694 research outputs found

    Optimal Phase Swapping in Low Voltage Distribution Networks Based on Smart Meter Data and Optimization Heuristics

    Get PDF
    In this paper a modified version of the Harmony Search algorithm is proposed as a novel tool for phase swapping in Low Voltage Distribution Networks where the objective is to determine to which phase each load should be connected in order to reduce the unbalance when all phases are added into the neutral conductor. Unbalanced loads deteriorate power quality and increase costs of investment and operation. A correct assignment is a direct, effective alternative to prevent voltage peaks and network outages. The main contribution of this paper is the proposal of an optimization model for allocating phases consumers according to their individual consumption in the network of low-voltage distribution considering mono and bi-phase connections using real hourly load patterns, which implies that the computational complexity of the defined combinatorial optimization problem is heavily increased. For this purpose a novel metric function is defined in the proposed scheme. The performance of the HS algorithm has been compared with classical Genetic Algorithm. Presented results show that HS outperforms GA not only on terms of quality but on the convergence rate, reducing the computational complexity of the proposed scheme while provide mono and bi phase connections.This paper includes partial results of the UPGRID project. This project has re- ceived funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 646.531), for further information check the website: http://upgrid.eu. As well as by the Basque Government through the ELKARTEK programme (BID3A and BID3ABI projects)

    Optimal methodology for distribution systems reconfiguration based on OPF and solved by decomposition technique

    Get PDF
    This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature

    Optimal planning of RDGs in electrical distribution networks using hybrid SAPSO algorithm

    Get PDF
    The impact of the renewable distributed generations (RDGs), such as photovoltaic (PV) and wind turbine (WT) systems can be positive or negative on the system, based on the location and size of the DG. So, the correct location and size of DG in the distribution network remain an obstacle to achieving their full possible benefits. Therefore, the future distribution networks with the high penetration of DG power must be planned and operated to improve their efficiency. Thus, this paper presents a new methodology for integrated of renewable energy-based DG units with electrical distribution network. Since the main objective of the proposed methodology is to reduce the power losses and improve the voltage profile of the radial distribution system (RDS). In this regard, the optimization problem was formulated using loss sensitivity factor (LSF), simulated annealing (SA), particle swarm optimization (PSO) and a combination of loss sensitivity index (LSI) with SA & PSO (LSISA, LSIPSO) respectively. This paper contributes a new methodology SAPSO, which prevents the defects of SA & PSO. Optimal placement and sizing of renewable energy-based DG tested on 33-bus system. The results demonstrate the reliability and robustness of the proposed SAPSO algorithm to find the near-optimal position and size of the DG units to mitigate the power losses and improve the radial distribution system's voltage profile

    Reliability improvement and loss reduction in radial distribution system with network reconfiguration algorithms using loss sensitivity factor

    Get PDF
    Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network

    Distribution System Reconfiguration with Variable Demands Using the Opt-aiNet Algorithm

    Get PDF
    This paper describes the application of the Opt-aiNet algorithm to the reconfiguration problem of distribution systems considering variable demand levels. The Opt-aiNet algorithm is an optimization technique inspired in the immunologic bio system and it aims at reproducing the main properties and functions of this system. The reconfiguration problem of distribution networks with variable demands is a complex problem that aims at identifying the most adequate radial topology of the network that complies with all technical constraints in every demand level while minimizing the cost of power losses along an extended operation period. This work includes results of the application of the Opt-aiNet algorithm to distribution systems with 33, 84, 136 and 417 buses. These results demonstrate the robustness and efficiency of the proposed approach

    Critical Review of Different Methods for Siting and Sizing Distributed-generators

    Get PDF
    Due to several benefits attached to distributed generators such as reduction in line losses, improved voltage profile, reliable system etc., the study on how to optimally site and size distributed generators has been on the increase for more than two decades. This has propelled several researchers to explore various scientific and engineering powerful simulation tools, valid and reliable scientific methods like analytical, meta-heuristic and hybrid methods to optimally place and size distributed generator(s) for optimal benefits. This study gives a critical review of different methods used in siting and sizing distributed generators alongside their results, test systems and gaps in literature

    An Experiment Approach to Transmission Loss Optimization Using Power

    Get PDF
    The distribution systems must be able to provide energy/electricity to each consumer at an appropriate form of voltage rating. The modern forms of power are complex in nature with multiple load centres and generating stations interconnected through the transmission and distribution networks. The main objective of the energy based power system is energy generation and to deliver the energy/power at to its customers at its rated voltage-based value with minimum losses. In case of heavy loading condition, the reactive form of power flow is the major cause of losses, thus reducing the levels of voltage simultaneously. So, there is occurs a big need to minimize real losses of power and to improve the level of voltage in distribution systems. In such cases, a variation occurs in the network configuration usually varying by the operation based on switching meant for transferring the load among the feeders. Basically there are two switches used in distribution systems; one is normally closed switch that usually connects two line-based sections and the other is the normally open switch placed on tie lines connecting two of the primary feeders in the section.The optimized form of network configuration represents a topological feeder structure by changing the open/closed sectionalizing status and tie-line switches with minimized losses, saving the distribution system radial structure
    corecore