42 research outputs found

    Constraint Based Automated Multi-Attribute Negotiations

    Get PDF

    Kleene-SchĂĽtzenberger and BĂĽchi Theorems for Weighted Timed Automata

    Get PDF
    In 1994, Alur and Dill introduced timed automata as a simple mathematical model for modelling the behaviour of real-time systems. In this thesis, we extend timed automata with weights. More detailed, we equip both the states and transitions of a timed automaton with weights taken from an appropriate mathematical structure. The weight of a transition determines the weight for taking this transition, and the weight of a state determines the weight for letting time elapse in this state. Since the weight for staying in a state depends on time, this model, called weighted timed automata, has many interesting applications, for instance, in operations research and scheduling. We give characterizations for the behaviours of weighted timed automata in terms of rational expressions and logical formulas. These formalisms are useful for the specification of real-time systems with continuous resource consumption. We further investigate the relation between the behaviours of weighted timed automata and timed automata. Finally, we present important decidability results for weighted timed automata

    Acta Cybernetica : Volume 16. Number 4.

    Get PDF

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Characterisation Theorems for Weighted Tree Automaton Models

    Get PDF
    In this thesis, we investigate different theoretical questions concerning weighted automata models over tree-like input structures. First, we study exact and approximated determinisation and then, we turn to Kleene-like and Büchi-like characterisations. We consider multiple weighted automata models, including weighted tree automata over semirings (Chapters 3 and 4), weighted forest automata over M-monoids (Chapter 5), and rational weighted tree languages with storage (Chapter 6). For an explanation as to why the last class can be considered as a weighted automaton model, we refer to page 188 of the thesis. We will now summarise the main contributions of the thesis. In Chapter 3, we focus on the determinisation of weighted tree automata and present our determinisation framework, called M-sequentialisation, which can model different notions of determinisation from the existing literature. Then, we provide a positive M-sequentialisation result for the case of additively idempotent semirings or finitely M-ambiguous weighted tree automata. Another important contribution of Chapter 3 is Theorem 77, where we provide a blueprint theorem that can be used to find determini- sation results for more classes of semirings and weighted tree automata easily. In fact, instead of repeating an entire determinisation construction, Theorem 77 allows us to prove a determinisation result by finding certain finite equivalence relations. This is a very potent tool for future research in the area of determinisation. In Chapter 4, we move from exact determinisation towards approximate determini- sation. We lift the formalisms and the main results from one approach from the literature from the word case to the tree case. This successfully results in an approximated determinisation construction for weighted tree automata over the tropical semiring. We provide a formal mathematical description of the approximated determinisation construction, rather than an algorithmic description as found in the related approach from the literature. In Chapter 5, we turn away from determinisation and instead consider Kleene-like and Büchi-like characterisations of weighted recognisability. We introduce weighted forest automata over M-monoids, which are a generalisation of weighted tree automata over M-monoids and weighted forest automata over semirings. Then, we prove that our recognisable weighted forest languages can be decomposed into a finite product of recognisable weighted tree languages. We also prove that the initial algebra semantic and the run semantic for weighted forest automata are equivalent under certain conditions. Lastly, we define rational forest expressions and forest M-expressions and and prove that the classes of languages generated by these formalisms coincide with recognisable weighted forest languages under certain conditions. In Chapter 6, we consider rational weighted tree languages with storage, where the storage is introduced by composing rational weighted tree languages without storage with a storage map. It has been proven in the literature that rational weighted tree languages with storage are closed under the rational operations. In Chapter 6, we provide alternative proofs of these closure properties. In fact, we prove that our way of introducing storage to rational weighted tree languages preserves the closure properties from rational weighted tree languages without storage.:1 Introduction 2 Preliminaries 2.1 Languages 2.2 WeightedLanguages 2.3 Weighted Tree Automata 3 A Unifying Framework for the Determinisation of Weighted Tree Automata 3.1 Introduction 3.2 Preliminaries 3.3 Factorisation in Monoids 3.3.1 Ordering Multisets over Monoids 3.3.2 Cayley Graph and Cayley Distance 3.3.3 Divisors and Rests 3.3.4 Factorisation Properties 3.4 Weighted Tree Automata over M_fin(M) and the Twinning Property 3.4.1 Weighted Tree Automata over M_fin(M) 3.4.2 The Twinning Property 3.5 Sequentialisation of Weighted Tree Automata over M_fin(M) 3.5.1 The Sequentialisation Construction 3.5.2 The Finitely R-Ambiguous Case 3.6 Relating WTA over M_fin(M) and WTA over S 3.7 M-Sequentialisation of Weighted Tree Automata 3.7.1 Accumulation of D_B 3.7.2 M-Sequentialisation Results 3.8 Comparison of our Results to the Literature 3.8.1 Determinisation of Unweighted Tree Automata 3.8.2 The Free Monoid Case 3.8.3 The Group Case 3.8.4 The Extremal Case 3.9 Conclusion 4 Approximated Determinisation of Weighted Tree Automata 125 4.1 Introduction 4.2 Preliminaries 4.3 Approximated Determinisation 4.3.1 The Approximated Determinisation Construction 4.3.2 Correctness of the Construction 4.4 The Approximated Twinning Property 4.4.1 Implications for Approximated Determinisability 4.4.2 Decidability of the Twinning Property 4.5 Conclusion 5 Kleene and Büchi Theorems for Weighted Forest Languages over M-Monoids 5.1 Introduction 5.2 Preliminaries 5.3 WeightedForestAutomata 5.3.1 Forests 5.3.2 WeightedForestAutomata 5.3.3 Rectangularity 5.3.4 I-recognisable is R-recognisable 5.4 Kleene’s Theorem 5.4.1 Kleene’s Theorem for Trees 5.4.2 Kleene’s Theorem for Forests 5.4.3 An Inductive Approach 5.5 Büchi’s Theorem 5.5.1 Büchi’s Theorem for Trees 5.5.2 Büchi’s Theorem for Forests 5.6 Conclusion 6 Rational Weighted Tree Languages with Storage 6.1 Introduction 6.2 Preliminaries 6.3 Rational Weighted Tree Languages with Storage 6.4 The Kleene-Goldstine Theorem 6.5 Closure of Rat(S¢,Σ,S) under Rational Operations 6.5.1 Top-Concatenation, Scalar Multiplication, and Sum 6.5.2 α-Concatenation 6.5.3 α-Kleene Star 6.6 Conclusion 7 Outlook Reference

    Weighted tree automata and quantitative logics with a focus on ambiguity

    Get PDF
    We relate various restrictions of a quantitative logic to subclasses of weighted tree automata. The subclasses are defined by the level of ambiguity allowed in the automata. This yields a generalization of the results by Stephan Kreutzer and Cristian Riveros, who considered the same problem for weighted automata over words. Along the way we also prove that a finitely ambiguous weighted tree automaton can be decomposed into unambiguous ones and define and analyze polynomial ambiguity for tree automata

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF
    corecore