532 research outputs found

    Distance-Preserving Subgraphs of Interval Graphs

    Get PDF
    We consider the problem of finding small distance-preserving subgraphs of undirected, unweighted interval graphs that have k terminal vertices. We show that every interval graph admits a distance-preserving subgraph with O(k log k) branching vertices. We also prove a matching lower bound by exhibiting an interval graph based on bit-reversal permutation matrices. In addition, we show that interval graphs admit subgraphs with O(k) branching vertices that approximate distances up to an additive term of +1

    Scaling and Universality in City Space Syntax: between Zipf and Matthew

    Full text link
    We report about universality of rank-integration distributions of open spaces in city space syntax similar to the famous rank-size distributions of cities (Zipf's law). We also demonstrate that the degree of choice an open space represents for other spaces directly linked to it in a city follows a power law statistic. Universal statistical behavior of space syntax measures uncovers the universality of the city creation mechanism. We suggest that the observed universality may help to establish the international definition of a city as a specific land use pattern.Comment: 24 pages, 5 *.eps figure

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log⁥1−ϔn)O(2^{\log^{1-\epsilon}n}) for any Ï”>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    A Neighborhood-preserving Graph Summarization

    Full text link
    We introduce in this paper a new summarization method for large graphs. Our summarization approach retains only a user-specified proportion of the neighbors of each node in the graph. Our main aim is to simplify large graphs so that they can be analyzed and processed effectively while preserving as many of the node neighborhood properties as possible. Since many graph algorithms are based on the neighborhood information available for each node, the idea is to produce a smaller graph which can be used to allow these algorithms to handle large graphs and run faster while providing good approximations. Moreover, our compression allows users to control the size of the compressed graph by adjusting the amount of information loss that can be tolerated. The experiments conducted on various real and synthetic graphs show that our compression reduces considerably the size of the graphs. Moreover, we conducted several experiments on the obtained summaries using various graph algorithms and applications, such as node embedding, graph classification and shortest path approximations. The obtained results show interesting trade-offs between the algorithms runtime speed-up and the precision loss.Comment: 17 pages, 10 figure

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Hitting and Harvesting Pumpkins

    Full text link
    The "c-pumpkin" is the graph with two vertices linked by c>0 parallel edges. A c-pumpkin-model in a graph G is a pair A,B of disjoint subsets of vertices of G, each inducing a connected subgraph of G, such that there are at least c edges in G between A and B. We focus on covering and packing c-pumpkin-models in a given graph: On the one hand, we provide an FPT algorithm running in time 2^O(k) n^O(1) deciding, for any fixed c>0, whether all c-pumpkin-models can be covered by at most k vertices. This generalizes known single-exponential FPT algorithms for Vertex Cover and Feedback Vertex Set, which correspond to the cases c=1,2 respectively. On the other hand, we present a O(log n)-approximation algorithm for both the problems of covering all c-pumpkin-models with a smallest number of vertices, and packing a maximum number of vertex-disjoint c-pumpkin-models.Comment: v2: several minor change
    • 

    corecore