

j=1

xi,l+1,j −
j′
∑

j=1

xilj ≤ 0 (4.15)

∀i = 1, . . . , n; l = 1, . . . , L− 1; j′ = 1, . . . , n · L;

The constraints (4.16) are equivalent to the restrictions (4.24) in model Y. They main-

tain a basic job sequence but permit a mixed level sequence.

j′′
∑

j=1

xi′,l+1,j −
n·L
∑

j=j′+1

xilj −





j′
∑

j=1

xi′lj +
j′′
∑

j=1

xi,l+1,j



 ≤ 0; (4.16)

∀i, i′ = 1, . . . , n(i < i′); j′, j′′ = 1, . . . , n · L, (j′ < j′′); l = 1, . . . , L− 1.

The inequalities (4.17) forbid a machine k to process two jobs at the same time and

ensure the correct order of job levels processed on the machine. A job level on position

j + 1, is allowed to start at machine k when the operation of the job that is on the

previous sequence position j, is finished on machine k.

hk,j+1 ≥ hkj +
n
∑

i=1

L
∑

l=1

xilj · p
i
lk (4.17)

∀i = 1, . . . , n; j = 1, . . . , n · L− 1; l = 1, . . . , L; k = 1, . . . ,m.

4.4 MATHEMATICAL MODELS 70

A job level il on position j needs to be processed completely on machine k before it is

allowed to move to machine k + 1 ((4.18)).

hk+1,j ≥ hkj +
n
∑

i=1

L
∑

l=1

xilj · p
i
lk (4.18)

∀i = 1, . . . , n; j = 1, . . . , n · L; k = 1, . . . ,m− 1.

The level transition is regulated by the constraints (4.19). Level l + 1 of job i is on

position j′ if
∑j′

j=1 xi,l+1,j −
∑n·L

j=j′ xi,l+1,j = 2, and level l + 1 of the same job i is on

position j′′ if
∑j′′

j=1 xi,l+1,j −
∑n·L

j=j′′ xi,l+1,j = 2. The constraints (4.19) take effect if these

requirements are met. Then the processing of the j′′th job level on machine m must be

finished before the j′th job level is allowed to start on machine k = 1.

A ·



2−
j′
∑

j=1

xi,l+1,j −
n·L
∑

j=j′

xi,l+1,j



+ A ·



2−
j′′
∑

j=1

xilj −
n·L
∑

j=j′′

xilj



+ (h1j′ − hmj′′) ≥ pmlk

(4.19)

∀i = 1, . . . , n; j′, j′′ = 1, . . . , n · L; l = 1, . . . , L− 1.

The makespan is calculated by the inequalities:

hm,n·L +
n
∑

i=1

xiL,n·Lp
i
Lm ≤ Cmax (4.20)

∀i = 1, . . . , n.

Table 4.6 gives an overview of the number of constraints of model X.

4.4 MATHEMATICAL MODELS 71

Table 4.6: Number of constraints of model X

Constraints Number

(4.13) n · L

(4.14) n · L

(4.15) n2 · L · (L− 1)

(4.17) n · (n · L− 1) · L ·m

(4.18) n2 · L · (m− 1)

(4.19) n3 · L2 (L− 1)

Total n2 · L2 · (n · L+m− n+ 1) + n · L · (n ·m− 2n−m+ 2)

Cmax n

Ci n2 · L

NNC n · L ·m

Binary n2 · L2

Basic Sequence ((4.16)) 1
4
n2 · (n− 1) · (n · L− 1) · L · (L− 1)

Alternate Objective Function

The total flow time is the sum of the completion times of every job i = 1, . . . , n. The

objective function is given by equation (4.21).

min
n
∑

i=1

Ci (4.21)

The single completion times of the jobs are measured by the constraints (4.22). The

end time silk + pilk of every operation that is performed on the machines k = 1, . . . ,m

during the levels l = 1, . . . , L of a job i, needs to be lower than or equal to the completion

time Ci of the job.

silk + pilk ≤ Ci (4.22)

∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

Alternatively, the completion time can be measured by the constraints (4.23).

hm,j +
n
∑

i=1

xiLjp
i
Lm ≤ Ci (4.23)

∀i = 1, . . . , n; j = 1, . . . , n · L.

4.4 MATHEMATICAL MODELS 72

Comparing models with two different sequence variables

The processing times of the test instances are uniformly distributed random numbers

1 and 99. The number are generated by the suggested method of Taillard (1993).6

This method of processing time generation is used in all the tests in Chapter 4. Missing

operations are not considered for comparing model Y and model X. The test will indicate,

what formulation is more suitable for RPFS problems. Ten test instances are solved for

each of the 64 problem sizes considered. The computation time is limited to 1 hour. The

number of jobs n varies between two and five jobs, as does the number of levels L. The

values for the numbers of machines m are two, five, six and ten.7

Explanations of the symbols used in the evaluation tables are listed in Table 4.7. The

average relative gap values and makespan deviations ∆Cmax are the measures for solution

quality. The average relative deviation of the performed iterations, ∆It, and the average

relative deviation of the computation time, ∆ct, are the measurements for computing

performance.

Table 4.7: List of symbols in the model comparison

∆Cmax ∆Cmax =
(

CX
max/C

Y
max

)

− 1

ct Computation time

∆ct ∆ct =
(

ctX/ctY
)

− 1

Gap Gap between lower bound and best found solution either after

solving the problem or a computation time of 1 hour

It Number of iterations until a problem instance is solved

or the computation time limit is reached

∆It ∆It =
(

ItX/ItY
)

− 1

L Number of levels per job

m Number of machines

n Number of jobs

X Model with xilj as sequence variable

Y Model with yi
′l′

il as sequence variable

The positive values in Figure 4.14 indicate better average results of model Y after

a computation time of 1 hour. The instances that are solved to optimality result in

the same makespan values for both models. The deviations increase with an increasing

problem size.

6 See Taillard (1993): Benchmarks for basic scheduling problems , pp. 279–280.
7 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.

4.4 MATHEMATICAL MODELS 73

Figure 4.14: Average makespan deviations between model X and Y

∆
C

m
a
x
[%

]

2
2

5
2

6
2

10
2

2
3

5
3

6
3

10
3

2
4

5
4

6
4

10
4

2
5

5
5

6
5

10
5

0

5

10

15

20

25

30

Problem size

m
L

n=2
n=3
n=4
n=5

Table 4.8 compares the behavior of both models depending on the number of machines.

Model Y is not able to close the gap between the lower bound and best-found solution

for m = 2 and m = 5 machines. The gap to the optimal solution of these instances is

small enough that the deviation of makespan, ∆Cmax, between the models Y and X is

near zero, despite the fact that model X finds the optimal solution for each of m = 2 and

m = 5 instances. The positive deviation of ∆ct = 66.3 % occurs due to the single in-

stances with relatively high computation times of model X, e.g. an n = 3, L = 5, m = 2

instance with a computation time of 1 second for model Y and 7 seconds for model X,

leading to a relative deviation of 600 % for a single instance.

Model Y is superior for instances with a higher number of machines (m = 6 and m = 10).

It uses less computation time and iterations. The solution process for solving the m = 10

problems with model X requires 9679 more iterations than solving it with model Y. Most

of the high machine number instances are not solved by the X model within 1 hour, lead-

ing to a gap of 3 and 7 %. Also, the deviation of makespan increases with the increasing

number of machines.

4.4 MATHEMATICAL MODELS 74

Table 4.8: Influence of the number of machines on the models X and Y

m Gap Y [%] Gap X [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 1.68 0.00 0.00 309.68 66.30

5 0.07 1.67 0.47 1,251,671.01 13,832.35

6 0.00 3.07 0.94 242,996.54 15,928.13

10 0.00 7.00 3.14 967,914.71 33,488.72

The influence of the number of levels L on the performance of both models X and Y is

provided in Table 4.9. The highest gaps for both models occur for instances with three

levels. Small problems with just two levels are solved optimally by both models. The

gaps of model X are higher than those of model Y for three, four and five levels. Hence,

the deviation of makespan is positive, meaning the makespan obtained by model X is,

on average, higher than the best makespan values of model Y. The computational effort

of model X increases with increasing values of L.

The required computation time of model X is an average of 121 times higher than if

model Y is used for instances with five levels. Additionally 8310 times more iterations

are performed for model X.

Table 4.9: Influence of the number of levels per job on the models X and Y

L Gap Y [%] Gap X [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.00 6411.36 170.42

3 1.17 5.70 2.45 306,189.14 9048.95

4 0.38 3.23 1.15 535,994.05 21,130.43

5 0.78 4.79 1.92 831,014.25 12,057.65

The largest mean deviations of makespan are measured for problems that require five

jobs to be scheduled, as shown in Table 4.10. Neither model X nor model Y are able

to prove the solution they found after a computation time of 1 hour to be optimal, as

indicated by the gap values of both models. Despite that fact, the X model provides,

on average, a 0.92 % worse solution for n = 4 instances and 3.66 % worse makespan for

instances with five jobs on average. The computational effort in computing the solutions

is higher in all four problem classes for model X, as shown in columns ∆Iter and ∆ct.

4.4 MATHEMATICAL MODELS 75

Table 4.10: Influence of the number of jobs on the models X and Y

n Gap Y [%] Gap X [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.00 384.49 21.56

3 0.00 0.00 0.00 1,132,804.34 1940.63

4 0.00 3.42 0.92 1,012,697.84 37,792.37

5 1.74 8.69 3.66 252,030.28 14,464.58

Figure 4.15 shows the mean absolute computation time for all problem classes with

n = 2 jobs. The average computation times are between 1 and 2 seconds for all n = 2

problem sizes. Differences of more than 0.5 seconds occur only for problems with L = 5

levels. Model Y requires less time to solve these problem instances. However, both

models can find optimal solutions for the instances with two jobs in a short time.

Figure 4.15: Average computation times of models X and Y for n = 2

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
2

5
2
2

6
2
2

10
2
2

2
3
2

5
3
2

6
3
2

10
3
2

2
4
2

5
4
2

6
4
2

10
4
2

2
5
2

5
5
2

6
5
2

10
5
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Problem size

m
L
n

Model Y
Model X

Figure 4.16 shows the mean absolute computation time for all problem classes with

n = 2 jobs. The mean computation times are between 1 and around 200 seconds for

all n = 3 problem classes. Only problem sizes with five levels per job exceed mean

computation times of 1 minute for model X. The mean computation times of model Y

for these problem classes remain about 1 second.

4.4 MATHEMATICAL MODELS 76

Figure 4.16: Average computation times of models X and Y for n = 3

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
3

5
2
3

6
2
3

10
2
3

2
3
3

5
3
3

6
3
3

10
3
3

2
4
3

5
4
3

6
4
3

10
4
3

2
5
3

5
5
3

6
5
3

10
5
3

0

50

100

150

200

250

Problem size

m
L
n

Model Y
Model X

A visualization of the mean computing times for solving problems with four jobs is

provided in Figure 4.17. While the computation times are relatively high for the X

model, the Y model solves the instances in a relatively short time period.

4.4 MATHEMATICAL MODELS 77

Figure 4.17: Average computation times of models X and Y for n = 4

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
4

5
2
4

6
2
4

10
2
4

2
3
4

5
3
4

6
3
4

10
3
4

2
4
4

5
4
4

6
4
4

10
4
4

2
5
4

5
5
4

6
5
4

10
5
4

0

1000

2000

3000

4000

Problem size

m
L
n

Model Y
Model X

The effect of having a high computation time for a low number of machines, if model

Y is used, can also be seen in Figure 4.18. The computation time decreases for higher

machine numbers. In contrast to this behavior of model Y, model X solves problems

with m = 2 machines in a short time frame.

4.4 MATHEMATICAL MODELS 78

Figure 4.18: Average computation times of models X and Y for n = 5

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
5

5
2
5

6
2
5

10
2
5

2
3
5

5
3
5

6
3
5

10
3
5

2
4
5

5
4
5

6
4
5

10
4
5

2
5
5

5
5
5

6
5
5

10
5
5

0

1000

2000

3000

4000

Problem size

m
L
n

Model Y
Model X

The number of jobs has the greatest influence on the computation time, before the

number of levels, as seen by comparing Figures 4.15, 4.16, 4.17 and 4.18.

The computational superiority of the Y model for higher numbers of jobs, levels and

machines compared to the X model leads to the decision to use the Y model in the

further considerations.

Influence of Mixed Levels

In this section the Pan/Chen (2003) model, which features separated job levels instead

of mixed levels, is compared to the mixed level solutions obtained with the Y model. The

test instances are the same as in section 4.4.1.8 The evaluation examines the models’

behavior regarding machine, level and job numbers.

The symbols used for evaluation of the effect of mixed levels are shown in Table 4.11.

8 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.

4.4 MATHEMATICAL MODELS 79

Table 4.11: List of symbols for the evaluation of mixed and separated levels

∆Cmax ∆Cmax =
(

CPC
max/C

Y
max

)

− 1

ct Computation time

∆ct ∆ct =
(

ctPC/ctY
)

− 1

It Number of iterations until a problem instance is solved

or the computation time limit is reached

∆It ∆It =
(

ItPC/ItY
)

− 1

Gap Gap between lower bound and best found solution either after

solving the problem or a computation time of 1 hour

L Number of levels per job

m Number of machines

n Number of jobs

PC Model of Pan/Chen (2003)

Y Model Y

The biggest differences in the mean computation time and mean number of iterations

occur for two machine instances as shown in Table 4.12. For these instances, the number

of iterations is on average 75 % lower for the model with separated levels than for the

mixed level model and the mean computation time is 35 % lower. The positive value

for the mean relative deviation of the number of iterations used for the five machine

instances is due to an instance with three jobs and five levels, which does not require an

iteration by the mixed level model, but is 137 by the model of Pan/Chen (2003). The

makespan values of the mixed level model are exceeded by 1.97 % by the model with

separated levels.

Table 4.12: Influence of the number of machines on the models Y and PC

m Gap Y [%] Gap PC [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 1.68 0.00 1.97 −75.44 −35.05

5 0.07 0.00 0.99 167.44 −23.53

6 0.00 0.00 0.98 −41.47 −22.03

10 0.00 0.00 0.61 −26.87 −25.70

Table 4.13 shows the performance values depending on the number of levels. Model

Y achieves, on average, lower makespan values for each number of levels, L = 2, . . . , 5.

4.4 MATHEMATICAL MODELS 80

Table 4.13: Influence of the number of levels per job on the models Y and PC

L Gap Y [%] Gap PC [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.65 −29.63 −2.60

3 1.17 0.00 1.28 21.99 −46.48

4 0.38 0.00 1.37 −53.81 −36.60

5 0.78 0.00 1.31 6.49 −27.40

The mean reduction of the makespan of the Y model increases with the increasing

number of jobs, as shown in Table 4.14.

Table 4.14: Influence of the number of jobs on the models Y and PC

n Gap Y [%] Gap PC [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.77 −24.24 0.00

3 0.00 0.00 0.99 63.02 −3.75

4 0.00 0.00 1.39 71.54 −31.88

5 1.74 0.00 1.39 −86.54 −70.53

The model with mixed levels clearly outperforms the model with separated levels

regarding solution quality, but leads to longer computation times.

4.4.2 Basic Job Sequence

The equations (4.24) declare that the sequence of jobs should be the same in all levels.

If job i precedes a job i′ on a level l′, then all of its levels l = 1, . . . , L precede the

corresponding level l of job i′. This keeps a basic job sequence.

yi
′l
il = yi

′L
iL (4.24)

∀i, i′ = 1, . . . , n, (i′ < i); l = 1, . . . , L.

The test problems are identical to the experiments in Section 4.4.1.9

The symbols used for comparison are described in Table 4.15.

9 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.

4.4 MATHEMATICAL MODELS 81

Table 4.15: List of symbols in evaluation tables concerning basic sequence

BS Model Y with basic sequence

∆Cmax ∆Cmax =
(

CBS
max/C

Y
max

)

− 1

ct Computation time

∆ct ∆ct =
(

ctBS/ctY
)

− 1

Gap Gap between lower bound and best found solution either after

solving the problem or a computation time of 1 hour

It Number of iterations until a problem instance is solved

or the computation time limit is reached

∆It ∆It =
(

ItBS/ItY
)

− 1

L Number of levels per job

m Number of machines

n Number of jobs

Y Model Y

Figure 4.19 shows the average deviation of makespan values between the model without

prescribing a basic sequence and the model with a basic sequence. The deviations are

based on makespan values obtained using the model without a basic sequence. No average

deviations of the makespan are observed for the problem sizes n = 2, L = 2,m = 5,

n = 2, L = 3,m = 6, n = 2, L = 4,m = 5 as well as for n = 3, L = 2,m = 6. The mean

makespan deviations increase if the number of levels increases.

4.4 MATHEMATICAL MODELS 82

Figure 4.19: Average makespan deviations between model Y and model BS

∆
C

m
a
x
[%

]

2
2

5
2

6
2

10
2

2
3

5
3

6
3

10
3

2
4

5
4

6
4

10
4

2
5

5
5

6
5

10
5

0

1

2

3

4

Problem size

m
L

n=2
n=3
n=4
n=5

The impact of a basic level sequence on the computation time required to solve the

problems optimally is shown in Figure 4.20 for n = 2 job problems and in Figure 4.21

for n = 5 job problems. The mean computation times for n = 2 instances are around 1

second for every problem class and both models.

4.4 MATHEMATICAL MODELS 83

Figure 4.20: Average computation times of models Y and BS for n = 2

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
2

5
2
2

6
2
2

10
2
2

2
3
2

5
3
2

6
3
2

10
3
2

2
4
2

5
4
2

6
4
2

10
4
2

2
5
2

5
5
2

6
5
2

10
5
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Problem size

m
L
n

Model Y
Basic sequence model Y

The average computation times for problems with five jobs in Figure 4.21 show some

differences between the models if the number of levels per job L ≥ 4. Then, the model

with a basic level sequence needs less time compared to the model without a basic

sequence constraint. For n = 2, L = 5,m = 2 both models require a high mean compu-

tation time close to 1 hour.

4.4 MATHEMATICAL MODELS 84

Figure 4.21: Average computation times of models Y and BS for n = 5

C
om

p
u
ta

ti
on

 t
im

e
[s

]

2
2
5

5
2
5

6
2
5

10
2
5

2
3
5

5
3
5

6
3
5

10
3
5

2
4
5

5
4
5

6
4
5

10
4
5

2
5
5

5
5
5

6
5
5

10
5
5

0

1000

2000

3000

4000

Problem size

m
L
n

Model Y
Basic sequence model Y

Table 4.16 shows the difference in solution quality and computational performance

of model Y with and without basic sequence constraints depending on the number of

jobs. The solution quality decreases with the increasing number of jobs since the average

makespan deviation is also increasing. Also, the gap values for the model with a basic

sequence are smaller than for those of the model without this constraint for every single

number of jobs tested.

Table 4.16: Influence of the number of jobs on model Y with basic sequence

n Gap Y [%] Gap BS [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.59 −6.09 2.19

3 0.00 0.00 0.65 97.07 3.75

4 0.00 0.00 0.76 89.42 −23.28

5 1.74 0.33 0.77 −59.57 −57.52

Looking at Table 4.17, it can be observed that higher numbers of re-entries lead to

weaker results of the model with a basic sequence.

4.4 MATHEMATICAL MODELS 85

Table 4.17: Influence of the number of levels per job on model Y with basic sequence

L Gap Y [%] Gap BS [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 0.00 0.00 0.37 −20.72 1.67

3 1.17 0.22 0.77 47.28 −37.34

4 0.38 0.00 0.78 −41.86 −30.41

5 0.78 0.19 0.87 44.51 −16.19

The influence of the number of machines is shown in Table 4.18. Mean gap values

greater than zero appear for m = 2 and m = 5 machines. Both models need more

computational effort if the number of machines is m = 2.

Table 4.18: Influence of the number of machines on model Y with basic sequence

m Gap Y [%] Gap BS [%] ∆Cmax [%] ∆It [%] ∆ct [%]

2 1.68 0.33 0.57 −38.75 −22.71

5 0.07 0.00 0.76 214.96 −18.09

6 0.00 0.00 0.82 −34.61 −17.51

10 0.00 0.00 0.61 −21.01 −16.91

A basic sequence between the job levels is not considered in the following experiments

in this thesis since it does not lead to much lower computation times for larger problems

if a time limit of 1 hour is applied, and the results are up to 3.10 % weaker than those

without a basic sequence.

4.4.3 Influence of Missing Operations

The different problem sizes and processing time generation procedure are identical to

the test instances in Section 4.4.1, 4.4.1 and 4.4.2.10

In contrast to the previous tests, missing operations or incomplete levels are considered.

Table 4.19 gives an overview of the number of generated later entries / earlier exits per

jobs depending on the number of levels L per job. There are four different problem sets.

The jobs in the problem set “Complete” need to be processed on all machines in every

level. The sets “Inc 1”, “Inc 2”, “Inc 3” and “Inc 4” allow earlier exits and later level

re-entries. The label “Inc” stands for incomplete levels because not all machines are

visited.11

10 See Table B.2 in Appendix B (p. 204) for an overview on the different problem sizes.
11 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

4.4 MATHEMATICAL MODELS 86

Table 4.19: Number of later entries / earlier exits

Instance set
Levels per job

Chapter / Section
2 3 4 5 10 20 40

Complete 0 0 0 0 0 0 0 4.4.1, 4.4.2, 4.4.1

Inc 1 1 1 1 1 1 2 4 4.4.3, 4.5.3, 4.6.4, 4.7.5, 4.7.6, 5.2, 5.4

Inc 2 - - 2 2 4 7 12 4.4.3, 5.2

Inc 3 - - - 3 5 9 20 4.4.3, 4.5.3, 4.6.4, 4.7.5, 4.7.6, 5.4

Inc 4 - - - - 9 18 36 4.5.3, 4.6.4, 4.7.5, 4.7.6

The model that omits the scheduling of missing operations is labeled with Y0. The

model requiring times to be assigned to missing operations is labeled with Y. Tables 4.21,

4.22 and 4.23 compare the influence of missing operations, depending on the number of

machines, levels and jobs on the computational performance and solution quality. The

formulas used to calculate the values are contained in the overview of the evaluation

symbols used (Table 4.20).

Table 4.20: List of symbols in evaluation tables concerning missing operations

∆Cmax ∆Cmax =
(

CY
max/C

Y0
max

)

− 1

ct Computation time,

∆ct ∆ct =
(

ctY/ctY0
)

− 1

Gap Gap between lower bound and best found solution either after

solving the problem or a computation time of 1 hour

It Number of iterations until a problem instance is solved

or the computation time limit is reached

∆It ∆It =
(

ItY/ItY0
)

− 1

L Number of levels per job

m Number of machines

n Number of jobs

Y Model without appropriate dealing with missing operations

Y0 Model with appropriate dealing with missing operations

Table 4.21 shows the influence of dealing appropriately with missing operations de-

pending on the number of machines in the flow shops. Gap values for both models

as well as the mean makespan deviations decrease with an increase in the number of

machines. The relative difference in required or performed iterations is ascending if m

rises. The difference in computation time is not affected by m in the Inc 1 instance set

but is affected in the sets with higher numbers of incomplete levels, i.e. in sets with a

4.4 MATHEMATICAL MODELS 87

higher number of missing operations. Negative values of ∆ct indicate a lower average

computation time of the simple model Y compared to the model Y0.

Table 4.21: The influence of missing operations depending on the number of machines

Inc m Gap Y0 [%] Gap Y [%] ∆Cmax [%] ∆It [%] ∆ct [%]

1 2 1.98 1.80 0.75 6.96 44.30

5 0.12 0.08 3.08 86.43 47.67

6 0.02 0.00 2.30 346.66 46.85

10 0.00 0.00 1.31 596.01 49.26

2 2 4.43 4.26 1.23 12.81 −0.26

5 0.46 0.55 4.62 −1.36 59.89

6 0.06 0.03 4.87 403.11 171.65

10 0.00 0.00 3.79 344.42 207.22

3 2 5.53 5.14 2.27 48.11 −22.77

5 1.29 0.79 5.41 261.90 83.70

6 0.46 0.34 6.56 1156.62 157.85

10 0.00 0.12 4.54 156.48 119.51

A higher number of levels leads to higher gap values for both models, with the exception

of L = 3 instances in test set Inc 1. In most cases, the solution quality of the Y0 model

compared to the Y model increases with an increasing number of job levels.

Table 4.22: The influence of missing operations depending on the number of levels

Inc L Gap Y0 [%] Gap Y [%] ∆Cmax [%] ∆It [%] ∆ct [%]

1 2 0.00 0.00 1.49 19.64 17.51

3 1.41 1.25 2.22 119.62 44.29

4 0.65 0.57 2.29 913.94 84.10

5 0.84 0.75 2.06 30.91 40.40

2 4 0.63 0.61 3.63 78.35 145.04

5 1.48 1.45 3.60 243.03 62.95

3 5 1.82 1.60 4.69 405.78 84.57

If the number of jobs increases and the problems are still solved optimally in time, i.e.

for most of the n = 4 problems, then the computational performance of the Y0 model

increases compared to the simple Y model.

4.5 INITIALIZATION METHODS 88

Table 4.23: The influence of missing operations depending on the number of jobs

Inc n Gap Y0 [%] Gap Y [%] ∆Cmax [%] ∆It [%] ∆ct [%]

1 2 0.00 0.00 1.26 −0.01 16.56

3 0.00 0.00 2.32 7.26 45.31

4 0.00 0.00 1.91 851.89 93.48

5 2.11 1.87 1.94 176.67 32.52

2 2 0.00 0.00 2.92 −8.24 10.63

3 0.00 0.00 3.52 −1.24 13.24

4 0.71 0.53 4.41 638.05 109.68

5 4.19 4.27 3.65 129.51 301.04

3 2 0.00 0.00 3.45 −7.62 5.00

3 0.00 0.00 4.36 771.11 −36.21

4 1.21 0.85 5.51 623.96 232.92

5 5.93 5.40 5.59 241.55 137.71

The gap values increase with the increasing number of incomplete levels in all three

evaluation tables. As expected, the advantage of dealing appropriately with missing

operations increases with a higher number of incomplete levels, which is reflected in the

values ∆Cmax. In most cases, the Y0 model requires fewer iterations and less computation

time compared to the simple Y model, which is indicated by the positive values of ∆It

and ∆ct.

The use of mixed levels leads to makespan reductions of up to 2 % compared with the

separated level models for the tested small instances. Appropriate handling of missing

operations leads to further reductions. Since only small problem sizes have been tested

until now, the following section contains heuristic solution approaches to solve larger

instances.

4.5 Initialization Methods

Constructive heuristics create a solution from scratch. They are necessary to initiate

improvement methods like tabu search, simulated annealing and variable neighborhood

search. This section explains several constructive heuristics for initializing improvement

methods.

4.5 INITIALIZATION METHODS 89

4.5.1 Constructive Heuristics for Separated Levels

Priority rules and simple constructive heuristics that lead to initial schedules with sep-

arated levels are presented in this subsection.

Longest Total Processing Time Jobs First

The Longest total processing time job first (LTPTJ) rule uses each job’s sum of processing

times. The first level of the job with the maximum sum of processing times, TPTi, of all

jobs is put on sequence position one. The first level of the job with the second highest

sum of processing times follows on the second position and so on. The levels l = 2, . . . , L

follow the same job sequence after all levels l = 1 have been assigned to their positions.

The TPTi of the scheduled job is set to 0, before the next job is selected. Assigning the

sequence positions in this way results in a separated level schedule.

The procedure is implemented as shown in algorithm 4.1.

Algorithm 4.1 Longest total processing time jobs first rule

Data: n, L, m, TPTi and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Empty Solution: Create a sequence of n · L empty slots.

Assign job levels to sequence positions :

for t = 1, . . . , n do

(2) Choose job i with TPTi = maxi′=1,...,n TPTi′

for l = 1, . . . , L do

(3) Assign level l of job i to position t+ (l − 1) · n.

end for

(4) TPTi ← 0

end for

(5) Calculate all starting times silk and Cmax.

Shortest Total Processing Time Jobs First

The Shortest total processing time job first (STPTJ) rule also uses the sum of processing

times of each job as a criterion to sequence the job levels. These values are given by the

total processing times of jobs TPTi. The job with the lowest TPTi value is scheduled

next. Its first level is assigned to position i and the following levels l > 1 to the positions

i + (l − 1) · n. Afterwards, the job’s TPTi is set to a sufficiently large number A, and

the next job is selected.

This priority rule is set out in algorithm 4.2.

4.5 INITIALIZATION METHODS 90

Algorithm 4.2 Shortest total processing time jobs first rule

Data: n, L, m, TPTi, A and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Empty Solution: Create a sequence of n · L empty slots.

Assign job levels to sequence positions :

for t = 1, . . . , n do

(2) Choose job i with TPTi = mini′=1,...,n TPTi′

for l = 1, . . . , L do

(3) Assign level l of job i to position t+ (l − 1) · n.

end for

(4) TPTi ← A

end for

(5) Calculate all starting times silk and Cmax.

NEH Jobs Algorithm

The one adoption of the NEH algorithm12 for the RPFS presented in this section is

called the NEH job (NEHJ) algorithm. There are two criteria for sequencing the jobs

in this heuristic. The job that needs to be scheduled in iteration t is selected by its

total processing. The jobs are selected in non-ascending order of their total processing

time, i.e. the first job to be assigned is the one with the highest total processing time.

The last job for which a sequence position is searched is the job with the lowest total

processing time. So, the number of main iterations that the algorithm performs is

equal to the number of jobs n. The number of the current iteration is identical to the

number of already selected jobs. Within each of the iterations t = 1, . . . , n the selected

job is inserted into each possible position current sequence, resulting in t′ = 1, . . . , t

subiterations for each main iteration with the resulting permutations π′. The levels of

the jobs are added in a way that leads to a separated level schedule. The objective

value for each of the resulting solutions is calculated. The best current solution will be

accepted (πbest), and the algorithm will operate on this permutation (π) during the next

iteration. The algorithm’s implementation is simplified in algorithm 4.3.

12 See Nawaz/Enscore/Ham (1983): Heuristic for m-machine, n-job flow-shops , pp. 91-95.

4.5 INITIALIZATION METHODS 91

Algorithm 4.3 NEH job algorithm

Data: n, L, m, TPTi, A and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

Assign job levels to sequence positions :

for t = 1, . . . , n do

(1) Choose job i with TPTi = maxi′=1,...,n TPTi′

(2) Cmax (πbest)← A

for t′ = 1, . . . , t do

(3) π′ ← π

for l = 1, . . . , L do

(4) Insert level l of job i to position t′ + (l − 1) · n to update π′.

end for

(5) Calculate all starting times silk and Cmax (π
′).

if Cmax (π
′) < Cmax (πbest) then

(6) πbest ← π′

end if

end for

(7) π ← πbest

(8) TPTi = 0

end for

Service in Random Order Job

Service in random order job (SIROJ) generates a job sequence randomly. A job is chosen

by generating a uniformly distributed number and the job sequence is repeated for each

level l. The pseudo code of the procedure is shown in 4.4. This method is one of the

constructive methods for a schedule to show the impact of structured schedule generation

procedures like priority rules or the NEH algorithm.

4.5 INITIALIZATION METHODS 92

Algorithm 4.4 Service in random order job

Data: n, L, m and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Empty Solution: Create a sequence of n · L empty slots.

Assign job levels to sequence positions :

for t = 1, . . . , n do

(2) Choose a random remaining job i.

for l = 1, . . . , L do

(3) Assign level l of job ′ to position t+ (l − 1) · n.

end for

end for

(5) Calculate all starting times silk.

4.5.2 Constructive Heuristics for Mixed Levels

Dispatching rules and simple constructive heuristics that lead to initial schedules with

mixed levels are described in this subsection.

Longest Total Processing Time Levels First

Similar to the method using the sum of all processing times of a job as criteria, the sums

of processing times of each level are used as a criteria in the Longest total processing

time level first (LTPTL) rule. These methods avoid assignments of a complete partition

of a permutation with all job levels of the same level number l. A job level l is allowed

to be assigned to a sequence position if the predecessor level l− 1 of the same job has a

lower sequence position and has completed its last operation. In total, two criteria are

used to generate a schedule. The first criterion is the total processing time of a job level

and the second criterion is the ready time of a job level. Only levels whose predecessor

levels are already scheduled are allowed to be added to the permutation. These levels

are part of the set Navailable. The job levels are not part of Navailable but are part of a

second set N ready if their ready time, RTil, is smaller than or equal to the time when

the machine k for their first operation is free after processing the preceding level, i.e. if

RTil ≤MRTk. The comparison of total processing times is done on all levels that are in

N ready. When multiple job levels are ready, the level with the longest total processing

time is chosen. If N ready is empty, then the job level with the lowest ready time of all

levels in Navailable is added to the permutation.

4.5 INITIALIZATION METHODS 93

Algorithm 4.5 Longest and shortest total processing time level first rule

Data: n, L, m, TPTil, A and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Add all levels l = 1 to the ready job levels N ready.

Assign job levels to sequence positions :

for t = 1, . . . , n · L do

if N ready 6= ∅ then

(2a) Choose job level il with TPTil = maxi′∈Nready TPTi′ (STPTL: TPTil =

mini′∈Nready TPTi′) and remove it from N ready

else

(2b) Choose job level il with RTil = mini′∈Navailable RTi′ and remove it from

Navailable

end if

(3) Add job level il at position t of existing job level sequence.

(4) Calculate all starting times silk and all machine ready times MRTk.

if l < L then

(5) Calculate the level ready time RTi,l+1.

if RTi,l+1 ≤ MRTk (with k being the first machine for level l + 1 of job i with

pil+1,k > 0) then

(6a) Add i, l + 1 to the ready levels N ready

else

(6b) Add i, l + 1 to the available levels Navailable

end if

end if

end for

Shortest Total Processing Time Levels First

The Shortest total processing time level first (STPTL) rule prefers the job level with

the minimum sum of processing times among the levels that are ready to be processed.

If no level is ready, the job level that becomes ready at the earliest point of time is

chosen. The difference between algorithms LTPTL and STPTL is shown in step (2a) of

algorithm 4.5. In contrast to the LTPTL rule, the STPTL rule chooses the ready job

level with the lowest total processing time.

NEH Level Algorithm

The NEH level (NEHL) heuristic schedules the job levels separately. The job levels with

the highest sum of processing times among all the ready levels is chosen to be scheduled

next. The level with the earliest ready time is chosen next if there are no ready job levels.

4.5 INITIALIZATION METHODS 94

A detailed overview of the procedure as it is implemented is given in algorithm 4.6. The

chosen job level is inserted in each valid position, j = t′ > ji,l−1, in the permutation.

The resulting solutions are evaluated regarding makespan. The best insertion position

of all valid possibilities is saved and used as the basic permutation for the next iteration

of the algorithm.

Algorithm 4.6 NEH level algorithm

Data: n, L, m, TPTil, A and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Add all levels l = 1 to the ready job levels N ready.

Assign job levels to sequence positions :

for t = 1, . . . , n · L do

if N ready 6= ∅ then

(2a) Choose job level il with TPTil = maxi′∈Nready TPTi′ and remove from N ready

else

(2b) Choose job level il with RTil = mini′∈Navailable RTi′ and remove from Navailable

end if

(3) Cmax (πbest)← A

for t′ = ji,l−1 + 1, . . . , t with ti0 = 1 do

(4) π′ ← π

(5) Insert level il at position j = t′ to update π′.

(6) Calculate all starting times silk and Cmax (π
′).

if Cmax (π
′) < Cmax (πbest) then

(7) πbest ← π′

end if

end for

(8) π ← πbest.

(9) Calculate all machine ready times MRTk.

if l < L then

(10) Calculate the level ready time RTi,l+1.

if RTi,l+1 ≤ MRTk (with k being the first machine for level l + 1 of job i with

pil+1,k > 0) then

(11a) Add i, l + 1 to the ready levels N ready

else

(11b) Add i, l + 1 to the available levels Navailable

end if

end if

end for

4.5 INITIALIZATION METHODS 95

Service in Random Order Level

The previously described constructive heuristics are compared to a randomly generated

sequence of job levels generated by the Service in random order level (SIROL) method.

SIROL assigns the single job levels successively to the sequence positions t = 1, . . . , n ·L.

Only valid assignments are allowed, which means that a level l + 1 can not be assigned

earlier than the corresponding level l of the same job, i.e. the levels added to the sequence

need to be in set Navailable. The probability of choosing a job level from Navailable is the

same for all job levels in Navailable. Machine ready times and level ready times are not

considered in this method. Nevertheless, the generated schedules are all valid, since only

levels whose predecessors are scheduled, are allowed to be added to the permutation.

Algorithm 4.7 shows the single steps of the procedures.

Algorithm 4.7 Service in random order level

Data: n, L, m and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Add all levels l = 1 to the ready job levels Navailable.

Assign job levels to sequence positions :

for t = 1, . . . , n · L do

(2) Choose a random job level il from Navailable and remove it from Navailable.

(3) Add job level il at position t of job level sequence.

if l < L then

(4) Add level l + 1 of job i to Navailable.

end if

end for

(5) Calculate all starting times silk.

4.5.3 Computational Experiments

The initialization methods are tested for small, medium and large problem sizes. The

parameters of the problem size are n ∈ {2, 3, 4, 5}, L ∈ {2, 3, 4, 5}, m ∈ {2, 5, 6, 10} for

small problems, n ∈ {10, 20, 30, 40, 50}, L ∈ {5, 10}, m ∈ {10, 20, 30, 40, 50} for medium

problems and n ∈ {50, 100}, L ∈ {20, 40}, m ∈ {50, 100} for large problems.13 Three

sets of test instances (Inc 1, Inc 2 and Inc 4) are generated. The number of missing

operations depends on the test set with the lowest number of missing operations in Inc 1

and the highest in Inc 4.14 Ten instances are tested for each problem size in the sets

Inc 1, Inc 2 and Inc 4. The processing times of non-missing operations are uniformly

distributed random numbers between 1 and 99.

13 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.
14 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

4.5 INITIALIZATION METHODS 96

The results regarding the mean relative deviation from the best obtained makespan

are shown in Table 4.24. The deviation to the best makespan achieved for a problem

instance is calculated by:

∆Cbest
max =

Cmax (πinit)

Cmax

(

πbest
init

) − 1.

Cmax (πinit) is the makespan obtained with a certain opening procedure and Cmax

(

πbest
init

)

is the lowest makespan value among the results of all tested opening procedures. The

different opening procedures are numbered:

1 LTPTJ,

2 STPTJ,

3 NEHJ,

4 SIROJ,

5 LTPTL,

6 STPTL,

7 SIROL,

8 NEHL.

Table 4.24: Comparison of makespan of the constructive heuristics

Inc
Problem No. Average makespan deviation ∆Cbest

max [%]

Size Inst. 1 2 3 4 5 6 7 8

1 Small 640 7.66 6.57 5.15 7.83 8.89 3.61 4.32 52.11

Medium 500 2.84 2.85 2.23 2.80 3.10 1.49 16.80 236.73

Large 80 1.45 1.41 0.96 1.47 0.71 0.54 36.86 483.55

Total 1 1220 5.28 4.71 3.68 5.35 5.98 2.54 11.57 156.06

3 Small 160 10.40 9.94 7.85 9.80 7.62 3.60 5.31 55.95

Medium 500 7.06 7.10 6.28 7.20 3.91 1.73 13.48 214.86

Large 80 10.36 10.43 9.95 10.43 1.06 0.58 33.86 462.05

Total 3 740 8.14 8.08 7.02 8.11 4.40 2.01 13.92 207.22

4 Medium 250 12.94 13.12 12.06 13.14 4.43 1.80 12.24 207.56

Large 80 19.79 19.84 19.31 19.66 2.35 0.66 28.49 438.87

Total 4 330 14.60 14.75 13.82 14.72 3.92 1.52 16.18 263.64

The STPTL rule delivers the best results on average for the makespan in each of

the sets of test instances Inc 1, Inc 3 and Inc 5. The deviation compared to the best

4.5 INITIALIZATION METHODS 97

makespan values achieved by the opening procedures is on average the lowest for the

STPTL rule. The second best value for the Inc 1 instances is delivered by the NEHJ

method. It is the best constructive heuristics to generate a schedule with separated

levels. For Inc 3 and Inc 5, the method is the third best opening procedure. The second

best for these cases is the LTPTL rule. The weakest approaches in these tests are the

NEHL rule and the SIROL rule. The rules LTPTJ, STPTJ and SIROJ perform roughly

on the same level of solution quality. The makespan values obtained with these rules

are better on average than the values of NEHL and SIROL, but weaker than the values

achieved by applying the procedures LTPTL, STPTL and NEHJ.

The relative frequencies of obtaining the best makespan among all tested opening

procedures are shown in Table 4.25. The numeration of the initialization methods is the

same as those given in Table 4.24.

Table 4.25: Best makespan frequencies of the constructive heuristics

Inc
Problem No. Frequency of obtaining the lowest makespan [%]

Size Inst. 1 2 3 4 5 6 7 8

1 Small 640 20.16 22.19 29.22 17.19 14.22 42.19 42.50 1.56

Medium 500 12.60 6.20 18.80 9.80 11.20 37.00 5.60 0.00

Large 80 10.00 1.25 25.00 2.50 18.75 42.50 0.00 0.00

Total 1 1220 16.39 14.26 24.67 13.20 13.28 40.08 24.59 0.82

3 Small 160 8.75 11.88 19.38 10.63 17.50 45.00 35.00 0.00

Medium 500 4.80 1.80 7.60 3.60 21.60 48.60 14.20 0.00

Large 80 0.00 0.00 0.00 0.00 32.50 67.50 0.00 0.00

Total 3 740 5.14 3.78 9.32 4.73 21.89 49.86 17.16 0.00

4 Medium 250 0.40 0.00 2.40 1.20 25.60 58.40 12.00 0.00

Large 80 0.00 0.00 0.00 0.00 22.50 77.50 0.00 0.00

Total 4 330 0.30 0.00 1.82 0.91 24.85 63.03 9.09 0.00

The relative solution quality of the STPTL rule, as the best performing constructive

method in this test, increases with increasing problem size and increasing numbers of

missing operations.

The STPTL rule is the constructive method with the best makespan values on average

and the NEHJ procedure is the best method that generates a separated level schedule.

Both of these methods are then chosen as initialization methods for the metaheuristics.

Additionally, the two random schedule generation procedures, SIROJ and SIROL, are

also used for initialization to investigate the influence of the initialization methods on

the solution quality of the examined metaheuristics.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 98

4.6 Neighborhood Structures in Re-entrant Permutation

Flow Shops

Two main neighborhoods are differentiated within this section: the swap neighborhood

and insertion neighborhood. These neighborhoods are examined in different stages:

1. Job stage,

2. Job level stage.

The number of neighbors in the lowest hierarchy stage, which represents changes in

particular members of the permutation, can be limited with so-called block neighbor-

hoods. Grabowski (1982) first mentioned the block structure in flow shops given

by the critical path.15 The block neighborhoods introduced by Nowicki/Smutnicki

(1996) are also based on the critical path of a solution, which defines the makespan of a

permutation.16

The levels l < L of each job i are not allowed to be processed before their succeeding

levels l+1. The levels l > 1 are not allowed to be scheduled before their preceding levels

l − 1.

4.6.1 Swap Moves

Swap moves imply that the sequence positions of two job levels are exchanged. A swap

between a level l of a job i and a level l′ of a job i′ is valid if the following limits to the

sequence position are not exceeded:

• jil < ji′,l′+1 if l′ < L,

• jil > ji′,l′−1 if l′ > 1,

• ji′l′ < ji,l+1 if l < L,

• ji′l′ > ji,l−1 if l > 1.

jil is the sequence position of the first swap partner (the position of job i’s level l). ji′l′

is the position of the second swap partner. Swaps between levels of the same job are

not possible, because they would violate the move limits. The sequence positions of all

other job levels stay the same.

Figure 4.22 illustrates the limits of a swap move of a single job level at position jil in

a given permutation.

15 See Grabowski (1982): Solving the Flow—Shop Problem, pp. 57–58.
16 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, pp. 161–165.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 99

Figure 4.22: Illustration of the swap move limits of a level

b b b ji,l−1 jil ji,l+1 b b b

Considering the second swap partner ji′l′ a possible swap may become invalid because

of the additional move limits of level i′l′. An example is given by Figure 4.23.

Figure 4.23: Example of an invalid level swap

b b b ji,l−1 jil ji′,l′−1 ji′l′ ji,l+1 ji′,l′+1 b b b

Not all swap moves need to be evaluated to find the best neighbor, as Figure 4.24

shows. The dashed lines indicate irrelevant swap moves.

Figure 4.24: Illustration of relevant and irrelevant level swap moves

b b b ji,l−1 jil ji,l+1 b b b

The moves to the left can be omitted in the evaluation of neighbors since they are

equal to the moves to the right side by the corresponding swap partners between ji,l−1

and jil. Either all moves to the right or all moves to the left need to be evaluated. This

leads to a number of 1
2
n · L (n · L− 1) possible swap moves if the move limits of single

levels are not considered. The original permutation on which the moves are performed

determines the specific number of possible swap moves, as seen in the example with two

jobs and L = 2 levels in Figures 4.25 and 4.26.

Two different swap moves can be applied to the permutation given in Figure 4.25.

Figure 4.25: Example of the number of possible level swap moves (I)

j11 j21 j12 j22

It is possible to apply only one swap move on the permutation shown in Figure 4.26.

Figure 4.26: Example of the number of possible level swap moves (II)

j11 j12 j21 j22

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 100

A swap on the job stage needs all levels l = 1, . . . , L of two jobs i and i′ to be exchanged.

Move limits of levels do not need to be considered, as long as both jobs have the same

number of levels. An example is given in Figure 4.27. i = 2 and i′ = 4 are the swapped

jobs.

Figure 4.27: Example of a job swap

j11 j21 j31 j41 j12 j22 j32 j42 j13 j23 j33 j43

4.6.2 Insertion Moves

A job level at position j is picked to be placed at a new sequence position j′. The

conditions on j′ are:

ji,l−1 < j′ ∀i = 1, . . . , n, l = 2, . . . , L; (4.25)

j′ < ji,l+1 ∀i = 1, . . . , n, l = 1, . . . , L− 1. (4.26)

(n · L− 1)2 different insertion moves can be applied to a permutation of the length n ·L

if move limits are not considered.17 Therefore insertion neighborhoods are larger than

swap neighborhoods if n > 2 and L > 1 or n = 2 and L > 2; otherwise, the size of

the neighborhoods is equal. The position of the job levels j′′ = 1, . . . , j′ − 1 does not

change. The job levels on the positions j′′′ = j′ + 1, . . . , j − 1 are respectively shifted to

j′′′ + 1. The remaining levels stay on the same positions. Figure 4.28 shows the limits

of insertion moves. The earliest position for the job level il is right behind the position

of level i, l − 1. The latest position is the one before the level i, l + 1.

Figure 4.28: Illustration of the insertion move limits and valid moves of a level

b b b ji,l−1 jil ji,l+1 b b b

A job insertion move is depicted in Figure 4.29. Two jobs i = 2 and i′ = 4 are selected

for the move. It it necessary to define whether the levels of job i should be inserted in

the position of job i′, or vice versa, before the move is performed. Job i = 2 is inserted

in the positions of i′ = 4 in the given example.

17 See Taillard (1990): Heuristic methods for the flow shop sequencing problem, p. 61.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 101

Figure 4.29: Example of a job insertion move

j11 j21 j31 j41 j12 j22 j32 j42 j13 j23 j33 j43

The resulting permutation is shown in Figure 4.30. The levels of job i = 2 are now on

the previous sequence positions of the corresponding levels of job i′ = 4.

Figure 4.30: Resulting permutation after the job insertion move

j11 j31 j41 j21 j12 j32 j42 j22 j13 j33 j43 j23

4.6.3 Block Neighborhoods

Block neighborhoods refer to sections in a critical path of a schedule. The blocks are the

sequence positions between two different job levels that follow each other on a critical

path. The critical path of operations determines the makespan of a schedule. Members of

the same block are processed consecutively on the same machine according to Nowicki/

Smutnicki (1996).18

The procedure to identify the critical path is shown in algorithm 4.8.

The identification starts with the last operation of the schedule, which is finished

at the highest value silk + pilk. The sequence position of the corresponding job level is

added to the critical path. The following steps are repeated until the starting time of

an operation equals 0, i.e. the first operation of the schedule is reached. For the latest

identified operation on the critical path, it is determined whether there is an operation

on any k′ of the preceding machines k for the same job level il, which is finished right

before the operation on k starts (silk′ + pilk′ = silk). k is updated to k′ as long as such a

machine is found. If none of the preceding job levels match this requirement, then the

last operation of the preceding level l− 1 of the same job i is added to the critical path.

The last operation added is the first operation of the schedule with a starting time equal

to 0 and a processing time greater than zero.

18 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 161.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 102

Algorithm 4.8 Identifying a critical path in a re-entrant flow shop

(1) Find the job level, which is finished last (highest value silk + pilk).
(2) Add its sequence position j to the critical path.
while silk 6= 0 or pilk = 0 do

if There is a machine k′ < k with silk′ + pilk′ = silk then

(3) k ← k′.
else

if There is a job level i′l′ at sequence position j′ with si
′

l′k + pi
′

l′k = silk then

(4a) Add the sequence position j′ of this job level to the critical path.
(4b) j ← j′.

else

(4c) Add the sequence position j′ of the job level i, l − 1 to the critical path.
(4d) k ← k′, where k′ is the machine with the last operation in i, l − 1.
(4e) j ← j′.

end if

end if

end while

(5) Add the sequence position j with silk = 0 and pilk > 0 to the critical path.
(6) Reverse the created list.

Figure 4.31: Example of identifying the critical path of operations

k 1 2 3 4 5 6 7 Block
j i l

1 1 1

2 2 1

3 1 2

4 3 1

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

1

2

3

4

The members of the permutation are the job levels. Some of the job levels define the

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 103

border of the blocks based on the critical path. They are labeled with ub = 0, . . . , B. The

critical path in the example shown in Figure 4.31 contains the job levels at the sequence

positions j = (1, 3, 5, 6, 9). The limits of critical blocks are identified as the positions

ub = (1, 3, 5, 6, 9) ∀b = 0, . . . , B, where B is the number of blocks on the critical path.

Between each pair of adjacent block limits, the operations defining the critical path are

performed on the same machine.

There are two types of moves connected to the block properties. The first type is called

intra block moves and the second type is called across block moves.19 There are different

definitions of intra and across block moves in related literature.20 The definitions are

explained in the following section for swaps and insertion moves. Equivalent moves

yielding to the same permutation are included only once in every neighborhood.

Intra block moves

The figures in this subsection show all possible insertion moves following the particular

block definition. No swap moves are omitted in the figures, despite the fact that some

swap moves are not necessary to obtain all possible solutions in a swap neighborhood,

as explained in subsection 4.6.1. The position of a job i’s level l is labeled with jil in the

following.

Intra block swaps exclude moves to the block border positions ub−1 and ub in the

definition of Nowicki/Smutnicki (1996), as shown in Figures 4.32 and 4.34.21 On the

other hand, the Figures 4.33 and 4.35 show the Chen/Pan/Wu (2007) definition of

intra block moves, which includes swaps to the block borders ub−1 and ub.
22

Figure 4.32: Example of a Nowicki intra block swap if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

Figure 4.33: Example of a Chen intra block swap if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

19 See Shen/Buscher (2012): Serial batching in job shops , pp. 17–18.
20 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 164 and Chen/

Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 355.
21 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 164.
22 See Chen/Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 356.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 104

A job level that is a block border ub is part of the two blocks, b−1 and b. The possible

intra block swaps for the members of the permutation are shown in Figures 4.34 and

4.35. The Nowicki intra block swaps again exclude moves to the block borders ub−1 and

ub+1, but these moves are included in the Chen intra block swaps.

Figure 4.34: Example of a Nowicki intra block swap if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Figure 4.35: Example of a Chen intra block swap if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

The possible intra block insertion moves are illustrated in Figures 4.36 and 4.37, where

the permutation member is not a block border.

A Nowicki intra block neighborhood allows only moves between the two block borders

ub−1 and ub if the member to move is not on a block border position ub, as can be seen

in Figure 4.36.23

Figure 4.36: Example of a Nowicki intra block insertion if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

The Chen intra block insertion shown in Figure 4.37, allows a job level to be moved to

the position before the lower block border ub−1 and behind the the upper block border

ub, as well as on all positions between ub−1 and ub.

Figure 4.37: Example of a Chen intra block insertion if jil is not part of the critical
path

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

23 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 164.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 105

The intra block moves if the job level to move is a block border are displayed in Figures

4.38 and 4.39.

Nowicki moves do not allow changes in the positions of the lower and upper block borders

ub−1 and ub+1. In this case, insertion moves are only allowed between the mentioned block

borders.

Figure 4.38: Example of a Nowicki intra block insertion if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Chen intra block insertion moves allow the sequence positions of the block borders

ub−1 and ub+1 to be change. Therefore, a job level that is a block border ub itself is

allowed to be inserted directly before ub−1 as well as directly behind ub+1, as shown in

Figure 4.39.

Figure 4.39: Example of a Chen intra block insertion if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Across block moves

Figures 4.40, 4.41, 4.42 and 4.43 show the possible swap move of a permutation member

jil out of its block b. The possible Nowicki across block moves include swaps with

the sequence positions ub−1 and ub, defining the limits of the bth block, because these

positions are also part of the neighboring blocks b− 1 and b+ 1.

Figure 4.40: Example of a Nowicki across block swap if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

The example in Figure 4.41 illustrates that Chen/Pan/Wu (2007) exclude moves

to ub−1 and ub from across block moves, since they are classified as intra block moves.24

This means that for swap moves, the job levels on the positions ub−1 and ub are not

allowed to be swap partners of jil (Figure 4.41).

24 See Chen/Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 356.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 106

Figure 4.41: Example of a Chen across block swap if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

Swaps to the adjacent block borders ub−1 and ub+1 are seen as across block moves by

Nowicki/Smutnicki (1996) if the permutation member at the jilth position is also a

block border ub, which will be swapped with a member at another position.25

To evaluate all across block swaps in the Nowicki definition of across block moves, not

all moves to the left can be omitted. The move to the left border of the block still needs

to be evaluated if the job level is not a block limit itself.

Figure 4.42: Example of a Nowicki across block swap if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Figure 4.43 shows that swap partners of jil, if jil = ub, need to be before ub−1 and

behind ub+1 in the sequence of job levels.

Figure 4.43: Example of a Chen across block swap if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

The possible across block insertion moves are displayed in Figures 4.44, 4.45, 4.46 and

4.47. Nowicki across block insertion moves allow a job level to be inserted right before

ub−1 and directly behind ub.

Figure 4.44: Example of a Nowicki across block insertion if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

Chen across block moves do not allow a level to overtake the positions of the border

job levels ub−1 and ub of its block, i.e. the insertion position needs to be lower than or

25 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 164.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 107

equal to ub−1 − 1, or greater than or equal to ub + 1. An example is provided in Figure

4.45.

Figure 4.45: Example of a Chen across block insertion if jil is not a block border

b b b

ub−2

ji,l−1

ub−1

jil

ub

ji,l+1

ub+1

b b b

Nowicki across block insertion moves of a job level il are possible to the positions of

ub−1 and ub+1 if il is also a block border ub.

Figure 4.46: Example of a Nowicki across block insertion if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Chen across block insertion moves in such a case do not allow job level il to be inserted

into the positions ub−1 and ub+1, as shown in Figure 4.47.

Figure 4.47: Example of a Chen across block insertion if jil is a block border

b b b ji,l−1

ub−1

jil

ub ub+1

ji,l+1

ub+2

b b b

Chen/Pan/Wu (2007) used swap moves just for members of the same block (intra

block swap) for a re-entrant flow shop scheduling problem.26 Dell’Amico/Trubian

(1993) proposed to use only moves inside a block. According to Dell’Amico/Tru-

bian (1993), across block swaps cannot improve the makespan. Within this definition,

the moves to the block limits are intra block moves.27 Nowicki/Smutnicki (1996)

used insertion moves to positions that are not in the same block as the job level to

be inserted.28 According to Nowicki/Smutnicki (1996), intra block insertion moves

cannot improve the makespan. Inserting at the position of the block limits is considered

an across block move.

26 See Chen/Pan/Wu (2007): Reentrant flow-shops and hybrid tabu search, p. 356.
27 See Dell’Amico/Trubian (1993): Applying tabu search to the job-shop scheduling problem, p. 243.
28 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 164.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 108

4.6.4 Computational Experiments

The following enumeration is used in Tables 4.26 and 4.27 to evaluate the neighborhoods

presented in Section 4.6:

1 Level swap without considering blocks,

2 Chen intra block level swap,

3 Nowicki intra block level swap,

4 Chen across block level swap,

5 Nowicki across block level swap,

6 Level insertion without considering blocks,

7 Chen intra block level insertion,

8 Nowicki intra block level insertion,

9 Chen across block level insertion,

10 Nowicki across block level insertion,

J1 Job swap,

J2 Job insertion.

The neighborhoods are tested by applying the best neighbor algorithm to the SIROJ

and SIROL solutions on the test instance sets Inc 1, Inc 3 and Inc 4. The test results in

Table 4.26 show the results for small test problems with two to five jobs and levels per

job as well as m ∈ {2, 5, 6, 10} machines. The number of jobs and machines for large test

instances can take the values 10, 20, 30, 40 and 50, and the number of levels per job is

either 5 or 10.29 Ten instances are generated for each combination within the small and

large problems of the sets Inc 1, Inc 3 and Inc 4. Test set Inc 3 includes only problem

sizes with L ≥ 5, and set Inc 4 requires the number of levels L per job to be greater than

or equal to 10.30 The processing times greater than 0 are uniformly distributed random

numbers between 1 and 99. The relative makespan improvement of the initial solution

by applying the best neighbor algorithm is calculated by:

∆C init
max = 1−

Cmax (πBN)

Cmax (πinit)
.

Cmax (πBN) is the makespan value of the permutation, πBN , after applying the best

neighbor algorithm. Cmax (πinit) is the makespan of the initial solution. The average

values of ∆C init
max are displayed in Tables 4.26 and 4.27.

The mean relative makespan reduction by applying level swap moves is, in most cases,

lower than the improvement values of the corresponding insertion moves for small test

29 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.
30 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 109

problems, which is shown in Table 4.26. Swap moves only deliver better average results

for the level moves without block criteria (in test set Inc 1) and the Nowicki across

block moves (with SIROL initialization in Inc 1 and SIROJ initialization in Inc 3). Job

insertion moves also deliver better results on average than job swaps. In Chen block

neighborhoods, intra block moves lead to higher mean average makespan improvements

than across block moves and vice versa for the Nowicki block definition. The Nowicki

across block moves deliver better results than the Chen intra block moves for small

problems.

Table 4.26: Mean makespan deviations ∆C init
max [%] of best neighbors for small problems

N
Inc 1 Inc 3

SIROJ SIROL SIROJ SIROL

1 3.08 13.39 3.89 9.05

2 2.73 10.76 3.28 7.82

3 1.01 1.20 1.31 1.58

4 1.29 9.00 2.22 5.34

5 3.08 13.39 3.89 9.05

6 3.26 13.26 4.09 10.29

7 2.85 11.08 3.37 8.76

8 1.38 1.85 1.56 2.31

9 1.65 11.16 2.60 8.92

10 3.11 13.25 3.87 10.26

J1 5.09 4.89 3.57 3.41

J2 5.28 16.15 3.84 16.20

The results for large test instances are shown in Table 4.27. The relation between

Chen and Nowicki block moves is similar to the results for small test instances. Also,

here Nowicki across block moves are preferred over the other block criteria moves. The

highest rates of improvement are achieved by job moves. Job swaps are most effective if

the initial solution is based on separated levels. Job insertion moves perform better on

initial random solutions with mixed levels.

4.6 NEIGHBORHOOD STRUCTURES IN RPFS 110

Table 4.27: Mean makespan deviations ∆C init
max [%] of best neighbors for large problems

N
Inc 1 Inc 3 Inc 4

SIROJ SIROL SIROJ SIROL SIROJ SIROL

1 0.85 5.04 1.16 5.60 1.04 4.20

2 0.53 2.41 0.64 2.67 0.54 2.14

3 0.30 0.35 0.39 0.48 0.34 0.43

4 0.80 5.04 1.14 5.59 1.03 4.20

5 0.85 5.04 1.16 5.60 1.04 4.20

6 0.78 3.21 0.99 3.74 0.81 2.90

7 0.55 2.40 0.66 2.63 0.56 2.12

8 0.33 0.43 0.44 0.59 0.38 0.51

9 0.74 3.21 0.97 3.74 0.81 2.90

10 0.78 3.21 0.98 3.74 0.81 2.90

J1 1.63 1.42 1.80 1.59 1.59 1.40

J2 1.40 6.64 1.54 6.88 1.36 6.27

The computation times are given for the largest tested problem size, 50 jobs, 10 lev-

els and 50 machines, in Table 4.28. The differences in computation time between the

different neighborhoods are highest for this problem size. The computation times are

compared for swaps and insertion neighborhoods, not considering block criteria, Nowicki

across block moves and the two job neighborhoods. Chen block moves and Nowicki intra

block moves are not considered because they deliver weak average makespan results.

The computation times with the best neighbor algorithm are higher for insertion neigh-

borhoods than for the corresponding swap neighborhoods. A higher number of missing

operations leads to lower computation times for single level moves. The application of

the Nowicki block criteria leads to a reduction in the computation time for insertion

moves. The effect for swap moves is low and even increased computation times occur for

some cases.

4.7 IMPROVEMENT METHODS 111

Table 4.28: Average computation times [s] of best neighbor algorithms

N
Inc 1 Inc 3 Inc 4

SIROJ SIROL SIROJ SIROL SIROJ SIROL

1 54.50 24.10 39.50 24.90 34.00 21.10

5 41.30 32.60 41.40 27.10 39.80 28.00

6 248.70 183.80 249.70 183.00 135.60 177.60

10 91.90 130.20 91.20 93.00 81.50 91.70

J1 1.80 1.50 1.60 1.60 1.40 1.50

J2 32.00 40.80 31.60 40.80 31.60 37.10

The makespan reductions led to the decision to omit the Chen block neighborhoods.

The neighborhoods examined for the configuration of the VNS in section 4.7 are swaps

and insertions for complete jobs and single levels without block criteria, since they achieve

the highest values of makespan improvement. The effects of using Nowicki across block

moves instead of level swaps and insertions without block criteria in the preferred neigh-

borhood hierarchies of Section 4.7 are examined in subsection 4.7.6.

4.7 Improvement Methods

Improvement methods use an initial solution to search for better solutions in prede-

fined neighborhoods. The metaheuristic improvement methods examined are variable

neighborhood search, simulated annealing and tabu search.

4.7.1 Simple Local Search Algorithms

Two common local search algorithms are the first improvement and the best neighbor

algorithms.31 Both are often integrated in metaheuristic solution methods like GRASP32,

particle swarm optimization33 and simulated annealing34 for different flow shop problems.

Both are trajectory methods, applying neighborhood moves to an incumbent solution.

The first improvement algorithm evaluates neighbors in a predefined neighborhood N in

a random order. The first solution found, which improves the initial solution, is accepted

as the new solution. The procedure is shown in algorithm 4.9. The initial solution is

kept, if no improvement can be found. The improvement criterion for the RPFS is the

31 See Widmer/Hertz (1989): A new heuristic method for flow shops , p. 190.
32 See Ruiz/Stützle (2007): Iterated greedy algorithm, p. 2037.
33 See Tseng/Liao (2008): Particle swarm optimization for lot-streaming , p. 3105.
34 See Naderi/Zandieh/Roshanaei (2009): Scheduling hybrid flowshops with sequence dependent

setup times , p. 1189.

4.7 IMPROVEMENT METHODS 112

makespan of a schedule. The first improvement is considered to shorten the computation

time in local search phases of different algorithms.35

Recalling the method introduced in Chapter 2, the implementation of the first im-

provement algorithm is given by algorithm 4.9.

Algorithm 4.9 First improvement

Data: n, L, m and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

(1) Initial solution: Result of a constructive heuristic πinit.

(2) Update solution: πbest ← πinit.

(3) Identify a list of all tmax valid moves in neighborhood N (πinit).

(4) t← 1.

while t ≤ tmax do

5) Update solution: πt ← πinit.

(6) Perform a random move from the list of moves.

if Cmax (πt) < Cmax (πbest) then

(7) πbest ← πt and t← tmax.

end if

(8) Delete the move from the list of valid moves.

(9) t← t+ 1.

end while

The best neighbor algorithm, shown in algorithm 4.10, evaluates all valid moves in

a predefined neighborhood N . The solution with the lowest makespan is accepted if it

improves the initial solution.

35 See Ishibuchi/Yoshida/Murata (2003): Memetic algorithms for permutation flowshops , p. 205.

4.7 IMPROVEMENT METHODS 113

Algorithm 4.10 Best neighbor

Data: n, L, m and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Initial solution: Result of a constructive heuristic πinit.

(2) Update solution: πbest ← πinit.

(3) Identify a list of all tmax valid moves in neighborhood N (πinit).

(4) t← 1

while t ≤ tmax do

(5) Update solution: πt ← πinit

(6) Perform move t in the list of moves

if Cmax (πt) < Cmax (πbest) then

(7) πbest ← πt

end if

(8) t← t+ 1

end while

Both local search mechanisms are tested in different calibrations of a VNS in Section

4.7.2.

4.7.2 Variable Neighborhood Search

The VNS applied to the RPFS is based on different neighborhood setups. The available

neighborhoods are:

• Swaps of job levels without block criteria,

• Insertion moves of single job levels without block criteria,

• Nowicki across block swaps of single job levels,

• Nowicki across block insertion moves of single job levels,

• Swaps of complete jobs,

• Insertion moves of complete jobs.

The block criteria do not apply to complete jobs, since they are multiply represented

by their levels within the permutation.

The various neighborhoods are used in different hierarchies. The criteria for selecting

the neighborhoods are:

1. Job moves or level moves first,

2. Swap moves or insertion moves first,

4.7 IMPROVEMENT METHODS 114

3. Level moves without considering block criteria or Nowicki across block moves.

The first two characteristics of neighborhood hierarchies are examined in subsection

4.7.5. The third point is investigated in subsection 4.7.6.

The VNS was described first by Mladenović/Hansen (1997).36 and basically con-

sists of two alternating phases. One phase is called shaking and is used to escape local

optima in order to find another, better, local optimum or the global optimum. The other

phase applies a local search method to identify local optima. A basic overview of the

method is shown in Algorithm 4.11.

Algorithm 4.11 Variable neighborhood search

Data: n, L, m and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m

(1) Initial solution: Result of a constructive heuristic πinit.

(2) Update solution: πbest ← πinit

(3) t← 1

while t ≤ tmax do

(4) Shaking:

Select random neighbor π ∈ Nt (πbest)

(5) Local Search:

First improvement algorithm or best neighbor algorithm in Nt (π) to obtain the

local search solution π′.

if Cmax (π
′) < Cmax (πbest) then

(6a) πbest ← π′ and t← 1

else

(6b) t← t+ 1

end if

end while

Initial Solution

The initial solution for the VNS is generated by one of the suggested constructive heuris-

tics, i.e. NEHJ, SIROJ, STPTL or SIROL.

Shaking

The shaking phase provides the possibility to leave local optima in order to obtain an

even better solution than the current best in an additional local search phase. The

shaking applies if no improvement is found within a selected neighborhood. The next

neighborhood is selected, and a random valid move within this neighborhood is made.

36 See Mladenović/Hansen (1997): Variable neighborhood search, pp. 1097–1098.

4.7 IMPROVEMENT METHODS 115

The different a = 1, . . . , 8 neighborhood hierarchies N a
t are presented in Table 4.29.

“J-swap” (neighborhood N = J1) and “J-insert” (N = J2) are neighborhood definitions

that require moves of all levels of the selected jobs. “L-swap” (neighborhood N = 1)

and “L-insert” (N = 6) are single level move neighborhoods. Block criteria are not

considered for the level moves for the tests in subsection 4.7.5.

Table 4.29: Examined neighborhood hierarchies

t N 1
t N 2

t N 3
t N 4

t N 5
t N 6

t N 7
t N 8

t

1 J-swap J-insert J-swap J-insert L-insert L-swap L-insert L-swap

2 J-insert J-swap L-swap L-insert L-swap J-swap J-insert J-swap

3 L-swap L-insert J-insert J-swap J-insert L-insert L-swap L-insert

4 L-insert L-swap L-insert L-swap J-swap J-insert J-swap J-insert

Hansen/Mladenović (1997) preferred to start in neighborhoods that are defined

by relatively small changes in the current solution.37 It is disputable whether insertion

or swap moves imply larger changes in a given solution. Insertion moves change the

sequence position of a minimum of two job levels in the permutation, but may also affect

more than one sequence position since they can shift several members of the permutation

to the right or to the left. Swap moves of two permutation members, on the other hand,

are limited to two changes in the permutation position. Job moves define neighborhoods

that yield relatively large changes in the solution structure, since multiple job levels are

inserted or swapped. The issue of dividing a permutation into blocks and the resulting

neighborhoods of moves within a block or to another block are not directly linked to a

larger or smaller neighborhood. There can only be a small number of valid moves due

to tight technological move limits of a permutation member.

Integrated Local Search Algorithm

The shaking is followed by a local search phase. Two different methods are tested within

this local search phase:

• First improvement,

• Best neighbor.

One of the local search methods is applied on the shaking solution. There is no change

in the shaking solution if no improvement is found. In this case the VNS changes to the

37 See Hansen/Mladenović (1997): Variable neighborhood search for the p-median, p. 211.

4.7 IMPROVEMENT METHODS 116

next neighborhood Nt+1 and repeats the shaking on the best solution, πbest, found at

that point.

Iterations and Termination

The algorithm terminates if the tmaxth neighborhood is reached and no better solution

compared to the current best is found.

4.7.3 Tabu Search

The tabu search looks for the best neighbor in each iteration. Neighbors that are part of

the tabu list are not accepted if they do not lead to large improvements in the objective

value. The tabu list stores forbidden moves to prevent the algorithm from becoming

stuck in local optima. The size of such tabu lists and the tabu tenure can be fixed

or variable. The calibration of the implemented tabu search is based on Nowicki/

Smutnicki (1996).38 The initial solutions are created with one of the constructive

heuristics NEHJ, SIROJ, STPTL or SIROL.

The maximum number of tabu search iterations is limited to tmax = 5000 for every

problem. The calibration of the tabu search, shown in Figure 4.12, is explained in the

following.

38 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, pp. 161–167.

4.7 IMPROVEMENT METHODS 117

Algorithm 4.12 Tabu search

Data: n, L, m, A and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

(1) Initial solution: Result of a constructive heuristic πinit.

(2) Update solution: πbest ← πinit, π ← πinit.

(3) t← 1.

while t ≤ tmax do

(4) Create candidate list: All moves to the permutations π′ ∈ N (π) and evaluate

the candidates.

(5) Select Candidate: Choose the candidate πt with the minimum Cmax (πt) among

all candidates.

if Candidate is a tabu and Aspiration function value F asp ≤ Cmax (πt). then

if Tabu list size > 0 then

(6a) Cmax (πt)← A and go back to (5).

else

(6b) Remove tabu list row 1 and restore candidate list and the Cmax values.

end if

else

(7) π ← πt and t← t+ 1 and Add move to tabu list.

if Cmax (π) < Cmax (πbest) then

(8) πbest ← π.

end if

if Tabu list size > 8 then

(9) Remove tabu list row 1.

end if

end if

end while

Tabu list

The tabu list size is chosen to be static with eight rows. Nowicki/Smutnicki (1996)

used a static tabu list of the size eight.39 This leads to a tabu tenure for each row in the

tabu list of eight iterations. The tabu moves are recorded by the following scheme:

For insertion moves, the two items registered within the tabu list are:

1. The job or job level that has been moved,

2. The job or job level that took its position within the permutation.

39 See Nowicki/Smutnicki (1996): Fast taboo search for the job shop problem, p. 170.

4.7 IMPROVEMENT METHODS 118

An insertion move is tabu if it changes the sequence position of any of the recorded pairs

of job levels or jobs in the tabu list. The entry for job swaps is the two participating

jobs. The pair of participating job levels is added to the tabu list in case of a level

swap neighborhood. A move is tabu if there is a pair of jobs or job levels that change

their sequence position by applying the move and are identical to a pair of jobs or job

levels within the tabu list. Nowicki/Smutnicki (1996) used Nowicki across block

level insertion moves (neighborhood N = 10). These moves and job insertion moves

(N = J2) are the neighborhoods tested in subsection 4.7.5.

Aspiration function

Nevertheless, a tabu move can be accepted if a certain aspiration criterion is fulfilled. The

aspiration function within this implementation of tabu search compares the makespan,

Cmax (πt), of the tabu move in iteration t and the tabu permutation, with so-called

income and outcome values. Considering the tabu solution πt of an iteration t, the

income makespan value is defined as CI
max (πt) = Cmax (πt−1), i.e. the makespan value

of the previous iteration. The outcome is defined as CO
max (πt) = Cmax (πt+1), i.e. the

makespan value of the next iteration. Two values FI (Cmax (πt)) and FO (Cmax (πt)) are

necessary to decide whether or not a tabu move should be accepted via the aspiration

function. To determine the income value FI and the outcome value FO, the income and

outcome values of the relevant iterations resulting in a permutation with an objective

value of Cmax (πt′) = Cmax (πt) are compared. The maximum values of these incomes

CI
max (πt′) ∀t

′ = t′ = 2, . . . , t and outcomes CO
max (πt) ∀t

′ = 1, . . . , t − 1 are the values

FI (Cmax (πt)) and FO (Cmax (πt)). The aspiration function chooses the minimum of value

FI (Cmax (πt)) and FO (Cmax (πt)) by equation (4.31) and compares it to the objective

value Cmax (πt) of the tabu permutation. If the makespan value obtained by the tabu

move is lower than the aspiration value, then the tabu move is accepted and the iteration

counter t is increased by one, otherwise the next candidate will be chosen.

A summary of the calculations for the aspiration function value F asp is given by the

following equations (4.27)-(4.31).

CI
max (πt′) = Cmax (πt′−1) , (4.27)

FI (Cmax (πt)) = min
t′=2,...,t

{

CI
max (πt′)

}

, (4.28)

CO
max (πt′) = Cmax (πt′+1) , (4.29)

FO (Cmax (πt)) = min
t′=1,...,t−1

{

CO
max (πt′)

}

(4.30)

F asp = min {FI ;FO} . (4.31)

4.7 IMPROVEMENT METHODS 119

The implemented algorithm for finding the aspiration value F is shown with the pseudo

code 4.13.

Algorithm 4.13 Finding the value of the aspiration function

Data: current iteration number t, Cmax (πt) ∀t
′

= 1, . . . , t, A.

(1) FI ← A, FO ← A

(2) t′ ≤ 1

while t′ ≤ t do

if Cmax (πt′) = Cmax (πt) then

if t′ > 1 and Cmax (πt′−1) < FI then

(3a) FI ← Cmax (πt′−1)

end if

if t′ < t and Cmax (πt′+1) < FO then

(3b) FO ← Cmax (πt′+1)

end if

end if

(4) t′ ← t′ + 1

end while

(5) F asp ← min {FI ;FO}

If a makespan value is lower than the aspiration value, then the tabu move is accepted

and the next iteration begins.

4.7.4 Simulated Annealing

Simulated annealing uses another scheme to avoid being stuck in a local optimum. Worse

objective values than in previous iterations are accepted with a certain probability. This

probability declines with the number of iterations. The chosen implementation of simu-

lated annealing is based on Osman/Potts (1989)40 and summarized in algorithm 4.14.

The initialization is done with one of the suggested constructive methods used also for

the VNS and the TS. The temperature in each iteration is T t.

40 See Osman/Potts (1989): Simulated annealing for permutation flow-shop scheduling , pp. 551–557.

4.7 IMPROVEMENT METHODS 120

Algorithm 4.14 Simulated annealing

Data: n, L, m, T 1, K and pilk ∀i = 1, . . . , n; l = 1, . . . , L; k = 1, . . . ,m.

(1) Initial solution: Result of a constructive heuristic πinit.

(2) Update solution: πbest ← πinit

while T t ≥ Tmin do

(3) Create random neighbor: π′ ∈ N (π).

if Cmax (π
′) < Cmax (π) then

(4a) π ← π′.

if Cmax (π
′) < Cmax (πbest) then

(4b) πbest ← π′

end if

else

(4c) Create random number 0 ≤ r ≤ 1.

if r ≤ P = e−
Cmax(π)−Cmax(π′)

Tt then

(4d) π ← π′.

end if

end if

(5) T t+1 ← T t/
(

1 +K · T t
)

.

end while

Annealing scheme

The initial temperature is calculated by T 1 =
∑n

i=1

∑L
l=1

∑m
k=1 p

i
lk/ (5 · n · L ·m). The

algorithm terminates when T t < Tmin = 1. The number of iterations per temperature

state is one. The annealing scheme by Osman/Potts (1989) is based on the number of

temperature states, which depends on the initial temperature. The annealing function

for the re-entrant permutation flow shop in this thesis is based on the calculation of

annealing parameters of Osman/Potts (1989), but its parameters K and K depend

on the neighborhood type. The first annealing parameter for level move neighborhoods

is calculated by:

K = max {3300 log (n · L− L+ 1) + 7500 logm− 18250; 2000} .

The calculation of the parameter is slightly different for job move neighborhoods:

K = max {3300 log n+ 7500 logm− 18250; 2000} .

4.7 IMPROVEMENT METHODS 121

The parameter K for job moves is calculated with log n because there are n different

positions in a job permutation and every job is allowed to change to every position

in every possible permutation. A level permutation consists of n · L positions, but

not every level is allowed to change its position arbitrarily. This limitation of moves

grows with a higher number of levels per job L. Therefore, L is subtracted from n · L

in log (n · L− L+ 1) if the neighborhood is a level move neighborhood. The second

annealing parameter is defined by:

K =
T 1 − Tmin

(K − 1) · T init · Tmin

The annealing scheme for each iteration t is Tt+1 = T/
(

1 +K · Tt

)

.

Probabilistic function

The probabilistic function generates a probability P , which is the probability of accepting

a worse value of the makespan compared to the previous solution:

P = e−
Cmax(π)−Cmax(π′)

T .

Additionally, a uniformly distributed continuous random number 0 ≤ r ≤ 1 is gener-

ated. For r ≤ P , the new solution is accepted and the objective value updated. The

probabilistic function is suggested by Osman/Potts (1989), Ogbu/Smith (1990) and

Ogbu/Smith (1991) and for permutation flow shop problems.41

Neighborhoods

The neighborhoods used to generate new solutions for the experiments in subsection

4.7.5 are the level insertion (N = J2) and job insertion neighborhood (N = 6), because

Osman/Potts (1989) recommended insertion neighborhoods. Block criteria are not

considered.

4.7.5 Computational Experiments

This subsection compares different configurations of the variable neighborhood search,

tabu search and simulated annealing for the minimization of the makespan in re-entrant

permutation flow shops. The aim of the computational experiments is to find an ap-

propriate configuration for the VNS and to find out if it is superior to the TS and SA.

41 See Osman/Potts (1989): Simulated annealing for permutation flow-shop scheduling , p. 553,
Ogbu/Smith (1990): Simulated annealing for the n/m/C max flowshop problem, p. 64 and Ogbu/
Smith (1991): Simulated annealing for the permutation flowshop problem, p. 244.

4.7 IMPROVEMENT METHODS 122

The VNS configurations are denominated by “VNSa” and “BN” for a best neighbor local

search or “FI” for a first improvement local search. a stands for the number, suggested in

subsection 4.7.2, of the neighborhood hierarchies for the VNS. The tabu search is tested

with a job insertion (N = J2) and a Nowicki across block level insertion neighborhood

(N = 10). The simulated annealing approach uses a simple level insertion (N = 6) and

a job insertion neighborhood (N = J2). All metaheuristics are tested with four different

initialization methods (NEHJ, SIROJ, STPTL and SIROL).

Test instances

The parameters of the problem size are n ∈ {2, 3, 4, 5}, L ∈ {2, 3, 4, 5}, and m ∈

{2, 5, 6, 10} for small problems and n ∈ {20, 40}, L ∈ {5, 10}, and m ∈ {20, 40} for large

problems.42 The processing times are uniformly distributed random numbers between 1

and 99. Ten test instances are generated for each problem size. Missing operations are

generated about the Inc 1 and Inc 3 schemes.43

Results

Table 4.30 shows the average makespan deviations between all solutions calculated by

the metaheuristics and the MIP solutions for the small test instances. The aim of this

evaluation is to determine a method to use for small problem sizes, by taking into account

the deviation to the MIP solution. The MIP solutions are obtained with CPLEX 12.4

with a computation time limit of 1 hour. The makespan deviation is defined as:

∆CMIP
max =

Cmax (πmeta)

Cmax (πMIP)
− 1.

Cmax (πMIP) stands for the makespan value of a MIP solution. Cmax (πmeta) is the

makespan with the permutation πmeta calculated by a metaheuristic. The VNS4 BN

delivers the best results for the small instances of test set Inc 1 independently from the

initialization method used, and for the Inc 3 instances if the initial solution is created

with the SIROL rule. The VNS3 BN has three times the lowest average ∆CMIP
max for small

Inc 3 instances. These results imply the use of either the VNS3 BN or VNS4 BN for

small problem sizes. The computation times are negligible for these problem sizes. The

initialization with the STPTL rule delivers, on average, the best results for the VNS3

BN and VNS4 BN. There is a tendency of higher deviations to the MIP solutions in the

Inc 3 set than in the Inc 1 set. This means that a higher number of missing operations

makes it harder for the heuristic solution approaches to find a near optimal or optimal

42 See Table B.2 in Appendix B (p. 204) for detailed information on the problem sizes.
43 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

4.7 IMPROVEMENT METHODS 123

solution.

Table 4.30: Average makespan deviation ∆CMIP
max [%] for small problems

Inc 1 Inc 3

NEHJ SIROJ STPTL SIROL NEHJ SIROJ STPTL SIROL

VNS1 BN 2.02 1.90 1.63 2.88 4.34 4.87 3.23 4.95

VNS2 BN 2.05 1.93 1.66 2.89 4.85 4.84 3.38 6.37

VNS3 BN 2.11 1.91 1.69 2.76 4.09 4.15 2.63 4.92

VNS4 BN 1.84 1.79 1.61 2.67 4.32 4.51 3.08 4.44

VNS5 BN 2.08 2.21 1.77 3.08 4.84 4.32 3.22 5.48

VNS6 BN 2.03 2.15 1.77 3.32 4.29 4.38 2.98 6.25

VNS7 BN 1.97 2.24 1.72 2.69 5.02 4.70 2.94 4.80

VNS8 BN 1.98 2.46 1.75 3.27 4.72 4.29 3.23 5.98

VNS1 FI 3.27 3.31 2.66 10.10 7.54 8.01 4.08 19.30

VNS2 FI 2.55 2.90 2.20 3.45 5.93 6.34 4.44 7.73

VNS3 FI 3.18 3.42 2.54 8.47 8.70 8.37 4.60 12.73

VNS4 FI 3.43 3.60 2.58 5.46 8.21 8.45 4.53 11.28

VNS5 FI 3.32 4.09 2.64 7.56 6.67 6.41 4.84 11.49

VNS6 FI 3.34 3.61 2.65 6.64 7.14 8.19 4.76 10.84

VNS7 FI 3.90 4.34 2.94 7.73 7.35 7.16 4.72 11.60

VNS8 FI 3.88 4.32 2.89 7.40 7.01 7.25 4.69 11.29

TS N = J2 4.63 4.98 3.18 29.53 10.35 10.62 5.79 36.03

TS N = 10 5.70 7.60 4.32 35.27 9.30 10.54 5.85 47.04

SA N = J2 6.63 7.69 4.97 35.01 11.61 12.02 7.21 37.52

SA N = 6 8.10 10.64 6.42 46.09 12.85 14.92 8.33 58.47

Best 1.84 1.79 1.61 2.67 4.09 4.15 2.63 4.44

The values of mean makespan reduction for large problem sizes are considered (Table

4.31) to get a pre-selection on the constructive methods used for initialization of the

metaheuristics. The table shows the average deviation of a solution obtained with a

certain method from the best solution over all methods. The values are calculated by:

∆Cbest
max =

Cmax (πmeta)

Cmax (πbest)
− 1.

The lowest obtained makespan value for a problem instance is denoted with Cmax (πbest).

The mean deviations from the best achieved makespan, which are obtained with the

STPTL rule, an opening procedure for the metaheuristics, are the lowest for all meta-

heuristics in the test instance sets Inc 1 and Inc 3. The weakest results for every meta-

4.7 IMPROVEMENT METHODS 124

heuristic are obtained with the SIROL rule.

The values for the Inc 3 instances are slightly higher than the makespan deviations in

the Inc 1 instances.

Table 4.31: Average makespan deviation ∆Cbest
max [%] for large problems

Inc 1 Inc 3

NEHJ SIROJ STPTL SIROL NEHJ SIROJ STPTL SIROL

VNS1 BN 2.29 2.38 1.29 37.69 5.24 6.02 1.47 32.27

VNS2 BN 2.58 2.71 1.84 25.56 5.29 5.93 1.62 26.26

VNS3 BN 2.28 2.16 1.69 46.03 5.51 5.54 1.73 43.78

VNS4 BN 2.48 2.45 1.78 25.16 5.80 5.35 1.98 24.82

VNS5 BN 2.58 2.73 2.57 50.30 5.22 5.10 2.47 44.27

VNS6 BN 2.87 2.60 2.29 48.26 5.39 5.95 2.25 43.87

VNS7 BN 2.84 2.33 2.14 39.86 5.79 5.12 2.17 38.97

VNS8 BN 2.63 2.60 1.88 50.33 5.29 4.75 2.03 47.68

VNS1 FI 3.30 3.34 2.57 183.62 7.73 7.41 3.13 164.08

VNS2 FI 2.70 3.23 1.87 27.17 6.57 6.82 2.25 27.80

VNS3 FI 3.06 3.06 2.15 166.62 7.65 7.44 2.59 156.29

VNS4 FI 3.17 3.26 2.35 30.57 7.44 7.48 2.46 26.76

VNS5 FI 6.00 6.13 5.69 135.77 9.69 10.26 5.96 115.10

VNS6 FI 4.14 4.08 3.53 44.72 7.84 8.31 3.97 43.88

VNS7 FI 5.27 5.83 4.75 125.86 10.06 9.87 5.29 111.29

VNS8 FI 6.50 6.64 6.01 86.73 10.55 10.62 5.85 73.32

TS N = J2 6.05 6.28 5.07 259.68 11.20 11.79 5.33 234.45

TS N = 10 6.62 6.92 5.92 272.20 11.80 12.30 6.02 245.44

SA N = J2 3.86 4.28 3.07 122.42 8.89 9.36 3.74 117.31

SA N = 6 7.40 7.69 6.63 279.25 12.66 13.14 6.87 255.64

Best 2.28 2.16 1.29 25.16 5.24 4.75 1.47 24.82

The main area of application for heuristics contains large problem sizes; therefore, the

results for the large problem sizes are examined in the following. The average makespan

reductions are used to compare the different metaheuristic improvement methods and

their different configurations. The relative makespan reductions of the metaheuristic

solutions compared to the initial solutions are:

∆C init
max = 1−

Cmax (πmeta)

Cmax (πinit)
.

4.7 IMPROVEMENT METHODS 125

The mean values of the large instances are shown in Table 4.32.44 The VNS with neigh-

borhood hierarchy a = 1 in combination with a best neighbor local search delivers the

highest mean improvements in three cases: two times when the the initial solution is pro-

vided by the STPTL rule (for Inc 1 and Inc 3 instances), and once for a initial solution

with the NEHJ method for the Inc 3 instances. The other mean makespan reduction

values of the VNS1 BN are not far from the best achieved, except for the initializa-

tion with the SIROJ rule in test set Inc 3. All metaheuristics deliver the worst results

when they are initialized with the SIROL rule. If only VNS configurations with the

first improvement local search are considered, then neighborhood hierarchy a = 2, i.e.

VNS2 FI, is the most promising approach for large instances. The solutions achieved

with best neighbor local search are better than those obtained with first improvement.

Tabu search and simulated annealing deliver weak results compared to the VNS1 BN

and VNS2 FI. The tested job neighborhoods are superior to the level moves for tabu

search and simulated annealing.

44 The average makespan reductions, ∆Cinit

max
, for small problems are provided by Table C.1 in Appendix

C (p. 206).

4.7 IMPROVEMENT METHODS 126

Table 4.32: Average makespan reductions ∆C init
max [%] for large problems

Inc 1 Inc 3

NEHJ SIROJ STPTL SIROL NEHJ SIROJ STPTL SIROL

VNS1 BN 4.79 4.96 5.05 63.43 6.61 6.38 5.13 62.04

VNS2 BN 4.52 4.66 4.54 66.51 6.53 6.45 4.98 63.58

VNS3 BN 4.80 5.16 4.69 61.30 6.35 6.77 4.90 58.94

VNS4 BN 4.61 4.87 4.60 66.52 6.08 6.94 4.65 64.11

VNS5 BN 4.51 4.62 3.85 60.15 6.57 7.12 4.21 58.76

VNS6 BN 4.23 4.74 4.13 60.72 6.42 6.39 4.41 58.96

VNS7 BN 4.27 4.98 4.26 62.93 6.07 7.09 4.47 60.32

VNS8 BN 4.47 4.75 4.51 60.19 6.53 7.42 4.62 57.88

VNS1 FI 3.86 4.07 3.88 25.59 4.46 5.18 3.60 25.88

VNS2 FI 4.41 4.18 4.52 66.12 5.43 5.69 4.40 63.12

VNS3 FI 4.08 4.35 4.27 30.04 4.53 5.18 4.09 28.29

VNS4 FI 3.99 4.15 4.06 65.10 4.68 5.12 4.21 63.42

VNS5 FI 1.36 1.50 0.99 38.26 2.69 2.65 0.97 39.50

VNS6 FI 3.09 3.38 2.97 61.52 4.31 4.38 2.81 58.86

VNS7 FI 2.04 1.78 1.85 40.77 2.40 3.03 1.58 40.07

VNS8 FI 0.90 1.02 0.68 50.74 1.94 2.31 1.07 51.00

TS N = J2 1.33 1.37 1.54 6.23 1.43 1.38 1.56 6.55

TS N = 10 0.79 0.78 0.77 2.98 0.90 0.94 0.92 3.55

SA N = J2 3.35 3.23 3.41 40.95 3.47 3.51 3.03 38.14

SA N = 6 0.08 0.07 0.11 1.10 0.15 0.20 0.14 0.60

Best 4.80 5.16 5.05 66.52 6.61 7.42 5.13 64.11

Further information on the solution quality of the tested metaheuristics is provided in

Figures 4.48 and 4.49. They compare how often a metaheuristic obtains the best solution

among all the tested methods. Additionally, the frequency of obtaining the best solution

is shown if only solutions based on an initial STPTL solution are compared. The best

solution is most often achieved by the VNS1 BN method. The VNS2 FI delivers most

frequently the best solutions among the procedures with short computation times.

4.7 IMPROVEMENT METHODS 127

Figure 4.48: Frequency of obtaining best solutions for large Inc 1 problems

VNS1 BN

VNS2 BN

VNS3 BN

VNS4 BN

VNS5 BN

VNS6 BN

VNS7 BN

VNS8 BN

VNS1 FI

VNS2 FI

VNS3 FI

VNS4 FI

SA N=J2

Other

0 5 10 15 20 25

Only with STPTL rule
Over all opening procedures

Figure 4.49: Frequency of obtaining best solutions for large Inc 3 problems

VNS1 BN

VNS2 BN

VNS3 BN

VNS4 BN

VNS5 BN

VNS6 BN

VNS7 BN

VNS8 BN

VNS1 FI

VNS2 FI

VNS3 FI

VNS4 FI

SA N=J2

Other

0 5 10 15 20 25

Only with STPTL rule
Over all opening procedures

4.7 IMPROVEMENT METHODS 128

Figures 4.50 and 4.51 provide an overview of the computation times of the different

improvement methods for Inc 1 instances. The computation times for problems with an

increased number of missing operations, i.e. Inc 3 instances, can be seen in Appendix C.

The value refers only to the time used to improve an initial solution and the computation

times for initialization are not included. The shortest computation times are achieved

with the first improvement VNS, tabu search in all configurations and the simulated

annealing with level moves. The computation times are higher if the opening procedure

is SIROL. This leads to values higher than 15000 seconds for the VNS5 BN and VNS7

BN.

4.7 IMPROVEMENT METHODS 129

Figure 4.50: Average computation times for large Inc 1 instances (I)

VNS1

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS2

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS3

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS4

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS5

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

5000

10000

15000

20000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS6

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

6000

7000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

4.7 IMPROVEMENT METHODS 130

Figure 4.51: Average computation times for large Inc 1 instances (II)

VNS7

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

5000

10000

15000

20000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS8

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

6000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

TS

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

50

100

150

200

Problem size

m
L
n

N=J2 NEHJ
N=J2 SIROJ
N=J2 STPTL
N=J2 SIROL
N=10 NEHJ
N=10 SIROJ
N=10 STPTL
N=10 SIROL

SA

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

100

200

300

400

500

Problem size

m
L
n

N=J2 NEHJ
N=J2 SIROJ
N=J2 STPTL
N=J2 SIROL
N=6 NEHJ
N=6 SIROJ
N=6 STPTL
N=6 SIROL

The STPTL rule is suggested for further applications of the investigated metaheuristics

for re-entrant permutation flow shops with mixed levels and missing operations, because

of the results in this subsection. The VNS, especially its configurations VNS1 BN, is

superior in solution quality to the investigated tabu search and simulated annealing

configurations. The reason lies in the advanced exploitation of the solution space in

re-entrant permutation flow shops by applying job and level moves. The VNS1 BN is

further used in subsection 4.7.6 and Chapter 5 to minimize the makespan in re-entrant

permutation flow shops. An advantage of an integrated first improvement local search for

the VNS is its relatively short computation time. Hence, the VNS2 FI is also suggested

for the makespan minimization in re-entrant permutation flow shops and is used in

subsection 4.7.6 and Chapter 5.

4.7 IMPROVEMENT METHODS 131

Chen/Pan/Lin (2008), Chen/Pan/Wu (2008) and Qian et al. (2013b) ran tests

with other heuristic solution methods on similar problem sizes for re-entrant permuta-

tion flow shop problems. These authors published improvement rates over their NEHJ

solutions. Chen/Pan/Wu (2008) suggested a hybrid tabu search. The improvement

rates of makespan, ∆C init
max, over NEHJ solutions were between 2 and 4 % for test in-

stances similar to the here tested large problems.45 The hybrid genetic algorithm of

Chen/Pan/Lin (2008) delivered improvement rates between 1 and 4.5 % for small

problem sizes.46 Qian et al. (2013b) tested two differential evolution algorithms and the

hybrid genetic algorithm of Chen/Pan/Lin (2008) with medium and large problem

instances. The average value of ∆C init
max over the NEHJ solutions was 1.62 % for the

hybrid genetic algorithm, 4.39 % for the first differential evolution algorithm and 5.32

% for the second differential evolution algorithm if only problem instances with n ≥ 20

are considered.47 The suggested variable neighborhood search configurations, VNS1 BN

/ VNS2 FI, deliver average improvement values of 5.50 / 5.10 % (Inc 1) and 7.50 / 6.03

% (Inc 3) for small instances and 4.79 / 4.41 % (Inc 1) and 6.61 % / 5.43 % (Inc 3) for

large instances. The VNS configurations achieve obviously better makespan values. The

tests by Qian et al. (2013a) were performed on a similar computer system to the one

used for this thesis. The computation times of the differential equation algorithms for

the large problems sizes were regularly several hours. The suggested variable neighbor-

hood searches with only several hundred seconds are much faster than the approaches of

Qian et al. (2013a). The VNS is also superior to the iterated local search, which only

uses a level swap neighborhood, as proposed by Hinze/Sackmann (2016).48

4.7.6 Improvement of Metaheuristics

This subsection investigates the influence of exchanging the level moves without block

criteria with the corresponding Nowicki across block swap and insertion moves for the

VNS. The resulting VNS algorithms for the configurations suggested in subsection 4.7.5

are denoted with VNS1 BN* and VNS2 FI*. The tabu search with level moves uses

across block swaps (N = 5) instead of across block insertion moves, because of the

results on large instances in the neighborhood experiments. The same neighborhood

is also tested within the simulated annealing approach. Furthermore, neighborhoods

in the tabu search and simulated annealing only using job moves are changed to job

swaps (N = 11) instead of job insertion moves. All metaheuristics are initialized with

the STPTL rule. The target of the experiment is to find out how these changes in

45 See Chen/Pan/Wu (2008): Hybrid tabu search for re-entrant flow-shops , pp. 1928–1929.
46 See Chen/Pan/Lin (2008): A hybrid genetic algorithm for re-entrant flow-shops , p. 575.
47 See Qian et al. (2013b): Reentrant permutation flow-shops with different job reentrants , p. 25.
48 See Hinze/Sackmann (2016): An Iterated Local Search for a Re-entrant Flow Shop, pp. 221–226.

4.7 IMPROVEMENT METHODS 132

calibration affect the makespan values and computation times. The test instances are

identical to those used in the previous subsection 4.7.5.49 Table 4.33 shows the average

reductions of makespan compared to the previous values from subsection 4.7.5. The

makespan reduction ∆C∗
max is calculated with:

∆C∗
max =

Cmax (πmeta∗)

Cmax (πmeta)
− 1.

Applying a metaheuristic with the changed neighborhood setting results in the permu-

tation πmeta∗ . Negative values indicate an increase, i.e. worse makespan values, while

positive values signal an improvement. The makespan improvements are higher for small

problems than in the large problems for both tested VNS configurations. The investi-

gated changes in a neighborhood structure lead to weaker results compared to the pre-

vious experiments for the variable neighborhood searches on large problems. Positive ef-

fects are observed for small problems, especially for the VNS2 with the first improvement

local search. A reason for the negative effects in the variable neighborhood approaches

is the restriction of moves during the shaking phase. This may prevent the algorithms

leaving local optima. The neighborhood change for the level based tabu search leads to

slight improvements in the large instances. The use of job swaps instead of insertions

for the tabu search and simulated annealing does not lead to positive effects.

Table 4.33: Average makespan reductions ∆C∗
max [%] for large problems

Inc 1 Inc 3

Small Large Total Small Large Total

VNS1 BN* −0.01 −0.43 −0.06 0.18 −0.28 0.03

VNS2 FI* 0.08 −0.25 0.04 0.07 −0.20 −0.02

TS N = J1 −0.69 −0.06 −0.62 −0.27 0.00 −0.18

TS N = 5 −0.38 0.02 −0.34 −0.23 0.02 −0.15

SA N = J1 −0.52 −2.41 −0.73 −0.31 −1.94 −0.85

SA N = 5 0.22 −0.04 0.19 0.14 −0.06 0.07

The effects of the different neighborhood calibrations on computation times are shown

in Figure 4.52 for the large problem sizes. The changes lead to lower computation times

for the VNS approaches in the Inc 1 test set but partly longer computing times in the

test set with a higher number of missing operations, i.e. Inc 3. The changes in the

calibration of the tabu search and simulated annealing lead to a decrease in computing

time, especially for the job move neighborhoods.

49 See Table B.2 in Appendix B (p. 204) and Table B.1 (p. 203) for detailed information on the
problem instances.

4.7 IMPROVEMENT METHODS 133

Figure 4.52: Average computation times with changed neighborhood structures

VNS Inc 1

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

100

200

300

400

500

600

Problem size

m
L
n

VNS1 BN
VNS2 FI
VNS1 BN*
VNS2 FI*

VNS Inc 3

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

100

200

300

400

500

600

Problem size

m
L
n

VNS1 BN
VNS2 FI
VNS1 BN*
VNS2 FI*

TS Inc 1

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

20

40

60

80

100

120

Problem size

m
L
n

N=12
N=10
N=11
N=5

TS Inc 3

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

20

40

60

80

100

120

Problem size

m
L
n

N=12
N=10
N=11
N=5

SA Inc 1

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

50

100

150

200

250

300

350

Problem size

m
L
n

N=12
N=6
N=11
N=5

SA Inc 3

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

50

100

150

200

250

300

350

Problem size

m
L
n

N=12
N=6
N=11
N=5

4.8 APPLICATION ON JOB SHOP PROBLEMS 134

Considering the decreasing solution quality for the VNS and the low impact on com-

putation time, the examined changes of neighborhood structures are not recommended

for re-entrant permutation flow shop problems without lot streaming.

4.8 Application on Job Shop Problems

The RPFS models are also able to solve job shop scheduling problems optimally. This

section shows how missing operations can be used to represent a job shop problem.

A common job shop model50 and another formulation based on the model of Manne

(1960)51 are suggested. Afterwards, the computational performance of the job shop

model is compared to the performance of the re-entrant permutation flow shop model

with missing operations. The problem assumptions are:

1. All n jobs are available for processing at time zero.

2. There is a predetermined machine sequence for each job.

3. The machine sequence does not need to be identical for each job.

4. Each job may be processed on only one machine at a time, i.e., job splitting is not

permitted.

5. There is only one of each type of machine available.

6. Only one job at a time can be processed on an individual machine.

7. Processing times of all n jobs on each of the m machines are predetermined.

8. Set-up times are not considered.

9. Unlimited in-process inventory is allowed between consecutive machines in the

production system.

10. No preemption is allowed: once started, a task must be completed without inter-

ruption.

The job shop model from literature uses sig as the starting time variable for the start

of the gth operation of job i. pig is the processing time of the gth operation of job i. The

parameter wi
g indicates on which machine the gth operation of job i is performed.

50 See Domschke/Scholl/Voß (1997): Produktionsplanung , p. 403.
51 See Manne (1960): On the job-shop scheduling problem, p. 220.

4.8 APPLICATION ON JOB SHOP PROBLEMS 135

The objective in the considered job shop problem is to minimize the makespan (4.32).

minCmax (4.32)

The makespan is measured by the inequalities 4.33.

sim + pim ≤ Cmax (4.33)

∀i = 1, . . . , n.

The inequalities 4.34 ensure the correct sequence of operations for every job i. The

gth operation needs to be finished before operation g + 1 is allowed to start.

sig + pig ≤ sig+1 (4.34)

∀i = 1, . . . , n; g = 1, . . . ,m− 1.

The constraints 4.35 and 4.36 prevent the machines k = 1, . . . ,m from being occupied

by more than one job at a point of time. The constraints apply to the gth operation

of job i and the g′th operation of job i′, if they both need to be performed on machine

wi
g = wi′

g′ = k. The binary variable yii′k equals 1 if job i is scheduled before job i′ on

machine k. Otherwise, it equals 0. The operation i′g′ is only allowed to start on machine

k, after operation ig is finished, if yii′k = 0 (4.35).

A (1− yii′k) + sig + pig ≤ si
′

g′ (4.35)

∀i, i′ = 1, . . . , n; g, g′ = 1, . . . ,m; k = 1, . . . ,m; if
(

wi
g = wi′

g′ = k
)

.

In the case of yii′k = 0, operation i′g′ needs to completed before operation ig is allowed

to start (4.36).

Ayii′k + si
′

g′ + pi
′

g′ ≤ sig (4.36)

∀i, i′ = 1, . . . , n; g, g′ = 1, . . . ,m; k = 1, . . . ,m; if
(

wi
g = wi′

g′ = k
)

.

The non-negativity constraints (4.37) and binary constraints (4.37) apply to the start-

ing times and sequence variables.

sig ≥ 0 ∀i = 1, . . . , n; k = 1, . . . ,m. (4.37)

yii′k ∈ {0; 1} ∀i, i′ = 1, . . . , n; k = 1, . . . ,m. (4.38)

4.8 APPLICATION ON JOB SHOP PROBLEMS 136

The following example considers three jobs that need to be processed on three ma-

chines. The machine sequences are given by W :

W =











1 2 3

2 1 3

3 2 1











.

The processing times of the different operations are provided by the values of pig:

p1g =
(

5 3 1
)

, p2g =
(

2 3 3
)

, p3g =
(

1 1 4
)

The number of levels in the corresponding RPFS problem with missing operations is

L = m = 3. The processing time parameters are:

p1lk =











5 0 0

0 3 0

0 0 1











, p2lk =











0 2 0

3 0 0

0 0 3











, p3lk =











0 0 1

0 1 0

4 0 0











Both models lead to a result of Cmax = 12. The solution is shown in Figure 4.53.

Figure 4.53: Solution to the job shop example

Time

3

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

Both models are tested on several job shop problem instances. The number of jobs in

the test instances is n = 5, . . . , 10, which are processed on m = 5, . . . , 10 machines with

n = m for all problem sizes. Ten different instances are generated and solved for each

problem size. The processing times are uniformly distributed random numbers between

1 and 99.52

The results on computational performance are shown in Figures 4.54 and 4.55. The

average number of iterations performed by the level model on the n = 10,m = 10

problems is lower than for the n = 9,m = 9 instances, because CPLEX runs out of

time and the iterations are more time consuming. The number of iterations is generally

52 See Table B.3 in Appendix B (p. 205) for detailed information on the problem sizes.

4.8 APPLICATION ON JOB SHOP PROBLEMS 137

higher for the level model compared to the job shop model.

Figure 4.54: Average number of CPLEX iterations for job shops

N
u
m

b
er

 o
f
it
er

at
io

n
s

5
5

6
6

7
7

8
8

9
9

10
10

0.0e+00

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1.2e+07

Problem size

m
n

Job shop model

Level model

The computation times of the level model are higher compared to the pure job shop

model. The mean computation time of the level model reaches a limit of 1 hour for the

problem size n = 10,m = 10, while the job shop needs just several seconds to optimally

solve the problems.

4.8 APPLICATION ON JOB SHOP PROBLEMS 138

Figure 4.55: Average computation times for job shops

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
5

6
6

7
7

8
8

9
9

10
10

0

1000

2000

3000

4000

Problem size

m
n

Job shop model

Level model

The level model in this form and with this kind of input data does not seem to

be a suitable alternative to solve job shop problems. A possible improvement is the

reduction of levels by allowing multiple processing times greater than 0 within one job

level. This gives the representation a more flow shop-like appeal and may lead to a better

computational performance. Generally, the model is able to find the optimal solutions

for job shop problems.

5 Re-entrant Permutation Flow Shop

Problems with Mixed Levels, Missing

Operations and Lot Streaming

The term “lot streaming” for splitting up a production job into several sublots was ini-

tially used for a job shop problem.1 The basic condition for applying lot streaming is,

that the jobs can be divided, for example, if a job consists of a discrete number of parts.

The first part of this chapter investigates the impact of different sublot forms and pro-

cessing requirements on the makespan and computational performance by using different

MIP models to solve re-entrant lot streaming problems. A framework for metaheuristics

is discussed in section 5.4 based on the findings from the MIP models.

5.1 Introduction

It is possible to split the operations to process a job if the job is assumed to be a lot

consisting of multiple parts. Dividing the job into two sublots makes it possible to

transfer the first sublot earlier to the next processing step.

An example of the ability to reduce the makespan is given for one job with the pa-

rameters plk. The job is processed in two levels and on two machines.

plk =





4 4

4 4



 .

The resulting starting times in a re-entrant flow shop without lot streaming are:

slk =





0 4

8 12



 .

The job is finished after 16 time units.

1 Reiter (1966): A system for managing job-shop production, pp. 371–393.

139

5.1 INTRODUCTION 140

Lot streaming makes it possible to schedule the sublots of a job. The models in this

chapter are able to split each of the n jobs into Q sublots in order to reduce makespan.

Figure 5.1 shows the processing of a job that needs to visit two machines twice if the

job is split into two sublots. Assuming the job consists of D = 100 parts and is divisible

into two sublots q = 1 and q = 2 each of the size Xq = 50, the following solution shown

in Figure 5.1 is obtained.

Figure 5.1: Example of lot streaming

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

q = 1 q = 2 q = 1 q = 2

q = 1 q = 2 q = 1 q = 2

The time after the job is finished is reduced to 10 time units.

Literature Review on Lot Streaming

Lot streaming for scheduling problems was first proposed by Reiter (1966) for a job

shop problem. The sublots are set to be equal in size for a job, but the number of sublots

may differ from job to job to increase machine utilization and to reduce the flow times

of jobs.2

The sublots of jobs can be characterized by the criteria of sublot size and process-

ing. The sublot sizes are variable if the size of any sublot is allowed to differ between

machines.3 Sublots are called consistent if they are not allowed to vary from machine

to machine4. Equal sublots mean that all sublots of a job are required to have the

same size.5 Sublots of the same job level can be scheduled either consecutively or non-

consecutively in the permutation, characterizing the processing of sublots. It is called

intermingling6 or interleaving7 of sublots, if the sublots belonging to the same job (in non

re-entrant flow and job shops) or job levels (in the considered re-entrant problem) are not

processed consecutively. Intermingling is considered to be possible in the investigated lot

streaming problem in subsections 5.2.1 and 5.2.3. A consecutive processing of sublots is

2 See Reiter (1966): A system for managing job-shop production, pp. 371–393.
3 See Trietsch/Baker (1993): Basic techniques for lot streaming , pp. 1065–1066.
4 See Potts/Baker (1989): Flow shop scheduling with lot streaming , p. 297.
5 See Baker/Jia (1993): Lot streaming procedures , p. 562.
6 See Feldmann/Biskup (2008): Lot streaming intermingling , pp. 198–199
7 See Zhang/Jiang/Zhang (2008): A Research on a Genetic Algorithm, p. 1141 and Mar-

tin (2009): Multi-family flowshop scheduling problem with lot streaming , pp. 126–127

5.1 INTRODUCTION 141

investigated separately in subsections 5.2.2 and 5.2.4. Subsection 5.2.5 also partly deals

with a consecutive processing of sublots without sublot size consistency. Intermittent

idling is when machine idle times are allowed between consecutive sublots of the same

job (level).8 Intermittent idling is allowed in all of the examined models.

Potts/Baker (1989) examined the effect of consistent and equal sublot sizes as a

special case of consistent sublots for a one-job scheduling problem. Equal sublots deliver

a maximum of 53 % worse results than simple consistent sublots for m machines in the

single job case. The makespan is a maximum of 9 % higher for m = 2. Additionally, the

multi-job case is examined using an example with two jobs. Within this example, differ-

ent solution schemes are considered. The first scheme determines the optimal schedule

of the two jobs and then divides the jobs into sublots, resulting in a consecutive sublot

schedule. The second scheme uses lot streaming, leading to an optimal makespan and

a schedule where the sublots are not processed consecutively. It is noted that if equal

sublot sizes are used, there is no need to have no consecutive sublots, although the

solution is worse than with the first solution scheme.9

The minimization of the makespan in a one-job scheduling problem with lot streaming

was also considered by Trietsch/Baker (1993). Consistent and variable sublots,

intermittent idling and whether the sublot size is allowed to be continuous or needs to

be discrete are the different problem characteristics in this publication. Methods are

suggested to solve the different problem variations optimally if the number of sublots is

fixed and the amount of available transport equipment between the machines is limited.10

The lot streaming solutions with sublots that are variable, consistent or equal and idle

times being allowed or not were compared for a one-job scheduling problem with three

machines in Baker/Jia (1993). The numbers of sublots per job are Q ∈ {2, 3, 5, 8, 10}.

The makespan values obtained with consistent sublots are, on average, close to the

makespan values of the solutions with variable sublots if more than two sublots are

generated.11

Glass/Potts (1998) investigated the structural properties of makespan minimiza-

tion in flow shop problems with consistent sublots and consecutive processing. They

transferred a theorem on critical sublots of a three-stage production system proposed by

Glass/Gupta/Potts (1994) to anm-stage flow shop.12 It was stated that each sublot

has at least has two critical operations if the sublot sizes are optimal. The property of

dominant machines is introduced to find promising structural properties, including crit-

8 See Trietsch/Baker (1993): Basic techniques for lot streaming , p. 1065.
9 See Potts/Baker (1989): Flow shop scheduling with lot streaming , pp. 297–303.

10 See Trietsch/Baker (1993): Basic techniques for lot streaming , pp. 1065–1076.
11 See Baker/Jia (1993): Lot streaming procedures , pp. 561–566.
12 See Glass/Gupta/Potts (1994): Lot streaming in three-stage production processes , pp. 381–382

and Glass/Potts (1998): Structural properties of lot streaming in a flow shop, pp. 633–634

5.1 INTRODUCTION 142

ical block structure and sublot sizes of a solution with minimal makespan.13 In a later

work, the structural properties were used within a relaxation algorithm to find the opti-

mal solutions for the flow shop problem with multiple jobs and consecutive sublots.14

Feldmann/Biskup (2008) considered a permutation flow shop with lot streaming.

The problem was stated as a lot streaming problem with intermingling, which means that

the sublots of a job do not need to form a consecutive sequence. The sublot sizes need

to be consistent between different machines. Also a model with consecutive sublots was

investigated. The model with consecutive sublots relies on a position-related variable,

assigning sequence positions to single sublots. The model with intermingling uses a

sequence-related binary variable to determine a permutation representing a predecessor-

successor relation between sublots. Both formulations have been tested for the case

of intermingling sublots with the LINGO solver software. The model using position-

related binary variables to determine a permutation required that more branch and

bound iterations occurred for every test instance to find the optimal solution regarding

the makespan. For one of the test instances, the position-related formulation required

173.6 % more iterations.15

Makespan minimization in permutation flow shops was also investigated by Pan et al.

(2010). The sublot sizes were determined to be equal and the setup times of the opera-

tions were sequence-dependent. The setup can be performed without the sublot present

on the machine. The setup is only necessary for the first sublot of a job, since also con-

secutive sublots are assumed. The solution method applied to the problem is a heuristic

called a discrete harmony search algorithm. The algorithm is compared to a hybrid

genetic algorithm, an ant colony optimization algorithm, and two threshold accepting

algorithm modifications, one with swap moves and the other with insertion moves. The

discrete harmony search algorithm outperformed the other comparative solution meth-

ods.16

A combined objective function of weighted tardiness and weighted earliness was sug-

gested byPan et al. (2011) to reduce the deviation of job completion time and job due

date in a permutation flow shop with equal sublots and consecutive processing of same

job sublots. An artificial bee colony algorithm was used to solve problem instances with

and without intermittent idling. The number of sublots per job was chosen randomly

between one and six sublots per job.17

Defersha (2011) proposed an MIP model for a hybrid flexible flow shop problem

with multiple unrelated parallel machines at each stage and sequence-dependent setup

13 See Glass/Potts (1998): Structural properties of lot streaming in a flow shop, pp. 624–639.
14 See Glass/Possani (2011): Lot streaming multiple jobs in a flow shop, pp. 425–431.
15 See Feldmann/Biskup (2008): Lot streaming intermingling , pp. 197–216.
16 See Pan et al. (2010): Discrete harmony search for lot-streaming flow shops , pp. 1531–1536.
17 See Pan et al. (2011): Artificial bee colony algorithm for lot-streaming , pp. 2455–2468.

5.1 INTRODUCTION 143

times. The flexible property is referred to as the possibility for jobs to skip stages. This

is formulated by using a precedence parameter defining the two succeeding stages for a

job. The sublots do not need to be consistent or consecutive. The formulation is tested

for multiple configurations of the maximal number of sublots per job. The reductions

of the makespan with increasing sublot numbers are lower for higher sublot numbers.

Generating more than five sublots per job is not appropriate for simple flow shops or for

hybrid flexible flow shops.18

The minimization of the makespan in job shops with lot streaming was tackled with

a combination of a tabu search and genetic algorithm by Buscher/Shen (2008). The

tabu search sequenced the sublots, while a genetic algorithm was applied to change

sublot sizes.19 Also Buscher/Shen (2009) used a tabu search mechanism to sequence

sublots in a job shop with lot streaming. The initially generated sublot sizes were gen-

erated randomly. The tabu search was applied repeatedly to the schedule, and every

time the size of selected sublots was recalculated by the suggested procedure. Both the

tabu search and the recalculation of sublot sizes, are based on the block structure sug-

gested by Nowicki/Smutnicki (1996).20 In Buscher/Shen (2011), a mixed integer

lot streaming model for job shops with consistent sublots and setup times is proposed.

The model is extended with no-wait and non-idling constraints. The objective is the

makespan. The computational experiments show that the benefit of lot streaming de-

creases if the setup times are increased per operation. Additionally the impact of raising

the number of sublots per job by one leads to a decreased benefit for higher numbers of

sublots per job.21

To the authors knowledge, lot streaming has not been investigated for the re-entrant

permutation flow shop problem, except by Hinze (2016).22 The publication of Reiter

(1966) considered re-entrant product flows in job shops without explicitly calling the

repeated processing of jobs on one or more machines “re-entrant”.23 Queries in the

databases mentioned in Section 3.2 did not deliver any relevant results regarding the

search terms “re-entrant” (“reentrant”) and “lot streaming”. Also, the review on lot

streaming by Chang/Chiu (2005), as well as the reviews on re-entrant scheduling,

do not show any information regarding the application of lot streaming on re-entrant

permutation flow shops.24

18 See Defersha (2011): Hybrid flexible flowshop lot streaming problem, pp. 283–294.
19 See Buscher/Shen (2008): Lot Streaming in Job Shops , pp. 425-431.
20 See Buscher/Shen (2009): Tabu search for the lot streaming problem in job shops , pp. 385–399.
21 See Buscher/Shen (2011): An integer programming for lot streaming in a job shop, pp. 1343–1348.
22 See Hinze (2016): Lot Streaming with Missing Operations , pp. 152–155.
23 See Reiter (1966): A system for managing job-shop production, p. 378.
24 See Chang/Chiu (2005): A comprehensive review of lot streaming , pp. 1515–1536.

5.2 MATHEMATICAL MODELS 144

5.2 Mathematical Models

The number of sublots per job, Q, is predetermined in the models of this section. It is

not considered as a solution variable. Contrary to the previous chapters, the symbol pilk

indicates the unit processing time, which refers to the processing time for one part of

job i in level l on machine k.

5.2.1 Consistent Sublots

The equations (5.1) ensure that the set of sublots contains all units of the complete job.

The sublots of the jobs are not variable, i.e. consistent during all operations. Therefore

the sublot size X iq has neither a level nor a machine index.

Q
∑

q=1

X iq = Di (5.1)

∀i = 1, . . . , n.

The multiplication with the processing times in the constraint sets (5.2), (5.3) and

(5.4) enables the ability to skip missing operations, equivalent to the model without lot

streaming. Both sides of the constraints equal zero if one of the considered operations

is missing. The constraints (5.2) regulate the machine sequence for each of the sublots

q = 1, . . . , Q of a job i on level l. The sublots usually need to start on machine k = 1

and end the level on machine k = m. The operation on a machine k′, with k′ > k, can

only start after the operations on all machines k are finished. The constraints are not

relevant if an operation on either a machine k or k′ is left out.

The sublots of a job i should be processed in a sequence starting with sublot q = 1 on

each level l = 1, . . . , L and ending with sublot q = Q in (5.3). The level transitions of a

job’s sublots are regulated in (5.4). A level l + 1 of a job’s i sublot q is not allowed to

start before its level l is finished.

pilk′ ·
(

siqlk + pilk ·X
iq
)

· pilk ≤ pilk′ · s
iq
lk′ · p

i
lk (5.2)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k, k′ = 1, . . . ,m; (k < k′) ;
(

siqlk + pilk ·X
iq
)

· pilk ≤ si,q+1
lk · pilk (5.3)

∀i = 1, . . . , n; q = 1, . . . , Q− 1; l = 1, . . . , L; k = 1, . . . ,m;

pil+1,k′ ·
(

siqlk + pilk ·X
iq
)

· pilk ≤ pil+1,k′ · s
iq
l+1,k′ · p

i
lk (5.4)

∀i,= 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L− 1; k, k′ = 1, . . . ,m.

The constraint sets (5.5) and (5.6) prevent jobs from being scheduled on a machine k

5.2 MATHEMATICAL MODELS 145

when there is already another job on k at the same time. The constraints (5.5) consider

two sublots q and q′ of two different jobs i 6= i′ or the same job i = i′ on the levels l

and l′. If yi
′q′l′

iql = 1, i.e. iql precedes i′q′l′, then i′q′l′ needs to wait for iql to be finished

before it can start on machine k. The inequalities (5.6) are applied for the case that i′q′l′

precedes iql, i.e. yi
′q′l′

iql = 0.

A ·
(

1− yiqli′q′l′

)

+ sl
′k
i′q′ − slkiq ≥ pilk ·X

iq (5.5)

∀i, i′ = 1, . . . , n; (i ≥ i′) ; l, l′ = 1, . . . , L; k = 1, . . . ,m; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} ;

A · yiqli′q′l′ + slkiq − sl
′k
i′q′ ≥ pi

′

l′k ·X
i′q′ (5.6)

∀i, i′ = 1, . . . , n; (i ≥ i′) ; l, l′ = 1, . . . , L; k = 1, . . . ,m; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} .

The job levels are kept in a basic sequence by the constraint set (5.7). Unless different

levels can be mixed, the job sequence within each level is the same. If a sublot q of job

i precedes a sublot q′ of a job i′ in level l, then it also precedes sublots q′ of job i′ on all

other levels l′ 6= l. These constraints are not included in the tested models, in order to

identify the full impact of lot streaming on the objective values.

yiqli′q′l = yiqLi′q′L (5.7)

∀i, i′ = 1, . . . , n; (i > i′) ; l = 1, . . . , L; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} .

The equations (5.8) ensure the unambiguousness of sequence variables. Given two

sublots q and q′ of two different jobs i and i′ on any two levels l and l′, one of these

sublots needs to precede the other one, i.e. one of the variables yiqli′q′l′ and yi
′q′l′

iql needs to

be 1. Then the other variable must be 0.

yiqli′q′l′ + yi
′q′l′

iql = 1 (5.8)

∀i, i′ = 1, . . . , n; i ≥ i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} .

The makespan of the schedule is calculated by (5.10). It is necessary to check the end

of all operations to compute the makespan, since it is not known whether the operation

on the last machine has a processing time equal to 0.

minCmax; (5.9)

siqlk + pilk ·X
iq ≤ Cmax (5.10)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m.

5.2 MATHEMATICAL MODELS 146

An alternative objective function is the total flow time as the sum of completion times.

min
n
∑

i=1

Ci; (5.11)

siqlk + pilk ·X
iq ≤ Ci (5.12)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m.

The equations (5.12) measure the completion time of each job, which is only necessary

if the sum of completion times is the objective.

The constraints (5.13) are the binary constraints to the sequence variables. The non-

negativity constraints apply to the sublot size (5.14), and (5.15) to the starting times of

the sublots.

yiqli′q′l′ ∈ {0; 1} (5.13)

∀i, i′ = 1, . . . , n; i ≥ i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q; if (i = i′ANDl = l′) q 6= q′

siqlk ≥ 0 (5.14)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m;

X iq ≥ 0 (5.15)

∀i = 1, . . . , n; q = 1, . . . , Q.

There are n = 3 jobs to schedule in an RPFS example with m = 3 machines. All jobs

run L = 2 times through the production system. Missing operations are not considered

in the example, as it should show only the effects of different forms of sublots. Each job

consists of 100 parts:

D1 = D2 = D3 = 100.

The unit processing times pilk of each job are given with p1lk, p
2
lk and p3lk:

p1lk =





0.01 0.01

0.01 0.02



 , p2lk =





0.04 0.04

0.03 0.01



 , p3lk =





0.01 0.01

0.04 0.03





The maximum number of sublots per job is set to Q = 2.

The sublot sizes of the jobs are represented by the parameters X iq. The first job is

not divided into sublots, because the first sublot includes all of the job’s parts.

X1q =
(

100 0
)

, X2q =
(

80 20
)

, X3q =
(

80 20
)

.

The optimal schedule, if the sublots are consistent but not equal and not consecutive,

5.2 MATHEMATICAL MODELS 147

leads to the permutation provided by Table 5.1. The values in parentheses are for sublots

of size X iq = 0.

Table 5.1: Optimal permutation of the example with consistent sublots

Position 1 2 3 4 5 6 7 8 9 10 11 12

Job 1 3 3 1 2 (1) 3 2 (1) 2 3 2

Level 1 1 1 2 1 (1) 2 1 (2) 2 2 2

Sublot 1 1 2 1 1 (2) 1 2 (2) 1 2 2

The starting times of all operations of the i = 1, 2, 3 job’s sublots q = 1, 2 in the levels

l = 1, 2 on the machines k = 1, 2, 3 are given by the values of siqlk.

s11lk =





0 1

2 4.2



 , s12lk =





6.2 9.4

9.4 11.8



 ,

s21lk =





3 6.2

10.2 12.6



 , s22lk =





9.4 11.8

13.4 14



 ,

s31lk =





1 2

6.2 9.4



 , s32lk =





1.8 2.8

12.6 13.4



 .

The optimal schedule is shown in Figure 5.2. The resulting makespan is Cmax = 14.2.

The example is also presented in Section 4.2 without lot streaming. The makespan in

the solution without lot streaming is Cmax = 16.

Figure 5.2: Solution to the example with consistent sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

Impact of Lot Streaming with Consistent Sublots

The test problem sizes are determined by the values of the number of jobs n ∈ {2, 3, 4},

the number of levels per job L ∈ {2, 3, 4}, the number of machines m ∈ {2, 5, 6, 10} and

5.2 MATHEMATICAL MODELS 148

the number of sublots per job Q ∈ {2, 3, 4}.25 Combining the different parameters results

in 108 different problem sizes. The same ten instances as in the experiments of Chapter

5 are tested for each problem size regardless of the number of sublots per job. Missing

operations are generated in ascending quantity for test instance sets Inc 1 and Inc 2.

The instance set Inc 2 requires a minimum of L = 4 levels per job.26 The processing

times of the operations in the tested problem instances in Chapter 5 are identical to the

tested problems in Chapter 4, i.e. uniformly distributed random numbers between 1 and

99 as suggested by Taillard (1993) for non-missing operations.27 The unit processing

times in this chapter are obtained by dividing the processing times generated for each

job by the number of parts / units of the job. The lot sizes are required to be divisible by

two and three for the tests with equal sublots in Sections 5.2.3 and 5.2.4. Additionally

the divisibility by four is secured for additional tests in section 5.4.2. This allows job lot

sizes of:

D ∈ {60, 72, 84, 96, 108, 120}

Figure 5.3 shows the mean relative values of makespan achieved by applying lot stream-

ing with consistent sublots compared to the makespan values of the simple re-entrant

permutation flow shop with missing operations for the Inc 1 instances. The relative

makespan values are calculated with the formula:

Cmax =
CQ

max

C1
max

.

CQ
max is the makespan value of the solution if the jobs are each split into Q > 1 sublots.

The lot streaming problem with Q = 1 sublots, and the makespan values C1
max, equal the

problem without lot streaming. The values for splitting each job level into Q = 2 sublots

are between 55.50 % (n = 2, L = 4, m = 10) and 79.93 % (n = 4, L = 4, m = 5) for every

problem size. 55.50 % relative makespan means, that the average makespan computed

for this problem size is 55.50 % of the makespan value if lot streaming is not applied.

The reduction of the makespan between applying lot streaming with two sublots and no

lot streaming is higher than the reduction from using three sublots instead of two and

four sublots instead of three. The lowest values are obtained by splitting the job levels

into Q = 4 sublots each. The mean values range from 37.44 % to 75.01 % compared

to the mean makespan values of the model without lot streaming. The reduction of the

makespan is generally higher for a larger number of machines, i.e. for problem sizes

25 See Table B.3 in Appendix B (p. 205) for detailed information on the problem sizes.
26 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.
27 See Taillard (1993): Benchmarks for basic scheduling problems , pp. 279–280.

5.2 MATHEMATICAL MODELS 149

with m = 10. The advantage of using lot streaming increases with a higher number of

machines that need to be visited by the job levels. The number of sequence positions to

assign is n · L ·Q.

Figure 5.3: Average makespan of consistent sublots compared to using no sublots
(Inc 1)

C
m
a
x
[%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

20

40

60

80

100

Problem size

m
L
n

2 Sublots
3 Sublots
4 Sublots

The results of the mean relative makespan for the Inc 2 instances are shown in Figure

5.4. The lowest mean relative makespan is again achieved by splitting the job levels

into four sublots. The average makespan for the instances of the problem size with ten

machines, four levels and two jobs drops to 37.67 % of the makespan value without

lot streaming. The lowest value for the three-sublot calculation appears for the same

problem size with 43.14 % using two sublots per job, compared to the solution obtained

if lot streaming is not allowed. The step from applying no lot streaming to lot streaming

with two sublots is the largest step in makespan reduction compared to the step of

increasing the number of sublots per job level from two to three and from three to four.

Nevertheless, the mean relative makespan values for lot streaming with two sublots are

higher than those for three and four sublots. The lowest value for the Inc 2 instances

and Q = 2 is 56.66 % (n = 2, L = 4, m = 10).

5.2 MATHEMATICAL MODELS 150

Figure 5.4: Average makespan of consistent sublots compared to using no sublots
(Inc 2)

C
m
a
x
[%

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

20

40

60

80

100

Problem size

m
L
n

2 Sublots
3 Sublots
4 Sublots

The symbols used in the evaluation tables in this subsection (5.2.1) are GQ, ∆CQ|Q−1
max

and ItQ. GQ stands for the relative gap between the lower bound and best incumbent

solution after 3600 seconds if lot streaming with Q consistent sublots per job is applied.

It is 0 if the optimal solution is found. The makespan reduction by increasing the number

of sublots by one is given by the symbol ∆CQ|Q−1
max and calculated by:

∆CQ|Q−1
max =

CQ
max

CQ−1
max

− 1.

ItQ denotes the number of CPLEX iterations for the lot streaming model with Q sublots

per job.

Table 5.2 shows the average gaps for the the re-entrant permutation flow with missing

operations and lot streaming for solutions with one, two, three and four sublots for each

job depending on the number of machines. CPLEX comes closer to the optimal solution

or closer to approving the solution found as optimal for problems with m = 10 machines

compared to instances with m = 5 machines. Also the makespan reductions achieved

by increasing the number of lots by one are higher for the ten machine instances. The

makespan reductions are the highest for the step from one to two sublots per job. The

weakest improvements of the makespan within a computation time of 1 hour are the

ones for increasing Q from three to four. These facts apply for both test instance sets

5.2 MATHEMATICAL MODELS 151

Inc 1 and Inc 2.

Table 5.2: Influence of m on makespan if the sublots are consistent

Inc m G1 [%] G2 [%] G3 [%] G4 [%] ∆C2|1
max [%] ∆C3|2

max [%] ∆C4|3
max [%]

1 5 0.00 5.86 21.25 31.14 −27.98 −7.97 −3.41

10 0.00 1.66 12.12 21.14 −40.08 −17.57 −9.19

2 5 0.00 12.22 28.97 41.67 −27.55 −6.58 −2.56

10 0.00 4.17 17.55 29.69 −39.94 −17.06 −8.04

In Figure 5.3 and 5.4, a slight increase of the mean relative makespan values with an

increasing number of jobs n can be seen. The reason for the effect can be explained by

looking at Figures 5.5 and 5.6, which show the mean computation times for every problem

size in the instance sets Inc 1 and Inc 2. An increase in the number of jobs leads to the

largest increase of computation time compared to the influence of the number of levels.

An increase in the number of machines leads to a lower computation time similar to

the effect for the model without lot streaming. Solving the lot streaming problem with

four consistent sublots prevents CPLEX from closing the gap between the incumbent

solution and lower bound for most of the instances of the Inc 1 set. CPLEX either fails

to find the optimal solution or fails to confirm the solution found as optimal. These

problem sizes have an average computation time of 3600 seconds, which is the set limit

of computing time. The calculations for three sublots and three jobs and more also lead

to average computation time around 3600 seconds. The lot streaming problems with two

sublots for each job are mostly solved optimally in less than 1 hour. The computation

times without lot streaming, i.e. with just one sublot per job level, are around 1 second

for the considered Inc 1 instances.

5.2 MATHEMATICAL MODELS 152

Figure 5.5: Average computation time with consistent sublots (Inc 1)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

Without Sublots
2 Sublots
3 Sublots
4 Sublots

Increasing the number of missing operations, as done by switching to the Inc 2 in-

stances, leads to higher computation times for the lot streaming problem with two sublots

per job. On the other hand, the computation times for the three sublot problem drop

slightly for the considered problems, as can be seen by comparing Figure 5.5 and 5.6.

The computational effort for the problem without lot streaming does not change. The

four-sublot problem is difficult to evaluate since the calculation times of the compara-

ble problem sizes are around 3600 seconds in the cases of lower and higher numbers of

missing operations.

5.2 MATHEMATICAL MODELS 153

Figure 5.6: Average computation time with consistent sublots (Inc 2)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

Without Sublots
2 Sublots
3 Sublots
4 Sublots

Increasing the number of consistent sublots to values higher than two leads to greater

computational effort, without reaching the same reduction of the makespan compared

to the introduction of lot streaming.

The number of iterations also depends on the number of machines, as seen in Table

5.3. Problems with a higher number of machines need fewer iterations to be solved than

comparable problems with a lower number of machines and the same number of jobs and

levels per job. The calculated iterations for the problem without lot streaming and ten

machines need the lowest number of CPLEX iterations with, on average, 284.28 iterations

for the Inc 1 problem set and 3117.93 iterations for Inc 2 problems. The highest average

number of iterations is 11923622.61 for the Q = 4 problems in Inc 1. For problems that

are solved optimally or near optimally, i.e. mainly the calculation with Q = 1 and Q = 2,

the number of iterations is higher if more missing operations are included within the job

levels.

Table 5.3: Influence of m on CPLEX iterations if the sublots are consistent

Inc m It1 It2 It3 It4

1 5 3224.83 4,466,321.71 4,090,186.17 11,923,622.61

10 284.28 1,015,293.40 1,980,717.80 5,534,364.94

2 5 8056.43 3,560,833.63 4,000,401.57 10,279,038.53

10 3117.93 1,721,735.00 2,406,330.40 3,830,610.90

5.2 MATHEMATICAL MODELS 154

Table 5.4 shows the solution quality for different values of Q depending on the number

of levels L per job. The Inc 2 test set includes only problems with L = 4 levels per

job; therefore, a differentiation of the solution quality and number of CPLEX iterations

based on the number of levels is not possible for these instances. The values of gaps after

a maximum computation time of 1 hour increase with the increasing number of levels.

The higher the number of levels, the more permutations are possible, which increases the

computational effort necessary to solve the problem optimally. The values of makespan

reductions for a given step from Q − 1 to Q are almost unaffected by the number of

levels.

Table 5.4: Influence of L on makespan if the sublots are consistent

Inc L G1 [%] G2 [%] G3 [%] G4 [%] ∆C2|1
max [%] ∆C3|2

max [%] ∆C4|3
max [%]

1 2 0.00 0.67 11.48 19.45 −31.88 −11.78 −5.48

3 0.00 3.80 16.93 25.62 −34.85 −13.46 −7.10

4 0.00 6.82 21.65 33.35 −35.37 −13.07 −6.31

2 4 0.00 8.19 23.26 35.68 −33.74 −11.82 −5.30

The number of iterations distinguished by the number of levels and the number of

sublots per job is shown in Table 5.5. The higher the number of levels, the higher the

number of iterations performed by CPLEX. There are no large differences visible between

the L = 4 instances with a lower or higher number of missing operations.

Table 5.5: Influence of L on CPLEX iterations if the sublots are consistent

Inc L It1 It2 It3 It4

1 2 178.80 2,282,915.23 3,973,201.18 10,873,712.45

3 1829.28 2,625,889.20 2,661,204.70 8,827,528.18

4 3255.58 3,313,618.23 2,471,950.07 6,485,740.70

2 4 5587.18 2,641,284.32 3,203,365.98 7,054,824.72

The following Tables 5.6 and 5.7 evaluate the solution quality using gap values and

makespan reduction values as well as the computational effort (by the number of itera-

tions) for different numbers of jobs.

5.2 MATHEMATICAL MODELS 155

Table 5.6: Influence of n on makespan if the sublots are consistent

Inc n G1 [%] G2 [%] G3 [%] G4 [%] ∆C2|1
max [%] ∆C3|2

max [%] ∆C4|3
max [%]

1 2 0.00 0.00 1.06 6.52 −38.70 −18.28 −9.03

3 0.00 0.00 1.19 6.87 −38.48 −18.17 −9.01

4 0.00 0.00 1.58 7.52 −38.47 −18.05 −8.93

2 2 0.00 0.00 3.42 14.99 −39.68 −18.13 −8.69

3 0.00 5.32 25.90 39.69 −34.55 −10.75 −4.77

4 0.00 19.26 40.46 52.36 −27.00 −6.57 −2.44

The four-job four-sublot problem instances required more than 3600 seconds of com-

putation time on average for test sets Inc 1 and Inc 2. However, the number of iterations

performed for Inc 1 instances is almost twice as high as for Inc 2 instances. Thus, the

time for single CPLEX iterations increases with a higher number of missing operations.

Table 5.7: Influence of n on CPLEX iterations if the sublots are consistent

Inc n It1 It2 It3 It4

1 2 109.58 5927.38 919,157.70 7,637,007.68

3 230.97 2,754,148.20 4,168,759.72 10,487,879.42

4 4923.12 5,462,347.08 4,018,438.53 8,062,094.23

2 2 153.80 21,055.35 1,829,851.55 9,301,545.65

3 379.70 3,055,880.65 3,713,227.00 6,871,212.80

4 16,228.05 4,846,916.95 4,067,019.40 4,991,715.70

5.2.2 Consecutive Sublots

The equations (5.16) secure a consecutive processing of sublots that belong to the same

job level. In the following, this is called consecutive sublots. If a sublot q′ of a job level

i′, l′ does not precede sublot q′ of another job i’s level l (yiq
′l

i′q′l′ = 0), then all other sublots

q = 1, . . . , Q precede sublot q′ of job i′ in level l′ (yi
′q′l′

iql = 1).

yiqli′q′l′ + yi
′q′l′

iq′l = 1 (5.16)

∀i, i′ = 1, . . . , n; i > i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q.

Considering the example from Section 5.2.1, the optimal makespan increases if con-

secutive processing is necessary. The new makespan is now Cmax = 14.25. The variables

of the solution are shown below.

5.2 MATHEMATICAL MODELS 156

Job one is split into two sublots, with 50 parts each. The sublots of job two are given

by X2q, with 75 parts in the first and 25 parts in the second sublot. The first sublot of

job three is smaller than its second sublot.

X1q =
(

50 50
)

, X2q =
(

75 25
)

, X3q =
(

29 71
)

.

The resulting permutation is represented in Table 5.8. Job i = 1 starts the permutation

with its first sublot in level l = 1. The last position in the sequence is occupied by the

second sublot of job i = 2 in level l = 2.

Table 5.8: Optimal permutation of the example with consecutive consistent sublots

Position 1 2 3 4 5 6 7 8 9 10 11 12

Job 1 1 3 3 1 1 2 2 3 3 2 2

Level 1 1 1 1 2 2 1 1 2 2 2 2

Sublot 1 2 1 2 1 2 1 2 1 1 2 2

The associated starting times sijlk are:

s11lk =





0 1.5

1.5 3.5



 , s12lk =





0.5 2

2.5 4.5



 ,

s21lk =





3 6

11 13.25



 , s22lk =





6 9

13.25 14



 ,

s31lk =





1 2

6.2 9.4



 , s32lk =





1.8 2.8

12.6 13.4



 .

The Gantt chart of the schedule is shown in Figure 5.7. The resulting makespan

is Cmax = 14.25, which is higher than the makespan without the consecutive sublot

constraints (5.16).

5.2 MATHEMATICAL MODELS 157

Figure 5.7: Solution to the example with consecutive sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

Influence of Consecutive Sublots

The test instances are identical to the instances tested in Section 5.2.1, except for a

limitation of the number of sublots per job to Q ≤ 3.28

Figures 5.8 and 5.9 show the mean relative makespan deviation between the model

with consecutive consistent sublots and the previously introduced model with consistent

sublots. The values ∆CQ
max in Table 5.9 are calculated by:

∆CQ
max =

CQ, consecutive
max

CQ, consistent
max

− 1.

The mean relative makespan values are positive for all problem sizes of the Inc 1 problem

set. This means that the makespan is higher on average in the consecutive sublot model

than in the simple consistent case, even for the problem sizes that are not solved in time

if the simple consistent sublots model is used. The lowest increase in makespan for the

Inc 1 instances is 0.51 % for the Q = 2, n = 2, L = 4,m = 10 instances. The highest

deviation is 8.38 % for the problem size n = 2, L = 4,m = 5 and Q = 3 sublots per

job. The average makespan deviation of Q = 3 sublot lot streaming is higher for 11 of

18 problem sizes of Inc 1.

28 See also the Tables B.3 and B.1 in Appendix B (p. 205 and p. 203).

5.2 MATHEMATICAL MODELS 158

Figure 5.8: Average makespan deviations with consecutive sublots (Inc 1)

∆
C

m
a
x
[%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

2 Sublots
3 Sublots

The makespan deviations shown in Figure 5.9 represent the values for Inc 2 instances.

The value for instances of the problem size n = 4, L = 4,m = 10, Q = 3 is -0.02 %,

meaning that the makespan values achieved with the consecutive sublot model are on

average better for this problem size, which is due to the limited computation time. The

values for both two- and three-sublot problems in the Inc 2 set are lower for m = 5

problems than they are in the Inc 1 problem set. For m = 10 problems, the makespan

deviations are on the same level as those for Inc 1 instances.

5.2 MATHEMATICAL MODELS 159

Figure 5.9: Average makespan deviations with consecutive sublots (Inc 2)

∆
C

m
a
x
[%

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

2 Sublots
3 Sublots

The average gap between the lower bound and incumbent solution after one hour of

computation time is mostly closed for the problems with Q = 2 consecutive sublots per

job, except for the n = 4 problem of Inc 2, as seen in Table 5.9. The gaps, GQ, for

Q = 3 consecutive sublots are higher than for Q = 2 problems and show an increase

with the increasing number of jobs. The gap values are equal or lower for consecutive

sublots than without consecutive sublots. The makespan deviation increases with the

number of jobs, if Q = 2. It decreases with the number of jobs, if Q = 3, since the gaps

for the formulation without consecutive sublots are relatively large for these instances

compared to the formulation with consecutive sublots.

Table 5.9: Solution quality of consistent (I) and consecutive (II) sublots

Inc n G2 I [%] G2 II [%] G3 I [%] G3 II [%] ∆C2
max [%] ∆C3

max [%]

1 2 0.00 0.00 1.06 0.00 2.28 4.38

3 0.96 0.00 17.26 0.00 3.88 4.79

4 10.32 0.00 31.73 1.41 3.52 3.21

2 2 0.00 0.00 3.42 0.00 2.26 4.62

3 5.32 0.00 25.90 0.01 3.55 3.24

4 19.26 0.12 40.46 3.76 2.35 0.82

The computation time of the models with consistent and consecutive sublots for Inc 1

5.2 MATHEMATICAL MODELS 160

instances are shown in Figure 5.10. For most of the problem sizes, the average com-

putation time of CPLEX for solving the problems with consecutive sublots is only a

few seconds for the two- and three-sublot configuration. Except for the problem sizes

with four jobs and four levels, the computation times in this case are much higher for

Q = 3. The computation time reaches the limit of 3600 seconds in the case of m = 5

and is about 2300 seconds for m = 3, while the times for the same problems with the

Q = 2 configuration are 210 and 100 seconds, respectively. Despite reaching the limit

of computing time for one problem size, the computing times are generally lower for the

consecutive sublot model than the computation times of the consistent sublot model,

which does not prescribe a consecutive processing of sublots of the same job level.

Figure 5.10: Average computation times with consecutive sublots (Inc 1)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

2 Consecutive sublots
3 Consecutive sublots
2 Consistent sublots
3 Consistent sublots

The same effect of lower computation times is also visible for Inc 2 instances in Figure

5.11. The computation times with the consecutive sublot formulation are lower than the

computing times without consecutive sublots. There is no pattern visible that describes

how the increased number of missing operations influences the computation time for the

consecutive sublot model.

5.2 MATHEMATICAL MODELS 161

Figure 5.11: Average computation times with consecutive sublots (Inc 2)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

1000

2000

3000

4000

Problem size

m
L
n

2 Consecutive sublots
3 Consecutive sublots
2 Consistent sublots
3 Consistent sublots

The numbers of CPLEX iterations, ItQ, performed to solve the problems optimally or

until a computation time of 1 hour is reached are shown in Table 5.10. The consecutive

lot model requires more iterations than the consistent sublot model only for the n = 4

Inc 2 instances. In all other cases, the average numbers of iterations are lower.

Table 5.10: Influence of consecutive sublots on CPLEX iterations

Inc n
Consistent Consecutive

It2 It3 It2 It3

1 2 5927.38 919,157.70 268.08 5201.80

3 2,754,148.20 4,168,759.72 11,629.53 188,970.62

4 5,462,347.08 4,018,438.53 516,747.68 3,416,716.17

2 2 21,055.35 1,829,851.55 587.50 15,446.85

3 3,055,880.65 3,713,227.00 50,285.45 616,849.80

4 4,846,916.95 4,067,019.40 3,135,292.20 8,353,501.75

5.2.3 Equal Sublots

The intention of testing equally sized sublots is to reduce computational efforts without

losing much of the solution quality. The size of the sublots is now solely predetermined by

the number of sublots Q and the number of parts per job Di. The results for equally sized

5.2 MATHEMATICAL MODELS 162

sublots are shown in Section 5.2.3. The model is similar to the simple consistent sublot

model introduced in Section 5.2.1. However, the only difference is that the constraints

(5.1) are replaced with the equations (5.17).

X iq =
Di

Q
(5.17)

∀i = 1, . . . , n; q = 1, . . . , Q.

The solution to the problem above is given in Table 5.11.

Table 5.11: Optimal permutation of the example with equal sublots

Position 1 2 3 4 5 6 7 8 9 10 11 12

Job 3 2 1 3 1 2 1 3 2 1 3 2

Level 1 1 1 1 1 1 2 2 2 2 2 2

Sublot 1 1 1 2 2 2 1 1 1 2 2 2

The equal sublot constraints lead to a size of 50 parts per sublot.

X1q =
(

50 50
)

, X2q =
(

50 50
)

, X3q =
(

50 50
)

.

The starting times are given below with the values siqlk. The starting time of the first

sublot of job i = 3 in level l = 1 on machine m = 1 is equal to 0 since it is the first

sublot in the sequence.

s11lk =





2.5 4.5

6 8



 , s12lk =





3.5 5.5

8.5 10.5



 ,

s21lk =





0.5 2.5

9 11.5



 , s22lk =





4 6

12.5 14



 ,

s31lk =





0 2

6.5 9



 , s32lk =





3 5

10.5 12.5



 .

The schedule with equally sized sublots for every job is shown in Figure 5.12. It

leads to a makespan of Cmax = 14.5. The value of the makespan is higher than that

without the restriction of having equal sublots. In this example, it is even higher than

the makespan of 14.25 achieved by the consecutive sublot model.

5.2 MATHEMATICAL MODELS 163

Figure 5.12: Solution to the example with equal sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

Influence of Equal Sublots

The test instances are identical to the instances tested in Sections 5.2.1 and 5.2.2. The

number of sublots per job is limited to Q ≤ 3.29 The relative makespan deviations in

this subsection are calculated by:

∆CQ
max =

CQ, equal
max

CQ, consistent
max

− 1.

The mean relative makespan deviations for the Inc 1 instances depending on problem

size, including the number of sublots, are presented in Figure 5.13. The deviations range

from -1.02 % to 4.41 %. It is remarkable that the deviations for the problem sizes n =

4, L = 4,m = 5 and n = 4, L = 4,m = 10 for Q = 2 sublots and n = 3, L = 4,m = 10 for

Q = 3 are all negative. This means that the equal sublot model delivers better results

under the given maximum computation time than the less restricted, simple consistent

sublot model.

29 See also the Tables B.3 and B.1 in Appendix B (p. 205 and p. 203).

5.2 MATHEMATICAL MODELS 164

Figure 5.13: Average makespan deviations with equal sublots (Inc 1)

∆
C

m
a
x
[%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

−1

0

1

2

3

4

5

6

Problem size

m
L
n

2 Sublots
3 Sublots

The deviations of makespan shown for the Inc 2 instances in Figure 5.14 are all positive

but on a relatively low range between 0.40 % and 2.03 % for the two- and three-sublot

configurations.

5.2 MATHEMATICAL MODELS 165

Figure 5.14: Average makespan deviations with equal sublots (Inc 2)

∆
C

m
a
x
[%

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

1

2

3

4

5

6

Problem size

m
L
n

2 Sublots
3 Sublots

Further details on the solution quality of the equal sublot model compared to the

consistent sublot model are provided in Table 5.12. The gaps, GQ, after the maximum

computation time of 1 hour are all lower when the sublots are equally sized. Equal

sublots seem to be suitable for a higher number of jobs since the makespan deviations

of simple consistent sublots decrease if the number of jobs is increased. Five of the six

mean relative makespan deviations, depending on the number of jobs, are lower for the

Inc 2 instances. This means that a higher number of missing operations leads to a lower

deviation between the models with consistent and equal consistent sublot sizes.

Table 5.12: Solution quality of consistent (I) and equal (II) sublots

Inc n G2 I [%] G2 II [%] G3 I [%] G3 II [%] ∆C2
max [%] ∆C3

max [%]

1 2 0.00 0.00 1.06 0.77 1.38 2.51

3 0.96 0.31 17.26 14.32 1.85 1.91

4 10.32 6.98 31.73 28.13 0.99 1.36

2 2 0.00 0.00 3.42 2.36 1.25 1.50

3 5.32 2.64 25.90 24.37 0.82 1.22

4 19.26 18.10 40.46 38.54 1.06 0.81

The computation times of the equal sublot model are compared to the consistent

sublot model in Figures 5.15 and 5.16. Both figures show that the average computation

5.2 MATHEMATICAL MODELS 166

times for equal sublots is slightly below those of the consistent sublot model or that both

models reach the limit of one hour. The single exception is the value for n = 2, L =

3,m = 5, Q = 3 in Figure 5.15 .

Figure 5.15: Average computation times with equal sublots (Inc 1)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

2 Equal sublots
3 Equal sublots

2 Consistent sublots
3 Consistent sublots

The average computation times for the same problem sizes do not differ relevantly.

Both show higher computation times for m = 5 problem sizes than for the corresponding

m = 10 problems.

5.2 MATHEMATICAL MODELS 167

Figure 5.16: Average computation times with equal sublots (Inc 2)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

2 Equal sublots
3 Equal sublots

2 Consistent sublots
3 Consistent sublots

The average numbers of iterations, ItQ, for the compared models are shown in Table

5.13. The instances with a number of jobs n = 2 are solved optimally for Q = 2. The

mean number of iterations for these instances is seven times higher for the consistent

sublot model than for the equal sublots. A similar relation can be observed for n = 2

instances with Q = 3 sublots, even if they are not all solved optimally by both models.

The average number of iterations for n = 4, which are mostly not solved optimally by

the consistent sublot model and the equal sublot model, are higher for the equal sublot

model, indicating a shorter computation time for single iterations performed on this

model.

Table 5.13: Influence of equal sublots on CPLEX iterations

Inc n
Consistent Equal

It2 It3 It2 It3

1 2 5927.38 919,157.70 779.17 182,664.53

3 2,754,148.20 4,168,759.72 2,013,406.23 6,043,305.55

4 5,462,347.08 4,018,438.53 7,092,066.87 4,480,098.72

2 2 21,055.35 1,829,851.55 6458.70 593,835.70

3 3,055,880.65 3,713,227.00 4,817,891.50 2,302,744.60

4 4,846,916.95 4,067,019.40 4,256,979.85 6,387,377.10

5.2 MATHEMATICAL MODELS 168

5.2.4 Consecutive Equal Sublots

A consecutive processing of sublots is achieved by the constraints (5.18).

yiqli′q′l′ + yi
′q′l′

iq′l = 1 (5.18)

∀i, i′ = 1, . . . , n; i > i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q.

The jobs are split into Q equal sublots of size Di/Q by the equations (5.19).

X iq =
Di

Q
(5.19)

∀i = 1, . . . , n; q = 1, . . . , Q.

The example from the previous sections is now solved with the consecutive and equal

sublot constraints. The optimal permutation is shown in Table 5.14.

Table 5.14: Optimal permutation of the example with consecutive equal sublots

Position 1 2 3 4 5 6 7 8 9 10 11 12

Job 3 3 1 1 2 2 1 1 3 3 2 2

Level 1 1 1 1 1 1 2 1 2 2 2 2

Sublot 1 2 1 2 1 2 1 2 1 2 1 2

The sublot sizes are all 50 units per sublot.

X1q =
(

50 50
)

, X2q =
(

50 50
)

, X3q =
(

50 50
)

.

The starting times are given by the values siqlk and visualized in Figure 5.17.

s11lk =





1 1.5

6 8



 , s12lk =





1.5 2

6.5 9



 ,

s21lk =





2 4

11 13



 , s22lk =





4 6

12.5 14



 ,

s31lk =





0 0.5

7 10



 , s32lk =





0.5 1

9 11.5



 .

5.2 MATHEMATICAL MODELS 169

Figure 5.17: Solution to the example with consecutive equal sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Job 3

The resulting makespan is 14.5 time units, which is the worst value compared to

simple consistent sublots, equal sublots and simple consistent consecutive sublots. This

is reasonable, because the consecutive equal sublot model is the most restricted model

among the mentioned formulations.

Influence of Consecutive Equal Sublots

The test instances are identical to the instances tested in Sections 5.2.1, 5.2.2 and 5.2.3.

The number of sublots per job is limited to Q ≤ 3.30

The relative makespan deviations in the tables and figures of this section are calculated

with the formula:

∆CQ
max =

CQ, consecutive equal
max

CQ, consistent
max

− 1.

Increases in the number of machines and levels lead to smaller mean relative makespan

deviations which are visible in Figure 5.18. Increasing the number of jobs from n = 2 to

n = 3 leads to higher deviations, i.e. to worse results for the consecutive equal sublot

model compared to the consistent sublot model. The highest deviation is 10.26 % and

occurs when each job level is split into three sublots. The value is 0.62 % for the Inc 1

instances and occurs for Q = 2. Therefore, the consecutive equal sublot model delivers

results that are on average weaker than the consistent sublot model for all tested problem

sizes in Inc 1.

30 See also the Tables B.3 and B.1 in Appendix B (p. 205 and p. 203).

5.2 MATHEMATICAL MODELS 170

Figure 5.18: Average makespan deviations with consecutive equal sublots (Inc 1)

∆
C

m
a
x
[%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

5

10

15

Problem size

m
L
n

2 Sublots
3 Sublots

The results shown in Figure 5.19 represent the makespan deviations for the Inc 2

instances. The range of deviations for this problem set is between 0.60 % and 6.76 %,

which is similar to the same problem sizes in Inc 1.

5.2 MATHEMATICAL MODELS 171

Figure 5.19: Average makespan deviations with consecutive equal sublots (Inc 2)

∆
C

m
a
x
[%

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

5

10

15

Problem size

m
L
n

2 Sublots
3 Sublots

The gap values, GQ, of the consecutive equal sublot model shown in Table 5.15 are

all lower than or equal to the gaps obtained with the consistent sublot model after a

maximum computation time of 1 hour. Only three values are greater than zero, indicating

that just a few of the n = 4 problems in Inc 1 and Inc 2 were not solved optimally or the

incumbent was not approved as an optimal solution in time. The makespan deviations

for consecutive equal sublots are on average higher than those for consecutive but not

equal and equal but not consecutive sublots.

Table 5.15: Solution quality of consistent (I) and consecutive equal (II) sublots

Inc n G2 I [%] G2 II [%] G3 I [%] G3 II [%] ∆C2
max [%] ∆C3

max [%]

1 2 0.00 0.00 1.06 0.00 3.49 6.69

3 0.96 0.00 17.26 0.00 4.89 6.79

4 10.32 0.00 31.73 0.05 4.43 4.50

2 2 0.00 0.00 3.42 0.00 2.95 6.18

3 5.32 0.00 25.90 0.00 4.26 4.54

4 19.26 0.19 40.46 0.94 2.96 1.64

Most of the average computation times of the model with consecutive equal sublots

shown in Figure 5.20 are less than 10 seconds for the Inc 1 problem set. Only the values

for the problem sizes with n = 4 and L = 4 are higher, between 18.50 and 640.90 seconds

5.2 MATHEMATICAL MODELS 172

for Q = 2 sublots per job. For Q = 3 sublots, the mean computing times reach up to

1820.40 seconds.

Figure 5.20: Average computation times with consecutive equal sublots (Inc 1)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

2 Consecutive equal sublots
3 Consecutive equal sublots

2 Consistent sublots
3 Consistent sublots

The corresponding computing times for Inc 2 presented in Figure 5.21 do not differ

remarkably from the mean values in Figure 5.20.

5.2 MATHEMATICAL MODELS 173

Figure 5.21: Average computation times with consecutive equal sublots (Inc 2)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
4
2

10
4
2

5
4
3

10
4
3

5
4
4

10
4
4

0

1000

2000

3000

4000

5000

Problem size

m
L
n

2 Consecutive equal sublots
3 Consecutive equal sublots

2 Consistent sublots
3 Consistent sublots

The average numbers of iterations, ItQ, depending on the number of jobs, are shown in

Table 5.16. All the mean numbers of iterations performed on the problems of Inc 1 and

Inc 2 with the consecutive equal sublot model are lower than those with the consistent

sublot model. More iterations are necessary to solve a problem if the number of earlier

exits from a level or of later re-entries is increased.

Table 5.16: Influence of consecutive equal sublots on CPLEX iterations

Inc n
Consistent Consecutive equal

It2 It3 It2 It3

1 2 5927.38 919,157.70 139.48 448.77

3 2,754,148.20 4,168,759.72 1866.28 33,296.15

4 5,462,347.08 4,018,438.53 243,235.55 1,538,305.07

2 2 21,055.35 1,829,851.55 217.45 1428.30

3 3,055,880.65 3,713,227.00 12,754.10 136,345.25

4 4,846,916.95 4,067,019.40 1,166,911.50 3,318,295.40

5.2.5 Resizing Sublots

This section proposes models that allow a resizing of sublots after a level is finished and

the sublot re-enters the production system. The sublots are thus less strictly consistent.

5.2 MATHEMATICAL MODELS 174

Consistency remains within each level l, but not necessarily during re-entry.

To show the advantages of resizing, the following example is considered. n = 2 jobs

with a number of parts equal to 100 each need to be processed in L = 2 levels on m = 2

machines.

D1 = D2 = 100.

The processing times per part are given below:

p1lk =





0.02 0.03

0.03 0.01



 , p2lk =





0.02 0.02

0.01 0.02



 .

The solution without resizing leads to a permutation shown in Table 5.17.

Table 5.17: Optimal permutation of the example with consistent sublots

Position 1 2 3 4 5 6 7 8

Job 2 1 2 2 1 1 2 1

Level 1 1 2 1 1 2 2 2

Sublot 1 1 1 2 2 1 2 2

The sublot sizes remain the same for all operations. The job i = 1 is divided into

sublots of 39 and 61 parts. The second job, i = 2, is split into sublots with 28 and 72

parts.

X1q =
(

39 61
)

, X2q =
(

28 72
)

.

The starting times of each operation are given below. s11lk are the starting times of the

first sublot of job i = 1, and s12lk are the starting times of the second sublot. The starting

times s21lk and s22lk refer to job i = 2.

s11lk =





0 0.8

4.3 5.8



 , s12lk =





1.04 2.24

6.8 8.3



 ,

s21lk =





0.8 2

5.8 6.3



 , s22lk =





2.28 4.04

6.14 6.98



 .

The schedule results in a makespan of Cmax = 8.78 for the processing of both jobs.

The permutation of sublots stays the same for the example concerning an enabled

resizing of sublots (see Table 5.18).

5.2 MATHEMATICAL MODELS 175

Figure 5.22: Solution to the example without resizing of sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

Table 5.18: Optimal permutation of the example with sublot resizing

Position 1 2 3 4 5 6 7 8

Job 2 1 2 2 1 1 2 1

Level 1 1 2 1 1 2 2 2

Sublot 1 1 1 2 2 1 2 2

The level index l is added to the sublot size variable X iq, changing it to X iq
l , to indicate

different lot sizes for the sublots q = 1, . . . , Q of the jobs i = 1, . . . , n dependent on the

levels l = 1, . . . , L. The calculated sublot sizes with the possibility of resizing are:

X11
l =

(

36 36
)

, X12
l =

(

64 64
)

,

X21
l =

(

36 22
)

, X22
l =

(

64 78
)

.

The corresponding starting times of the operations are:

s11lk =





0.72 1.44

4.24 6.16



 , s12lk =





2.96 4.24

6.16 8.08



 ,

s21lk =





0 0.72

1.44 2.52



 , s22lk =





1.68 2.96

5.38 6.52



 .

The size of job i = 2’s sublot j = 1 decreases with the transition to level l = 2

from X21
1 = 36 to X21

2 = 22. The number of parts in the second sublot of job two

increases from X22
1 = 64 to X22

2 = 78. After 1.44 time units, 36 parts are ready to be

processed in level l = 2, since s2112 + p212 · X
21
1 = 1.44. At this moment, the number of

available parts decreases by 22, since s2121 = 1.44 and X21
2 = 22. There are now 14 parts

available to be added to the second sublot. The second sublot finishes level l = 1 after

s2212+p212 ·X
22
1 = 2.96 time units, making X22

1 = 64 parts available for forming the second

5.2 MATHEMATICAL MODELS 176

sublot in level l = 2. After 2.96 time units, 78 parts are waiting to be processed in level

l = 2, forming sublot two with X22
2 = 78. The second sublot starts at a time s2221 ≥ s2212,

resulting in a valid schedule regarding the starting times and numbers of ready parts.

Figure 5.23: Solution to the example with resizing of sublots

Time

2

1

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 1

Job 2

The possibility of resizing sublots reduces the makespan of this example to Cmax =

8.72. The ∆Cmax to the compared model without sublot resizing is 0.68% for this small

example.

The following section introduces an MIP model to describe a valid schedule with a

resizing option in order to minimize the makespan. The computational experiments give

an overview of the effect of resizing for different problem sizes.

The models which feature sublot resizing before re-entering the production system do

not consider equal lot sizes, since this would make the resizing obsolete. The resizing

feature makes it necessary to modify the sublot size variables X iq and add a level index l,

resulting in a new variable X iq
l . This variable distinguishes between the sizes of the lots

in different levels. Also, a new binary variable Riqq′l ∈ {0; 1} is introduced to formulate

the resizing. Two sublot indices are given by q = 1, . . . , Q and q′ = 1, . . . , Q for every

single job level. Riqq′l equals 1 if a sublot q of a job starts being processed at level l + 1

before sublot q′ of the same job i has finished its level l; Riqq′l equals 0 otherwise.

The objective is the makespan:

minCmax. (5.20)

Every part of a job needs to be processed in the levels l = 1, . . . , L, i.e. the sum of

parts in the sublots per level needs to be equal to the parts contained by a job i. This

is ensured by the constraints (5.21). The constraints need to be valid for each job and

level since the size of a sublot is allowed to vary between levels.

Q
∑

q=1

X iq
l = Di (5.21)

∀i = 1, . . . , n; l = 1, . . . , L.

5.2 MATHEMATICAL MODELS 177

The correct order of operations of each single sublot is defined by the constraints

(5.22). The equations (5.22) secure the correct machine order from machine 1 to m for

each sublot of any job in every level.

pilk′ ·
(

siqlk + pilk ·X
iq
l

)

· pilk ≤ pilk′ · s
iq
lk′ · p

i
lk (5.22)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k, k′ = 1, . . . ,m; (k < k′) .

The constraints (5.23) ensure that a sublot q of a job i in level l is processed before

sublot q + 1 on every machine k = 1, . . . ,m.

(

siqlk + pilk ·X
iq
l

)

· pilk ≤ si,q+1
lk · pilk (5.23)

∀i = 1, . . . , n; q = 1, . . . , Q− 1; l = 1, . . . , L; k = 1, . . . ,m.

The equations (5.24) and (5.25) avoid the processing of two or more sublots on a

machine at the same time. The cases for sublot q = q′ of the same job but in different

levels are controlled by the constraints (5.26) and (5.27).

A ·
(

1− yiqli′q′l′

)

+ sl
′k
i′q′ − slkiq ≥ pilk ·X

iql (5.24)

∀i, i′ = 1, . . . , n; (i ≥ i′) ; l, l′ = 1, . . . , L; k = 1, . . . ,m; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} ;

A · yiqli′q′l′ + slkiq − sl
′k
i′q′ ≥ pi

′

l′k ·X
i′q′l′ (5.25)

∀i, i′ = 1, . . . , n; (i ≥ i′) ; l, l′ = 1, . . . , L; k = 1, . . . ,m; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′} .

Equations (5.26) and (5.27) ensure that a sublot q of a job i is not processed simulta-

neously on a machine k in different levels l and l′.

A ·
(

1− yiqliql′

)

+ sl
′k
iq − slkiq ≥ pilk ·X

iql (5.26)

∀i = 1, . . . , n; l, l′ = 1, . . . , L (l 6= l′) ; k = 1, . . . ,m; q = 1, . . . , Q;

A · yiqliql′ + slkiq − sl
′k
iq ≥ pil′k ·X

iql′ (5.27)

∀i = 1, . . . , n; l, l′ = 1, . . . , L (l 6= l′) ; k = 1, . . . ,m; q = 1, . . . , Q.

The resizing problem, i.e. providing a valid amount of parts for new sublot sizes, is

depicted by the constraint sets (5.31), (5.28), (5.29) and (5.30). The equations (5.28) are

time restrictions to the sublots q > 1 with respect to the ready times of parts forming

new sublots. The constraints force the binary variable Riqq′l to be 1 if a certain sublot

q′ has finished a level and is available for providing parts for a new sublot q. The values

of Riqq′l are regulated in the constraint set (5.28). If any starting time of a job i’s sublot

q on level l+1, siql+1,k, is lower than any of the times when an operation of a sublot q′ of

5.2 MATHEMATICAL MODELS 178

the same job on the previous level l ends, siq
′

lk +X iq′

l+1 · p
iq′

lk , then Riqq′l equals 1.

pil+1,k′ ·
(

siq
′

lk + pilk ·X
iq′

l

)

· pilk ≤ pil+1,k′ ·
(

A ·Riqq′l + siql+1,k′

)

· pilk (5.28)

∀i = 1, . . . , n; l = 1, . . . , L− 1; k, k′ = 1, . . . ,m; q, q′ = 1, . . . , Q.

The limitation of starting times during level transition is not sufficient for the sublots

q > 1 since the resizing of sublots can yield a situation where some parts of q = 1 are

left over after starting l + 1. These parts can, for instance form a sublot q = 2, which

starts into l + 1 before q = 2 is finished in l.

Another set of constraints (5.29) limits the level transition of all sublots q = 1, . . . , Q

via the binary variables Riq1l. All values of Riq1l need to be equal to 0 in order to prevent

the sublots from being processed in l + 1 before the first sublot has finished l.

Riq1l = 0 (5.29)

∀i = 1, . . . , n; l = 1, . . . , L; q = 1, . . . , Q.

The equations (5.30) secure a proper level transition of the last sublot of a job. The

last sublot q = Q of a job i is not allowed to start into level l + 1 before all sublots

q = 1, . . . , Q have finished level l.

RiQql = 0 (5.30)

∀i = 1, . . . , n; l = 1, . . . , L; q = 1, . . . , Q.

The equations (5.31) determine the number of parts available to increase and decrease

the number of parts of a sublot. Sublot q starts into level l+1 before sublot q′+1 finishes

level l and after sublot q′ finishes l, if
∑q′+1

q′′=1 R
iqq′′l = 1 and

∑q′

q′′=1 R
iqq′′l = 0. This means

that the parts available for sublots q′′ = 1, . . . , q in level l + 1 are not allowed to exceed

the total number of parts provided by the sublots q′′ = 1, . . . , q′ in level l. But they are

allowed to include fewer parts, as long as the constraints (5.21) hold.

q
∑

q′′=1

X iq′′

l+1 ≤
q′
∑

q′′=1

X iq′′

l + A ·



1−
q′+1
∑

q′′=1

Riqq′′l



+ A ·
q′
∑

q′′=1

Riqq′′l (5.31)

∀i = 1, . . . , n; l = 1, . . . , L− 1; q = 1, . . . , Q; q′ = 1, . . . , Q− 1.

The makespan and completion times can be measured with the inequalities (5.32) and

5.2 MATHEMATICAL MODELS 179

(5.33).

siqlk + pilk ·X
iq
l ≤ Cmax (5.32)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m;

siqlk + pilk ·X
iq
l ≤ Ci (5.33)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m.

The binary constraints on the variables yiqli′q′l′ and Rizz′l are provided by equations

(5.34) and (5.35).

yiqli′q′l′ ∈ {0; 1} (5.34)

∀i, i′ = 1, . . . , n; i ≥ i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q; if (i = i′ANDl = l′) q 6= q′

Riqq′l ∈ {0; 1} (5.35)

∀i = 1, . . . , n; q, q′ = 1, . . . , Q; l, l′ = 1, . . . , L.

The inequalities (5.36) and (5.37) are the non-negativity constraints for the starting

times siqlk and sublot sizes X iq
l .

siqlk ≥ 0 (5.36)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L; k = 1, . . . ,m;

X iq
l ≥ 0 (5.37)

∀i = 1, . . . , n; q = 1, . . . , Q; l = 1, . . . , L.

Additional constraints ((5.38)) can be added to tighten the formulation regarding the

unambiguousness of the sequence variables yiqli′q′l′ .

yiqli′q′l′ + yi
′q′l′

iql = 1 (5.38)

∀i, i′ = 1, . . . , n; i > i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q.

Possible additional restrictions regarding lot sizes and sequence

Equal sublot sizes are not reasonable in the context of resizing, because equally sized

sublots do not allow differences between sublot sizes in the different levels. Nevertheless,

it is possible to add constraints for consecutive sublots and a basic sublot sequence.

Consecutive sublots can be obtained by adding the constraints (5.39) to the formula-

5.2 MATHEMATICAL MODELS 180

tion.

yiqli′q′l′ + yi
′q′l′

iq′l = 1 (5.39)

∀i, i′ = 1, . . . , n; i > i′; l, l′ = 1, . . . , L; q, q′ = 1, . . . , Q.

A possible basic sequence similar to the case of a re-entrant permutation flow shop

without lot streaming can be achieved by adding the restrictions (5.40).

yiqli′q′l = yiqLi′q′L (5.40)

∀i, i′ = 1, . . . , n; i ≥ i′; l = 1, . . . , L; q, q′ = 1, . . . , Q; if (i = i′) {q 6= q′}

Influence of Resizing Sublots

The tested problem sizes in Section 5.2.5 are described by the parameters n ∈ {2, 3},

L ∈ {2, 3}, m ∈ {2, 5, 6, 10} and Q ∈ {2, 3}. Ten instances are generated for each

problem size. These instances are the same as those in Sections 5.2.1 - 5.2.4 for identical

problem size parameters.31 The tested problems are part of the Inc 1 set.32

The resizing of sublots at a level transition is tested with and without consecutive

processing of same level sublots. The makespan values are compared to the values ob-

tained with the consistent sublot model. The consecutive processing of resized sublots is

investigated to know whether the gain in solution space using sublot resizing still allows

improvement of the consistent solution, even if the resizing is connected with a consecu-

tive processing of sublots of the same job level. The average relative changes of makespan

per problem size are displayed in Figure 5.24. The relative makespan deviations for the

application of a sublot resizing option during level transition are calculated by:

∆CQ
max =

CQ, resize
max

CQ, consistent
max

− 1,

and

∆CQ
max =

CQ, resize consecutive
max

CQ, consistent
max

− 1.

The resizing leads to slight improvements if the same level sublots do not need to be

processed consecutively. The relative changes of makespan are slightly below 0 % if the

problems are solved optimally, which is mainly the case for Q = 2 sublots per job. The

mean relative changes in makespan are several times above 0 % for three sublots per job,

because CPLEX runs out of time for these problem sizes. The consecutive processing

31 See Table B.3 in Appendix B (p. 205) for detailed information on the problem sizes.
32 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

5.2 MATHEMATICAL MODELS 181

of the sublots still delivers weaker results than the consistent model if the sublots are

allowed to be resized. The highest average makespan reduction of 0.43 % (- 0.43 %

makespan deviation) during a computation time of 3600 seconds is achieved for Q = 3

sublots per job.

Figure 5.24: Average makespan deviations with resizing of sublots (Inc 1)

∆
C

m
a
x
[%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
2
3

10
2
3

5
3
3

10
3
3

−2

0

2

4

6

8

Problem size

m
L
n

Resizing 2 consecutive sublots
Resizing 3 consecutive sublots
Resizing 2 sublots
Resizing 3 sublots

The computation times of the three different models, each with the two parameter

configurations Q = 2 and Q = 3, are shown in Figure 5.25. A consecutive processing

of sublots that are allowed to be resized, leads to low mean computation times under

170 seconds for the tested problem sizes. The resizing model without constraints for

consecutive processing reaches the maximum computation time of 1 hour for Q = 3

sublots per job for most problem instances with n = 3 jobs. The possibility of resizing

the sublots of a job during level transition leads to high computation times of more

than 2000 seconds, even if just two jobs are split into three sublots. The resizing model

requires computation times of only a few seconds for n = L = 3 instances on an average

of around 2000 seconds to calculate the optimal solution if the number of sublots per

job is Q = 2.

5.2 MATHEMATICAL MODELS 182

Figure 5.25: Average computation times with resizing of sublots (Inc 1)

C
om

p
u
ta

ti
on

 t
im

e
[s

]

5
2
2

10
2
2

5
3
2

10
3
2

5
2
3

10
2
3

5
3
3

10
3
3

0

1000

2000

3000

4000

5000

Problem size

m
L
n

Resizing 2 consecutive sublots
Resizing 2 consecutive sublots
Resizing 2 sublots
Resizing 3 sublots

2 Consistent sublots
3 Consistent sublots

5.2.6 Summary of Sublot Properties

This section gives an overview of the different lot streaming models for makespan min-

imization in re-entrant permutation flow shops. The consistent sublot model without

consecutive processing delivers better results than the equal sublot models and the con-

secutive sublot models, but requires high computation times. One approach to balance

the solution quality and computational requirements is to use equal sublots without a

prescribed consecutive sublot processing. The makespan values are close to the results

with a simple consistent model, but require less computation time. Although the con-

secutive processing of the sublots of the same job level reduces the computation time

drastically, it also leads to a relatively low solution quality. A consecutive processing

of sublots is not further pursued in Sections 5.3 and 5.4 due to the makespan values

obtained and the fact that neighborhood moves of single sublots in the permutation are

forbidden if consecutive processing is prescribed. The comparison between the consistent

sublot model and the model with a resizing option during the level transition of sublots

shows that the resizing option leads to much higher computational efforts, even for small

problem sizes, than the consistent sublot model. The makespan reductions achieved by

resizing the sublots is not high enough to compensate the increase in computational

efforts. Therefore a resizing of sublots is not considered for the application of a variable

neighborhood search for the lot streaming problem in Section 5.4.

5.2 MATHEMATICAL MODELS 183

Tables 5.19 and 5.20 summarize the number of constraints and variables for the differ-

ent sublot configurations. Allowing a resizing of sublots results in a much higher number

of constraints than without resizing.

Table 5.19: Number of constraints for lot streaming with consistent sublots

Constraints Number

(5.2) 1
2
n · L ·m · (m− 1) ·Q

(5.3) n · L ·m · (Q− 1)

(5.4) n · (L− 1) ·m2 ·Q

(5.5) 1
2
n · (n+ 1) · L2 ·m ·Q2 − n · L2 ·m ·Q

(5.6) 1
2
n · (n+ 1) · L2 ·m ·Q2 − n · L2 ·m ·Q

Total n ·m ·
(

L ·Q ·
(

(n+ 1) · L ·Q− n · L+ 1
2
m+ 3

2

)

− L−Q
)

Consistent (5.1) n

Equal (5.17) n ·Q

Consecutive (5.16) 1
2
n · (n− 1) · L2 ·Q2

Cmax n · L ·m ·Q

Ci n · L ·m ·Q

NNC n · L ·m + n ·Q

Binary n (n+ 1) · L2 ·Q2 − n · L ·Q

Basic Sequence (5.7) 1
2
n · (n+ 1) · L ·Q2 − n · L ·Q

5.3 NEIGHBORHOODS IN RPFS WITH LOT STREAMING 184

Table 5.20: Number of constraints for lot streaming with sublot resizing

Constraints Number

(5.22) n · L · 1
2
m · (m− 1) ·Q

(5.23) n · L ·m · (Q− 1)

(5.24) 1
2
n · (n+ 1) · L2 ·m ·Q2 − n · L2 ·m ·Q

(5.25) 1
2
n · (n+ 1) · L2 ·m ·Q2 − n · L2 ·m ·Q

(5.26) n · L · (L− 1) ·m ·Q

(5.27) n · L · (L− 1) ·m ·Q

(5.28) n · (L− 1) ·m2 ·Q2

(5.29) n · L ·Q

(5.30) n · L ·Q

(5.31) n · (L− 1) ·Q · (Q− 1)

Total n · L ·m ·Q ·
(

1
2
m+ (n+ 1) · L ·Q+ L+m ·Q− 3

2

)

+n · L ·m ·Q (Q+ 1)

+n · (−L ·m−m2 ·Q2 −Q · (Q− 1))

Consistent level (5.21) n · L

Consecutive (5.39) 1
2
n · (n− 1) · L2 ·Q2

Cmax n · L ·m ·Q

Ci n · L ·m ·Q

NNC n · L ·m + n ·Q + Cmax (1)

Binary n (n+ 1) · L2 ·Q2 − n · L ·Q+ n · L ·Q2

Basic Sequence (5.40) 1
2
n · (n+ 1) · L ·Q2 − n · L ·Q

5.3 Neighborhoods in Re-entrant Permutation Flow

Shops with Lot Streaming

The move limits of the sublots in the MIP are:

• For sublots q the position of the same sublot q in the previous level, if l 6= 1,

• The position of the previous sublot q − 1 of the same level l, if q 6= 1,

• The position of the next sublot q + 1 of the same level l, if q 6= Q,

• The position of the same sublot q in the next level l + 1, if l 6= L.

Since the number of possible permutations increases through the introduction of sublots

to (n · L ·Q)!/ ((L ·Q)!)n, the moves are limited more strictly to reduce the computa-

tional effort for large test instances. The stricter move limits are:

5.3 NEIGHBORHOODS IN RPFS WITH LOT STREAMING 185

• For sublots q = 1 the position of the last sublot q = Q of the previous level, if

l 6= 1,

• The position of the previous sublot q − 1 of the same level l, if q 6= 1,

• The position of the next sublot q + 1 of the same level l, if q 6= Q,

• The position of the first sublot q = 1 of the next level l + 1, if l 6= L.

The strict limits for any move of a sublot of a job i in level l in the sublot permutation

are given by the levels l − 1 and l + 1 and the sublots q − 1 and q + 1. These limits do

not consider the possibility that a sublot q can be processed before q− 1 of the same job

level.

Technological restrictions to resizing the sublots after entering a new level are given

by the number of available parts. There need to be enough parts available to reach

the wanted sublot size. However, resizing is not considered in the heuristic solution

approaches, since the experiments with the resizing models show that the effect on the

makespan and total completion time are quite low considering the effort of selecting the

new lot size.

Swap moves

Swap moves are also in the lot streaming problem, where the exchanges of sequence

positions occur between two different sequence members. The sequence members are

not the various job levels, but the single sublots of each job level. Without resizing of

sublots, a sublot can start a new level after finishing the previous level. The earliest

swap position is that of the same sublot in the preceding level. The latest swap position

is the position of the same sublot in the next level.

An example of a level swap is given in Figure 5.26. The sequence position of a sublot

q of job i in level l is given by jiql. All sublots of the job level il = 11 are exchanged with

the sublots of i′l′ = 31.

Figure 5.26: Example of a level swap of i = 1, l = 1 and i′ = 3, l′ = 1

j111 j211 j311 j121 j221 j321 j112 j212 j312 j122 j222 j322

A job swap is shown in Figure 5.27, where every sublot of job i = 1 swaps its sequence

position with the corresponding sublot of job i′ = 3.

5.4 A VNS FOR A RPFS WITH LOT STREAMING 186

Figure 5.27: Example of a job swap of i = 1 and i′ = 3

j111 j211 j311 j121 j221 j321 j112 j212 j312 j122 j222 j322

Insertion moves

The insertion moves select a member of the sequence, i.e. a sublot of a job in a specific

level, and place it into a new position. To be placed in a later position, the member

is inserted between the former jth and (j + 1)th position. Since the members of the

sequence between the old position j′ and new position j move forward in the sequence,

their sequence index is reduced by 1. If the member is inserted into a prior position, the

sequence position of the members in between the old and new position will be increased

by one because the number of the sublots is increased by 1.

Figures 5.28 and 5.29 give examples of level insertion and job insertion in a re-entrant

flow shop with lot streaming, considering the example sublot permutation from the

example for swap moves.

Figure 5.28: Example of a level insertion of i = 1, l = 1 to the positions of i′ = 3, l′ = 1

j111 j211 j311 j121 j221 j321 j112 j212 j312 j122 j222 j322

Figure 5.29: Example of a job insertion of i = 1 to the positions of i′ = 3

j111 j211 j311 j121 j221 j321 j112 j212 j312 j122 j222 j322

5.4 A Variable Neighborhood Search for a Re-entrant

Permutation Flow Shop with Lot Streaming

This section focuses on the adjustment and testing of variable neighborhood search

configurations for the re-entrant permutation flow shop with missing operations and lot

streaming. Other methods are not considered in this section, due to the relatively weak

results in Chapter 4. The first part of the section introduces the tested calibration in

a lot streaming framework, to define the sublot sizes for single job levels. The second

5.4 A VNS FOR A RPFS WITH LOT STREAMING 187

part presents the computational results to answer the research question concerning the

number of sublots per job that should be chosen in the considered problem and the

calibration of the VNS that obtains the best results.

5.4.1 Calibration

Consistent sublots are used for the heuristic solution methods in this section. The

number of sublots may vary from iteration to iteration. Due to the results presented in

Section 5.2.3, the sublots are considered to be equal but are not necessarily consecutive.

Equal sublots do not require intense effort in calculating lot sizes and do not result in

high losses of solution quality for makespan. The makespan values obtained by solving

the model with equal sublots lead to even lower makespan values for some problems with

four jobs to be scheduled with a maximum computation time of 1 hour.

The framework splits each job into Q = 2 sublots within the first main iteration. Then,

the improvement method is applied to the permutation. The resulting objective value is

compared to that of the previous iteration. The number of sublots Q is set to Q + 1 if

the resulting makespan value, CQ
max, of the iteration is CQ

max ≤ 0.95CQ−1
max . Otherwise, the

algorithm terminates. This lot streaming framework is chosen to determine the number

of sublots per job that is useful in the context of re-entrant permutation flow shops and

to quantify the improvement of metaheuristics for the problem with lot streaming. The

VNS is suggested as an improvement method for this problem, since it showed the best

results on the makespan with acceptable computational effort in Section 4.7.

Figure 5.30: Lot streaming framework with equal sublots

Start Input data

Initial solution

Split jobs in πinit into Q sublots Q+ 1

Metaheuristic

Improved < 5%

y

n
Q = Qmax

n

y

Output

best solution
End

5.4 A VNS FOR A RPFS WITH LOT STREAMING 188

Initial solutions for an RPFS with missing operations and lot streaming

The initial solution for the re-entrant permutation flow shop with lot streaming can be

generated by applying the suggested constructive heuristics of section 4.5. The selected

method of initialization is the STPTL rule because of the achieved solution quality for

the RPFS without lot streaming and the performance of the VNS operating on the initial

solution generated by this procedure.

The mentioned constructive heuristic generates an initial sequence with mixed levels.

The job levels in this solution are then split into Q equal consecutive sublots. If there

is a remainder of parts of size X > 0 after a job is divided into Q sublots, then the X

parts are equally split between the X first sublots of the job. The improvement methods

are then able to update the solutions to permutations with non-consecutive sublots, as

presented by the neighborhood structures introduced in Section 5.3.

Neighborhood Structures for the RPFS with Lot Streaming

The neighborhood hierarchies 1 and 2 chosen in Section 4.7.5 are extended by two addi-

tional neighborhoods to sequence single sublots. The extended neighborhood hierarchies

are shown in Table 5.21. S-swaps are swaps of two sublots in the sequence. An S-insert

is an insertion move performed by a single sublot in the sequence.

Table 5.21: Neighborhood hierarchies with lot streaming

t N 1
t N 2

t

1 J-swap J-insert

2 J-insert J-swap

3 L-swap L-insert

4 L-insert L-swap

5 S-swap S-insert

6 S-insert S-swap

The Nowicki across block moves are also tested for the re-entrant permutation flow

shop with lot streaming to investigate whether these improve their performance in the

extended problem setting. The Nowicki across block moves can only be used by single

sublots if lot streaming is applied.

Shaking

The shaking phase and the switch of neighborhoods follow the two preferred schemes in

Section 4.7.5, which are extended to the neighborhood hierarchies shown in Table 5.21.

5.4 A VNS FOR A RPFS WITH LOT STREAMING 189

Integrated Local Search Algorithm

Again, both local search procedures, best neighbor and first improvement, are separately

implemented within the local search phase.

5.4.2 Computational Experiments

This section examines what numbers of equally sized sublots per job are appropriate in a

VNS framework for a re-entant permutation flow shop with lot streaming and how they

affect the makespan and computation time. Furthermore, different calibrations of the

VNS are evaluated regarding their performance in the considered problem.

Experimental Setup

The parameters of the problem size are n ∈ {2, 3, 4, 5}, L ∈ {2, 3, 4, 5}, m ∈ {2, 5, 6, 10}

for small problems and n ∈ {20, 40}, L ∈ {5, 10}, m ∈ {20, 40} for large problems.33

The processing times of complete operations are uniformly distributed random numbers

between 1 and 99. Ten test instances are generated for each problem size. Missing

operations are generated about the Inc 1 and Inc 3 schemes.34

Results

The makespan deviations, ∆CMIP
max , of the VNS solutions from the MIP solutions with

equally sized sublots are used to identify if strict limits should be applied to single sublot

moves. The deviation is calculated via the equation:

∆CMIP
max =

Cmax

(

πQ
meta

)

Cmax

(

πQ
MIP

) − 1.

The permutation obtained by the metaheuristics if each job is split into Q equally sized

sublots is denoted by πQ
meta. The average values of ∆CMIP

max per problem size are shown

in Figure 5.31 for small problems. The deviations for strict and non-strict move limits of

sublots are very close for every tested VNS configuration. Therefore, strict sublot move

limits are used in all further tests with large instances to limit the computational effort.

33 See Table B.3 in Appendix B (p. 205) for detailed information on the problem sizes.
34 See Table B.1 in Appendix B (p. 203) for an overview of missing operations.

5.4 A VNS FOR A RPFS WITH LOT STREAMING 190

Figure 5.31: Average makespan deviation to MIP solutions (Inc 1)

2 Sublots

∆
C

m
a
x

M
IP

 [
%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

VNS2 BN strict
VNS3 FI strict
VNS2 BN
VNS3 FI

2 Sublots with Nowicki moves

∆
C

m
a
x

M
IP

 [
%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

VNS2 BN* strict
VNS3 FI* strict
VNS2 BN*
VNS3 FI*

3 Sublots

∆
C

m
a
x

M
IP

 [
%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

VNS2 BN strict
VNS3 FI strict
VNS2 BN
VNS3 FI

3 Sublots with Nowicki moves

∆
C

m
a
x

M
IP

 [
%

]

5
2
2

10
2
2

5
3
2

10
3
2

5
4
2

10
4
2

5
2
3

10
2
3

5
3
3

10
3
3

5
4
3

10
4
3

5
2
4

10
2
4

5
3
4

10
3
4

5
4
4

10
4
4

0

2

4

6

8

10

Problem size

m
L
n

VNS2 BN* strict
VNS3 FI* strict
VNS2 BN*
VNS3 FI*

The following evaluation tables and figures all provide the results for the different VNS

approaches with strict sublot move limits.

Table 5.22 shows the mean makespan reductions of using lot streaming in different

VNS configurations if the number of sublots per job depends on the makespan reduction

5.4 A VNS FOR A RPFS WITH LOT STREAMING 191

that is achieved by an increase of Q by one. The makespan reductions are denoted with

∆CLS
max and calculated by:

∆CLS
max = 1−

Cmax

(

πLS
meta

)

Cmax (πmeta)
.

πLS
meta is a permutation obtained with the tested methods for the re-entrant permutation

flow shop problem with lot streaming. The number of sublots per job for each problem

instance is determined by the framework illustrated in Figure 5.30. The average values

of ∆CLS
max are about 30 % for all approaches for small problems and for large instances

the mean makespan reductions are about 20 %. The Inc 3 instances are only solved with

the first improvement variations of the VNS due to the high computation times with an

integrated best neighbor local search.

Table 5.22: Average makespan reductions ∆CLS
max [%] with lot streaming

Inc 1 Inc 3

Small Large Total Small Large Total

VNS1 BN 30.93 21.35 29.87 - - -

VNS2 FI 30.17 20.68 29.11 27.92 19.66 25.16

VNS1 BN* 30.84 21.54 29.81 - - -

VNS2 FI* 30.33 20.83 29.27 30.83 23.17 28.27

The number of sublots per job reaches Q = 7 as shown in Table 5.23. The most

frequently calculated sublots per job are Q = 3 and Q = 4.

Table 5.23: Number of sublots per job in the best solutions of small problems (Inc 1)

Q VNS1 BN VNS2 FI VNS1 BN* VNS2 FI*

2 64 73 67 70

3 210 222 204 208

4 202 197 208 201

5 109 100 98 107

6 41 32 49 43

7 13 15 12 9

The number of sublots per job in the solutions obtained by metaheuristics in large

instances are most frequently Q = 3 and Q = 4. Table 5.24 shows the frequencies

of different numbers of sublots per job for large instances in the test sets Inc 1 and

Inc 3. Q = 5 is the highest number of sublots per job calculated by the different VNS

calibrations.

5.4 A VNS FOR A RPFS WITH LOT STREAMING 192

Table 5.24: Number of sublots per job in the best solution of large problems (Inc 1)

Q VNS1 BN VNS2 FI VNS1 BN* VNS2 FI*

2 2 3 5 2

3 53 55 54 52

4 24 20 21 23

5 1 2 0 3

Due to the results shown in Tables 5.23 and 5.24, it is suggested that the VNS starts

with Q = 3 sublots per job and that the number of sublots per job should be limited to

a maximum of Qmax = 4.

Figure 5.32: Average number of sublots per job in best solution (Inc 1)

N
u
m

b
er

 o
f
su

b
lo

ts

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

2.5

3.0

3.5

4.0

4.5

Problem size

m
L
n

VNS1 BN
VNS2 FI
VNS1 BN*
VNS2 FI*

The average improvement values, ∆C init
max, shown in Figure 5.3335 describe the relative

reductions of makespan if a variable neighborhood search is applied to an STPTL so-

lution, where jobs are each split into Q = 3 sublots. The following formula is used to

calculate the single improvement values:

∆C init
max =

Cmax (π
3
meta)

Cmax (π3
init)

− 1.

35 Figure 5.33 provides the values for the Inc 1 test set. The corresponding values for the Inc 3 are
shown in Figure D.1 in Appendix D (p. 210).

5.4 A VNS FOR A RPFS WITH LOT STREAMING 193

High improvements of between 6 and 10 % are realized if the number of levels is L = 5.

The mean makespan reductions for L = 10 instances are lower. The configurations with

a best neighbor local search deliver better results than when first improvement is used

as local search.

Figure 5.33: Average improvement of the Q = 3 STPTL solutions (Inc 1)

∆
C

m
a
x

in
it
 [
%

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

2

4

6

8

10

Problem size

m
L
n

VNS1 BN
VNS2 FI
VNS1 BN*
VNS2 FI*

Figure 5.34 shows the average makespan reductions when lot streaming with Q = 3

sublots per job is applied to the Inc 1 test instances36, as compared to the solutions

obtained by the variable neighborhood searches without lot streaming. The makespan

reductions are up to 40 % for n = 20 instances and up to 20 % for n = 40 instances.

The values of reduction are calculated as follows:

∆C3|1
max = 1−

Cmax (π
3
meta)

Cmax (πmeta)
.

36 The corresponding values for the Inc 3 are shown in Figure D.2 in Appendix D (p. 210).

5.4 A VNS FOR A RPFS WITH LOT STREAMING 194

Figure 5.34: Average makespan reductions compared to Q = 1 solutions (Inc 1)

∆
C

m
a
x

3
|1

 [
%

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

10

20

30

40

Problem size

m
L
n

VNS1 BN
VNS2 FI
VNS1 BN*
VNS2 FI*

The mean computation times for the tested problem sizes are shown in Table 5.25. The

best neighbor variable neighborhood search based on the Nowicki block moves requires

longer computation times on average for the largest instances (n = 40 and L = 10) than

the equivalent VNS without block criteria. The VNS with a best neighbor local search

is not tested for Inc 3 instances due to the relatively long computation times.

5.4 A VNS FOR A RPFS WITH LOT STREAMING 195

Table 5.25: Average computation times [s] with Q = 3 sublots per job

Set n L m VNS1 BN VNS2 FI VNS1 BN* VNS2 FI*

Inc 1 20 5 20 500 119 128 82

40 324 76 287 76

10 20 941 398 526 270

40 1180 284 613 346

40 5 20 4320 650 2331 615

40 4438 1350 3775 678

10 20 9849 3978 11,163 1863

40 7500 7276 9485 2696

Inc 3 20 5 20 - 147 - 68

40 - 102 - 96

10 20 - 611 - 362

40 - 584 - 216

40 5 20 - 844 - 489

40 - 2154 - 987

10 20 - 4326 - 2913

40 - 3011 - 4014

The results of the test lead to the conclusion that the preferred algorithm configuration

is the VNS2 FI. It works with acceptable computation times, even for large problems

with about 1200 positions within a permutation, and delivers makespan reductions of

initial solutions for large problem sizes which are only 1 to 2 % points lower than the

reductions obtained with best neighbor variable neighborhood searches. Further, the

VNS2 FI* with the Nowicki across block moves is a good configuration of the VNS. It

delivers weaker results than the VNS2 FI but is up to around three times faster than

the VNS2 FI.

6 Conclusion

This thesis considers a re-entrant permutation flow shop with missing operations. The

permutation consists of job levels which represent the re-entries of jobs into a manufac-

turing system. The literature review showed the fields of application of the examined

problem and addressed different problem characteristics and solution methods. An MIP

model was suggested to solve small problem instances. Metaheuristic solution meth-

ods are developed for large problem instances. The main contributions of this work

are provided by the answers to the research questions in the previous chapters and are

summarized in the following.

Q1: What is the state of research for re-entrant permutation flow shops?

Current literature concerning re-entrant permutation flow shops only considers schedules

with separated levels. MIP models only represent missing operations by using an opera-

tion index on the sequence variables. The literature review found applications of various

metaheuristic solution approaches to the re-entrant scheduling problems. Evolutionary

algorithms are a widely used group of heuristics for re-entrant scheduling problems. Be-

side this, also the tabu search approach and variable neighborhood search are applied

on the problem in the literature. Simulated annealing has not been applied to a re-

entrant permutation flow shop before. Nevertheless, the special neighborhood structures

in re-entrant permutation flow shop problems have not been exploited extensively be-

fore. Additionally, no publication regarding lot streaming in re-entrant permutation flow

shops is known to the author of this thesis, except for the author’s earlier work Hinze

(2016).

Q2: How can missing operations and mixed levels be formulated in a mathematical

model and what are the effects on the optimal makespan of a schedule? What

problem sizes can be solved optimally?

Two approaches were examined for modeling a re-entrant permutation flow shop with

mixed levels without using a machine or operation index on the sequence variable. One

model uses sequence variables which define predecessor-successor relations for each possi-

ble pair of job levels. This formulation is superior to the approach that assigns sequence

196

6 CONCLUSION 197

positions directly to single job levels. Furthermore, the influence of missing operations

on the optimal makespan was examined. The preferred model was adjusted to deal

with missing operations without using an operation index on the sequence variable. The

proper management of missing operations leads to further makespan reductions. The

models were able to optimally solve problem sizes with up to either four jobs and five

levels or five jobs and four levels per job in an appropriate time.

Q3: How does the application of problem-specific constructive heuristics and adjusted

metaheuristics affect the solution quality and computational performance in re-

entrant permutation flow shop problems?

Eight different constructive heuristics were tested for the re-entrant permutation flow

shop problem. The first set of heuristics generated schedules with separated levels, while

the second set allowed mixed levels and considered the ready times of job levels. An

STPTL priority rule delivered better results than the other methods. The best method

for creating separated level schedules was the NEHJ algorithm. Both methods and

two random schedule generation procedures were tested regarding their influence on the

performance of various metaheuristics.

The suggested neighborhood structure for an application in metaheuristics contains

swap and insertion moves of single job levels and all levels of a certain job. Furthermore,

different definitions of block moves were examined. The block moves based on the

definition of Chen/Pan/Wu (2007) delivered weaker results than the block moves

based on the definition of Nowicki/Smutnicki (1996). Computation times were not

cut down remarkably and the makespan values were not improved compared to the VNS

configuration without block criteria.

Tabu search, simulated annealing and variable neighborhood search were examined

regarding the makespan values achieved and the computation times required. Each

metaheuristic was tested with different neighborhood settings based on the previous

results of the tested neighborhoods. The variable neighborhood search obtained the

best makespan values within a reasonable amount of computation time. Two different

neighborhood hierarchies deliver the best results for the VNS with best neighbor and

first improvement local search. The suggested neighborhood hierarchy for a VNS with a

best neighbor local search uses swap neighborhoods before the corresponding insertion

neighborhoods, and vice versa if a first improvement local search is integrated in the VNS.

Block criteria did not lead to a better performance of the variable neighborhood search.

The choice of the opening procedures affects the result of the VNS. The best results

are obtained with the STPTL rule. Initializing with the SIROL rule leads to extensive

computation times and weak makespan values. The VNS configurations delivered better

average improvement values of NEHJ solutions than the suggested algorithms of Chen/

6 CONCLUSION 198

Pan/Lin (2008), Chen/Pan/Wu (2008) and Qian et al. (2013b) for similar problem

sizes.

Q4: What is the impact of different forms of lot streaming on the makespan?

Applying lot streaming in re-entrant permutation flow shops led to large reductions of

the makespan. Equally sized non-consecutively processed sublots were determined as a

suitable form of sublots for a variable neighborhood search. Equal sublot sizes reduced

the effort in determining sublot sizes but still obtained good results compared to not

necessarily equal sublots. Schedules with a consecutive processing of sublots of the same

job level were solved quickly by commercial solver software but lacked solution quality.

A resizing of sublots during level transition did not lead to remarkable improvements of

the makespan.

Q5: What numbers of sublots per job dependent on the problem size are suitable for

metaheuristics?

Due to the weak results in the previous tests, tabu search and simulated annealing were

not pursued further for the problem with lot streaming. The preferred configurations of

the variable neighborhood search in the context of the problem without lot streaming

were extended to neighborhood hierarchies with limited insertion and swap moves of

single sublots. Splitting the jobs into three or four sublots was most appropriate for the

application of the VNS to large problem instances. First improvement is the preferred

integrated local search for the VNS due to the extended permutation if lot streaming

is considered. The replacement of single sublot neighborhoods with across block neigh-

borhoods for single sublots resulted in reduced computation times without a remarkable

decrease in solution quality.

Future Research

Further points of interest in the research field of re-entrant permutation flow shops

include in the following:

• Further neighborhood structures may lead to further improvements in solution

quality, e.g. moving levels without move limits and re-assigning level numbers

after invalid moves to repair the solution, or involving more than two levels in

swap moves.

• Especially, more sophisticated opening procedures may lead to a better perfor-

mance in computation time and solution quality. The final solutions of the tra-

jectory metaheuristics depend strongly on the initial solution of the re-entrant

6 CONCLUSION 199

permutation flow shop and tend to terminate earlier if they are performed on a

good initial solution.

• Different integrated local search methods in the framework of a variable neigh-

borhood search could be used to profit from the short computation times of a

first improvement search while maintaining the solution quality of a best neighbor

search.

• It is necessary to investigate the influence of setup times and to solve the lot

streaming problem in re-entrant permutation flow shops with setup times, either

sequence-dependent or independent, to get a complete impression of the impact of

lot streaming in re-entrant permutation flow shops.

• Lower bounds could be applied for the makespan to estimate the solution quality

and to decrease the computation time of metaheuristics.

• The model performance on job shops could be increased by editing the number of

necessary levels per job in a job shop representation.

• Different schemes to determine sublot sizes should be examined to get further

makespan reductions for the lot streaming problem.

A Literature Review Search

Methodology

This section shows the search methodology on different scientific search engines. The

queries searched for literature between the years 2010 and 2015.

Google Scholar

The used url was:

http://scholar.google.de/

The search terms for Google Scholar were “scheduling” or “flow shop / flowshop” OR

“job shop / jobshop” and “reentrant” or “re-entrant”, since there was no keyword or

abstract search available.

Web of Science or Web of Knowledge

The used url was:

http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA

&search_mode=GeneralSearch&SID=X1RfCdK6zgXWmjlqEds&preferencesSaved=

The dependencies between the search terms were:

TITLE: (Scheduling OR Flow Shop OR Job Shop OR Flowshop OR Jobshop) AND

TITLE: (re-entrant OR reentrant) OR TITLE: (Scheduling OR Flow Shop OR Job

Shop OR Flowshop OR Jobshop) AND TOPIC: (re-entrant OR reentrant) OR TOPIC:

(Scheduling OR Flow Shop OR Job Shop OR Flowshop OR Jobshop) AND TITLE:

(re-entrant OR reentrant) OR TOPIC: (Scheduling OR Flow Shop OR Job Shop OR

Flowshop OR Jobshop) AND TOPIC: (re-entrant OR reentrant).

200

A LITERATURE REVIEW SEARCH METHODOLOGY 201

Ebsco Academic Search Complete

The used urls were:

http://web.b.ebscohost.com/ehost/search/advanced?sid

=440abe82-9a15-4fc7-a3d7-5b57ac3ae5cb\%40sessionmgr115&vid=0&hid=124

and

http://wwwdb.dbod.de:2105/ehost/search/advanced?sid

=0242f8e0-6038-470e-87db-68f38ed704e2\%40sessionmgr4004&vid=0&hid=4104

The dependencies between the search terms were:

(TI (Flowshop) OR TI (Flow-shop) OR TI (Flow Shop) OR TI (Jobshop) OR TI (Job-

shop) OR TI (Job Shop) OR TI (Scheduling) OR SU (Flowshop) OR SU (Flow-shop)

OR SU (Flow Shop) OR SU (Jobshop) OR SU (Job-shop) OR SU (Job Shop) OR SU

(Scheduling) OR AB (Flowshop) OR AB (Flow-shop) OR AB (Flow Shop) OR AB (Job-

shop) OR AB (Job-shop) OR AB (Job Shop) OR AB (Scheduling)) AND (TI (reentrant)

OR TI (re-entrant) OR SU (reentrant) OR SU (re-entrant) OR AB (reentrant) OR AB

(re-entrant)).

Only peer reviewed journals have been included within the search.

ScienceDirect

The used url was:

http://www.sciencedirect.com/science/jrnlallbooks/a

The dependencies between the search terms were:

(TITLE-ABSTR-KEY(scheduling) OR (“flow shop”) OR (“flow-shop”) OR (flowshop)

OR (“job shop”) OR (“job-shop”) OR (jobshop)) AND (TITLE-ABSTR-KEY((“re-

entrant”) OR (reentrant))).

The search for journal articles in ScienceDirect was limited to the fields of computer

science and mathematics.

IEEE xplore

The used url was:

http://ieeexplore.ieee.org/Xplore/home.jsp

A LITERATURE REVIEW SEARCH METHODOLOGY 202

The dependencies between the search terms were:

(((“Abstract”:QT.: ((Flowshop) OR (Flow Shop) OR (Jobshop) OR (Job Shop) OR

(Scheduling))) OR “Document Title”:”: ((Flowshop) OR (Flow Shop) OR (Jobshop)

OR (Job Shop) OR (Scheduling))) OR “Author Keywords”:”: ((Flowshop) OR (Flow

Shop) OR (Jobshop) OR (Job Shop) OR (Scheduling))) AND ((((reentrant) OR (“re-

entrant”))) OR “Document Title”:”: ((reentrant) OR (“re-entrant”)) OR “Author Key-

words”:”: ((reentrant) OR (”re-entrant”))),

(((“Abstract”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR Jobshop OR Scheduling)

OR “Document Title”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR Jobshop OR

Scheduling) OR “Author Keywords”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR

Jobshop OR Scheduling),

(((“Abstract”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR Jobshop OR Scheduling)

OR “Document Title”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR Jobshop OR

Scheduling) OR “Author Index Terms”:Flowshop OR “Flow-Shop” OR “Job-Shop” OR

Jobshop OR Scheduling).

The search querries were limited to “Journals & Magazines.”

Taylor and Francis

The used url was:

http://www.tandfonline.com/

The dependencies between the search terms were:

((scheduling) OR (“flow shop”) OR (“flow-shop”) OR (flowshop) OR (“job shop”) OR

(“job-shop”) OR (jobshop)) AND (reentrant OR “re-entrant”).

B Test Instances

The problem size depends on the number of jobs n, number of levels per job L, and the

number of machines m. The different settings for these three parameters are displayed

in the Tables B.2 and B.3. A job leaving the production system after a machine k < m

to re-enter the system on a new level or to be finished is one possible characteristic of

incomplete levels. Another possible characteristic can be an entrance to a new level on a

machine k > 1. The numbers of earlier exits or later entries in a new job level are given

by Table B.1.

Table B.1: Incomplete level scheme

Instance set
Levels per job

Chapter / Section
2 3 4 5 10 20 40

Complete 0 0 0 0 0 0 0 4.4.1, 4.4.2, 4.4.1

Inc 1 1 1 1 1 1 2 4 4.4.3, 4.5.3, 4.6.4, 4.7.5, 4.7.6, 5.2, 5.4

Inc 2 - - 2 2 4 7 12 4.4.3, 5.2

Inc 3 - - - 3 5 9 20 4.4.3, 4.5.3, 4.6.4, 4.7.5, 4.7.6, 5.4

Inc 4 - - - - 9 18 36 4.5.3, 4.6.4, 4.7.5, 4.7.6

The sizes of jobs in Chapter5 are required to be divisible by two and three for the

tests with equal sublots in sections 5.2.3 and 5.2.4. Additionally the divisibility by four

is secured for additional tests. So the lot sizes are allowed to take the values:

D ∈ {60, 72, 84, 96, 108, 120} .

203

B
T
E
S
T

IN
S
T
A
N
C
E
S

204

All experiments are performed on a 64-bit Windows 10 system with a 2.5 GHz Intel i7-4710HQ quad core processor and 16 GB

RAM. IBM CPLEX 12.4 is used as MIP solver and the examined heuristics are coded in C++.

Table B.2: Parameter settings of the test instances without lot streaming

Test Size Missing Operations n L m

4.4.1 Sequence variable p. 72 - Complete 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.4.1 Mixed Levels p. 78 - Complete 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.4.2 Basic Sequence p. 80 - Complete 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.4.3 Missing Operations p. 85 - Inc 1, Inc 2 (L ≥ 4), Inc 3 (L ≥ 5) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.5.3 Initialization p. 95 Small Inc 1, Inc 3 (L ≥ 5) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.5.3 Initialization p. 95 Medium Inc 1, Inc 3 (L ≥ 5), Inc 4 (L ≥ 10) 10, 20, 30, 40, 50 5, 10 10, 20, 30, 40, 50

4.5.3 Initialization p. 95 Large Inc 1, Inc 3 (L ≥ 5), Inc 4 (L ≥ 10) 50, 100 20, 40 50, 100

4.6.4 Neighborhoods p. 108 Small Inc 1, Inc 3 (L ≥ 5), Inc 4 (L ≥ 10) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.6.4 Neighborhoods p. 108 Large Inc 1, Inc 3 (L ≥ 5), Inc 4 (L ≥ 10) 10, 20, 30, 40, 50 5, 10 10, 20, 30, 40, 50

4.7.5 Meta heuristics p. 121 Small Inc 1, Inc 3 (L ≥ 5) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10

4.7.5 Meta heuristics p. 121 Large Inc 1, Inc 3 (L ≥ 5) 20, 40 5, 10 20, 40

4.8 Job Shops p. 134 - - 5, 6, 7, 8, 9, 10, 15 - 5, 6, 7, 8, 9, 10, 15

B
T
E
S
T

IN
S
T
A
N
C
E
S

205

All experiments are performed on a 64-bit Windows 10 system with a 2.5 GHz Intel i7-4710HQ quad core processor and 16 GB

RAM. IBM CPLEX 12.4 is used as MIP solver and the examined heuristics are coded in C++.

Table B.3: Parameter settings of the test instances with lot streaming

Test Size Missing Operations n L m Q

5.2.1 Consistent Sublots p. 144 - Inc 1, Inc 2 (L ≥ 4) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10 2, 3, 4

5.2.2 Consecutive Sublots p. 155 - Inc 1, Inc 2 (L ≥ 4) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10 2, 3

5.2.3 Equal Sublots p. 161 - Inc 1, Inc 2 (L ≥ 4) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10 2, 3

5.2.4 Equal Consecutive Sublots p. 168 - Inc 1, Inc 2 (L ≥ 4) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10 2, 3

5.2.5 Resizing Sublots p. 173 - Inc 1 2, 3 2, 3 2, 5, 6, 10 2, 3

5.4.2 VNS p. 189 Small Inc 1, Inc 3 (L ≥ 5) 2, 3, 4, 5 2, 3, 4, 5 2, 5, 6, 10 -

5.4.2 VNS p. 189 Large Inc 1, Inc 3 (L ≥ 5) 20, 40 5, 10 20, 40 -

C Additional Computational Results of

Metaheuristics

Table C.1: Average makespan deviations ∆C init
max for small problems

Inc 1 Inc 3

NEHJ SIROJ STPTL SIROL NEHJ SIROJ STPTL SIROL

VNS1 BN 5.55 7.86 4.56 30.83 7.40 8.54 4.73 33.52

VNS2 BN 5.52 7.84 4.52 30.72 6.93 8.56 4.59 32.62

VNS3 BN 5.47 7.86 4.50 30.89 7.60 9.13 5.27 33.54

VNS4 BN 5.71 7.96 4.57 30.84 7.40 8.83 4.86 33.83

VNS5 BN 5.50 7.61 4.42 30.68 6.95 9.00 4.73 33.19

VNS6 BN 5.55 7.65 4.43 30.55 7.41 8.91 4.93 32.84

VNS7 BN 5.59 7.57 4.47 30.92 6.77 8.63 4.98 33.59

VNS8 BN 5.59 7.37 4.45 30.61 7.04 9.02 4.70 32.96

VNS1 FI 4.46 6.66 3.64 26.88 4.67 5.96 4.00 25.77

VNS2 FI 5.10 7.03 4.05 30.42 6.03 7.37 3.66 31.80

VNS3 FI 4.55 6.57 3.75 27.44 3.74 5.68 3.56 29.03

VNS4 FI 4.34 6.43 3.72 29.03 4.13 5.62 3.61 29.73

VNS5 FI 4.44 6.00 3.67 28.13 5.43 7.23 3.32 29.90

VNS6 FI 4.40 6.40 3.65 28.64 4.99 5.78 3.40 30.06

VNS7 FI 3.90 5.75 3.40 28.11 4.79 6.61 3.43 29.73

VNS8 FI 3.92 5.78 3.42 28.35 5.08 6.46 3.44 29.85

TS N = J2 3.32 5.28 3.21 16.15 2.38 3.84 2.50 16.20

TS N = 10 2.36 3.02 2.20 13.20 3.29 3.87 2.46 10.24

SA N = J2 1.57 2.99 1.63 12.89 1.32 2.67 1.26 15.03

SA N = 6 0.28 0.46 0.33 6.11 0.27 0.21 0.28 3.17

Best 5.71 7.96 4.57 30.92 7.60 9.13 5.27 33.84

206

C ADDITIONAL COMPUTATIONAL RESULTS OF METAHEURISTICS 207

Figure C.1: Average computation times for large Inc 3 instances (I)

VNS1

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS2

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS3

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS4

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

6000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS5

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

10000

20000

30000

40000

50000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS6

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

C ADDITIONAL COMPUTATIONAL RESULTS OF METAHEURISTICS 208

Figure C.2: Average computation times for large Inc 3 instances (II)

VNS7

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

5000

10000

15000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

VNS8

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

1000

2000

3000

4000

5000

Problem size

m
L
n

BN NEHJ
BN SIROJ
BN STPTL
BN SIROL
FI NEHJ
FI SIROJ
FI STPTL
FI SIROL

TS

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

50

100

150

200

Problem size

m
L
n

N=J2 NEHJ
N=J2 SIROJ
N=J2 STPTL
N=J2 SIROL
N=10 NEHJ
N=10 SIROJ
N=10 STPTL
N=10 SIROL

SA

C
om

p
u
ta

ti
on

 t
im

e
[s

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

100

200

300

400

Problem size

m
L
n

N=J2 NEHJ
N=J2 SIROJ
N=J2 STPTL
N=J2 SIROL
N=6 NEHJ
N=6 SIROJ
N=6 STPTL
N=6 SIROL

D Lot Streaming Results for Inc 3

Instances

Table D.1: Number of sublots per job in the best solutions of small problems (Inc 3)

Q VNS2 FI VNS2 FI*

2 17 18

3 62 66

4 57 46

5 17 22

6 7 6

7 0 2

Table D.2: Number of sublots per job in the best solutions of large problems (Inc 3)

Q VNS2 FI VNS2 FI*

2 8 7

3 49 50

4 16 20

5 6 3

6 1 0

209

D LOT STREAMING RESULTS FOR INC 3 INSTANCES 210

Figure D.1: Average improvement of the Q = 3 STPTL solutions (Inc 3)

∆
C

m
a
x

in
it
 [
%

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

2

4

6

8

10

Problem size

m
L
n

VNS2 FI
VNS2 FI*

Figure D.2: Average makespan reductions compared to Q = 1 solutions (Inc 3)

∆
C

m
a
x

3|
1
 [
%

]

20
5
20

40
5
20

20
10
20

40
10
20

20
5
40

40
5
40

20
10
40

40
10
40

0

10

20

30

40

Problem size

m
L
n

VNS2 FI
VNS2 FI*

Bibliography

1. Adams, J. / Balas, E. / Zawack, D. et al. (1988): The Shifting Bottle-

neck Procedure for Job Shop Scheduling. In: Management Science, Vol. 34, Nr. 3,

pp. 391–401.

2. Adenso-D́ıaz, B. (1992): Restricted neighborhood in the tabu search for the

flowshop problem. In: European Journal of Operational Research, Vol. 62, Nr. 1,

pp. 27–37.

3. Arisha, A. / Young, P. / El Baradie, M. (2002): Flow shop scheduling

problem: A computational study. In: 6th International Conference on Production

Engineering and Design for Development., pp. 543–557.

4. Armentano, V. A. / Ronconi, D. P. (1999): Tabu search for total tardiness

minimization in flowshop scheduling problems. In: Computers & Operations Re-

search, Vol. 26, Nr. 3, pp. 219–235.

5. Baker, K. R. / Jia, D. (1993): A comparative study of lot streaming procedures.

In: Omega, Vol. 21, Nr. 5, pp. 561–566.

6. Bard, J. F. / Gao, Z. / Chacon, R. / Stuber, J. (2013): Daily schedul-

ing of multi-pass lots at assembly and test facilities. In: International Journal of

Production Research, Vol. 51, Nr. 23-24, pp. 7047–7070.

7. Bard, J. F. / Jia, S. / Chacon, R. / Stuber, J. (2015): Integrating optimisa-

tion and simulation approaches for daily scheduling of assembly and test operations.

In: International Journal of Production Research, Vol. 53, Nr. 9, pp. 2617–2632.

8. Bareduan, S. A. / Gani, I. M. (2014): Clustered Absolute Bottleneck Adja-

cent Matching Heuristic for Re-Entrant Flow Shop. In: Applied Mechanics and

Materials , Vol. 465, pp. 1138–1143.

9. Bareduan, S. A. / Hasan, S. (2010): Makespan Algorithms and Heuristic for

Internet-Based Collaborative Manufacturing Process Using Bottleneck Approach.

In: Journal of Software Engineering & Applications , Vol. 3, Nr. 1, pp. 91–97.

211

Bibliography 212

10. Bareduan, S. A. / Hasan, S. (2012): Methodology To Develop Heuristic For

Re-Entrant Flow Shop With Two Potential Dominant Machines Using Bottleneck

Approach. In: International Journal of Combinatorial Optimization Problems and

Informatics , Vol. 3, Nr. 3, pp. 81–93.

11. Barnhart, C. / Johnson, E. L. / Nemhauser, G. L. / Savelsbergh,

M. W. / Vance, P. H. (1998): Branch-and-price: Column generation for solving

huge integer programs. In: Operations Research, Vol. 46, Nr. 3, pp. 316–329.

12. Ben-Daya, M. / Al-Fawzan, M. (1998): A tabu search approach for the flow

shop scheduling problem. In: European Journal of Operational Research, Vol. 109,

Nr. 1, pp. 88–95.

13. B lażewicz, J. / Ecker, K. H. / Pesch, E. / Schmidt, G. / Weglarz,

J. (1996): Scheduling Computer and Manufacturing Processes. Berlin: Springer.

14. B lażewicz, J. / Ecker, K. H. / Pesch, E. / Schmidt, G. / Weglarz,

J. (2007): Handbook on Scheduling: From Theory to Applications. Berlin:

Springer.

15. B lażewicz, J. / Kobler, D. (2002): Review of properties of different precedence

graphs for scheduling problems. In: European Journal of Operational Research,

Vol. 142, Nr. 3, pp. 435–443.

16. Blum, C. / Roli, A. (2003): Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. In: ACM Computing Surveys , Vol. 35, Nr. 3,

pp. 268–308.

17. Brucker, P. (1995): Scheduling algorithms. Berlin: Springer.

18. Buscher, U. / Shen, L. (2008): A Hybrid Metaheuristic for the Lot Stream-

ing Problem in Job Shops. In: Operations Research and Its Applications, The

Seventh International Symposium, ISORA’08. Volume Lecture Notes in Opera-

tions Research 8, World Publishing Corporation, Asia-Pacific Operations Research

Center, pp. 425–431.

19. Buscher, U. / Shen, L. (2009): An integrated tabu search algorithm for the lot

streaming problem in job shops. In: European Journal of Operational Research,

Vol. 199, Nr. 2, pp. 385–399.

20. Buscher, U. / Shen, L. (2011): An integer programming formulation for the lot

streaming problem in a job shop environment with setups. In: Proceedings of the

Bibliography 213

International MultiConference of Engineers and Computer Scientists. Volume 2,

Citeseer, pp. 1343–1348.

21. Campbell, H. G. / Dudek, R. A. / Smith, M. L. (1970): A heuristic algo-

rithm for the n job, m machine sequencing problem. In: Management Science,

Vol. 16, Nr. 10, pp. 630–637.

22. Cao, Z.-C. / Peng, Y.-Z. / Wu, Q.-D. (2010): Re-entrant manufacturing sys-

tem scheduling based on Drum-Buffer-Rope. In: Computer Integrated Manufactur-

ing Systems , Vol. 16, Nr. 12, pp. 2668–2673.

23. Censor, Y. (1977): Pareto optimality in multiobjective problems. In: Applied

Mathematics and Optimization, Vol. 4, Nr. 1, pp. 41–59.

24. Černỳ, V. (1985): Thermodynamical approach to the traveling salesman prob-

lem: An efficient simulation algorithm. In: Journal of Optimization Theory and

Applications , Vol. 45, Nr. 1, pp. 41–51.

25. Chamnanlor, C. / Sethanan, K. / Chien, C. / Gen, M. (2012): Reentrant

flow-shop scheduling with time windows for hard-disk manufacturing by hybrid

genetic algorithms. In: Proceedings of the Asia Pacific Industrial Engineering &

Management Systems Conference 2012. APIEMS, pp. 896–907.

26. Chamnanlor, C. / Sethanan, K. / Chien, C.-F. / Gen, M. (2014): Re-

entrant flow shop scheduling problem with time windows using hybrid genetic

algorithm based on auto-tuning strategy. In: International Journal of Production

Research, Vol. 52, Nr. 9, pp. 2612–2629.

27. Chang, J. H. / Chiu, H. N. (2005): A comprehensive review of lot streaming.

In: International Journal of Production Research, Vol. 43, Nr. 8, pp. 1515–1536.

28. Chang, Y.-C. / Huang, W.-T. (2014): An enhanced model for SDBR in a

random reentrant flow shop environment. In: International Journal of Production

Research, Vol. 52, Nr. 6, pp. 1808–1826.

29. Chen, J. C. / Wu, C.-C. / Chen, C.-W. / Chen, K.-H. (2012): Flexible

job shop scheduling with parallel machines using Genetic Algorithm and Group-

ing Genetic Algorithm. In: Expert Systems with Applications , Vol. 39, Nr. 11,

pp. 10016–10021.

30. Chen, J.-S. / Chao-Hsien Pan, J. (2006): Integer programming models for the

re-entrant shop scheduling problems. In: Engineering Optimization, Vol. 38, Nr. 5,

pp. 577–592.

Bibliography 214

31. Chen, J.-S. / Pan, J. C.-H. / Lin, C.-M. (2008): A hybrid genetic algorithm for

the re-entrant flow-shop scheduling problem. In: Expert Systems with Applications ,

Vol. 34, Nr. 1, pp. 570–577.

32. Chen, J.-S. / Pan, J. C.-H. / Wu, C.-K. (2007): Minimizing makespan in

reentrant flow-shops using hybrid tabu search. In: The International Journal of

Advanced Manufacturing Technology , Vol. 34, Nr. 3-4, pp. 353–361.

33. Chen, J.-S. / Pan, J. C.-H. / Wu, C.-K. (2008): Hybrid tabu search for re-

entrant permutation flow-shop scheduling problem. In: Expert Systems with Ap-

plications , Vol. 34, Nr. 3, pp. 1924–1930.

34. Chen, T. / Wang, Y.-C. (2013): A Fuzzy Rule for Improving the Performance

of Multiobjective Job Dispatching in a Wafer Fabrication Factory. In: Journal of

Applied Mathematics , Vol. 2013, Special Issue, pp. 1–18.

35. Chiang, T.-C. (2013): Enhancing rule-based scheduling in wafer fabrication fa-

cilities by evolutionary algorithms: Review and opportunity. In: Computers &

Industrial Engineering , Vol. 64, Nr. 1, pp. 524–535.

36. Chiang, T.-C. / Fu, L.-C. (2012): Rule-based scheduling in wafer fabrication

with due date-based objectives. In: Computers & Operations Research, Vol. 39,

Nr. 11, pp. 2820–2835.

37. Cho, H.-M. / Bae, S.-J. / Kim, J. / Jeong, I.-J. (2011): Bi-objective schedul-

ing for reentrant hybrid flow shop using Pareto genetic algorithm. In: Computers

& Industrial Engineering , Vol. 61, Nr. 3, pp. 529–541.

38. Choi, H.-S. / Kim, H.-W. / Lee, D.-H. / Yoon, J. / Yun, C. Y. / Chae,

K. B. (2009): Scheduling algorithms for two-stage reentrant hybrid flow shops:

minimizing makespan under the maximum allowable due dates. In: The Interna-

tional Journal of Advanced Manufacturing Technology , Vol. 42, Nr. 9-10, pp. 963–

973.

39. Choi, H.-S. / Kim, J.-S. / Lee, D.-H. (2011): Real-time scheduling for reen-

trant hybrid flow shops: A decision tree based mechanism and its application to

a TFT-LCD line. In: Expert Systems with Applications , Vol. 38, Nr. 4, pp. 3514–

3521.

40. Choi, J. Y. (2015): Design and comparative performance analysis of a heuristic-

based parameterised Banker’s algorithm using the CRL scheduling problems. In:

International Journal of Production Research, Vol. 53, Nr. 9, pp. 2605–2616.

Bibliography 215

41. Choi, J. Y. / Kim, S. B. (2012): Computationally efficient neuro-dynamic

programming approximation method for the capacitated re-entrant line schedul-

ing problem. In: International Journal of Production Research, Vol. 50, Nr. 8,

pp. 2353–2362.

42. Chong, W. / Jingshan, L. (2010): Approximate Analysis of Reentrant Lines

With Bernoulli Reliability Model. In: IEEE Transactions on Automation Science

and Engineering , Vol. 7, Nr. 3, pp. 708–715.

43. Chu, F. / Chu, C. / Desprez, C. (2010): Series production in a basic re-

entrant shop to minimize makespan or total flow time. In: Computers & Industrial

Engineering , Vol. 58, Nr. 2, pp. 257–268, Scheduling in Healthcare and Industrial

Systems.

44. Danping, L. / Lee, C. K. (2011): A review of the research methodology for the

re-entrant scheduling problem. In: International Journal of Production Research,

Vol. 49, Nr. 8, pp. 2221–2242.

45. Defersha, F. M. (2011): A comprehensive mathematical model for hybrid flex-

ible flowshop lot streaming problem. In: International Journal of Industrial Engi-

neering Computations , Vol. 2, Nr. 2, pp. 283–294.

46. Dehghanian, N. / Homayouni, S. M. (2013): A fuzzy-genetic algorithm for a

re-entrant job shop scheduling problem with sequence-dependent setup times. In:

2013 13th Iranian Conference on Fuzzy Systems (IFSC). IEEE, pp. 1–5.

47. Dell’Amico, M. / Trubian, M. (1993): Applying tabu search to the job-shop

scheduling problem. In: Annals of Operations Research, Vol. 41, Nr. 3, pp. 231–

252.

48. Domschke, W. / Scholl, A. / Voß, S. (1997): Produktionsplanung. Berlin:

Springer.

49. Dong, M. / He, F. (2012): A new continuous model for multiple re-entrant

manufacturing systems. In: European Journal of Operational Research, Vol. 223,

Nr. 3, pp. 659–668.

50. Drießel, R. / Mönch, L. (2012a): An integrated scheduling and material-

handling approach for complex job shops: a computational study. In: International

Journal of Production Research, Vol. 50, Nr. 20, pp. 5966–5985.

Bibliography 216

51. Drießel, R. / Hönig, U. / Mönch, L. / Schiffmann, W. (2010): A parallel

shifting bottleneck heuristic for scheduling complex job shops: architecture and

performance assessment. In: 2010 IEEE Conference on Automation Science and

Engineering (CASE). IEEE, pp. 81–86.

52. Drießel, R. / Mönch, L. (2012b): An exploratory study of a decomposition

heuristic for complex shop scheduling with transportation. In: 2012 IEEE In-

ternational Conference on Automation Science and Engineering (CASE). IEEE,

pp. 413–418.

53. Drießel, R. / Mönch, L. (2011): Variable neighborhood search approaches

for scheduling jobs on parallel machines with sequence-dependent setup times,

precedence constraints, and ready times. In: Computers & Industrial Engineering ,

Vol. 61, Nr. 2, pp. 336–345.

54. Dueck, G. / Scheuer, T. (1990): Threshold accepting: a general purpose op-

timization algorithm appearing superior to simulated annealing. In: Journal of

Computational Physics , Vol. 90, Nr. 1, pp. 161–175.

55. Dugardin, F. / Amodeo, L. / Yalaoui, F. (2010): FLC-archive to solve mul-

tiobjective reentrant hybride flowshop scheduling problem. In: 2010 International

Conference on Machine and Web Intelligence (ICMWI). IEEE, pp. 324–329.

56. Dugardin, F. / Amodeo, L. / Yalaoui, F. (2011): Fuzzy Lorenz Ant Colony

System to solve multiobjective reentrant hybride flowshop scheduling problem.

In: 2011 International Conference on Communications, Computing and Control

Applications (CCCA). IEEE, pp. 1–6.

57. Dugardin, F. / Yalaoui, F. / Amodeo, L. (2010): New multi-objective

method to solve reentrant hybrid flow shop scheduling problem. In: European

Journal of Operational Research, Vol. 203, Nr. 1, pp. 22–31.

58. Eberhart, R. / Kennedy, J. (1995): A new optimizer using particle swarm

theory. In: Micro Machine and Human Science, 1995. MHS’95., Proceedings of

the Sixth International Symposium on. IEEE, pp. 39–43.

59. Elmi, A. / Solimanpur, M. / Topaloglu, S. / Elmi, A. (2011): A simulated

annealing algorithm for the job shop cell scheduling problem with intercellular

moves and reentrant parts. In: Computers & Industrial Engineering , Vol. 61, Nr. 1,

pp. 171–178.

Bibliography 217

60. Emmons, H. / Vairaktarakis, G. (2013): Flow shop scheduling: Theoretical

results, algorithms, and applications. New York: Springer.

61. Eskandari, H. / Hosseinzadeh, A. (2014): A variable neighbourhood search

for hybrid flow-shop scheduling problem with rework and set-up times. In: Journal

of the Operational Research Society , Vol. 65, Nr. 8, pp. 1221–1231.

62. Fattahi, P. / Tavakoli, N. B. / Jalilvand-Nejad, A. / Jolai, F. (2010): A

hybrid algorithm to solve the problem of re-entrant manufacturing system schedul-

ing. In: CIRP Journal of Manufacturing Science and Technology , Vol. 3, Nr. 4,

pp. 268–278.

63. Feldmann, M. / Biskup, D. (2008): Lot streaming in a multiple product per-

mutation flow shop with intermingling. In: International Journal of Production

Research, Vol. 46, Nr. 1, pp. 197–216.

64. Feo, T. A. / Resende, M. G. (1995): Greedy randomized adaptive search

procedures. In: Journal of Global Optimization, Vol. 6, Nr. 2, pp. 109–133.

65. Foumani, M. / Jenab, K. (2012): Cycle time analysis in reentrant robotic cells

with swap ability. In: International Journal of Production Research, Vol. 50, Nr. 22,

pp. 6372–6387.

66. Framinan, J. / Leisten, R. (2003): An efficient constructive heuristic for flow-

time minimisation in permutation flow shops. In: Omega, Vol. 31, Nr. 4, pp. 311–

317.

67. Glass, C. / Gupta, J. / Potts, C. (1994): Lot streaming in three-stage pro-

duction processes. In: European Journal of Operational Research, Vol. 75, Nr. 2,

pp. 378–394.

68. Glass, C. / Potts, C. (1998): Structural properties of lot streaming in a flow

shop. In: Mathematics of Operations Research, Vol. 23, Nr. 3, pp. 624–639.

69. Glass, C. A. / Possani, E. (2011): Lot streaming multiple jobs in a flow shop.

In: International Journal of Production Research, Vol. 49, Nr. 9, pp. 2669–2681.

70. Glover, F. (1986): Future paths for integer programming and links to artificial

intelligence. In: Computers & Operations Research, Vol. 13, Nr. 5, pp. 533–549.

71. Gomes, M. C. / Barbosa-Póvoa, A. P. / Novais, A. Q. (2013): Reac-

tive scheduling in a make-to-order flexible job shop with re-entrant process and

Bibliography 218

assembly: a mathematical programming approach. In: International Journal of

Production Research, Vol. 51, Nr. 17, pp. 5120–5141.

72. Gomory, R. E. (1958): Outline of an algorithm for integer solutions to lin-

ear programs. In: Bulletin of the American Mathematical Society , Vol. 64, Nr. 5,

pp. 275–278.

73. Gonzalez, T. / Sahni, S. (1976): Open Shop Scheduling to Minimize Finish

Time. In: Journal of the Association for Computing Machinery , Vol. 23, Nr. 4,

pp. 665–679.

74. Grabowski, J. (1982): A New Algorithm of Solving the Flow—Shop Problem.

In: Feichinger, G. / Kall, P., editors: Operations Research in Progress.

Dordrecht: Springer. – chapter 6, pp. 57–75.

75. Grabowski, J. / Pempera, J. (2001): New block properties for the permutation

flow shop problem with application in tabu search. In: Journal of the Operational

Research Society , Vol. 52, Nr. 2, pp. 210–220.

76. Grabowski, J. / Pempera, J. (2005): Some local search algorithms for no-wait

flow-shop problem with makespan criterion. In: Computers & Operations Research,

Vol. 32, Nr. 8, pp. 2197–2212.

77. Grabowski, J. / Wodecki, M. (2004): A very fast tabu search algorithm for

the permutation flow shop problem with makespan criterion. In: Computers &

Operations Research, Vol. 31, Nr. 11, pp. 1891–1909.

78. Graham, R. L. / Lawler, E. L. / Lenstra, J. K. / Kan, A. (1979): Opti-

mization and approximation in deterministic sequencing and scheduling: a survey.

In: Annals of Discrete Mathematics , Vol. 5, pp. 287–326.

79. Graves, S. C. (1981): A review of production scheduling. In: Operations Re-

search, Vol. 29, Nr. 4, pp. 646–675.

80. Graves, S. C. / Meal, H. C. / Stefek, D. / Zeghmi, A. H. (1983): Schedul-

ing of re-entrant flow shops. In: Journal of Operations Management , Vol. 3, Nr. 4,

pp. 197–207.

81. Guo, C. / Zhibin, J. / Zhang, H. / Li, N. (2012): Decomposition-based classi-

fied ant colony optimization algorithm for scheduling semiconductor wafer fabrica-

tion system. In: Computers & Industrial Engineering , Vol. 62, Nr. 1, pp. 141–151.

Bibliography 219

82. Gupta, J. N. / Stafford Jr, E. F. (2006): Flowshop scheduling research

after five decades. In: European Journal of Operational Research, Vol. 169, Nr. 3,

pp. 699–711.

83. Gutenberg, E. (1983): Grundlagend er Betriebswirtschaftslehre: Die Produk-

tion. Berlin: Springer-Verlag.

84. Han, Y.-H. / Choi, J. Y. (2010): A GSPN-based approach to stacked chips

scheduling problem. In: IEEE Transactions on Semiconductor Manufacturing ,

Vol. 23, Nr. 1, pp. 4–12.

85. Hanen, C. (1994): Study of a NP-hard cyclic scheduling problem: The recurrent

job-shop. In: European Journal of Operational Research, Vol. 72, Nr. 1, pp. 82–101.

86. Hansen, P. / Mladenović, N. (1997): Variable neighborhood search for the

p-median. In: Location Science, Vol. 5, Nr. 4, pp. 207–226.

87. Hekmatfar, M. / Fatemi Ghomi, S. / Karimi, B. (2011): Two stage reentrant

hybrid flow shop with setup times and the criterion of minimizing makespan. In:

Applied Soft Computing , Vol. 11, Nr. 8, pp. 4530–4539.

88. Hinze, R. (2016): A Lot Streaming Model for a Re-entrant Flow Shop Schedul-

ing Problem with Missing Operations. In: Mattfeld, D. et al., editors:

Logistics Management. Cham: Springer, pp. 149–158.

89. Hinze, R. / Sackmann, D. (2016): An Iterated Local Search for a Re-entrant

Flow Shop Scheduling Problem. In: Lübbecke, M. et al., editors: Operations

Research Proceedings 2014. Cham: Springer, pp. 221–226.

90. Hinze, R. / Sackmann, D. / Buscher, U. / Aust, G. (2013): A Contribution

to the Reentrant Flow-Shop Scheduling Problem. In: Proceedings of IFAC Confer-

ence on Manufacturing Modelling, Management and Control. IFAC, pp. 718–723.

91. Hu, H. / Jiang, Z. / Guo, C. / Liu, R. (2010): A decomposition based al-

gorithm for the scheduling problem in wafer fabrication system. In: 2010 IEEE

International Conference on Industrial Engineering and Engineering Management

(IEEM). IEEE, pp. 2066–2070.

92. Hu, H. / Zhen, L. / Sun, Z. / Zhang, H. (2013): A multi-stage fluctuation

smoothing method for multiple bottlenecks in wafer fabrication. In: The Interna-

tional Journal of Advanced Manufacturing Technology , Vol. 67, Nr. 1-4, pp. 111–

120.

Bibliography 220

93. Huang, R.-H. / Yu, S.-C. / Kuo, C.-W. (2014): Reentrant two-stage multi-

processor flow shop scheduling with due windows. In: The International Journal

of Advanced Manufacturing Technology , Vol. 71, pp. 1–14.

94. Hunsucker, J. / Shah, J. (1994): Comparative performance analysis of priority

rules in a constrained flow shop with multiple processors environment. In: European

Journal of Operational Research, Vol. 72, Nr. 1, pp. 102–114.

95. IBM (2011): IBM ILOG CPLEX optimization studio CPLEX user’s manual. Ver-

sion 12, Release 4, 2011.

96. Ignall, E. / Schrage, L. (1965): Application of the branch and bound tech-

nique to some flow-shop scheduling problems. In: Operations Research, Vol. 13,

Nr. 3, pp. 400–412.

97. Ishibuchi, H. / Yoshida, T. / Murata, T. (2003): Balance between genetic

search and local search in memetic algorithms for multiobjective permutation flow-

shop scheduling. In: IEEE Transactions on Evolutionary Computation, Vol. 7,

Nr. 2, pp. 204–223.

98. Jampani, J. / Mason, S. J. (2010): A column generation heuristic for complex

job shop multiple orders per job scheduling. In: Computers & Industrial Engineer-

ing , Vol. 58, Nr. 1, pp. 108–118.

99. Jeong, B. / Kim, Y.-D. (2014): Minimizing total tardiness in a two-machine

re-entrant flowshop with sequence-dependent setup times. In: Computers & Oper-

ations Research, Vol. 47, pp. 72–80.

100. Jia, W. / Jiang, Z. / Li, Y. (2013): Closed loop control-based real-time dis-

patching heuristic on parallel batch machines with incompatible job families and

dynamic arrivals. In: International Journal of Production Research, Vol. 51, Nr. 15,

pp. 4570–4584.

101. Jia, W. / Jiang, Z. / Li, Y. (2015): Combined scheduling algorithm for re-

entrant batch-processing machines in semiconductor wafer manufacturing. In: In-

ternational Journal of Production Research, Vol. 53, Nr. 6, pp. 1866–1879.

102. Johnson, S. M. (1954): Optimal two-and three-stage production schedules with

setup times included. In: Naval Research Logistics Quarterly , Vol. 1, Nr. 1, pp. 61–

68.

Bibliography 221

103. Jung, C. / Lee, T.-E. (2012): An Efficient Mixed Integer Programming Model

Based on Timed Petri Nets for Diverse Complex Cluster Tool Scheduling Problems.

In: IEEE Transactions on Semiconductor Manufacturing , Vol. 25, Nr. 2, pp. 186–

199.

104. Kaihara, T. / Fujii, N. / Tsujibe, A. / Nonaka, Y. (2010): Proactive main-

tenance scheduling in a re-entrant flow shop using Lagrangian decomposition co-

ordination method. In: CIRP Annals - Manufacturing Technology , Vol. 59, Nr. 1,

pp. 453–456.

105. Kaihara, T. / Kurose, S. / Fujii, N. (2012): A proposal on optimized schedul-

ing methodology and its application to an actual-scale semiconductor manufac-

turing problem. In: CIRP Annals - Manufacturing Technology , Vol. 61, Nr. 1,

pp. 467–470.

106. Kang, K. / Lee, Y. (2007): Make-to-order scheduling in foundry semiconduc-

tor fabrication. In: International Journal of Production Research, Vol. 45, Nr. 3,

pp. 615–630.

107. Karaboga, D. / Akay, B. (2009): A comparative study of artificial bee colony

algorithm. In: Applied Mathematics and Optimization, Vol. 214, Nr. 1, pp. 108–

132.

108. Kim, S. / Cox, J. F. / Mabin, V. J. (2010): An exploratory study of protective

inventory in a re-entrant line with protective capacity. In: International Journal

of Production Research, Vol. 48, Nr. 14, pp. 4153–4178.

109. Kim, Y.-D. / Kang, J.-H. / Lee, G.-E. / Lim, S.-K. (2011): Scheduling al-

gorithms for minimizing tardiness of orders at the burn-in workstation in a semi-

conductor manufacturing system. In: IEEE Transactions on Semiconductor Man-

ufacturing , Vol. 24, Nr. 1, pp. 14–26.

110. Kirkpatrick, S. / Gelatt, C. / Vecchi, M. (1983): Optimization by Simu-

lated Annealing. In: Science, Vol. 220, pp. 671–680.

111. Korte, B. / Vygen, J. (2012): Kombinatorische Optimierung: Theorie und

Algorithmen. Berlin: Springer Spektrum.

112. Kumar, P. (1993): Re-entrant lines. In: Queueing Systems , Vol. 13, Nr. 1-3,

pp. 87–110.

Bibliography 222

113. Lee, C. / Lin, D. / Ho, W. / Wu, Z. (2011): Design of a genetic algorithm

for bi-objective flow shop scheduling problems with re-entrant jobs. In: The In-

ternational Journal of Advanced Manufacturing Technology , Vol. 56, Nr. 9–12,

pp. 1105–1113.

114. Lee, C. / Lin, D. (2010): Hybrid genetic algorithm for bi-objective flow shop

scheduling problems with re-entrant jobs. In: 2010 International Conference on

Industrial Engineering and Engineering Management (IEEM). IEEE, pp. 1240–

1245.

115. Li, L. / Linhao, P. / Yunfeng, L. (2012): Simulation-based optimization

method for release control of a reentrant manufacturing system. In: Proceedings

of the 2012 Winter Simulation Conference (WSC). IEEE, pp. 1–6.

116. Li, Z. C. / Qian, B. / Hu, R. / Zhu, X. H. (2013): A Hybrid Population-Based

Incremental Learning Algorithm for M-Machine Reentrant Permutation Flow-Shop

Scheduling. In: Advanced Materials Research, Vol. 655, pp. 1636–1641.

117. Lin, D. / Lee, C. (2012): A Multi-Level GA Search with Application to the

Resource-Constrained Re-Entrant Flow Shop Scheduling Problem. In: Proceedings

of World Academy of Science, Engineering and Technology. World Academy of

Science, Engineering and Technology.

118. Lin, D. / Lee, C. / Ho, W. (2013): Multi-level genetic algorithm for the

resource-constrained re-entrant scheduling problem in the flow shop. In: Engi-

neering Applications of Artificial Intelligence, Vol. 26, Nr. 4, pp. 1282–1290.

119. Lin, D. / Lee, C. / Wu, Z. (2011): Integrated GA and AHP for re-entrant flow

shop scheduling problem. In: 2011 IEEE International Conference on Quality and

Reliability (ICQR). IEEE, pp. 496–500.

120. Lin, D. / Lee, C. / Wu, Z. (2012): Integrating analytical hierarchy process to

genetic algorithm for re-entrant flow shop scheduling problem. In: International

Journal of Production Research, Vol. 50, Nr. 7, pp. 1813–1824.

121. Linn, R. / Zhang, W. (1999): Hybrid flow shop scheduling: a survey. In: Com-

puters & Industrial Engineering , Vol. 37, Nr. 1, pp. 57–61.

122. Liu, A. J. / Yang, Y. / Liang, X. D. / Zhu, M. H. / Yao, H. (2010): Dy-

namic reentrant scheduling simulation for assembly and test production line in

semiconductor industry. In: Advanced Materials Research, Vol. 97, pp. 2418–2422.

Bibliography 223

123. Liu, Y. / Li, J. / Chiang, S.-Y. (2010): Performance approximation of re-

entrant lines with unreliable exponential machines and finite buffers. In: The

International Journal of Advanced Manufacturing Technology , Vol. 49, Nr. 9-12,

pp. 1151–1159.

124. Liu, Y. / Li, J. / Chiang, S.-Y. (2012): Re-entrant lines with unreliable asyn-

chronous machines and finite buffers: performance approximation and bottleneck

identification. In: International Journal of Production Research, Vol. 50, Nr. 4,

pp. 977–990.

125. Manne, A. (1960): On the job-shop scheduling problem. In: Operations Research,

Vol. 8, Nr. 2, pp. 219–223.

126. Martin, C. H. (2009): A hybrid genetic algorithm/mathematical programming

approach to the multi-family flowshop scheduling problem with lot streaming. In:

Omega, Vol. 37, Nr. 1, pp. 126–137.

127. Mladenović, N. / Hansen, P. (1997): Variable neighborhood search. In: Com-

puters & Operations Research, Vol. 24, Nr. 11, pp. 1097–1100.

128. Murata, T. (1989): Petri nets: Properties, analysis and applications. In: Pro-

ceedings of the IEEE , Vol. 77, Nr. 4, pp. 541–580.

129. Naderi, B. / Zandieh, M. / Roshanaei, V. (2009): Scheduling hybrid flow-

shops with sequence dependent setup times to minimize makespan and maximum

tardiness. In: The International Journal of Advanced Manufacturing Technology ,

Vol. 41, Nr. 11-12, pp. 1186–1198.

130. Nawaz, M. / Enscore, E. E. / Ham, I. (1983): A heuristic algorithm for the

m-machine, n-job flow-shop sequencing problem. In: Omega, Vol. 11, Nr. 1, pp. 91–

95.

131. Nowicki, E. / Smutnicki, C. (1996): A fast taboo search algorithm for the job

shop problem. In: Management Science, Vol. 42, Nr. 6, pp. 797–813.

132. Ogbu, F. / Smith, D. K. (1990): The application of the simulated annealing

algorithm to the solution of the n/m/C max flowshop problem. In: Computers &

Operations Research, Vol. 17, Nr. 3, pp. 243–253.

133. Ogbu, F. / Smith, D. (1991): Simulated annealing for the permutation flowshop

problem. In: Omega, Vol. 19, Nr. 1, pp. 64–67.

Bibliography 224

134. Osman, I. H. / Potts, C. (1989): Simulated annealing for permutation flow-

shop scheduling. In: Omega, Vol. 17, Nr. 6, pp. 551–557.

135. Ow, P. S. (1985): Focused scheduling in proportionate flowshops. In: Manage-

ment Science, Vol. 31, Nr. 7, pp. 852–869.

136. Pan, F. S. / Ye, C. M. / Zhou, J. H. (2011): Re-Entrant Production Schedul-

ing Problem under Uncertainty Based on QPSO Algorithm. In: Applied Mechanics

and Materials , Vol. 66, pp. 1061–1066.

137. Pan, J. C.-H. / Chen, J.-S. (2004): A comparative study of schedule-generation

procedures for the reentrant shops scheduling problem. In: International Journal of

Industrial Engineering: Theory, Applications and Practice, Vol. 11, Nr. 4, pp. 313–

321.

138. Pan, J. / Chen, J. (2003): Minimizing makespan in re-entrant permutation flow-

shops. In: Journal of the Operational Research Society , Vol. 54, Nr. 6, pp. 642–653.

139. Pan, Q.-k. / Duan, J.-H. / Liang, J. / Gao, K. / Li, J. (2010): A novel dis-

crete harmony search algorithm for scheduling lot-streaming flow shops. In: 2010

Chinese Control and Decision Conference. IEEE, pp. 1531–1536.

140. Pan, Q.-K. / Tasgetiren, M. F. / Suganthan, P. N. / Chua, T. J. (2011):

A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling

problem. In: Information Sciences , Vol. 181, Nr. 12, pp. 2455–2468.

141. Pinedo, M. (2002): Scheduling: theory, algorithms, and systems. New Jersey:

Prentice Hall, Prentice Hall international series in industrial and systems engineer-

ing.

142. Pinedo, M. L. (2005): Planning and Scheduling in Manufacturing and Services.

New York: Springer.

143. Potts, C. / Baker, K. (1989): Flow shop scheduling with lot streaming. In:

Operations Research Letters , Vol. 8, Nr. 6, pp. 297–303.

144. Prabhaharan, G. / Khan, B. S. H. / Rakesh, L. (2006): Implementation of

grasp in flow shop scheduling. In: The International Journal of Advanced Manu-

facturing Technology , Vol. 30, Nr. 11-12, pp. 1126–1131.

145. Qian, B. / Li, Z. / Hu, R. / Zhang, C. (2013a): A hybrid differential evolution

algorithm for the multi-objective reentrant job-shop scheduling problem. In: 2013

Bibliography 225

10th IEEE International Conference on Control and Automation (ICCA). IEEE,

pp. 485–489.

146. Qian, B. / Wan, J. / Liu, B. / Hu, R. / Che, G.-L. (2013b): A DE-based al-

gorithm for reentrant permutation flow-shop scheduling with different job reentrant

times. In: 2013 IEEE Symposium on Computational Intelligence in Scheduling

(SCIS). IEEE, pp. 22–27.

147. Qiao, F. / Ma, Y.-M. / Li, L. / Ding, X.-J. / Dai, Y.-N. (2010): Multi-

reentrant manufacturing system scheduling based on layered bottleneck analysis.

In: Computer Integrated Manufacturing Systems , Vol. 16, Nr. 4, pp. 855–860.

148. Qiao, F. / Wu, Q. (2013): Layered Drum-Buffer-Rope-Based Scheduling of

Reentrant Manufacturing Systems. In: IEEE Transactions on Semiconductor Man-

ufacturing , Vol. 26, Nr. 2, pp. 178–187.

149. Rajendran, C. / Ziegler, H. (2004): Ant-colony algorithms for permutation

flowshop scheduling to minimize makespan/total flowtime of jobs. In: European

Journal of Operational Research, Vol. 155, Nr. 2, pp. 426–438.

150. Reiter, S. (1966): A system for managing job-shop production. In: The Journal

of Business , Vol. 39, Nr. 3, pp. 371–393.

151. Rifai, A. P. / Nguyen, H.-T. / Dawal, S. Z. M. (2016): Multi-objective

adaptive large neighborhood search for distributed reentrant permutation flow shop

scheduling. In: Applied Soft Computing , Vol. 40, pp. 42–57.

152. Ruiz, R. / Maroto, C. (2005): A comprehensive review and evaluation of

permutation flowshop heuristics. In: European Journal of Operational Research,

Vol. 165, Nr. 2, pp. 479–494.

153. Ruiz, R. / Stützle, T. (2007): A simple and effective iterated greedy algo-

rithm for the permutation flowshop scheduling problem. In: European Journal of

Operational Research, Vol. 177, Nr. 3, pp. 2033–2049.

154. Saaty, T. L. (1990): How to make a decision: the analytic hierarchy process. In:

European Journal of Operational Research, Vol. 48, Nr. 1, pp. 9–26.

155. Sangsawang, C. / Sethanan, K. / Fujimoto, T. / Gen, M. (2015): Meta-

heuristics optimization approaches for two-stage reentrant flexible flow shop with

blocking constraint. In: Expert Systems with Applications , Vol. 42, Nr. 5, pp. 2395–

2410.

Bibliography 226

156. Schragenheim, E. / Ronen, B. (1990): Drum-buffer-rope shop floor control.

In: Production and Inventory Management Journal , Vol. 31, Nr. 3, pp. 18–22.

157. Shen, L. / Buscher, U. (2012): Solving the serial batching problem in job shop

manufacturing systems. In: European Journal of Operational Research, Vol. 221,

Nr. 1, pp. 14–26.

158. Shin, H. (2015): A dispatching algorithm considering process quality and due

dates: an application for re-entrant production lines. In: The International Journal

of Advanced Manufacturing Technology , Vol. 77, Nr. 1-4, pp. 249–259.

159. Solimanpur, M. / Vrat, P. / Shankar, R. (2004): A neuro-tabu search

heuristic for the flow shop scheduling problem. In: Computers & Operations Re-

search, Vol. 31, Nr. 13, pp. 2151–2164.

160. Sriskandarajah, C. / Sethi, S. P. (1989): Scheduling algorithms for flexible

flowshops: worst and average case performance. In: European Journal of Opera-

tional Research, Vol. 43, Nr. 2, pp. 143–160.

161. Starkov, K. / Pogromsky, A. / Adan, I. / Rooda, J. (2013): Performance

analysis of re-entrant manufacturing networks under surplus-based production con-

trol. In: International Journal of Production Research, Vol. 51, Nr. 5, pp. 1563–

1586.

162. Tai, Y. / Pearn, W. / Lee, J. (2012): Cycle time estimation for semiconductor

final testing processes with Weibull-distributed waiting time. In: International

Journal of Production Research, Vol. 50, Nr. 2, pp. 581–592.

163. Taillard, E. (1993): Benchmarks for basic scheduling problems. In: European

Journal of Operational Research, Vol. 64, Nr. 2, pp. 278–285.

164. Taillard, E. (1990): Some efficient heuristic methods for the flow shop sequenc-

ing problem. In: European Journal of Operational Research, Vol. 47, Nr. 1, pp. 65–

74.

165. Topaloglu, S. / Kilincli, G. (2010): A modified shifting bottleneck heuristic

for the reentrant job shop scheduling problem with makespan minimization. In: The

International Journal of Advanced Manufacturing Technology , Vol. 44, Nr. 7/8,

pp. 781–794.

166. Trietsch, D. / Baker, K. R. (1993): Basic techniques for lot streaming. In:

Operations Research, Vol. 41, Nr. 6, pp. 1065–1076.

Bibliography 227

167. Tseng, C.-T. / Liao, C.-J. (2008): A discrete particle swarm optimization for

lot-streaming flowshop scheduling problem. In: European Journal of Operational

Research, Vol. 191, Nr. 2, pp. 360–373.

168. Uzsoy, R. / Lee, C.-Y. / Martin-Vega, L. A. (1992): A review of production

planning and scheduling models in the semiconductor industry part I: system char-

acteristics, performance evaluation and production planning. In: IIE Transactions ,

Vol. 24, Nr. 4, pp. 47–60.

169. Uzsoy, R. / Lee, C.-Y. / Martin-Vega, L. A. (1994): A review of production

planning and scheduling models in the semiconductor industry part II: shop-floor

control. In: IIE Transactions , Vol. 26, Nr. 5, pp. 44–55.

170. Wagner, H. (1959): An integer programming model for machine scheduling. In:

Naval Research Logistics Quarterly , Vol. 6, Nr. 2, pp. 131–140.

171. Wang, M. / Sethi, S. / Velde, S. van de (1997): Minimizing makespan in a

class of reentrant shops. In: Operations Research, Vol. 45, Nr. 5, pp. 702–712.

172. Widmer, M. / Hertz, A. (1989): A new heuristic method for the flow shop

sequencing problem. In: European Journal of Operational Research, Vol. 41, Nr. 2,

pp. 186–193.

173. Wikborg, U. / Lee, T.-E. (2013): Noncyclic scheduling for timed discrete-

event systems with application to single-armed cluster tools using Pareto-optimal

optimization. In: IEEE Transactions on Automation Science and Engineering ,

Vol. 10, Nr. 3, pp. 699–710.

174. Wilson, J. (1989): Alternative formulations of a flow-shop scheduling problem.

In: The Journal of the Operational Research Society , Vol. 40, Nr. 4, pp. 395–399.

175. Wu, N. / Chu, F. / Chu, C. / Zhou, M. (2011): Petri Net-Based Scheduling

of Single-Arm Cluster Tools With Reentrant Atomic Layer Deposition Processes.

In: IEEE Transactions on Automation Science and Engineering , Vol. 8, Nr. 1,

pp. 42–55.

176. Xie, X. / Tang, L. / Li, Y. (2011): Scheduling of a hub reentrant job shop

to minimize makespan. In: The International Journal of Advanced Manufacturing

Technology , Vol. 56, Nr. 5-8, pp. 743–753.

177. Xu, J. / Yin, Y. / Cheng, T. / Wu, C.-C. / Gu, S. (2014): A memetic

algorithm for the re-entrant permutation flowshop scheduling problem to minimize

the makespan. In: Applied Soft Computing , Vol. 24, Nr. 0, pp. 277–283.

Bibliography 228

178. Yalaoui, N. / Amodeo, L. / Yalaoui, F. / Mahdi, H. (2010): Particle swarm

optimization under fuzzy logic controller for solving a hybrid Reentrant Flow Shop

problem. In: 2010 IEEE International Symposium on Parallel & Distributed Pro-

cessing, Workshops and Phd Forum (IPDPSW). IEEE, pp. 1–6.

179. Yan, B. / Chen, H. Y. / Luh, P. B. / Wang, S. / Chang, J. (2013): Litho

Machine Scheduling With Convex Hull Analyses. In: IEEE Transactions on Au-

tomation Science and Engineering , Vol. 10, Nr. 4, pp. 928–937.

180. Yan, C.-B. / Hassoun, M. / Meerkov, S. M. (2012): Equilibria, stability,

and transients in re-entrant lines under FBFS and LBFS dispatch and constant

release. In: IEEE Transactions on Semiconductor Manufacturing , Vol. 25, Nr. 2,

pp. 211–229.

181. Yan, Y. / Wang, Z. (2012): A two-layer dynamic scheduling method for min-

imising the earliness and tardiness of a re-entrant production line. In: International

Journal of Production Research, Vol. 50, Nr. 2, pp. 499–515.

182. Yang, T. / Hsieh, C.-H. / Cheng, B.-Y. (2011): Lean-pull strategy in a re-

entrant manufacturing environment: a pilot study for TFT-LCD array manufac-

turing. In: International Journal of Production Research, Vol. 49, Nr. 6, pp. 1511–

1529.

183. Ye, W. H. / Li, J. / Chen, W. F. / Ma, W. T. / Leng, S. (2014): Study

on Scheduling Method for Reentrant Autoclave Moulding Operation of Composite

Materials. In: Applied Mechanics and Materials , Vol. 490, pp. 14–18.

184. Ying, K.-C. / Lin, S.-W. / Wan, S.-Y. (2014): Bi-objective reentrant hybrid

flowshop scheduling: an iterated Pareto greedy algorithm. In: International Jour-

nal of Production Research, Vol. 52, Nr. 19, pp. 5735–5747.

185. Yugma, C. / Dauzère-Pérès, S. / Artigues, C. / Derreumaux, A. /

Sibille, O. (2012): A batching and scheduling algorithm for the diffusion area in

semiconductor manufacturing. In: International Journal of Production Research,

Vol. 50, Nr. 8, pp. 2118–2132.

186. Zadeh, L. A. (1965): Fuzzy sets. In: Information and Control , Vol. 8, Nr. 3,

pp. 338–353.

187. Zegordi, S. H. / Itoh, K. / Enkawa, T. (1995): Minimizing makespan for flow

shop scheduling by combining simulated annealing with sequencing knowledge. In:

European Journal of Operational Research, Vol. 85, Nr. 3, pp. 515–531.

Bibliography 229

188. Zhang, Z. / Zheng, L. / Hou, F. / Li, N. (2011): Semiconductor final test

scheduling with Sarsa(λ, k) algorithm. In: European Journal of Operational Re-

search, Vol. 215, Nr. 2, pp. 446–458.

189. Zhang, Z. / Jiang, L. / Zhang, Q. (2008): A Research on a Genetic Algorithm

for Hybrid Production Style. In: Xu, L. D. / Tjoa, A. M. / Chaudhry, S. S.,

editors: Research and Practical Issues of Enterprise Information Systems II.

Boston: Springer US, pp. 1413–1417.

190. Zitzler, E. / Laumanns, M. / Thiele, L. (2001): SPEA2: Improving the

Strength Pareto Evolutionary Algorithm. Computer Engineering and Networks

Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (103). – Technical

report.

