13 research outputs found

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Finite Element Models of Volcano Deformational Systems Having Structural Complexity

    Get PDF
    [spa] El objetivo principal de este trabajo es la construcción de modelos de elementos finitos (FEMs) 3-D con complejidades estructurales con el fin de simular sistemas volcánicos de manera más realista. Como ejemplo de aplicación se ha escogido la caldera de Rabaul, un sistema volcánico cuya dinámica no se comprende por completo. Invirtiendo los datos de InSAR recogidos durante los años 2007-2010, investigamos las fuentes de desplazamiento de la superficie y proporcionamos claves de relevancia sobre el sistema magmático superficial real. Incluyendo características realistas, como la topografía y heterogeneidades mecánicas, usamos las informaciones geofísicas y geológicas para construir modelos de FEMs complejos en 3D. En última instancia, proporcionamos una estrategia para llevar a cabo una inversión lineal basada en una matriz de fuentes que nos permite identificar una distribución de flujo de fluido a través de un volumen de posibles fuentes responsables de los cambios de presión en el medio según lo dictado por los datos, sin imponer a priori una forma de fuente específica y su profundidad. Los resultados permiten generar imágenes de la forma compleja de la fuente que da lugar a la deformación, en el espacio y en el tiempo, sin tener que utilizar ninguna fuente con una forma excesivamente simplificada a priori. Esto lleva el modelado de fuentes un paso adelante hacia modelos más realistas. En el caso de Rabaul, la aplicación de la metodología discutida anteriormente, muestra un sistema magmático superficial formado por dos lóbulos interconectados localizados bajo la caldera y en posiciones diametralmente opuestas. La interconexión y la distribución espacial de las fuentes encuentran correspondencia en la petrología de los productos descritos en literatura y en la dinámica de las erupciones que caracterizan la caldera. Los resultados obtenidos mediante la aplicación del método son satisfactorios y demuestran que la inversión lineal basada en la matriz de fuentes de FE propuesta puede ser considerada adecuada para generar modelos de sistemas magmáticos. Se puede aplicar fácilmente a cualquier volcán, ya que tiene en cuenta la deformación del edificio sin tener que especificar la forma de la fuente de deformación antes de la inversión.[eng] The main focus of this work is to build 3-D FEM models with structural complexities in order to simulate volcanic systems in a more realistic way. We use Rabaul as an example to show the application of the methods and strategies proposed to an active volcano. Rabaul caldera is a volcanic system whose dynamics still need to be understood to effectively predict the behavior of future eruptions. In comparison to the simplified analytic models used so far, more realistic models, such as Finite Elements Models (FEMs), are needed to more accurately explain recent deformation and understand the magmatic system. By inverting InSAR data collected between 2007 and 2010 (using linear inversions based on FEMs), we investigate the sources of surface displacement and provide insights about the actual shallow magmatic system. FEMs are numerical models that let us include realistic features such as topography and mechanical heterogeneities. We provide strategies to use geophysical and geological information to build complex 3-D parts and assemble them into 3-D models. We then compare the effects of different material properties configurations and of different source shapes on the deformational signal and on the strength source estimates (fluid flux or pressure). Ultimately, we provide a strategy for performing a linear inversion based on an array of FEM sources that allows us to identify a distribution of flux of fluid (or change in pressure) over a volume, without imposing an a-priori source shape and depth. We use Rabaul as an example to show the 3-D model’s validity and applicability to active volcanic areas. The methodology is based on generating a library of forward numerical displacement solutions, where each entry is the displacement generated by injecting a mass of fluid of known density and bulk modulus into a source of the array. The sources are simulated as fluid-filled cavities that can accept a specified flux of magma. As the array of sources is an intrinsic geometric aspect of all forward models and the sources are activated one at a time, the domain only needs to be discretized once. This strategy precludes the need for remeshing for each activated source and greatly reduces computational requirements. By using an array of sources, we are not investigating the geometric and pressure parameters of a simplified, unique source with a regular shape. Instead, we are investigating a distribution of flux of fluids over a volume of potential sources responsible for the pressure changes in the medium as dictated by the data. The results allow us to image the complex shape of the deformation source without having to use any a-priori or simplified sources. This takes source modeling a step towards more realistic source models. The application of the methodology to Rabaul shows a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes are suggested to be the feeding reservoirs of the ongoing Tavuvur volcano eruption, on the eastern side, and of the past Vulcan volcano eruptions, on the western side. The interconnection and spatial distribution of sources find correspondence in the petrography of the products described in literature and in the dynamics of the single and twin eruptions that characterize the caldera. The good results obtained from the application of the method show that the proposed linear inversion based on the FEM array of sources can be considered suitable for generating models of the magmatic system. It can be easily applied to any volcano, because it accounts for volcano deformation without having to specify the shape of the deformation source prior to inversion

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855
    corecore