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Research on scheduling and sequencing in reentrant flow shops has received much attention in recent years. In a
reentrant flow shop, jobs have to enter a certain machine or a set of machines for processing more than once. Thus a
reentrant flow shop is an extension of the classical flow shop, but a special case of the job shop due to the fact that
all jobs pass through the machines over the same route. Many real-life applications in semiconductor manufacturing
and flexible machining systems can be modeled as reentrant flow shops, e.g., the assembly of printed circuit boards
and wafer fabrication. Moreover, the reentrant flow shop has been examined in a client–server computer application
by Błażewicz et al. [1].

There are various types of reentrant processing depending on the job-processing route. Here we consider a two-
machine reentrant flow shop, where there are n jobs to be processed on two machines, M1 and M2. Each job j ∈
{1, 2, . . . , n} has a sequence of three operations in the order O1j → O2j → O3j . We assume that two consecutive
operations of a job are processed on different machines. Therefore, for each job j, O1j , O2j and O3j have to be processed
without preemption on M1, M2, and again on M1, respectively. Each machine can only process one operation at a time,
and there is unlimited input and output buffer space available for each machine. We focus on the makespan minimization
problem, i.e., scheduling and sequencing the jobs so as to minimize the completion time of the last job. Following the
standard three-field notation for machine scheduling problems, we denote the problem as RF2|� = 3|Cmax, where RF2
indicates a two-machine reentrant flow shop, � = 3 describes that each job has three operations, and Cmax denotes the
makespan objective.

This problem has been considered in various settings. Lev and Adiri [3] study the problem in a V-shop where the
jobs follow the route M1 → M2 → · · · → Mm−1 → Mm → Mm−1 → · · · → M2 → M1. They show that the
problem is NP-hard for m=2. Wang et al. [6] analyze the problem in a chain-reentrant shop where the jobs follow the
route M1 → M2 → · · · → Mm → M1. They present a branch-and-bound algorithm and an approximation algorithm
with worst-case performance guarantee of 3

2 for the m = 2 case. Hall et al. [2] investigate the cycle time minimization
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problem in a two-machine job shop, where each job consists of at most three operations. Steiner and Xue [5] show that
the problem can be polynomially reduced to RF2|� = 3|Cmax and discuss some consequences; see also [7].

Although RF2|� = 3|Cmax has been studied extensively, it is a hard open question whether it is solvable in pseudo-
polynomial time or not [4,6]. For a recent attempt to solve this problem, see [5,7]. Specifically, they show that if the
answer is “Yes”, then RF2|� = 3|Cmax admits a fully polynomial time approximation scheme(FPTAS) too—the best
possible approximation algorithm for an NP-hard problem.
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A C-hypergraph is a pair H= (X,C), where X is the vertex set and C is a family of subsets of X, C-edges. In every
proper coloring of a C-hypergraph, each C-edge has at least two vertices with a Common color. The maximum number
of colors used in a proper coloring of H= (X,C) is called the upper chromatic number of H (denoted by �̄(H)). The
C-stability number �C(H) is the maximum cardinality of a vertex subset containing no C-edge. A C-hypergraph H
is perfect [3] if �̄(H′) = �C(H′) for every induced subhypergraph H′ of H.

It was conjectured in [3], see also [4], that an r-uniform C-hypergraph is perfect if and only if it has no induced
monostar or cycloid of the form Cr

2r−1, r �3. These two natural non-perfect families served as an analog of Berge’s
Strong Perfect Graph Conjecture, which stated that a graph G is perfect if and only if no odd cycle of length at least 5
occurs as an induced subgraph of G or Ḡ (proved recently in [1]).

Very recently, Kral [2] has disproved the hypergraph perfection conjecture for each r �3 by constructing a new
family of minimal non-perfect C-hypergraphs different from monostars and cycloids.

For r = 3, we know the following 6 examples of minimal 3-uniform non-perfect C-hypergraphs:

V1 = ({1, 2, 3, 4}, {{1, 2, 3}, {1, 3, 4}, {1, 2, 4}}); (monostar),

V2 = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {1, 4, 5}}); (monostar),

V3 = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}}); (monostar),

V4 = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 2, 5}}); (monostar),

V5 = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}}); (cycloid C3
5),

K1 = ({1, 2, 3, 4, 5, 6}, {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 1}, {5, 6, 2}, {6, 1, 3},
{1, 3, 5}, {2, 4, 6}}) (Kral′s construction).

Problem 1. Is it true that every 3-uniform C-hypergraph is perfect if and only if it does not contain any of the
C-hypergraphs above as induced subhypergraphs?
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The standard integer programming formulation of a cutting stock problem (CSP) with a tight linear programming
(LP) relaxation is the following [1,2]:

Minimize 1Tx (1)

Subject to Ax�b, (2)

x ∈ Zn+. (3)

The objective function (1) minimizes the number of stock rolls used. Constraint (2) ensure that the customer
demand—vector b—has been met, and Constraint (3) define non-negativity and integrality of the variables. Columns
of matrix A represent all possible cutting patterns, and vector x is an unknown vector of column activities.

A full-scale matrix A is unknown due to enormous number of possible patterns, but its columns aj are points of
the following knapsack polyhedron: Kp = {a ∈ Zm+ : wTa�d}, where w is an m-dimensional vector of item widths;
d is a scalar knapsack capacity. In the CSP notation, a knapsack capacity is the width of a stock item that should be
cut into smaller, customer specified, widths. Such formulation of CSP falls into a category of the column generation
form where problem (1)–(3) is a master problem, and the knapsack (4)–(6) is an auxiliary problem that is also called a
pricing problem.

Maximize cTa (4)

Subject to wTa�d , (5)

a ∈ Zm+ . (6)

An LP relaxation of CSP is an LP problem with relaxed integrality constraints (3), so constraint (3) is replaced with
the following constraint:

x ∈ Rn+. (7)

Definition. The CSP integrality gap is a difference between the CSP optimal value and the rounded up optimal value
of its LP relaxation.

For the vast majority of practical CSPs the integrality gap equals to 0. There are few known instances of CSP with
the integrality gap of 1. There are not known instances with the integrality gap exceeding 1 [3,4].

Open problem. It has been conjectured that the integrality gap for any CSP is less than 2. A similar conjecture was
proposed for the “dual” to CSP—Skiving Stock Problem—in [5].
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