The "c-pumpkin" is the graph with two vertices linked by c>0 parallel edges.
A c-pumpkin-model in a graph G is a pair A,B of disjoint subsets of vertices of
G, each inducing a connected subgraph of G, such that there are at least c
edges in G between A and B. We focus on covering and packing c-pumpkin-models
in a given graph: On the one hand, we provide an FPT algorithm running in time
2^O(k) n^O(1) deciding, for any fixed c>0, whether all c-pumpkin-models can be
covered by at most k vertices. This generalizes known single-exponential FPT
algorithms for Vertex Cover and Feedback Vertex Set, which correspond to the
cases c=1,2 respectively. On the other hand, we present a O(log
n)-approximation algorithm for both the problems of covering all
c-pumpkin-models with a smallest number of vertices, and packing a maximum
number of vertex-disjoint c-pumpkin-models.Comment: v2: several minor change