
© Springer Verlag 
 
"The final publication is available at link.springer.com” 

https://link.springer.com/chapter/10.1007%2F978-981-10-3728-3_28 

 

Cite this paper as: 

Mendia I., Gil-López S., Del Ser J., Bordagaray A.G., Prado J.G., Vélez M. (2017) 

Optimal Phase Swapping in Low Voltage Distribution Networks Based on Smart 

Meter Data and Optimization Heuristics. In: Del Ser J. (eds) Harmony Search 

Algorithm. ICHSA 2017. Advances in Intelligent Systems and Computing, vol 514. 

Springer, Singapore 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TECNALIA Publications

https://core.ac.uk/display/225168986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimal Phase Swapping in Low Voltage
Distribution Networks based on Smart Meter

Data and Optimization Heuristics
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1 TECNALIA, E-48160 Derio, Spain,
{izaskun.mendia,sergio.gil,javier.delser}@tecnalia.com

2 University of the Basque Country UPV/EHU, 48013 Bilbao, Spain,
{javier.delser,manuel.velez}@ehu.eus

3 Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
4 IBERDROLA Distribucion Electrica, S. A., 48003 Bilbao, Spain,

{ana.gb,jgarciapr}@iberdrola.es

Abstract. In this paper a modified version of the Harmony Search al-
gorithm is proposed as a novel tool for phase swapping in Low Voltage
Distribution Networks where the objective is to determine to which phase
each load should be connected in order to reduce the unbalance when
all phases are added into the neutral conductor. Unbalanced loads de-
teriorate power quality and increase costs of investment and operation.
A correct assignment is a direct, effective alternative to prevent volt-
age peaks and network outages. The main contribution of this paper is
the proposal of an optimization model for allocating phases consumers
according to their individual consumption in the network of low-voltage
distribution considering mono and bi-phase connections using real hourly
load patterns, which implies that the computational complexity of the
defined combinatorial optimization problem is heavily increased. For this
purpose a novel metric function is defined in the proposed scheme. The
performance of the HS algorithm has been compared with classical Ge-
netic Algorithm. Presented results show that HS outperforms GA not
only on terms of quality but on the convergence rate, reducing the com-
putational complexity of the proposed scheme while provide mono and
bi phase connections.
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1 Introduction

In the electrical distributions systems of most utilities over the world, three
phases of alternate current are utilized at each feeder aimed at increasing the
energy efficiency in low-voltage distribution networks. During the past decades
a huge increment in housing construction has occurred in many countries (espe-
cially in Spain), which has given rise to highly-populated low-voltage distribution



networks. This noted fact, combined with the ever-growing use of home electronic
devices, has heretofore unchained a dramatically sharp load growth. When held
together, these two key points lay an operational challenge to distribution com-
panies because the so-called feeder tripping problem [1] is even more involved
due to in-excess neutral current caused by the unbalance loads among the three
phases. Unbalanced loads between phases may lead to undesirable situations, in-
cluding [2]: current increase in the most heavily loaded phase limits the amount
of power transferred on a feeder; current increment in the neutral conductor; and
problems with voltage drops in phase with higher loads, which ultimately results
in a low quality of service. As a result, power losses in distribution networks may
vary significantly depending on the load imbalance.

Accordingly, if loads on each phase are properly balanced technical losses
will be notably reduced [3–5]. Consequently, a proper balance between the three
phases will contribute to: 1) an optimized network infrastructure by increasing
the capacity of distribution feeders, hence avoiding the deployment of unnec-
essary extra feeders and consequently reducing distribution costs; 2) a reduced
monitoring complexity of the low-voltage distribution network due to the reduc-
tion of instabilities generated by the presence of high currents in the neutral
conductor; and 3) an improved voltage profile due to the homogenization of the
voltage drops at each stage of the distribution line.

There are two major techniques for phase balancing in the related literature
[2]: feeder reconfiguration at the system level, and phase swapping at the feeder
level. The former is a process of changing the topological structure of the distri-
bution systems by altering the open/closed status of single phase sections and
tie switches [6]. In phase swapping, however, the objective is to determine to
which phase each load should be connected in order to reduce the unbalance
when all phases are added into the neutral conductor. This objective can be for-
mulated as a combinatorial optimization problem with exponential complexity
growth with the number of possible loads: for the case of N loads to be con-
nected to 6 phases (3 single phases and 3 complex phases), there is a total of 6N

combinations (possible solutions).

Many research contributions in the last years have dealt with the phase swap-
ping problem [7], each resorting to different approaches and diverse methodolo-
gies such as Simulated Annealing [8–10], Neural Networks [5, 11], Genetic Algo-
rithms [12], Tabu Search [13], Greedy approaches and Dynamic Programming
[2], among others. In [14] phase swapping is addressed as a load-to-line assign-
ment problem and tackled under a mixed-integer programming formulation. In
[15] the optimal load phase balance is obtained by solving the load redistri-
bution problem by using a decaying self-feedback continuous Hopfield neural
network (ADSCHNN). Likewise the work in [16] proposes a new approach for
phase balancing planning using a specialized Genetic Algorithm which considers
discretized load duration curve.

To the knowledge of the authors none of the above references accounts for
two practical situations of real low-voltage distribution networks. The first one
relates to the use of the information provided by Advanced Metering Infrastruc-



tures (AMIs) or Smart Meters, which provides a deeper, fine-grained knowledge
of load patterns, far beyond the coarse-grained monitoring performed until their
appearance. Indeed, by virtue of the hourly load patterns provided by the AMIs
not only operational costs are reduced and the quality of service is improved, but
also an evidence of paramount importance for our work has been unveiled: even
if phase balancing can be met over a certain time span (i.e. yearly or monthly),
the characteristics of connected loads vary continuously, which causes punctual,
undesired situations of unbalanced phases. The second aspect which has not
been taken into consideration in the literature as mentioned in [2] is that loads
can be connected to two phases, as opposed to related contributions so far which
consider only single phase connections. This point increases the computational
complexity of the phase swapping problem by increasing the number of possibil-
ities by which the load could be connected, i.e. from 3N to 6N for N loads.

The above challenges motivate the development of new heuristic procedures
that efficiently tackle the phase swapping problem taking into consideration the
time variance of load patterns and mono- and bi-phase connections. For this pur-
pose in this paper we propose to apply the Harmony Search (HS [17]) algorithm
as an heuristic procedure for solving the aforementioned problem. HS has been
used for NP-hard problems providing a good balance between computational
complexity and quality of the provided solutions [18, 19]. This manuscript delves
into the adaptation of the HS characteristics to phase swapping introducing
a novel metric definition and solution encoding for bi-phase connections. This
analysis will provide a realistic procedure for optimizing the topology of low-
voltage distribution networks in real Smart Grids minimizing, statistically, the
load unbalance between the three phases. The performance of the proposed ap-
proach is assessed over a real use case comprising an entirely remotely-managed
distribution substation, with hourly readings of 102 customers (82 residential, 5
industrial and 15 commercial) captured over a historical depth of one year, with
more than 21 million watts managed during this period. As concluded from these
simulations, the performance of the solver is confirmed to be promising and su-
perior to other genetically inspired heuristics, hence paving the way towards its
practical implementation in real energy distribution systems.

2 Problem Formulation

As mentioned in the introduction the overall goal of this research work is to de-
velop an heuristic method for finding the mapping from loads to phases leading
to a minimum imbalance between phases taking into account the hourly con-
sumption traces provided by smart meters. A proper balance in the circuit is
achieved by minimizing the Euclidean distance between residuals and phases, so
that the lower the residuals are, the smaller the total imbalance of the electri-
cal system will be. The application of these methods will focus on real hourly
customers’ load patterns. The periodicity at which the algorithm is executed is
a strategic decision of the utility, which should consider both the operational
cost of the phase reassignment and the seasonal treatment of the historical se-



ries. The optimization objective is to minimize the sum of Euclidean distances
between the three aggregated loads of the users assigned to each phase, pair by
pair. Such a difference is given, for 3 phases, N loads and time t (i.e. an index
enumerating the 24 values for each of the 365 days in a year), by

Q(x, t) =
∑

(φ,θ)∈P

√√√√( N∑
n=1

I(xn, φ)En(t)

)2

−

(
N∑

n′=1

I(xn′ , θ)En′(t)

)2

, (1)

where P , {(R,S), (S, T ), (R, T )}, En(t) is the energy consumption of load n at
time t, x , {xn}Nn=1 is the mapping from loads to phases such that, by assuming
a biphasic electric network, xn ∈ {RR,RS,RT, SS, ST, TT} ∀n ∈ {1, . . . , N},
and I(xn, φ) is an indicator function taking value 1 if φ ∈ xn and 0 otherwise. In
words, each phase is represented by the sum of the hourly energy consumption
of the loads assigned to that phase. The case when Q(x, t) = 0 means that the
energy between phases is perfectly balanced at time t, hence lower values of
Q(x, t) represent a better load balance.

Before proceeding further, it is worth to delve into the rationale why a bal-
anced distribution network is desirable for the distributor. A perfect balance
implies an electric system with minimal energy losses. Indeed, load imbalance
may yield up to three times more losses through an imbalanced distribution line
when compared to a balanced one. This can be argued, on the one hand, by the
application of Joule’s Law, which rules the conversion of energy into heat with
a consequent increase in the temperature of the conductor,

P = RI2 =
E

∆t
(2)

which, by applying Ohm’s Law (i.e. the potential V arising between the extremes
of a conductor is proportional to the electric current I going through it), yields

V = ZI cosα→ I =
E

∆t V cosα
(3)

where Z denotes the impedance of the conductor (line) and α is the angle be-
tween the current phase vector and the voltage V , also referred to as power
factor. If we note that the current I is given by the sum of the individual cur-
rents over each phase, i.e. I = IR + IS + IT , a perfectly balanced line will satisfy
IR = IS = IT = I/3. By contrast, an imbalanced line undergoing a strong phase
imbalance with all the current circulating through a single phase fulfills that e.g.
I = IR and IS = IT = 0. Bearing this in mind, the power losses for a perfectly
balanced system are given by

Pbal = Z
(
I2R + I2S + I2T

)
= Z

(
I2

9
+
I2

9
+
I2

9

)
=
ZI2

3
, (4)

Since the load curve reports the measured energy consumption, the technical
power losses Pbal for three phases and perfect balance are given by

Pbal =
RE2

3(∆t V cosα)2
. (5)



On the other hand, if we deal with an imbalanced system where all energy is
conducted over a single phase, technical power losses Punbal will increase up to

Pimbal = RI2 =
RE2

(∆t V cosα)2
= 3Pbal, (6)

i.e. they can potentially as high as three times the losses for the perfectly bal-
anced case. There lies the interest of the energy distributor in balancing the
consumption among phases, and the rationale for the application of the heuris-
tic solver explained in the next section.

3 Description of Harmony Search

The Harmony Search is a metaheuristic algorithm based on the emulation of the
music improvisation process observed in jazz bands, whose members use to com-
bine different musical notes based on the historical record of notes played by each
musician followed by an occasional, random yet slightly pitch tuning. HS main-
tains a pool of K candidate solutions or harmonies {xk}Kk=1 = {{xkn}Nn=1}Kk=1,
each comprising N optimization variables or notes (i.e. the number of loads asso-
ciated to the feeder at hand whose optimal phase assignment is to be discovered
by the algorithm). The main steps of the standard HS solver [19] are as follows:

– Step 1 (initialization): this first step is only considered at the first iteration.
The pool of K harmonies (also referred to as Harmony Memory, HM) is
initially filled, which is done uniformly at random if no a priori knowledge
about the solution space is assumed. This represents the starting point for
the set of candidate harmonies. For the problem at hand the alphabet of
notes has 6 possible values, 3 for single-phase connections and 3 for bi-phase
connections, namely xkn ∈ {1, 2, 3, 4, 5, 6} corresponding with each possible
connection assignment {RT,RR,RS, SS, ST, TT}. It should be noted that
the mapping from the note encoding to the sequence of phases is designed
so that when tones need to be adjusted to any other tone in their vicinity,
changes in the phase mapping are not drastic, as neighboring notes in the
integer alphabet correspond to phases with at least one phase in common
with that of the original note. In this case it is assumed that in bi-phase
connections the current is equally distributed over each individual phase.

– Step 2 (Improvisation): for each of the iterations a new harmony is generated.
To this end two are the operators defined in the naive HS solver:
1. Harmony Search Considering Rate (HMCR ∈ R[0, 1]), which sets the

probability that the value of a new proposed note is drawn from the set
of values that such a note has in the rest of harmonies, i.e. HMCR = 0.9
involves that 90% of the new notes are drawn from the whole set of
harmonies at each iteration. As will be later explained, based on previous
studies [20] a linear variation of the HMCR parameter along iterations
has been adopted so as to enhance the convergence of the search process.
Any component not selected for memory consideration will be randomly



set to a value between the lower and upper bounds of its possible range
in the defined alphabet.

2. Pitch Adjustment Rate (PAR ∈ R[0, 1]), which establishes the probabil-
ity that a given note is set to one of its neighboring values within the
note alphabet. i.e., PAR = 0.2 involves that 20% of the new notes are
drawn from the neighboring (lower or higher with equal probability) set
of notes defined on the integer alphabet on which they are encoded.

– Step 3 (HM update): the new improvised harmony is now evaluated accord-
ing to its value of the objective function which, for the case study tackled in
this paper, is given by Expression (1) aggregated over a certain time horizon,

f(xk) =

T∑
t=1

∑
(φ,θ)∈P

√√√√( N∑
n=1

I(xkn, φ)En(t)

)2

−

(
N∑

n′=1

I(xkn′ , θ)En′(t)

)2

, (7)

where T denotes the time span over which the phase balance provided by xk

is evaluated. If the objective function value for the new harmony is better
(lower) than the objective function value for the worst harmony in the HM,
then such a worst harmony is replaced with the newly improvised harmony.

– Step 4 (Stop criteria): if a maximum number of improvisation is reached,
then stop, otherwise step 3 and step 4 are repeated.

The HMCR and PAR operators aid the algorithm in the search for better
solutions, and even affect the speed of convergence.The values for these two
parameters had to be optimized to find the best set of parameters in terms of
balancing explorative versus exploitative character of the exploratory finding,
but this study is omitted for lack of space. The work in [21] proposes to improve
the performance of the HS algorithm hinges on imposing a certain progression
along iterations on the values of its operational parameters of HMCR and PAR.
For instance, the value of the PAR is dynamically updated according to:

PAR(iter) = PARmin + (PARmax − PARmin) · ξ(iter) (8)

where PARmin and PARmax are minimum and maximum values of the ad-
justing rate, and PAR(iter) is the pitch adjusting rate for iteration iter ∈
{1, 2, . . . , niter}. The coefficient ξ(iter) is calculated based on the iteration iter
and the maximum number of iterations numMaxIter as

ξ(iter) =
iter

numMaxIter
. (9)

This modification of the HS algorithm, by an iterative process, establishes
dynamic values for HMCR and PAR with each new iteration, seeks to avoid pre-
mature convergences in suboptimal regions. Thus, this approach prioritizes the
explorative capability of the search process rather than its exploitative behavior.



4 Experiments and Results

In order to evaluate the performance of the proposed scheme, a set of experi-
ments based on real data has been designed for dealing with the phase swapping
problem discussed above taking into consideration the time variance of load pat-
terns and mono- and bi-phase connections. The data is provided by an remotely
managed distribution substation. Only one feeder with three phases is consid-
ered accounting up to 102 customers, from which 82 are residential, 5 industrial
and 15 commercial. One-year-long load patterns with one-hour granularity are
considered in the experiments, which yields 365× 24 data points per customer.
The complexity of the proposed experiments is 6102 considering three mono-
phase connections and other three bi-phase connections. The paper compares
the proposed HS algorithm described in Section 3 with the Genetic Algorithm
(GA) proposed in [12]. GA is controlled by mutation and crossover operators
which drive the behavior of the iterative search procedure. A tournament selec-
tion is selected in an attempt at reinforcing the capacity of the GA to escape
from local optima during its search. One of the most evident differences between
both schemes is that GA creates new chromosomes by using only one (mutation)
or two (crossover) individuals, as opposed to the HS solver which exploits the
knowledge embedded in the entire set of harmonies stored in the HM.

The comparative study is discussed in statistical terms motivated by the
heuristic nature of the algorithms in the benchmark and the stochasticity im-
posed by their probabilistic operators. A computationally fair comparison is
guaranteed by setting equal the number of metric evaluations for both schemes.
The values of the improvisation operators for both optimization approaches are
refined based on a previous grid search not shown due to lack of space. The val-
ues for which the best balance between explorative versus exploitative behaviour
of the proposed schemes was found are listed in Table 1. In order to compute
performance statistics 50 Monte Carlo simulations are performed. It is important
to observe in Table 1 that GA prioritizes a memory that doubles in size that
of the HS approach. Therefore, for a fair comparison the maximum number of
generations is set to half the one for its HS counterpart.

Table 1. Refined parameters of the HS and GA solvers.

No. HS parameter Value GA parameter Value

1 K 50 Population size 100
2 [HMCRmin,HMCRmax] [0.7-0.9] Crossover rate 0.9
3 [PARmin,PARmax] [0.01-0.1] Mutation rate 0.2
4 numMaxIter 200 Max. generation 100

Figure 1 shows the best metric obtained for each algorithm in the iterative
process in the statistics of the 50 Monte Carlo simulations. It can be noted that
HS outperforms GA, i.e. for the 50 independent runs of the algorithms the fitness
values attained by HS are smaller than GA, not only in terms of its mean value
but also in what regards to their dispersion (a standard deviation of 11000 W



for HS and 12508 W for GA). Indeed only in 10 of the 50 experiments HS falls
within the value range bounded as mean ± standard deviation computed for GA.
In the rest of experiments results of HS are outside this GA confidence region.

Fig. 1. Fitness value obtained over the 50 Monte Carlo experiments performed.

The discussion follows in Figure 2, where it is shown that the convergence of
the proposed HS scheme is faster than that of GA. The plot depicts the average
metric evolution (solid lines) throughout the 50 Monte Carlos during the iterative
process of both schemes, whereas the standard deviation of the mean at each
iteration is marked showing the independence of the obtained results.

The ideal case – a perfect balance between phases – is obtained when the
metric as per Expression (1) is Q(x, t) = 0 at each time stamp (i.e. each hour
during the whole considered year). Integrating the energy in time along the
whole considered year t ∈ {1, . . . , 365× 24}, a perfect balance means 33.3% for
each phase. Figure 3 shows the integrated energy distribution per phase obtained
with HS and GA; while GA renders a maximum difference of 6.8% between two
phases, in the case of HS this score is limited to 4.7%, which corresponds to an
absolute value of 441000 W over the whole year. This noted fact means that there
is no clear compensation of seasonality effects along the year and through users,
because the hourly study shown in Figures 1 and 2 is corroborated with the
yearly one in Figure 3. This does not have to be extrapolated to all situations.

5 Conclusions and Future Research Lines

This paper has proposed a meta-heuristic scheme specially tailored for efficiently
finding the mapping from loads to phases that leads to a minimal energy imbal-
ance between phases. The study builds upon real consumption traces hourly pro-



Fig. 2. Fitness convergence along iterations for both HS and GA algorithms.

Fig. 3. Percentage distribution of energies per phase for the two algorithms.

vided by smart meters. On this purpose a novel fitness function is proposed, and
modifications of the naive Harmony Search algorithm scheme are introduced.
The proposed methodology is compared with a standard Genetic Algorithm
(GA) from the literature, showing that the HS outperforms GA with statistical
significance over 50 independent Monte Carlo experiments, not only on its hourly
component but on the yearly one. Future research will focus on multi-objective
formulations of this problem in order to improve further the practical benefits
of the method proposed in this manuscript. The considered metrics will span
beyond the reduction of the technical losses tackled in this paper towards the
minimization of the operational costs derived from the reassignment of different
users. In addition, the obtained conclusion – i.e. hourly results are buttressed
by the yearly phase balances – will be generalized using different, more diverse
substations demonstrating that hourly knowledge is necessary to avoid the sea-
sonality compensation effect when optimizing over the whole year.
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