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the Graduiertenkolleg “Wissensrepräsentation” and the Landesgraduiertenstipendum
Sachsen.

Finally I would like to thank my friends and family for their support.





Contents

1 Introduction 1

2 Preliminaries 5

2.1 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Semirings and Formal Power Series . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Weighted Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Weighted Timed Automata 15

3.1 Relation To Other Automata Models . . . . . . . . . . . . . . . . . . . . . 18

3.2 Closure Properties of Recognizable Timed Series . . . . . . . . . . . . . . 20

4 A Kleene-Schützenberger Theorem for Weighted Timed Automata 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Clock Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 From Rationality to Recognizability . . . . . . . . . . . . . . . . . . . . . 31

4.4 From Recognizability to Rationality . . . . . . . . . . . . . . . . . . . . . 42

4.5 From Clock Series to Timed Series . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1 Introduction

Since its introduction in the seminal paper by Alur and Dill [6], timed automata have
been a thoroughly investigated model for the specification and analysis of real-time
systems. Basically, a timed automaton is a finite automaton equipped with a finite
set of clocks that measure the time and may be used to put restrictions on when it
is allowed to take a transition. The behaviour of a timed automaton is captured by
the notion of timed languages, an extension of classical formal languages, where each
symbol in a word is paired with the time of its occurrence. In their paper, Alur and Dill
develop a theory of timed automata comprising timed extensions of classical decision
problems and closure properties (see also [10] for a survey). Besides this, much research
work has been done to generalize other results known from the classical theory of formal
languages to the timed setting. For instance, there are various approaches to provide
alternative characterizations of timed automata and their behaviours. For instance,
the famous Büchi theorem [36] about the coincidence of recognizable languages and
languages definable in monadic second-order logic (MSO) is extended to timed languages
by Wilke [107]. Also, several generalizations of the Kleene theorem [76] are proposed [12,
14, 13, 28, 29, 59, 60]. But first and foremost, there is much research concerning the
theoretical foundations for the development of efficient verification and model checking
tools, e.g. Uppaal, Kronos or HyTech [31, 79, 71]. Tools like these have successfully
been used for solving industrially relevant problems, like, for instance, the detection and
correction of an implementation error in an audio and video protocol used by Bang &
Olufsen [68], or the development of a clock synchronization algorithm that is currently
used in a wireless sensor network developed by the Dutch company Chess [69], just to
mention two of them.

The success of timed automata is certainly due to the decidability of the reachability
problem, i.e., the problem to decide, whether in a given timed automaton one can reach
a given state starting from an initial state [6]. The reachability problem is of high
importance. For instance, in the field of verification one is often interested in checking
whether a given“bad”state can never be reached. Furthermore, some important decision
problems (e.g. the emptiness problem) can be reduced to it. However, in a model for
timed systems it is a natural idea not only to ask whether a state can be reached, but
also to ask for the fastest way to reach it. This first has been considered in a paper
by Niebert et al. [89], and the practical relevance e.g. for planning and scheduling
problems has been discussed in several papers, e.g. [2, 3, 1]. Certainly, it is not only
interesting to find the fastest but also, in a more general sense, the cheapest way to a
state. This leads directly to the model of weighted timed automata (also known as priced
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1 Introduction

timed automata), which has been introduced in 2001 by Alur et al. [8] and Behrmann
et al. [17]. A weighted timed automaton is a timed automaton extended with a cost
function that assigns a natural number to both the transitions and states of the timed
automaton. The natural number assigned to a transition is interpreted as the cost
for taking this transition. The natural number assigned to a state denotes the cost
rate for the time spent in that state. In this way, weighted timed automata can be
used to model the continuous consumption of resources. The costs do not influence
the behaviour of the automaton, but may be used as a measure of performance. For
instance, as mentioned above, one may be interested in finding the cost optimal way to
a given state. This problem, called the optimal cost reachability problem, is known to be
computable [8, 9, 17, 22]. The model of weighted timed automata has inspired researchers
of the real-time community to much other research work of practical relevance. For
instance, there are decidability results on weighted timed games, which are useful for
synthesizing controllers [4, 33, 21, 23, 27]. The model also led to weighted extensions of
temporal logics with cost-contrained modalities, known as WCTL and WMTL, and the
corresponding model checking problems are considered e.g. in [32, 21, 23, 34, 26]. The
model of multi-priced timed automata, where more than one cost variable is permitted,
allows for very promising applications e.g. in the modelling of embedded systems, where
often more than one resource (e.g. bandwidth, memory, energy) must be restricted.
Results on weighted timed games, optimal reachability and model checking using multiple
cost variables can be found for instance in [80, 24, 81, 25, 65].

The motivation behind most of this work on weighted timed automata is to provide
the real-time community with decidability results and algorithms for building efficient
verification tools. However, not much is known so far about the model of weighted timed
automata itself, i.e., about closure properties or characterizations using algebraical and
logical formalisms. In fact, Asarin [11] points out a similar situation for the model of
timed automata. He compares the state of knowledge about timed automata with a
building having a bright and well constructed roof, but lacking of the necessary basic
foundations. In this sense, we want to consider weighted timed automata not only as
an interesting tool used for verification purposes, but we want to investigate theoretical
properties of the model itself. A theoretical perspective on the model may also give rise
to new practically relevant ideas.

In the following, we summarize the content of the thesis. First of all, in Chapter 3,
we define weighted timed automata over a semiring in the same manner as it is done
for classical weighted finite automata [99, 77, 19, 50]. In this way, we are not bound to
a fixed set of costs or weights, nor are we restricted to use the operations of addition
and infimum for computing the weight of a word. Secondly, we do not restrict the
cost functions for the locations to be linear (as previously done in [8, 17]). Instead,
we consider weighted timed automata with respect to an arbitrary family of functions
mapping positive reals to elements in the semiring. The cost for staying in a location is
defined by a function of this family. Doing so, we obtain a flexible model of weighted
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timed automata. Not only most of the models of weighted timed automata proposed
in the literature so far are special cases of our model, but our definition gives also
rise to interesting new instances. By using semirings, we build a bridge to the theory
of weighted finite automata. This stimulates the idea to extend well known classical
notions from the theory of weighted finite automata to the timed setting. In our model,
the behaviour of a weighted timed automaton is defined by the new notion of timed
series, i.e., timed extensions of formal power series, which map each timed word to a
coefficent in the semiring. In fact, the behaviour of a weighted timed automaton has
never been investigated before with respect to the timed language that is recognized.
This new definition of weighted timed automata was first published in [53].

In Chapters 4 and 5, we aim to establish alternative characterizations of the be-
haviours of weighted timed automata. We start with a generalization of the fundamental
Kleene theorem for finite automata over words [76], stating that the class of recogniz-
able languages equals the class of languages that can be defined by rational expressions.
This theorem was generalized to formal power series and weighted finite automata by
Schützenberger [101]. Also, several approaches [12, 14, 13, 28, 29, 59, 60] were done to
obtain such a type of theorem for timed automata. For our result, we use the latest
approach of Bouyer and Petit [29] and combine it with the results of Schützenberger and
new techniques. As it is not possible to define a natural concatenation operation over the
class of timed words, we introduce the notion of clock series, an extension of clock words
introduced by Bouyer and Petit, and define weighted extensions of the classical rational
operations sum, concatenation and (finite) Kleene star iteration over the set of clock
series. We then show that recognizable clock series are closed under these operations,
from which we can conclude that every rational clock series is recognizable. For the other
direction, i.e., that each recognizable clock series is rational, we use an extension of a
classical approach proposed by Brzozowski [35] and also used by Bouyer and Petit [29].
Lastly, we show how we can obtain a Kleene theorem also for timed series. An extended
abstract of the results presented in this chapter appeared in [53].

In Chapter 5, we lift the classical theorem on the equivalence of the expressive power
of finite automata and MSO logic to the weighted timed setting. A theorem of this type
was first given by Büchi [36] and has since then been generalized to many other classes of
automata. For timed automata, Wilke [107] introduced an MSO logic, called the relative
distance logic, and showed that every timed language that can be defined by sentences
in this logic can be recognized by a timed automaton, and vice versa. A corresponding
result for the class of weighted finite automata was recently presented by Droste and
Gastin [46, 49]. The authors define a weighted MSO logic, where atomic formulas may
additionally comprise elements of the semiring. The operators of the logic are given a
weighted semantics. In this way, a formula of this logic defines a formal power series.
Droste and Gastin show that a fragment of this logic is expressively equivalent to the class
of weighted finite automata. For presenting a Büchi theorem for the class of weighted
timed automata, we will combine the weighted MSO logic of Droste and Gastin, Wilke’s
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1 Introduction

relative distance logic and a new kind of weighted formulas to express the weights that
arise while being in a state. Then we aim to show the equivalence of recognizable and
definable timed series. Similarly to the untimed setting, we need to define a suitable
fragment of our weighted timed MSO logic. Since the definitions and constructions are
technical, mainly due to the weights that arise while letting time elapse, we do this
stepwisely and start by restricting our considerations to idempotent and commutative
semirings. Later on, we generalize the results to arbitrary semirings. However, neglecting
the idempotence of the semiring goes at the expense of the timed languages we are allowed
to use. More detailed, we need to restrict the universal first-order quantifier to formulas
which define timed languages of bounded variability, a notion introduced by Wilke [107].
The reason for this is mainly due to the non-determinizability of timed automata [6].
Also, if we skip the restriction on the semiring being commutative, we are faced with
some problems which may be solved by restricting the weight functions or excluding
empty timed words. Some of the constructions of this chapter were presented for a
subclass of weighted timed automata, namely weighted event-recording automata [7], in
an extended abstract [94].

In Chapter 6, we turn towards the support and cut languages of timed series. Both
notions are adopted from the theory of weighted finite automata and formal power series.
The support of a timed series is the timed language containing all timed words which
are not mapped to the zero element of the semiring. Supports have been investigated
extensively in the theory of weighted finite automata and formal power series [19, 105, 98,
75, 74]. Here, we are interested in transferring some of the results to the timed setting.
For instance, using a well known result that can already be found in [19], we can show
that the support of the behaviour of each weighted timed automaton as introduced by
Alur et al. [9] is recognizable by a timed automaton. Using a weighted variant of the
classical region automaton construction for timed automata [6], we present a procedure
to decide whether the support of a weighted timed automaton over a field (as e.g. the
real numbers with addition and multiplication) and the family of linear functions is
empty or not. Note that this is a weighted version of the classical emptiness problem.
As a consequence of this result, we obtain the decidability of the equivalence problem
for weighted timed automata over the reals and linear functions. This is a remarkable
result, as for unweighted timed automata, the corresponding problem is undecidable [6].
The result also raises the question whether one can develop new algorithms for this kind
of weighted timed automata. Finally, we investigate the recognizability of timed cut
languages, i.e., sets of timed words which are assigned a value smaller than or greater
than a given value from the semiring. Parts of this chapter are published in [93].
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2 Preliminaries

Let N, Z, Q and R denote the set of natural, integer, rational and real numbers, respec-
tively. For K ∈ {Z,Q,R}, we use K≥0 to denote the respective positive numbers. We
use Σ and Γ to denote finite alphabets. We use the symbol ·∪ to denote a disjoint union
of finite sets.

2.1 Timed Automata

We consider timed automata, a basic and natural model to represent the behaviour of
real-time systems, which has been introduced in a seminal paper by Alur and Dill [6].
Intuitively, a timed automaton is a finite automaton equipped with a finite set of clocks
ranging over R≥0 (see Fig. 2.1). While being in a state (called location in a timed
automaton), time elapses and the values of the clocks increase. The model allows the
transitions (called edges) to be labelled with boolean combinations of atomic formulas
which compare clock values with natural constants. Edges may only be taken if the for-
mulas are satisfied. Furthermore, clocks may be reset to zero at the edges independently
of each other. In the following, we introduce some preliminary notions and explain the
model of timed automata. Then we give some decidability results that will be used later.

A timed word over Σ is a finite sequence (a1, t1)...(ak, tk) ∈ (Σ × R≥0)
∗ such that the

sequence t̄ = t1...tk of timestamps is non-decreasing. Sometimes we denote a timed word
as above by (ā, t̄), where a ∈ Σ∗. We write TΣ∗ for the set of timed words over Σ. The
empty timed word is denoted by ε and we define TΣ+ = TΣ∗\{ε}. A set L ⊆ TΣ∗ is
called a timed language. We say that a timed word is strictly monotonic if its sequence
of timestamps is strictly monotonically increasing (i.e., we rule out zero time delays).
We use TsΣ

∗ to denote the set of strictly monotonic timed words. A timed language
L ⊆ TsΣ

∗ is called strictly monotonic. Given a timed word w as above we let the domain
dom(w) be {1, ..., k} and define the length |w| of w to be k. For a ∈ Σ, we let |w|a be

a a a

a a
x = 1x := 0

Figure 2.1: A timed automaton with a single clock
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2 Preliminaries

the number of occurrences of a in w. Let π : Σ→ Γ be a mapping. The renaming π(w)
of a timed word w ∈ TΣ∗ is the timed word w′ ∈ TΓ∗ of the form (a′1, t

′
1)...(a

′
k, t

′
k) such

that a′i = π(ai) and t′i = ti for all i ∈ dom(w).

Let C be a finite set of clock variables ranging over R≥0. We define clock constraints
φ over C to be conjunctions of formulas of the form x ∼ c, where c ∈ N, x ∈ C and
∼ ∈ {<,≤,=,≥, >}. Let Φ(C) be the set of all clock constraints over C. A clock valuation
ν : C → R≥0 is a function that assigns a value to each clock variable. A clock valuation
ν satisfies a clock constraint φ, written ν |= φ, if φ evaluates to true according to the
values given by ν. For δ ∈ R≥0 and λ ⊆ C, we define the clock valuation ν + δ to be
(ν+δ)(x) = ν(x)+δ for each x ∈ C and the clock valuation ν[λ := 0] by (ν[λ := 0])(x) = 0
if x ∈ λ and (ν[λ := 0])(x) = ν(x) otherwise.

A timed automaton over Σ is a tuple A = (L,L0,Lf , C, E), where

• L is a finite set of locations,

• L0 ⊆ L is a set of initial locations,

• Lf ⊆ L is a set of final locations,

• C is a finite set of clock variables,

• E ⊆ L × Σ × Φ(C) × 2C × L is a finite set of edges. An edge (l , a, φ, λ, l ′) allows
a jump from location l to location l ′ if a is read, provided that for the current
valuation ν we have ν |= φ. After the edge has been executed, the new valuation
is ν[λ := 0]. We use source(e) to denote the source location l and lab(e) to denote
the label a of an edge e.

A state in a timed automaton is a pair (l , ν) ∈ L × (R≥0)
C . Between states there

are two kinds of transitions. A timed transition is of the form (l , ν)
δ
−→ (l , ν + δ)

for some δ ∈ R≥0 and represents the elapse of δ time units in l . A discrete tran-

sition is of the form (l , ν)
e
−→ (l ′, ν ′) for some e = (l , a, φ, λ, l ′) ∈ E such that

ν |= φ and ν ′ = ν[λ := 0]. We write (l , ν)
δ
−→

e
−→ (l ′, ν ′) to denote that there is

a state (l ′′, ν ′′) such that (l , ν)
δ
−→ (l ′′, ν ′′) and (l ′′, ν ′′)

e
−→ (l ′, ν ′). We call such

a timed transition followed by a discrete transition a transition. A run of A on a

timed word w is a finite sequence (l0, ν0)
δ1−→

e1−→ (l1, ν1)
δ2−→

e2−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|)

of transitions, where ν0 = 0C . We say that r is successful if l0 ∈ L0 and l|w| ∈
Lf . The timed language L(A) recognized by a timed automaton A is defined by
L(A) = {w ∈ TΣ∗ : there is a successful run of A on w}. A timed language L ⊆ TΣ∗

is said to be TA-recognizable over Σ if there is a timed automaton A over Σ such that
L(A) = L. If Σ is clear from the context, we may omit it.

6



2.1 Timed Automata

Example 2.1. Let Σ = {a} and consider the timed language Lnd = {w ∈ TΣ∗ : ∃i, j ∈
dom(w).tj − ti = 1}. This timed language can be recognized by the single-clock timed
automaton shown in Fig. 2.1. The clock constraint x = 1 and the clock reset ensure
that the edge between the middle and the right location is only taken if there is some
a-event that happened exactly one time unit ago.

A timed automaton A is deterministic if |L0| = 1, and whenever (l , a, φ1, λ1, l1) and
(l , a, φ2, λ2, l2) are two different edges in A, then for all clock valuations ν we have
ν 6|= φ1 ∧ φ2. A is unambiguous if for every timed word w ∈ L(A) there is exactly one
successful run of A on w. A timed language L ⊆ TΣ∗ is deterministically TA-recognizable
(unambiguously TA-recognizable, respectively) if there is a deterministic (unambiguous,
respectively) timed automaton A over Σ such that L(A) = L.

Proposition 2.2 ([6, 10]). The class of TA-recognizable timed languages is closed un-
der union, intersection, renaming and inverse renaming.

The proof that intersection preserves TA-recognizability of timed languages involves
the usual product construction known from the classical theory of formal languages.
Contrary to the classical case, both the class of deterministically TA-recognizable and
the class of unambiguously TA-recognizable timed languages form strict subclasses of
TA-recognizable timed languages.

Example 2.3. The timed language Lnd from Ex. 2.1 can neither be recognized by a
deterministic timed automaton nor is its complement TA-recognizable [6].

Example 2.4. The timed language Lamb containing all timed words w satisfying the
following conditions:

1. ti < 2 for all i ∈ dom(w),

2. ti = 1 for some i ∈ dom(w),

3. there are 1 ≤ i < j ≤ dom(w) such that tj − ti = 1.

cannot be recognized by an unambiguous timed automaton [106].

The class of unambiguously TA-recognizable timed languages is closed under union and
intersection, but it is not known whether it is closed under complement. However, it
is decidable for a TA-recognizable timed language L whether it is unambiguously TA-
recognizable [106].

Theorem 2.5 ([6]). The emptiness problem for timed automata is decidable.

7



2 Preliminaries

The solution to the emptiness problem involves the construction of a finite quotient of
the infinite state space induced by a timed automaton, called the region automaton [6].
In the following, we recall the definition of the region automaton as it will be needed
later.

Let δ ∈ R≥0. We use 〈δ〉 to denote the fractional part of δ, and ⌊δ⌋ to denote the
integral part of δ (also known as the floor of δ), respectively. For each clock variable
x ∈ C, we use cx to denote the largest integer c that x is compared with in some clock
constraint of an edge. We define an equivalence relation over the set of all clock valuations
for C, called the region equivalence [6], as follows. Two clock valuations ν, ν ′ ∈ (R≥0)

C

are region equivalent, written ν ∼= ν ′, if the following three conditions are satisfied.

1. For all clock variables x ∈ C, either ⌊ν(x)⌋ = ⌊ν ′(x)⌋, or both ν(x) and ν ′(x) exceed
cx.

2. For all clock variables x, x′ ∈ C with ν(x) ≤ cx and ν(x′) ≤ cx′ , we have 〈ν(x)〉 ≤
〈ν(x′)〉 iff 〈ν ′(x)〉 ≤ 〈ν ′(x′)〉.

3. For all clock variables x ∈ C with ν(x) ≤ cx, we have 〈ν(x)〉 = 0 iff 〈ν ′(x)〉 = 0.

An equivalence class of clock valuations induced by ∼= is called a clock region. We define
the initial clock region to be the equivalence class of the clock valuation ν0 that maps
all clock variables to zero. Define cmax = max{cx : x ∈ C}. We define the finite alphabet
I = {[0, 0], (0, 1), [1, 1], (1, 2), ..., (cmax − 1, cmax), [cmax, cmax], (cmax,∞)} of intervals overR≥0. Let w = (a1, t1)...(ak, tk) be a timed word. We use abs(w) to denote the unique
untimed word (I1, a1)(I2, a2)...(Ik, ak) over I × Σ, where for each i ∈ {1, ..., k}, Ii is the
unique interval in I with ti − ti−1 ∈ Ii. Given a timed automaton A = (L,L0,Lf , C, E)
over Σ, we define the region automaton R(A) = (Q,Q0, Qf ,∆) to be a finite automaton
over I × Σ, where

• Q = {(l , r) : l ∈ L, r is a clock region},

• Q0 = {(l , r) : l ∈ L0, r is the initial clock region},

• Qf = {(l , r) : l ∈ Lf , r is a clock region},

•
(
(l , r), (I, a), (l ′ , r′)

)
∈ ∆ if and only if there are clock valuations ν ∈ r, ν ′ ∈ r′,

e ∈ E with lab(e) = a, and δ ∈ I such that (l , ν)
δ
−→

e
−→ (l ′, ν ′) is a transition of

A. We say that
(
(l , r), (I, a), (l ′ , r′)

)
∈ ∆ stems from e and δ.

The region automaton is finite and bisimulation equivalent to the infinite state-transition
system induced by the corresponding timed automaton [39].

The universality problem, and hence also the language inclusion and language equiva-
lence problems for timed automata are undecidable [6]. However, the language inclusion
problem becomes decidable if we restrict the number of clock variables to one.

8



2.2 Semirings and Formal Power Series

Theorem 2.6 ([91]). Given two timed automata A and A′, where A has at most one
clock, it is decidable whether L(A′) ⊆ L(A) and whether L(A) = TΣ∗.

2.2 Semirings and Formal Power Series

In this section, we present the mathematical formalisms needed for defining the model
of weighted finite automata, i.e., finite automata extended with a function assigning
weights to the transitions. In a very general way, these weights come from a semiring.
The behaviour of a weighted finite automaton corresponds to a function that assigns to
each finite word a coefficient in the semiring, namely its weight. Such a function is called
a formal power series.

A monoid (K, ·, 1) is a setK together with an associative operation · and a unit element
1 such that 1 · k = k · 1 = k for each k ∈ K. A monoid is commutative if additionally
· is commutative. A semiring K is an algebraic structure (K,+, ·, 0, 1) where (K,+, 0)
is a commutative monoid, (K, ·, 1) is a monoid, multiplication distributes over addition,
and multiplication is absorbing, i.e., 0 · k = k · 0 = 0 for each k ∈ K. In the following,
we give some examples of important semirings.

• the semiring (R,+, ·, 0, 1) of the real numbers with ordinary addition and multipli-
cation

• the Boolean semiring ({0, 1},∨,∧, 0, 1)

• the min-plus-semiring (R≥0 ∪ {∞},min,+,∞, 0)

• the max-plus-semiring (R≥0 ∪ {−∞},max,+,−∞, 0)

• the Viterbi-semiring ([0, 1],max, ·, 0, 1)

• the min-max-semiring (R ∪ {∞,−∞},min,max,∞,−∞)

We say that a semiring is commutative if (K, ·, 1) is a commutative monoid. If the
addition in K is idempotent, i.e., we have k+ k = k for each k ∈ K, then the semiring is
called idempotent. A semiring is zero-divisor free if for all k, k′ ∈ K, whenever k · k′ = 0
then k = 0 or k′ = 0. Similarly, a semiring is zero-sum free if for all k, k′ ∈ K, whenever
k + k′ = 0 then k = 0 and k′ = 0. We say that a semiring is positive if it is both
zero-divisor free and zero-sum free. A semiring is a field if (K,+, 0) is a group and
(K\{0}, ·, 1) is a commutative group. Let A ⊆ K. The subsemiring generated by A is
the least subset of K which includes A, 0 and 1 and is closed both under + and ·. If A is
finite, this subsemiring is finitely generated. A semiring K is locally finite if each finitely
generated subsemiring is finite. Notice that this is the case if and only if the monoids
(K,+, 0) and (K, ·, 1) are locally finite [47]. If (K,+, 0) is a group, then K is a ring. A
semiring K has characteristic zero if there is no n ∈ N\{0} such that 1 + ...+ 1︸ ︷︷ ︸

n

= 0.
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2 Preliminaries

A monoid morphism between monoids (K, ·, 1) and (K ′, ·′, 1′) is a function η : K → K ′

satisfying

• η(1) = 1′,

• η(a · b) = η(a) ·′ η(b) for all a, b ∈ K.

Accordingly, a semiring morphism between two semirings (K,+, ·, 0, 1) and
(K ′,+′, ·′, 0′, 1′) is a function η : K → K ′ such that η is both a monoid morphism be-
tween (K,+, 0) and (K ′,+′, 0′) and a monoid morphism between (K, ·, 1) and (K ′, ·′, 1′).
Let A,B ⊆ K be two subsets of the semiring K. We say that A and B commute element-
wise if a · b = b · a for each a ∈ A, b ∈ B. Let KA be the subsemiring of K generated by
A. Notice that each element k ∈ KA can be written as a finite sum of finite products
of elements in A. From this it follows that whenever A and B commute element-wise,
then KA and KB commute element-wise.

A mapping S : Σ∗ → K is called a formal power series, or series, for short. For
historical reasons, we write (S,w) instead of S(w) for each w ∈ Σ∗. The support of S,
denoted by supp(S), is defined to be the set {w ∈ Σ∗ : (S,w) 6= 0}. The set of all series
over K and Σ is denoted by K〈〈Σ∗〉〉. Let S, S1, S2 ∈ K〈〈Σ

∗〉〉 and k ∈ K. We define the
sum S1 + S2, the Hadamard product S1 ⊙ S2, the Cauchy product S1;S2, and the scalar
products S · k and k · S as follows. For each w ∈ Σ∗, we have

(S1 + S2, w) = (S1, w) + (S2, w),

(S1 ⊙ S2, w) = (S1, w) · (S2, w),

(S1;S2, w) =
∑

w1;w2=w

(S1, w1) · (S2, w2),

(S · k,w) = (S,w) · k,

(k · S,w) = k · (S,w),

where ; denotes the natural concatenation operation of two finite words. Notice that the
first three operations correspond to union, intersection and concatenation, respectively,
of formal languages if we let K be the Boolean semiring. Also note that the sum in the
definition of the Cauchy product is finite and hence well-defined in K, since any w ∈ Σ∗

has only finitely many decompositions as w = w1;w2. For k ∈ K, we further define the
constant series k, which maps each w ∈ Σ∗ to k, and the series kε defined by (kε,w) = k if
w = ε and (kε,w) = 0 otherwise. Then, (K〈〈Σ∗〉〉,+,⊙, 0, 1) and (K〈〈Σ∗〉〉,+, ; , 0, 1ε) are
again semirings. This can be proved by elementary calculations. For L ⊆ Σ∗, we define
the characteristic series 1L : Σ∗ → K by (1L, w) = 1 if w ∈ L and (1L, w) = 0 otherwise.
Let π : Σ → Γ be a mapping. The renaming of a finite word a1...ak over Σ is defined
to be the finite word π(a1)...π(ak) over Γ. Given S ∈ K〈〈Σ∗〉〉, we define the renaming
π̄(S) : Γ∗ → K by (π̄(S), u) =

∑
π(w)=u(S,w) for all u ∈ Γ∗. Notice that, again, the sum

in this equation is finite and thus well-defined in K. For a series S ∈ K〈〈Γ∗〉〉, we define
the inverse renaming π̄−1(S) : Σ∗ → K by (π̄−1(S), w) = (S, π(w)) for each w ∈ Σ∗.

10



2.3 Weighted Finite Automata

a/2, b/3 a/3, b/2

−1

Figure 2.2: A weighted finite automaton over the semiring of the real numbers

2.3 Weighted Finite Automata

Now, we present the model of weighted finite automata, which is the subject of many
works [99, 77, 19, 50]. As mentioned before, a weighted finite automaton is a finite
automaton extended with a function that assigns weights from a semiring to the transi-
tions. This model may, amongst others, be used to model the consumption of resources.
Weighted finite automata are of practical interest e.g. in natural language applications,
in particular speech processing [87, 40, 88], and image or video compression [41, 67, 73].
Recently, they have found their way into a branch of verification, namely multi-valued
model checking [78]. We fix a semiring K and an alphabet Σ. A weighted finite automa-
ton A over K and Σ is a tuple A = (Q,∆, in, out,wt), where

• Q is a finite set of states,

• ∆ ⊆ Q× Σ×Q is a set of transitions,

• in : Q→ K is a weight function for entering a state,

• out : Q→ K is a weight function for leaving a state,

• wt : ∆→ K is a weight function for taking a transition.

For representing weighted finite automata graphically, we use the following conventions.
An incoming (outgoing, respectively) arrow labeled with a value from K represents the
weight for entering (leaving, respectively) the state; we omit the value if it equals 1. The
weight for taking a transition is given behind the label of the transition and sometimes
omitted if equal to 1.

Example 2.7. In Fig. 2.2, we show a weighted finite automaton A over the semiring of
the real numbers with addition and multiplication, and Σ = {a, b}. We have (‖A‖, w) =
2|w|a · 3|w|b − 3|w|a · 2|w|b for every w ∈ Σ∗.

A run r = q0
a1−→ q1

a2−→ ...
ak−→ qk of A is a sequence of transitions such that

(qi−1, ai, qi) ∈ ∆ for each i ∈ {1, ..., k}. The label of this run is a1...ak. The running
weight of this run is the product

rwt(r) = in(q0) ·
∏

1≤i≤k

wt(qi−1, ai, qi) · out(qk).

11
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If k = 0 and r = q0, then we define rwt(r) = in(q0) ·out(q0). The behaviour of a weighted
finite automaton A is the series defined by

(‖A‖, w) =
∑
{rwt(r) : r is a run of A on w}.

A series S ∈ K〈〈Σ∗〉〉 is called WFA-recognizable if there is a weighted finite automaton
A such that ‖A‖ = S.

Similar to the classical theory of formal languages, there are several characterizations
of WFA-recognizable series. Here, we are mainly interested in weighted extensions of
the well known Kleene theorem [76] and, second, the Büchi theorem [36]. Schützen-
berger [100] came up with a Kleene theorem for the class of weighted finite automata,
known as Schützenberger theorem. It states that the set of WFA-recognizable series is
precisely the set of rational series. The latter are defined over a finite set of monomials
(i.e., series whose support is empty or a singleton) and finite application of sum, Cauchy
product and finite Kleene star iteration. A weighted version of the Büchi theorem was
recently given by Droste and Gastin [46, 49]. They present a weighted MSO logic and
show that a fragment of this logic is equally expressive to the behaviours of weighted
finite automata.

Besides characterizations of WFA-recognizable series, there has been much research
on the supports of series. Next, we present a basic result concerning supports.

Theorem 2.8 (cf. [19]). The support of each WFA-recognizable series over a positive
semiring is recognizable by a finite automaton.

The proof idea for this uses the two properties of being zero-sum free and zero-divisor
free. Given a weighted finite automaton A = (Q,∆, in, out,wt), we construct a finite
automaton recognizing supp(‖A‖) by simply removing all transitions with weight 0 and
defining the set of initial states to be the set of states q with in(q) 6= 0 and the set of final
states to be the set of states q with out(q) 6= 0, respectively (cf. [19]). This result was
recently supplemented by the following result for the class of commutative and zero-sum
free semirings.

Theorem 2.9 ([75]). The support of each WFA-recognizable series over a commutative
and zero-sum free semiring is recognizable by a finite automaton.

The proof of this is a bit more elaborate, but we will explain its details in Sect. 6.
On the other hand, it is well known that for general semirings, the supports of WFA-

recognizable series are not necessarily recognizable by a finite automaton, as the following
example (taken from [19]) shows.

Example 2.10. The support of the series recognized by the weighted finite automaton
in Fig. 2.2 corresponds to the set {w ∈ Σ∗ : |w|a 6= |w|b}, which is a context-free, but
not a recognizable language.

12
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However, for certain semirings we can decide whether the support of a WFA-recognizable
series is empty. Notice that this problem corresponds to a weighted version of the
classical emptiness problem.

Theorem 2.11 ([58]). It is decidable whether the support of a WFA-recognizable series
over a field is empty.

The proof for the last theorem uses an alternative representation of WFA-recognizable se-
ries, called linear representation, and algebraic methods for which it is not clear whether
and how they can be adapted to the timed setting. It is also known that for a given
WFA-recognizable series S over a field and Σ, it is not decidable whether supp(S) = Σ∗

(cf. [19]). Notice that this is the weighted version of the classical universality problem.

13



2 Preliminaries

14



3 Weighted Timed Automata

Weighted timed automata have first been introduced in 2001 by Alur et al. [8] and
Behrmann et al. [17] independently of each other. The authors extend the classical
timed automaton model introduced by Alur and Dill [6] with a function wt : E ∪L → N
assigning a weight to each edge and each location (see Fig. 3.1, taken from [8]). The
weight assigned to an edge corresponds to the cost for taking this edge, whereas the
weight assigned to a location determines the cost for staying in that location per time

unit. Given a run of the form (l0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, νk), the weight of this run
is defined to be the sum

∑
1≤i≤k wt(li−1) · δi + wt(ei). Note that the weights assigned to

the edges and locations of the timed automaton do not influence the behaviour of the
timed automaton, but may be used to measure the performance of a run. In this spirit,
the authors of both papers are interested in the optimal cost reachability problem, i.e.,
given a location l , to answer the question what is the optimal cost for reaching l .

The outstanding and new feature of weighted timed automata is the possibility of
modelling continuous resource consumption that may arise while being in a location.
Weighted timed automata have received much interest as they allow for applications in
operations research, in particular optimal scheduling and planning [64, 97, 45]. Conse-
quently, the model has been the subject of much research work in the real-time com-
munity. Besides further work on reachability problems under some optimization as-
pect [16, 104, 22], there are several approaches to extend temporal logics like CTL
and LTL with cost constraints on modalities [32, 21, 23, 34, 26]. Also, there are ef-
forts [4, 21, 23] to generalize the notion of time-optimal games [15], which is of practical
interest e.g. for solving optimal control problems, to the weighted timed setting. Another
interesting direction are extensions of the model described above to so-called multi-priced
timed automata [80, 24, 65], where multiple cost variables per transition (and location,
respectively) are allowed. This model allows for practically relevant problems, particu-
larly in the framework of embedded systems, where often more than one resource must

3 1
x1 < 2/1 x1 = 2/1

x2 = 2/1

Figure 3.1: A weighted timed automaton as defined by Alur et al. [8]
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3 Weighted Timed Automata

be restricted.

In this section, we present a more general definition of a weighted timed automaton
which is along the lines of the definition of a weighted finite automaton. By build-
ing a bridge to the theory of weighted finite automata, we hope to get a new, mainly
theoretically-influenced perspective on weighted timed automata. This may be helpful
in obtaining a deeper understanding about the model itself. The main difference to
weighted finite automata is that not only the edges of the underlying timed automaton
are assigned weights from a semiring, but also the locations are assigned a weight func-
tion, which is used to compute the weight that arises while letting time elapse in this
location. Note that, compared to the model described above, in our model these weight
functions may be non-linear. Due to the weight functions assigned to locations, our
model of a weighted timed automaton is far more complicated than that of a weighted
finite automaton. In particular, there may be an infinite set of weights occurring in
the runs of a weighted timed automaton. Next, we present the formal definition of a
weighted timed automaton.

Let K be a semiring. We use F to denote a family of functions from R≥0 to K which
will be used to model the weights that arise while being in a location. In this thesis, we
are mainly interested in two kinds of such families, namely the family of step functions
and the family of linear functions. A function f : R≥0 → K is a step function if it is of the
form f (δ) =

∑
1≤i≤n αi ·χAi(δ) for every δ ∈ R≥0, where n ∈ N, αi ∈ K, Ai are intervals

over R≥0 with borders in N such that Aj ∩Ak = ∅ for j 6= k and
⋃

1≤i≤nAi = R≥0, and
χAi is a characteristic function of Ai, i.e., we have χAi(δ) = 1 if δ ∈ Ai and 0 otherwise,
for every i ∈ {1, ..., n}. A step function has the important property of having a finite
image. Constant functions of the form f (δ) = k for some k ∈ K and each δ ∈ R≥0,
are a special case of step functions. If K is such that K ⊇ R≥0, we say that a function
f : R≥0 → K is linear if it is of the form f (δ) = k · δ for some k ∈ K ∩ R and every
δ ∈ R≥0 (where · is the usual multiplication operation). In this thesis, we often require
F to contain a special function f : R≥0 → K satisfying f (δ) = 1 for each δ ∈ R≥0. We
use 1 to denote such a function. Given two functions f1, f2 ∈ F , we define the pointwise
product f1 ⊙ f2 by (f1 ⊙ f2)(δ) = f1(δ) · f2(δ) for each δ ∈ R≥0.

A weighted timed automaton over K, Σ and F is a tuple A = (L, C, E, in, out, ewt, lwt),
where

• L is a finite set of locations,

• C is a finite set of clock variables,

• E ⊆ L× Σ× Φ(C)× 2C × L is a finite set of edges,

• in : L → K is a weight function for entering a location,

• out : L → K is a weight function for leaving a location,
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• ewt : E → K is a weight function for taking an edge,

• lwt : L → F is a weight function for letting time elapse in a location.

For representing weighted timed automata graphically, we use the same conventions as
for weighted finite automata (see Sect. 2.3). Additionally, we label the locations with
their weight functions, i.e., if lwt(l) = f , then we label l with f .

A weighted timed automaton maps each timed word w ∈ TΣ∗ to a weight in K as

follows. Given a run r = (l0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, νk) of A on w, we define the
running weight rwt(r) of r to be the product

rwt(r) = in(l0) ·


 ∏

1≤i≤k

lwt(li−1)(δi) · ewt(ei)


 · out(lk).

Then the behaviour ‖A‖ : TΣ∗ → K of A is given by

(‖A‖, w) =
∑
{rwt(r) : r is a run of A on w}.

A function T : TΣ∗ → K is called timed series. A timed series T is called F-recognizable
over K and Σ if there is a weighted timed automaton A over K, Σ and F such that
‖A‖ = T . If K, Σ or F are clear from the context, we may omit them. We use
KF−rec〈〈TΣ∗〉〉 to denote the set of all F-recognizable timed series over K and Σ.

Example 3.1. In Fig. 3.2, we show a weighted timed automaton over the semiring
of the natural numbers with addition and multiplication and the family of constant
functions. In fact, we only use the constant function 1, which maps each time delay to
1. Also the edges are assigned the weight 1. From this we can conclude that the running
weight of each run from the leftmost to the rightmost location equals 1. Moreover, for
each timed word w, there are exactly as many such runs on w as there are positions in w
such that the last a happened strictly less than 2 time units ago. The behaviour of the
weighted timed automaton with respect to w is computed by summing up the running
weights of the runs on w. Thus, this weighted timed automaton assigns to each timed
word the number of positions such that the last a happened less than 2 time units ago.
In general, one may use the semiring of the natural numbers to count how often a certain
property holds.

Example 3.2. Let K be the max-plus-semiring and F be the family of linear and con-
stant functions. Consider the weighted timed automaton A over K and F shown in Fig.
3.3. Let w be a timed word. Then for each i ∈ dom(w), there is a run r on w such that
rwt(r) = ti − ti−1 (where t0 = 0). Moreover, there are no other runs. Hence, we have
(‖A‖, w) = max{ti − ti−1 : i ∈ dom(w)}.
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1 1 1Σ/1 Σ\{a}/1 Σ/1

a, x := 0/1 Σ, x < 2/1

Figure 3.2: Weighted timed automaton for Example 3.1

0 δ 0

Σ/0 Σ/0

Σ/0 Σ/0

Figure 3.3: Weighted timed automaton for Example 3.2

A timed series T is called strictly monotonic if for each timed word w ∈ TΣ∗\TsΣ
∗

we have (T , w) = 0. We define the (potentially infinite) set wgt(A) of weights that may
occur in the runs of A as wgt(A) = wgtE(A) ∪ wgtF (A), where wgtE(A) = {ewt(e) :
e ∈ E} and wgtF (A) = {lwt(l)(δ) : l ∈ L, δ ∈ R≥0}. Observe that a weighted timed
automaton A over K, Σ and F can also be regarded as a weighted timed automaton
over the subsemiring Kwgt(A), Σ and F . Given a weighted timed automaton of A =
(L, C, E, in, out, ewt, lwt) over K, Σ and F , the underlying timed automaton of A is
the timed automaton (L,L0,Lf , C, E) over Σ where L0 = {l ∈ L : in(l) 6= 0} and
Lf = {l ∈ L : out(l) 6= 0}. We say that a weighted timed automaton is unambiguous if
its underlying timed automaton is unambiguous.

3.1 Relation To Other Automata Models

Here we show that our model of a weighted timed automaton over a semiring and a
family of functions subsumes a number of more particular concepts of timed automata.
It is well known that weighted timed automata can be seen as an extension of timed
automata towards linear hybrid systems [70, 5]. However, our definition of a weighted
timed automaton also includes various other classes of automata. In particular, by
choosing K and F in a suitable way, we obtain timed automata and weighted finite
automata.

Timed Automata Let A = (L,L0,Lf , C, E) be a timed automaton over Σ. We let
K be the Boolean semiring and F = {1}. Define the weight function in : L → K by
in(l) = 1 if l ∈ L0 and in(l) = 0 otherwise. Similarly, define out : L → K by out(l) = 1 if
l ∈ Lf and out(l) = 0 otherwise. Further, we let ewt(e) = 1 for each e ∈ E and lwt(l) = 1
for each l ∈ L. Let A′ = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over
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K, Σ and F . One can easily see that ‖A′‖ = 1L(A).

Other Weighted Timed Automata Models In the original work on weighted timed
automata by Alur et al. [8] and Behrmann et al. [17], timed automata are extended with a
weight function assigning a natural number to each edge and each location. The weights
that arise by letting time elapse while being in a location are computed by multiplying
the weight of the location with the time value. The weights of the transitions occuring
in a run are added. Furthermore, the run with minimal weight is of interest. This can be
modelled using our definition of a weighted timed automaton over the min-plus-semiring
and the family of linear functions.

Recently, the weighted timed automaton model has been generalized by allowing
more than one weight variable. Larsen and Rasmussen introduced dual-priced timed
automata [80]. A dual-priced timed automaton can be modelled using a weighted
timed automaton over the direct product of the min-plus-semiring, i.e., ((R≥0 ∪ {∞})×
(R≥0 ∪{∞}),min,+, (∞,∞), (0, 0)), where min and + are defined in a suitable way, e.g.
coordinate-wise. This again constitutes a semiring and thus falls into our framework.
Similarly, we can define models of multi-priced timed automata [24].

Timed Automata with Stopwatch Observers A stopwatch is a clock variable
that can be stopped and turned on again [70]. In other words, the rate of change of
the stopwatch variable is either 0 ∈ N or 1 ∈ N. A timed automaton augmented with a
stopwatch variable that can neither be tested in a clock constraint nor be reset is called
a timed automaton with a stopwatch observer. To model this using our definition of
a weighted timed automaton, we let F contain 1 and the linear function f of the form
f (δ) = δ. This implies that K must be such that K ⊇ R≥0, but notice that we do not
put further restrictions on K here, but describe the modelling for the general case. We
further let lwt(l) = 1 if l is a location where the stopwatch is stopped, and lwt(l) = f if
in l the stopwatch is turned on. The edges do not cost anything, so we put ewt(e) = 1
for any e ∈ E. The weight function for entering a location is defined by in(l) = 1 if
l ∈ L0 and in(l) = 0 otherwise, and similarly we proceed with the weight function for
leaving a location.

Weighted Finite Automata A weighted finite automaton over a semiring K and Σ
can easily be modelled by a weighted timed automaton over K, Σ and the family of
functions containing 1. By assigning 1 to each location of a weighted timed automaton,
no weight arises while being in a location. In this way, we obtain a weighted timed
automaton model that allows for weights at the edges. If we additionally ignore all timing
information, the resulting model corresponds to a classical weighted finite automaton.
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3 Weighted Timed Automata

3.2 Closure Properties of Recognizable Timed Series

Here, we investigate closure properties of the class of F-recognizable timed series under
some standard operations which will be needed later in this thesis. For this, we fix a
semiring K, an alphabet Σ and a family F of functions from R≥0 to K. The operations
of sum, Hadamard product and scalar products are lifted from series to timed series in
the obvious manner, i.e., given timed series T ,T1,T2 : TΣ∗ → K and k ∈ K, we define

(T1 + T2, w) = (T1, w) + (T2, w),

(T1 ⊙ T2, w) = (T1, w) · (T2, w),

(T · k,w) = (T , w) · k,

(k · T , w) = k · (T , w).

Given a mapping π : Σ → Γ and a timed series T : TΣ∗ → K, we define the re-
naming π̄(T ) : TΓ∗ → K by (π̄(T ), u) =

∑
π(w)=u(T , w) for all u ∈ TΓ∗, and for a

timed series T : TΓ∗ → K we define the inverse renaming π̄−1(T ) : TΣ∗ → K by
(π̄−1(T ), w) = (T , π(w)) for each w ∈ TΣ∗. The proof for closure of the class of F-
recognizable timed series under sum can be done as the proof for closure of the class of
classical recognizable languages under union, namely by taking a disjoint union of two
weighted timed automata.

Lemma 3.3. The class of F-recognizable timed series is closed under sum.

Proof. Let T1,T2 : TΣ∗ → K be F-recognizable timed series. Then there
are weighted timed automata A1 = (L1, C1, E1, in1, out1, ewt1, lwt1) and A2 =
(L2, C2, E2, in2, out2, ewt2, lwt2) over K, Σ and F such that ‖A1‖ = T1 and ‖A2‖ = T2,
respectively. Without loss of generality, we may assume L1 ∩ L2 = ∅ and C1 ∩ C2 = ∅.
Define A = (L, C, E, in, out, ewt, lwt), where

• L = L1 ∪ L2, C = C1 ∪ C2, E = E1 ∪ E2,

• in = in1 ∪ in2, out = out1 ∪ out2, ewt = ewt1 ∪ ewt2, lwt = lwt1 ∪ lwt2.

Then ‖A‖ = ‖A1‖ + ‖A2‖ follows from the fact that for each w ∈ TΣ∗, every run of A
on w is a run of A1 or a run of A2 on w with the same running weight, and vice versa.
x+ y = z �

Unfortunately, the proof for closure of the class of F-recognizable timed series under the
Hadamard product cannot be adopted so easily from the corresponding classical case,
i.e., closure of recognizable languages under intersection. In fact, in general the class
of F-recognizable timed series is not closed under the Hadamard product due to two
reasons. First, as in the untimed setting [49], we must ensure that the weights occuring
in runs of the two weighted timed automata commute element-wise. This can be solved
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by assuming K to be commutative. Second, we have to restrict the location weight
functions used in the weighted timed automata in order to guarantee that the pointwise
product of each pair of functions is in F . This is illustrated in the next example.

Example 3.4. Let K be commutative and such that K ⊇ R≥0, let Σ = {a} and let F
be the family of linear functions. In this example, we use • to denote the multiplication
of K and · to denote the usual multiplication. Let A = (L, C, E, in, out, ewt, lwt) be a
weighted timed automaton over K, Σ and F , where

• L = {l1, l2},

• C = ∅,

• E = {(l1, a, true, ∅, l2)} and ewt(l1, a, true, ∅, l2) = 1,

• in(l1) = 1 and in(l2) = 0,

• out(l1) = 0 and out(l2) = 1,

• lwt(l1)(δ) = 2 · δ for each δ ∈ R≥0, lwt(l2) ∈ F is arbitrary.

We further let A′ be a copy of A, except for lwt′ which is defined by lwt′(l ′1)(δ) = 3 · δ
for each δ ∈ R≥0.

Let w ∈ TΣ∗. If w 6= (a, t) for some t ∈ R≥0, then (‖A‖, w) = (‖A′‖, w) = 0
and thus (‖A‖ ⊙ ‖A′‖, w) = 0. So let w = (a, t) for some t ∈ R≥0. Then we have
(‖A‖ ⊙ ‖A′‖, w) = 2 · t • 3 · t.

Now, if K is the min-plus-semiring, we obtain (‖A‖ ⊙ ‖A′‖, w) = 2 · t + 3 · t =
5 · t. Clearly, this timed series is F-recognizable. The idea is to use the usual product
automaton construction and define the weight functions using the pointwise product of
the corresponding weight functions of A and A′. This can be done since the pointwise
product of each pair of linear functions is a linear function and thus in F .

However, if K is the semiring of the real numbers with addition and multiplication, we
have (‖A‖⊙ ‖A′‖, w) = 2 · t · 3 · t = 6 · t2. It can be easily seen that there is no weighted
timed automaton over the family of linear functions recognizing ‖A‖ ⊙ ‖A′‖.

For this reason, we define the notion of non-interfering timed series. Let A =
(L, C, E, in, out, ewt, lwt) and A′ = (L′, C′, E′, in′, out′, ewt′, lwt′) be two weighted timed
automata over K, Σ and F . Define Lf = {(l , l ′) ∈ L × L′ : out(l) 6= 0, out′(l ′) 6= 0}. We
say that A and A are non-interfering if for all pairs (l , l ′) ∈ L × L′, whenever there is
a run from (l , l ′) into Lf , then lwt(l) ⊙ lwt′(l ′) ∈ F . This guarantees that the product
automaton of A and A′ is a weighted timed automaton over F . If F is closed under the
pointwise product, all pairs of weighted timed automata are non-interfering. However,
the condition is also satisfied, if lwt(l) = 1 or lwt′(l ′) = 1 for each pair (l , l ′) ∈ L × L′
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3 Weighted Timed Automata

from which there is a run into Lf . Also notice that the premise of the condition - test-
ing for reachability of locations - is decidable [6]. Two timed series T ,T ′ : TΣ∗ → K
are non-interfering over K, Σ and F if there are two non-interfering weighted timed
automata A and A′ over K, Σ and F such that ‖A‖ = T and ‖A′‖ = T ′.

Lemma 3.5. Let K be commutative. If T1,T2 : TΣ∗ → K are non-interfering timed
series over K, Σ and F , then T1 ⊙ T2 is F-recognizable over K and Σ.

Proof. Let K be commutative and T1,T2 : TΣ∗ → K be non-interfering timed series
over K, Σ and F . Then there exist two non-interfering weighted timed automata Ai =
(Li, Ci, Ei, ini, outi, ewti, lwti) over K, Σ and F (i = 1, 2) such that ‖A1‖ = T1 and
‖A2‖ = T2. We may assume that L1 ∩ L2 = ∅ and C1 ∩ C2 = ∅. Define Lbad = {(l1, l2) ∈
L1 × L2 : lwt1(l1)⊙ lwt2(l2) 6∈ F}. We let A = (L, C, E, in, out, ewt, lwt) be the weighted
timed automaton over K, Σ and F defined by

• L = (L1 × L2)\Lbad,

• C = C1 ∪ C2,

• E = {
(
(l1, l2), a, φ1 ∧ φ2, λ1 ∪ λ2, (l

′
1, l

′
2)

)
∈ E : (l1, a, φ1, λ1, l

′
1) ∈ E1,

(l2, a, φ2, λ2, l
′
2) ∈ E2, (l1, l2), (l

′
1, l

′
2) ∈ L},

• in
(
(l1, l2)

)
= in1(l1) · in2(l2) for each (l1, l2) ∈ L,

• out
(
(l1, l2)

)
= out1(l1) · out2(l2) for each (l1, l2) ∈ L,

• ewt
(
(l1, l2), a, φ1 ∧ φ2, λ1 ∪ λ2, (l

′
1, l

′
2)

)
= ewt1(l1, a, φ1, λ1, l

′
1) · ewt2(l2, a, φ2, λ2, l

′
2)

for each
(
(l1, l2), a, φ1 ∧ φ2, λ1 ∪ λ2, (l

′
1, l

′
2)

)
∈ E,

• lwt
(
(l1, l2)

)
= lwt1(l1)⊙ lwt2(l2) for every (l1, l2) ∈ L.

Intuitively, A is the classical product automaton, but we remove all “bad” pairs of lo-
cations whose pointwise product of location weight functions is not in F . As a conse-
quence, we obtain lwt((l1, l2)) ∈ F for every (l1, l2) ∈ L. The removing of “bad” pairs
of locations can be done since by assumption from every such pair there is no run into
Lf anyway. Subsequently, we show that ‖A‖ = ‖A1‖ ⊙ ‖A2‖. We start by proving
that there is a weight-preserving bijective correspondence between the set of runs of
A and the set of pairs of runs of A1 and A2. Let w ∈ TΣ∗. Suppose there is a run

r =
(
(l0, l

′
0), ν0

) δ1−→
e1−→ ...

δ|w|
−→

e|w|
−→

(
(l|w|, l

′
|w|), ν|w|

)
of A on w. The construction of A

implies that there are runs r1 = (l0, ν0|C1
)

δ1−→
e11−→ ...

δ|w|
−→

e1
|w|
−→ (l|w|, ν|w||C1

) of A1 and

r2 = (l ′0, ν0|C2
)

δ1−→
e21−→ ...

δ|w|
−→

e2
|w|
−→ (l ′|w|, ν|w||C2

) of A2, respectively, on w. Using the
definition of the weight functions in A and commutativity of K, we obtain
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rwt(r)

= in
(
(l0, l

′
0)

)
·


 ∏

1≤i≤|w|

lwt
(
(li−1, l

′
i−1)

)
(δi) · ewt(ei)


 · out

(
(l|w|, l

′
|w|)

)

= in1(l0) · in2(l
′
0) ·


 ∏

1≤i≤|w|

lwt1(li−1)(δi) · lwt2(l
′
i−1)(δi) · ewt1(e

1
i ) · ewt2(e

2
i )




· out1(l|w|) · out2(l
′
|w|)

= in1(l0) ·


 ∏

1≤i≤|w|

lwt1(li−1)(δi) · ewt1(e
1
i )


 · out1(l|w|)

· in2(l
′
0) ·


 ∏

1≤i≤|w|

lwt2(l
′
i−1)(δi) · ewt2(e

2
i )


 · out2(l

′
|w|)

= rwt(r1) · rwt(r2).

For the other direction, assume that r1 and r2 as above are runs of A1 and A2, respec-
tively, on w. We distinguish between two cases. First, suppose there is some i ∈ dom(w)
such that lwt1(li)⊙ lwt2(l

′
i) 6∈ F . By the assumption that A1 and A2 are non-interfering

over K, Σ and F , we know that from (li, l
′
i) there is no run into Lf . But this means that

for all j ∈ {i, ..., |w|}, we have out1(lj) = 0 or out2(l
′
j) = 0. Hence, either rwt(r1) = 0

or rwt(r2) = 0, and thus rwt(r1) · rwt(r2) = 0. Since (li, l
′
i) ∈ Lbad, the composition

of r1 and r2 is not a run of A on w. Second, suppose that lwt1(li) ⊙ lwt2(l
′
i) ∈ F for

each i ∈ dom(w). Then (li, l
′
i) ∈ L for each i ∈ dom(w) and we can compose r1 and r2

to a run r of A on w. Using the same lines of argumentation as above, we can show
rwt(r) = rwt(r1) · rwt(r2). We use these two constructions in step ⋆ to finally show that
for each w ∈ TΣ∗ we have

(‖A‖, w)

=
∑
{rwt(r) : r is a run of A on w}

⋆
=

∑
{rwt(r1) · rwt(r2) : r1 is a run of A1 on w, r2 is a run of A2 on w}

=
∑
{rwt(r1) : r1 is a run of A1 on w} ·

∑
{rwt(r2) : r1 is a run of A2 on w}

= (‖A1‖, w) · (‖A2‖, w)

= (‖A1‖ ⊙ ‖A2‖, w).

x+ y = z �
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3 Weighted Timed Automata

Lemma 3.6. The class of F-recognizable timed series is closed under scalar products.

Proof. Let T : TΣ∗ → K be an F-recognizable timed series and k ∈ K. Then there is
a weighted timed automaton A = (L, C, E, in, out, ewt, lwt) over K, Σ and F such that
‖A‖ = T . Define A′ = (L, C, E, in′, out, ewt, lwt), where in′(l) = k · in(l) for each l ∈ L.
Then we obtain for every w ∈ TΣ∗

(‖A′‖, w) =
∑
{rwt(r) : r is a run of A′ on w}

=
∑
{k · rwt(r) : r is a run of A on w}

= k ·
∑
{rwt(r) : r is a run of A on w}

= k · (‖A‖, w)

what was to be demonstrated. The proof for F-recognizability of T · k can be done
analogously by defining a new function out′ by out′(l) = out(l) · k for each l ∈ L.
x+ y = z �

Lemma 3.7. The class of F-recognizable timed series is closed under renamings.

Proof. Let T : TΣ∗ → K be an F-recognizable timed series, and π : Σ → Γ be a
mapping. Then, there is a weighted timed automaton A = (L, C, E, in, out, ewt, lwt) over
K, Σ and F such that ‖A‖ = T . Define E′ = {(l , π(a), φ, λ, l ′) : (l , a, φ, λ, l ′) ∈ E}.
Now, define ewt′ : E′ → K by

ewt′(l , b, φ, λ, l ′) =
∑

(l,a,φ,λ,l′)∈E
π(a)=b

ewt(l , a, φ, λ, l ′)

and put A′ = (L, C, E′, in, out, ewt′, lwt). Clearly, A′ is a weighted timed automaton over
K, Γ and F . Next, we show that ‖A′‖ = π̄(‖A‖).

Let v ∈ TΓ∗ be of the form (b1, t1)...(bk, tk) and R be the set of runs of A on w ∈ TΣ∗

such that π(w) = v. Let r, r′ ∈ R be of the form

r = (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|)

and

r′ = (l ′0, ν
′
0)

δ1−→
e′1−→ ...

δ|w|
−→

e′
|w|
−→ (l ′|w|, ν

′
|w|).

We say that r and r′ are equivalent, written r ≡ r′, if li = l ′i and νi = ν ′i for 0 ≤ i ≤ |w|.
Intuitively, r ≡ r′ if the runs differ at most in the labels, guards and reset sets of
their edges, provided that π maps the labels to the same image and the resulting clock
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3.2 Closure Properties of Recognizable Timed Series

valuations are the same. We use R/≡ to denote the set of all equivalence classes induced
by ≡. From the fact that ≡ induces a partition of R, we obtain

∑

w∈TΣ∗

π(w)=v

(‖A‖, w) =
∑

R∈R/≡

∑

r∈R

rwt(r).

Next, let R ∈ R/≡ and r ∈ R be of the form (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|). We

define rR to be the sequence that is obtained from r by replacing ei = (li−1, ai, φi, λi, li)
for each i ∈ dom(w) by the corresponding edge e′i = (li−1, π(ai), φi, λi, li) ∈ E′. We
neither change the clock constraints φi nor the reset sets λi, so we have ν ′i−1 |= φi and
ν ′i = (ν ′i−1 + δi)[λi := 0] for each i ∈ dom(w), and thus, rR is a run of A′ on v. Moreover,
the set of runs of A′ on v is precisely the set of such runs rR for each R ∈ R/≡, i.e., we
have

(‖A′‖, v) =
∑

R∈R/≡

rwt(rR),

where rR is the run of A′ on v obtained from an arbitrary run r ∈ R as described above.
Next, we show that for every R ∈ R/≡ we have rwt(rR) =

∑
r∈R rwt(r), which, with the

help of the two equations above, implies the result. Let R ∈ R/≡ and r ∈ R as above.
Then, the following equation holds by distributivity of K:

rwt(rR) = in(l0) ·


 ∏

1≤i≤|v|

lwt(li−1)(δi) · ewt(e′i)


 · out(l|v|)

= in(l0) ·




∏

1≤i≤|v|

lwt(li−1)(δi) ·
∑

(li−1,ai,φi,λi,li)∈E

π(ai)=bi

ewt(li−1, ai, φi, λi, li)


 · out(l|v|)

=
∑

(li−1,ai,φi,λi,li)∈E

π(ai)=bi

in(l0) ·


 ∏

1≤i≤|v|

lwt(li−1)(δi) · ewt(li−1, ai, φi, λi, li)


 · out(l|v|)

=
∑

r∈R

rwt(r).

Hence, (‖A′‖, v) =
∑

w∈TΣ∗

π(w)=v

(‖A‖, w), and thus ‖A′‖ = π̄(‖A‖). x+ y = z �

Lemma 3.8. The class of F-recognizable timed series is closed under inverse renamings.

Proof. Let π : Σ → Γ be a renaming and T : TΓ∗ → K be F-recognizable over
Γ. Then there is a weighted timed automaton A = (L, C, E, in, out, ewt, lwt) over K,
Γ and F such that ‖A‖ = T . Define E′ = {(l , a, φ, λ, l ′) : (l , π(a), φ, λ, l ′) ∈ L}
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3 Weighted Timed Automata

and ewt′(l , a, φ, λ, l ′) = ewt(l , π(a), φ, λ, l ′). Then the behaviour of the weighted timed
automaton A′ = (L, C, E′, in, out, ewt′, lwt) over K, Σ and F precisely corresponds to
π̄−1(‖A‖). x+ y = z �

The next lemma states an important property between TA-recognizable timed languages
and F-recognizability of their corresponding characteristic timed series. It will be needed
in Sect. 5 and 6.

Lemma 3.9. Let 1 ∈ F and L ⊆ TΣ∗.

1. If L is unambiguously TA-recognizable, then 1L is F-recognizable.

2. If K is idempotent and L is TA-recognizable, then 1L is F-recognizable over K.

Proof. 1.: Let L ⊆ TΣ∗ be unambiguously TA-recognizable. Then there is an un-
ambiguous timed automaton A = (L,L0,Lf , C, E) over Σ such that L(A) = L. Let
A′ = (L, C, E, in, out, ewt, lwt) be the weighted timed automaton over K, Σ and F ob-
tained from A as follows: define in(l) = 1 if l ∈ L0 and in(l) = 0 otherwise; and
out(l) = 1 if l ∈ Lf and out(l) = 0 otherwise for each l ∈ L, ewt(e) = 1 for each e ∈ E
and lwt(l) = 1 for every l ∈ L in A. One can easily see that ‖A′‖ = 1L.

2.: The proof can be done analogously to 1. Using the fact that K is idempotent and
hence 1 + 1 = 1, we do not need unambiguity of A. x+ y = z �
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4 A Kleene-Schützenberger Theorem for Weighted Timed

Automata

4.1 Introduction

The goal of this section is to provide a characterization of the behaviour of weighted
timed automata in terms of rational timed series, i.e., timed series constructed by the
standard rational operations sum, Cauchy product and Kleene star iteration. In the
theory of formal languages, rational expressions are an important formalism to specify
the behaviour of finite systems. Here, we lift this formalism to the weighted timed setting.
This provides a new tool for the specification of the behaviour of real-time systems. The
main result is a timed analogue of the Schützenberger theorem [101], i.e., we show that
the formalism of rational timed series is equivalent to the expressive power of weighted
timed automata. The theorem we present here is close to the corresponding theorems
in the frameworks of formal language theory and the theory of WFA-recognizable series.
The translations from weighted timed automata to rational timed series and vice versa
are done similarly to the classical case, but differ in some important details.

For the results presented in this section, we extend the work on a Kleene theorem
for timed automata. There have been several approaches to give a Kleene theorem for
TA-recognizable timed languages [12, 14, 13, 28, 59, 60]. However, we choose the latest
approach of Bouyer and Petit [29] because of its simplicity and elegance. According
to their result, the class of TA-recognizable timed languages coincides with the class
of rational timed languages, defined using the operations sum, concatenation, Kleene
star iteration and an additional projection operation. For the proof of our main re-
sult, we combine the methods of Bouyer and Petit, Schützenberger and new techniques,
summarized in the following.

We follow the approach of Bouyer and Petit [29] and define the semantics of weighted
timed automata in a slightly different manner as introduced in Sect. 2.1, based on the
notion of clock words. Clock words, as opposed to timed words [6], bear information
concerning the actual values of clock variables. In this way, they enable us to define
a concatenation operation (and the induced iteration operation) in a natural way and
close to the concatenation operation known from the classical theory of formal languages.
Consequently, all the definitions and constructions for our Kleene-Schützenberger theo-
rem are given with respect to clock words. Then, since clock words can easily be mapped
to timed words using a projection, the theorem for clock words can be extended to timed
words. To bring weights into play, we introduce the notion of clock series, a special kind
of series mapping clock words to elements in the semiring. We define sum, Cauchy prod-
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4 A Kleene-Schützenberger Theorem for Weighted Timed Automata

uct and (finite) Kleene star iteration on the class of clock series and present a formal
definition for the class of rational clock series. The main objective of this section is
to show that this class is equal to the class of recognizable clock series. We establish
this in two steps. First, we prove that the class of recognizable clock series is closed
under the three operations mentioned above. In our proof, for dealing with the weight
functions assigned to locations, we need to give new methods for normalizing weighted
timed automata. It follows that any rational clock series is recognizable. The proof
for the other direction, i.e., that any recognizable clock series is rational, is based on
the solution of equations [29, 19], i.e., we present a translation procedure from weighted
timed automata to a system of equations, the (unique) solution of which corresponds to
a rational clock series. Finally, we show how we can extend the Kleene-Schützenberger
theorem in such a way that it can as well be applied to the timed semantics presented
in Sect. 2.1.

4.2 Clock Series

In the following, we fix a set C = {x1, ..., xn} of clock variables, a semiring K, a finite
alphabet Σ and a family F of weight functions from R≥0 to K.

An n-clock word is a finite sequence w = (t0, ν0)(a1, t1, ν1)...(ak, tk, νk) in
(R≥0×Rn≥0)(Σ×R≥0×Rn≥0)

∗, where (a1, t1)...(ak, tk) is a timed word, and νi gives the val-
ues of the clock variables just after the computation of ai. The pair (t0, ν0) corresponds
to the starting condition and is considered to be an empty n-clock word. We write CnΣ

∗

for the set of n-clock words over Σ. The set R≥0×Rn≥0 of empty n-clock words is denoted
by En. We further define CnΣ

+ by CnΣ
∗\En. Let w = (t0, ν0)(a1, t1, ν1)...(ak, tk, νk) and

w′ = (t′0, ν
′
0)(a

′
1, t

′
1, ν

′
1)...(a

′
l, t

′
l, ν

′
l) be two n-clock words for k, l ∈ N. We say that w is

compatible with w′ if (tk, νk) = (t′0, ν
′
0). In this case, we define the concatenation w;w′

of w and w′ to be the n-clock word (t0, ν0)(a1, t1, ν1)...(ak, tk, νk)(a
′
1, t

′
1, ν

′
1)...(a

′
l, t

′
l, ν

′
l).

A function S : CnΣ
∗ → K is called an n-clock series. We use K〈〈CnΣ

∗〉〉 to denote
the class of all n-clock series over K and Σ. Let A = (L, C, E, in, out, ewt, lwt) be a
weighted timed automaton over K, Σ and F . The semantics of A can be given in terms
of n-clock words. This clock semantics is very similar to the timed semantics presented
in Sect. 2.1. The set of clock states consists of triples (l , t, ν) ∈ L × R≥0 × (R≥0)

n.
Between these states, we distinguish between two kinds of transitions, namely timed

clock transition of the form (l , t, ν)
δ
−→ (l , t + δ, ν + δ) for some δ ∈ R≥0, and dis-

crete clock transition of the form (l , t, ν)
e
−→ (l ′, t, ν ′) for some e = (l , a, φ, λ, l ′) ∈ E

such that ν |= φ and ν ′ = (ν + δ)[λ := 0]. Again, we write (l , t, ν)
δ
−→

e
−→ (l ′, t′, ν ′)

for a timed clock transition followed by a discrete clock transition and call this a
clock transition. Let w = (t0, ν0)(a1, t1, ν1)...(ak , tk, νk) be an n-clock word. A

clock run of A on w is of the form (l0, t0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, tk, νk), where

(li−1, ti−1, νi−1)
δi−→

ei−→ (li, ti, νi) is a clock transition for each i ∈ {1, ..., k}. The running
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4.2 Clock Series

weight rwt(r) of a clock run r is defined in the same manner as for ordinary runs, i.e.,

by rwt(r) = in(l0) ·
(∏

1≤i≤k lwt(li−1)(δi) · ewt(ei)
)
· out(lk).

The clock behaviour ‖A‖n of A is the n-clock series ‖A‖n : CnΣ
∗ → K defined by

(‖A‖n, w) =
∑
{rwt(r) : r is a clock run of A on w} for each w ∈ CnΣ

∗. An n-clock
series S is said to be F-recognizable over K and Σ if there is a weighted timed automaton
A over K, Σ and F with n clock variables such that ‖A‖n = S. We may omit K or
Σ if they are clear from the context. We use KF−rec〈〈CnΣ

∗〉〉 to denote the class of all
F-recognizable n-clock series.

Let S1, S2 ∈ K〈〈CnΣ
∗〉〉 and w ∈ CnΣ

∗. Similarly to the untimed theory of series, we
define the sum S1+S2 pointwise, i.e., we let (S1+S2, w) = (S1, w)+(S2, w). The Cauchy
product S1;S2 is defined by (S1;S2, w) =

∑
u;v=w

(S1, u) · (S2, v). Furthermore, we define

for every k ∈ K the n-clock series kε : CnΣ
∗ → K by (kε,w) = k if w ∈ En, (kε,w) = 0

otherwise. We call n-clock series of this form monomials. The following lemma is the
n-clock series version of the well known fact that the set of series over the free monoid
together with sum and Cauchy product is a semiring. The proof proceeds by elementary
calculations.

Lemma 4.1. The structure (K〈〈CnΣ
∗〉〉,+, ; , 0ε, 1ε) is a semiring.

For an n-clock series S ∈ K〈〈CnΣ
∗〉〉, let S0 = 1ε and, inductively, Sk = S;Sk−1 be the

k-th power of S for k ≥ 1. The n-clock series S is called proper if (S,w) = 0 for each
w ∈ En. For proper n-clock series S, we define the Kleene star iteration S∗ by

(S∗, w) =
∑

k≥0

(Sk, w).

Notice that from (S,w) = 0 for w ∈ En, it follows that (Sk, w) = 0 for any k > |w|.
This implies that the sum given above is finite and hence exists in K. Straightforward
calculations prove the following Lemma.

Lemma 4.2. Let S : CnΣ
∗ → K be a proper n-clock series. Then S;S∗ + 1ε = S∗.

The next lemma is crucial in Sect. 4.4.

Lemma 4.3. Let S1, S2 : CnΣ
∗ → K be n-clock series and let S1 be proper. Then the

equation S = S1;S + S2 for some n-clock series S : CnΣ
∗ → K has the unique solution

S∗
1 ;S2.

Proof. First, we show that S∗
1 ;S2 is a solution. By Lemmas 4.1 and 4.2 we have

S1; (S
∗
1 ;S2) + S2 = ((S1;S

∗
1);S2) + S2 = (S1;S

∗
1 + 1ε);S2 = S∗

1 ;S2.
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4 A Kleene-Schützenberger Theorem for Weighted Timed Automata

For uniqueness, let Ssol be an arbitrary solution of the equation. By substitution and
Lemma 4.1, we can show that Ssol = Sk1 ;Ssol +

( ∑
0≤i<k

Si1
)
;S2 for each k ∈ N. Thus, for

any w ∈ CnΣ
∗ we obtain

(Ssol, w) = (S
|w|+1
1 ;Ssol, w) +

(
(

∑

0≤i<|w|+1

Si1);S2, w
)

⋆
= 0 + (S∗

1 ;S2, w)

= (S∗
1 ;S2, w).

At ⋆ we use that S1 is proper and hence (Si1, w) = 0 for each i > |w|. Hence, S∗
1 ;S2 is

the unique solution. x+ y = z �

Next, we give an explicit formula for the calculation of Sk. It can be proved by induction
on k.

Lemma 4.4. If S : CnΣ
∗ → K is a proper n-clock series, k ∈ N and w ∈ CnΣ

∗, then
(Sk, w) has the explicit representation

(Sk, w) =
∑

w=w1;...;wk

k∏

i=1

(S,wi).

For f ∈ F , k ∈ K, a ∈ Σ, φ ∈ Φ(C), and λ ⊆ C, we define the F-monomial 〈f , k, a, φ, λ〉 :
CnΣ

∗ → K as follows:

(〈f , k, a, φ, λ〉, w) =





f (δ) · k if w = (t, ν)(a, t + δ, ν ′) ∈ CnΣ
∗ for some δ, t ∈ R≥0,

ν ∈ Rn≥0 such that ν + δ |= φ and ν ′ = (ν + δ)[λ := 0],

0 otherwise.

Now we give the important notion of rationality for n-clock series. An n-clock series S
is F-rational over K and Σ if it can be defined starting from finitely many monomials
and F-monomials, by means of a finite number of applications of +, ; and ∗, where the
latter may only be applied to proper n-clock series.

Example 4.5. Consider the following specification of a real-time system with a single
resource, where Γ = {a, b, c, d} is a set of actions:

The system must execute a and b, and b must be executed exactly 3 time units after
a. Between a and b, action c (costs e 3) and action d (costs e 2) may be executed
consecutively for an arbitrary number of times, but d is restricted to happen strictly
between 1 and 2 time units after c. Being in the state after action a or d has
been executed, costs e 5 per time unit, whereas being in the state after c has been
executed, costs e 1 per time unit.
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l1 l2

l3 l4

a/0,x1:=0

b/0,x1=3
c/3
x2:=0

d/2
1<x2<2 lwt(l1)(δ) = f0

lwt(l2)(δ) = f5
lwt(l3)(δ) = f1
lwt(l4)(δ) = f0

Figure 4.1: The weighted timed automaton for Example 4.5

The specification can be represented by the following F-rational clock series over the min-
plus-semiring and Γ, where F is the family of linear functions fi(δ) defined by fi(δ) = i ·δ
for each i, δ ∈ R≥0:

〈f0, 0, a,⊤, {x1}〉
(
〈f5, 3, c,⊤, {x2}〉〈f1, 2, d, 1 < x2 < 2, ∅〉

)∗
〈f5, 0, b, x1 = 3, ∅〉

where ⊤ means true. In Fig. 4.2, we give the corresponding weighted timed automaton.

Observe that, similarly to the case of weighted timed automata, by specifying K and F ,
we obtain F-rational expressions for several other automata classes. In particular, if K is
the Boolean semiring and F is the family of constant functions 1, then F-rational n-clock
series correspond to rational n-clock expressions as defined by Bouyer and Petit [29].

4.3 From Rationality to Recognizability

In this section, we prove one inclusion of our Kleene-Schützenberger theorem for the
class of weighted timed automata, namely that each F-rational n-clock series is F-
recognizable. To this end, we define weighted timed automata recognizing the basic
n-clock series, namely monomials and F-monomials, respectively. Then, we present new
normalization techniques that will be used to finally show that the class of F-recognizable
n-clock series is closed under sum, the Cauchy product and Kleene star iteration.

Lemma 4.6. Let k ∈ K. Then the monomial kε is F-recognizable.

Proof. Let k ∈ K. The clock behaviour of the weighted timed automaton A =
(L, C, E, in, out, ewt, lwt), where L = {l}, E = ∅, in(l) = k, out(l) = 1 and lwt(l) ∈ F ,
corresponds to kε. z = y + x �

Lemma 4.7. Let f ∈ F , k ∈ K, a ∈ Σ, φ ∈ Φ(C) and λ ⊆ C. Then the F-monomial
〈f , k, a, φ, λ〉 is F-recognizable.

Proof. Let f ∈ F , k ∈ K, a ∈ Σ, φ ∈ Φ(C) and λ ⊆ C. We define the weighted timed
automaton A〈f ,k,a,φ,λ〉 = (L, C, E, in, out, ewt, lwt), where
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4 A Kleene-Schützenberger Theorem for Weighted Timed Automata

• L = {l1, l2},

• E = {(l1, a, φ, λ, l2)},

• in(l1) = 1, in(l2) = 0,

• out(l1) = 0, out(l2) = 1,

• ewt(l1, a, φ, λ, l2) = k,

• lwt(l1) = f , lwt(l2) ∈ F .

Clearly, ‖A〈f ,k,a,φ,λ〉‖n = 〈f , k, a, φ, λ〉. z = x+ y �

For the proof of closure of the class of recognizable n-clock series under sum, we refer to
the corresponding proof for recognizable timed series in Sect. 3. It can be easily adapted
to the case of n-clock series and we obtain the following lemma.

Lemma 4.8. The class of F-recognizable n-clock series is closed under sum.

In the following, we give normalization techniques for weighted timed automata which
will be essential for subsequent lemmas. For showing closure of the class of F-
recognizable n-clock series under the Cauchy product, we need the weighted timed au-
tomaton to be final-location-normalized. We say that a weighted timed automaton A
is final-location-normalized if there is a location lf such that out(l) = 1 if l = lf and
out(l) = 0 otherwise, in(lf ) = 0, and lf has no outgoing edges. We call lf the sink
location of A.

Lemma 4.9. For each weighted timed automaton A, there is a final-location-normalized
weighted timed automaton A′ such that (‖A′‖n, w) = (‖A‖n, w) for each w ∈ CnΣ

+ and
(‖A′‖n, w) = 0 for each w ∈ En.

Proof. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over K, Σ
and F . Define A′ = (L′, C, E′, in′, out′, ewt′, lwt′), where

• L′ = L ·∪{lf},

• in′(l) =

{
in(l) if l ∈ L

0 if l = lf ,

• out′(l) =

{
1 if l = lf

0 otherwise,

• E′ = E ∪ {(l , a, φ, λ, lf ) : (l , a, φ, λ, l ′) ∈ E},
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• ewt′(e) = ewt(e) if e ∈ E, ewt′(l , a, φ, λ, lf ) =
∑

(l ,a,φ,λ,l ′)∈E

ewt(l , a, φ, λ, l ′) · out(l ′),

• lwt′(l) = lwt(l) if l ∈ L and lwt′(lf ) ∈ F .

Intuitively, we redirect all edges to the new final location. The weight of each of these
new edges must be the sum of the weights of all “equivalent” edges, i.e., edges with
the same label, clock constraint and reset set, multiplied with the weight for leaving
the destination location of these edges. Using this notion of equivalence, we show that
(‖A′‖n, w) = (‖A‖n, w) for any w ∈ CnΣ

+.
Let w = (t0, ν0)(a1, t1, ν1)...(ak, tk, νk) ∈ CnΣ

+. We let R be the set of clock runs of
A on w. Consider two clock clock runs r, r′ ∈ R

r = (l0, t0, ν0)
δ1−→

e1−→ (l1, t1, ν1)
δ2−→

e2−→ ...
δk−→

ek−→ (lk, tk, νk)

and

r′ = (l ′0, t0, ν0)
δ1−→

e′1−→ (l ′1, t1, ν1)
δ2−→

e′2−→ ...
δk−→

e′k−→ (l ′k, tk, νk).

We define an equivalence relation ≡ on R as follows: r ≡ r′ if and only if r and r′ only
differ in the last edge, i.e., we have ei = e′i for each i ∈ {1, ..., k − 1}. We denote the set
of induced equivalence classes by R/≡. The equivalence relation ≡ induces a partition
on R. This implies

(‖A‖n, w) =
∑

R∈R/≡

∑

r∈R

rwt(r).

Now, let R ∈ R/≡. We denote by rR the clock run of A′ that results from an arbitrary
clock run r ∈ R of the form

r = (l0, t0, ν0)
δ1−→

e1−→ (l1, t1, ν1)
δ2−→

e2−→ ...
δk−→

ek−→ (lk, tk, νk)

by replacing the edge ek by the corresponding edge in E′, i.e., if ek = (lk−1, ak, φk, λk, lk),
then we replace it by the edge (lk−1, ak, φk, λk, lf ). One can easily see that the set of
clock runs of A′ on w with l|w| satisfying out(l|w|) 6= 0 is exactly the set of such clock runs

rR for each R ∈ R/≡. We obtain (‖A′‖n, w) =
∑

R∈R/≡

rwt(rR). By the two equalities

above, in order to show (‖A′‖n, w) = (‖A‖n, w), it suffices to show

rwt(rR) =
∑

r∈R

rwt(r)

for each R ∈ R/≡. So let R ∈ R/≡. For every r ∈ R, we can write the running weight
of r as follows:

rwt(r) = in(l0) ·


 ∏

1≤i≤k

lwt(li−1)(δi) · ewt(ei)


 · out(lk)
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= in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk) · ewt(ek) · out(lk).

Thus, we can write

∑

r∈R

rwt(r) =
∑

r∈R

in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk) · ewt(ek) · out(lk).

The term in(l0) ·
(∏

1≤i<k lwt(li−1)(δi) · ewt(ei)
)
· lwt(lk−1)(δk) is the same for each r ∈ R

due to the definition of ≡. Using distributivity, we obtain

∑

r∈R

rwt(r)

= in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk) ·

∑

r∈R

ewt(ek) · out(lk)

= in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk)

·
∑

(lk−1,ak,φk,λk,lk)∈E

ewt(lk−1, ak, φk, λk, lk) · out(lk).

Now, consider the clock run rR. Using the definition of clock runs of this form from
above, as well as the definition of the weight functions in A′, we get

rwt(rR)

= in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk) ·

·
∑

(lk−1,ak,φk,λk,lk)∈E

ewt(lk−1, ak, φk, λk, lk) · out(lk).

Hence, we have shown that (‖A′‖n, w) = (‖A‖n, w) for each w ∈ CnΣ
+.

Finally, let w ∈ En. Then we have (‖A′‖n, w) =
∑

l∈L in(l) · out(l) = 0, since for each
l ∈ L′ we have in(l) 6= 0 if and only if out(l) = 0. This finishes the proof. x+ y = z �

Lemma 4.10. The class of F-recognizable n-clock series is closed under Cauchy prod-
ucts.
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Proof. Let S1, S2 : CnΣ
∗ → K be two F-recognizable n-clock series. Let w0 ∈ En.

Further let s = (S1, w0) and write S1 = S′
1 + sε, where S′

1 is proper. Similarly, let
s′ = (S2, w0) and write S2 = S′

2 + s′ε, where S′
2 is proper. By Lemma 4.1, we have

S1;S2 = (S′
1;S

′
2) + (sε;S′

2) + (S′
1; s

′ε) + (sε; s′ε). In the following, we show that all
summands are F-recognizable. Then, by Lemma 4.8, S1;S2 is F-recognizable, too.

By Lemma 4.9, there is a final-location-normalized weighted timed automaton A1 =
(L1, C, E1, in1, out1, ewt1, lwt1) such that ‖A1‖n = S′

1. We use lf to denote the sink
location of A1. Further, there is a final-location-normalized weighted timed automaton
A2 = (L2, C, E2, in2, out2, ewt2, lwt2) over K, Σ and F such that ‖A2‖n = S′

2. We may
assume L1 ∩ L2 = ∅.

First, we show that S′
1;S

′
2 is F-recognizable. We define A = (L, C, E, in, out, ewt, lwt),

where

• L = L1 ∪ L2,

• E = E1 ∪E2 ∪ {(l , a, φ, λ, l
′) : l ′ ∈ L2 such that in2(l

′) 6= 0, (l , a, φ, λ, lf ) ∈ E1},

• in(l) =

{
in1(l) if l ∈ L1

0 otherwise,

• out(l) =

{
0 if l ∈ L1

out2(l) otherwise,

• ewt(l , a, φ, λ, l ′) =





ewt1(l , a, φ, λ, l
′) if (l , a, φ, λ, l ′) ∈ E1

ewt2(l , a, φ, λ, l
′) if (l , a, φ, λ, l ′) ∈ E2

ewt1(l , a, φ, λ, lf ) · in2(l
′) otherwise,

• lwt(l) =

{
lwt1(l) if l ∈ L1

lwt2(l) otherwise.

We show that ‖A‖n = ‖A1‖n; ‖A2‖n. First note that ‖A‖n is proper and thus
(‖A‖n, w) = (‖A1‖n; ‖A2‖n, w) = 0 for each w ∈ En. So let w ∈ CnΣ

+. We further
observe that each clock run r of A on w with rwt(r) 6= 0 must contain exactly one
edge e ∈ E\(E1 ∪ E2). Each such clock run can be uniquely decomposed into clock
runs r1 of A1 on w1 ∈ CnΣ

+ and r2 of A2 on w2 ∈ CnΣ
+ such that w1;w2 = w and

rwt(r) = rwt(r1) · rwt(r2), as is shown in the following.

Let w = (t0, ν0)(a1, t1, ν1)...(am, tm, νm) and r = (l0, t0, ν0)
δ1−→

e1−→ ...
δm−→

em−→
(lm, tm, νm) be a clock run of A on w and assume there is some k ∈ {1, ...,m} such that
ek ∈ E\(E1 ∪E2). Hence there is some edge e = (lk−1, ak, φk, λk, lf ) ∈ E1. We split r af-
ter the k-th edge and use e instead of ek in the first part of r, obtaining the clock run r1 =

(l0, t0, ν0)
δ1−→

e1−→ ...
δk−→

e
−→ (lf , tk, νk) of A1 on w1 = (t0, ν0)(a1, t1, ν1)...(ak, tk, νk) ∈
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CnΣ
+ and the clock run r2 = (lk, tk, νk)

δk+1
−→

ek+1
−→ ...

δm−→
em−→ (lm, tm, νm) of

A2 on w2 = (tk, νk)(ak+1, tk+1, νk+1)...(am, tm, νm) ∈ CnΣ
+. Finally, we have

rwt(r)

= in(l0) ·


 ∏

1≤i≤m

lwt(li−1)(δi) · ewt(ei)


 · out(lm)

= in(l0) ·


 ∏

1≤i<k

lwt(li−1)(δi) · ewt(ei)


 · lwt(lk−1)(δk) · ewt(ek)

·


 ∏

k<i≤m

lwt(li−1)(δi) · ewt(ei)


 · out(lm)

⋆
= in1(l0) ·


 ∏

1≤i<k

lwt1(li−1)(δi) · ewt1(ei)


 · lwtk−1(δk) · ewt1(e)

· in2(lk) ·


 ∏

k<i≤m

lwt2(li−1)(δi) · ewt2(ei)


 · out2(lm)

⋆⋆
= in1(l0) ·


 ∏

1≤i<k

lwt1(li−1)(δi) · ewt1(ei)


 · lwt1(lk−1)(δk) · ewt1(e) · out1(lf )

· in2(lk) ·


 ∏

k<i≤m

lwt2(li−1)(δi) · ewt2(ei)


 · out2(lm)

= rwt(r1) · rwt(r2)

where at ⋆ we use ewt(ek) = ewt1(e) · in2(lk) and at ⋆⋆ we use out1(lf ) = 1.
Conversely, every clock run r1 of A1 on w1 ∈ CnΣ

+ such that rwt(r1) 6= 0 must end
in lf , and every clock run r2 of A2 on w2 ∈ CnΣ

+ such that rwt(r2) 6= 0 must start in
some location l ∈ L2 such that in(l) 6= 0. Hence, we can uniquely compose a clock run
r of A on w such that w = w1;w2 and rwt(r) = rwt(r1) · rwt(r2). This can be proved in
a similar way as previously shown for the other direction.

Using this, we obtain (‖A‖n, w) =
∑

w=w1;w2
w1,w2 6∈En

(‖A1‖n, w1) · (‖A2‖n, w2).

However, if we let w0 ∈ En and use properness of both ‖A1‖n and ‖A2‖n, we obtain

(‖A1‖n; ‖A2‖n, w)

=
∑

w1;w2=w

(‖A1‖n, w1) · (‖A2‖n, w2)
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=
∑

w1;w2=w
w1,w2 6∈En

(
(‖A1‖n, w1) · (‖A2‖n, w2)

)

+
(
(‖A1‖n, w0) · (‖A2‖n, w)

)
+

(
(‖A1‖n, w) · (‖A2‖n, w0)

)

=
∑

w1;w2=w
w1,w2 6∈En

(
(‖A1‖n, w1) · (‖A2‖n, w2)

)
+ 0 + 0

=
∑

w1;w2=w
w1,w2 6∈En

(‖A1‖n, w1) · (‖A2‖n, w2).

Hence, we have ‖A‖n = ‖A1‖n; ‖A2‖n = S′
1;S

′
2 and thus S′

1;S
′
2 is F-recognizable.

Next, we show that sε;S′
2 is F-recognizable. We put A =

(L2, C, E2, in, out2, ewt2, lwt2), where in(l) = s · in2(l). Then, we obtain

(‖A‖n, w) =
∑
{rwt(r) : r is a clock run of A on w}

=
∑
{s · rwt(r) : r is a clock run of A2 on w}

= s ·
∑
{rwt(r) : r is a clock run of A2 on w}

= s · (‖A2‖, w)

= s · (S′
2, w)

by definition of in and distributivity. However, we also have

(sε;S′
2, w) =

∑

w1;w2=w

(sε,w1) · (S
′
2, w2)

=
∑

w1;w2=w
w1∈En

(sε,w1) · (S
′
2, w2) +

∑

w1;w2=w
w1 6∈En

(sε,w1) · (S
′
2, w2)

=
∑

w1;w2=w
w1∈En

(sε,w1) · (S
′
2, w2) + 0

=
∑

w1;w2=w
w1∈En

(sε,w1) · (S
′
2, w2)

= s · (S′
2, w)

due to the fact that (sε,w) = s if w ∈ En, and 0 otherwise. For proving F-
recognizability of S′

1; s
′ε, we put A = (L1, C, E1, in1, out, ewt1, lwt1), where out(l) =

out1(l) · s
′. Then, ‖A‖n = S′

1; s
′ε, which can be proved as above. Finally, we define

A = (L, C, E, in, out, ewt, lwt) by

• L = {l},

• E = ∅,
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• in(l) = s,

• out(l) = s′,

• lwt(l) ∈ F .

Clearly, ‖A‖n = sε; s′ε. x+ y = z �

For showing closure of the class of F-recognizable n-clock series under the Kleene star
iteration, we need another normalization method. A weighted timed automaton is said
to be initial-location-normalized if, for each location l , whenever in(l) 6= 0, then l is a
source, i.e., has no ingoing edges.

Lemma 4.11. For each weighted timed automaton A, there is an initial-location-
normalized weighted timed automaton A′ with (‖A′‖n, w) = (‖A‖n, w) for each w ∈
CnΣ

∗.

Proof. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton. For each
l ∈ L, let cp(l) be the copy of l . Define A′ = (L′, C, E′, in′, out′, ewt′, lwt′), where

• L′ = L ∪ {cp(l) : l ∈ L such that in(l) 6= 0},

• E′ = E ∪ {(l , a, φ, λ, l ′) : there is some l2 ∈ L such that (l2, a, φ, λ, l
′) ∈ E, l =

cp(l2)},

• in′(l) =

{
0 if l ∈ L

in(l ′) if l = cp(l ′) for some l ′ ∈ L,

• out′(l) =

{
out(l) if l ∈ L

out(l ′) if l = cp(l ′) for some l ′ ∈ L,

• ewt′(l , a, φ, λ, l ′) =

{
ewt(l , a, φ, λ, l ′) if (l , a, φ, λ, l ′) ∈ E

ewt(l2, a, φ, λ, l
′) if l = cp(l2) for some l2 ∈ L,

• lwt′(l) =

{
lwt(l) if l ∈ L

lwt(l ′) if l = cp(l ′) for some l ′ ∈ L.

Then ‖A′‖n = ‖A‖n is proved by establishing a weight-preserving bijective correspon-
dence between the clock runs of A and A′. x+ y = z �

Remark 4.12. Note that unlike classical initial-state-normalizations of weighted finite
automata (see e.g. [58]), we do not require a single source location l such that in(l) = 1
and in(l ′) = 0 for each l ′ ∈ L\{l}. This is due to two reasons. First, we cannot restrict
to a single source location, as it is not clear how to define the weight function for this
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location in such a way that it corresponds to the weight functions of all former locations
l with in(l) 6= 0. Recall that in the final-location-normalization construction we could
use a single sink location, because this has no outgoing edges and hence its location
weight does not influence the behaviour of the weighted timed automaton. Thus we are
free in choosing any location weight from F for this sink location. Second, we cannot
require the weights for entering the “initial” locations to be equal to 1. This is also
due to the location weight functions assigned to locations. In the classical construction
by Eilenberg, the weights for entering the initial locations are multiplied with the edge
weights, i.e., using a similar construction as in the proof above, we define

ewt(l , a, φ, λ, l ′) =

{
ewt(l , a, φ, λ, l ′) if (l , a, φ, λ, l ′) ∈ E

in(l2) · ewt(l2, a, φ, λ, l
′) if l = cp(l2) for some l2 ∈ L.

However, this construction only works for K being commutative, as in the computation
of the running weight of a clock run, between in(l) and ewt(e) we have to consider the
location weight lwt(l)(δ). Another idea is to redefine the weight function of the initial
locations l , i.e., multiply the weights in(l) from the left with the result of lwt(l)(δ); but
this does not work for e.g. families of linear functions, as the resulting function is no
longer in F .

Corollary 4.13. For each weighted timed automaton A there is an initial- and final-
location-normalized weighted timed automaton AN with (‖AN‖n, w) = (‖A‖n, w) for
each w ∈ CnΣ

+ and (‖AN‖n, w) = 0 for each w ∈ En.

Proof. Follow the constructions of Lemmas 4.9 and 4.11, and note that in AN we have
in(l) = 0 if and only if out(l) 6= 0 for each location l . z = x+ y �

Lemma 4.14. If S : CnΣ
∗ → K is a proper F-recognizable n-clock series, then S∗ is

F-recognizable.

Proof. Since S is proper, we have (S,w) = 0 if w ∈ En. Thus by Corollary
4.13 there is an initial- and final-location-normalized weighted timed automaton A =
(L, C, E, in, out, ewt, lwt) over K, Σ and F with ‖A‖n = S. We use lf to denote the sink
location of A. We define A′ = (L′, C, E′, in′, out′, ewt′, lwt′), where

• L′ = L ·∪{lε},

• E′ = E ∪ {(l , a, φ, λ, l ′) : l ′ ∈ L, in(l ′) 6= 0, (l , a, φ, λ, lf ) ∈ E},

• in′(l) =

{
in(l) if l ∈ L

1 if l = lε,
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4 A Kleene-Schützenberger Theorem for Weighted Timed Automata

• out′(l) =

{
out(l) if l ∈ L

1 if l = lε,

• ewt′(l , a, φ, λ, l ′) =

{
ewt(l , a, φ, λ, l ′) if (l , a, φ, λ, l ′) ∈ E

ewt(l , a, φ, λ, lf ) · in(l ′) otherwise,

• lwt′(l) =

{
lwt(l) if l ∈ L

arbitrary but in F otherwise.

We prove that (‖A′‖n, w) = ((‖A‖n)
∗, w). First, we let w ∈ CnΣ

+. We provide a weight-
preserving bijection between the clock runs of A′ and finite sequences of clock runs of
A.

Construction 1 Let r = (l0, t0, ν0)
δ1−→

e′1−→ ...
δk−→

e′k−→ (lk, tk, νk) be a run of A′ on w.
Define {y1, ..., ym} ⊆ {1, ..., k} to be the set of index numbers with lyi ∈ L such that
in(lyi) 6= 0 for each i ∈ {1, ...,m}. We split the clock run r into m+ 1 clock runs r′j as
follows:

r′1 = (l0, t0, ν0)
δ1−→

e′1−→ ...
δy1−→

e′y1−→ (ly1 , ty1 , νy1)

r′j = (lyj−1 , tyj−1 , νyj−1)
δyj−1+1

−→
e′yj−1+1

−→ ...
δyj
−→

e′yj
−→ (lyj , tyj , νyj )

for each j ∈ {2, ...,m}, and

r′m+1 = (lym , tym , νym)
δym+1
−→

e′ym+1
−→ ...

δk−→
e′k−→ (lk, tk, νk).

Let j ∈ {1, ...,m}. Observe that the last edge e′yj of r′j is an edge in E′\E since E does
not contain any edges to locations l with in(l) 6= 0. Hence, there is an edge eyj ∈ E of
the form (lyj−1, ayj , φyj , λyj , lf ). We define the clock run rj from r′j by replacing the last
edge e′yj by eyj . We further put rm+1 = r′m+1. Then, using ewt′(e′yj ) = ewt(eyj ) · in(lyj )
and out(lf ) = 1 (⋆) for each j ∈ {1, ...,m}, we obtain

rwt(r)

= in′(l0) ·


 ∏

1≤i≤k

lwt′(li−1)(δi) · ewt′(e′i)


 · out′(lk)

= in′(l0) ·


 ∏

1≤i≤y1

lwt′(li−1)(δi) · ewt′(e′i)


 · ... ·


 ∏

ym<i≤k

lwt′(li−1)(δi) · ewt′(e′i)


 · out′(lk)

= in′(l0) ·


 ∏

1≤i<y1

lwt′(li−1)(δi) · ewt′(e′i)


 · lwt′(ly1−1)(δy1) · ewt′(ey1) · ...
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·


 ∏

ym<i≤k

lwt′(li−1)(δi) · ewt′(e′i)


 · out′(lk)

⋆
= in(l0) ·


 ∏

1≤i<y1

lwt(li−1)(δi) · ewt(e′i)


 · lwt(ly1−1)(δy1) · ewt(ey1)

· in(ly−1) · ... ·


 ∏

ym<i≤k

lwt(li−1)(δi) · ewt(e′i)


 · out(lk)

= rwt(r1) · ... · rwt(rm+1).

Construction 2 For each i ∈ {1, ...,m}, let ri = (li,0, ti,0, νi,0)
δi,1
−→

ei,1
−→ ...

δi,ki−→
ei,ki−→

(lf , ti,ki , νi,ki) be a clock run of A on wi such that w = w1; ...;wm. For each i ∈ {1, ...,m−
1}, we let r′i be the clock run that is obtained from ri by replacing the last edge ei,ki by an
edge e′i,ki of the form (li,ki−1, ai,ki , φi,ki , λi,ki , li+1,0). Notice that such an edge exists due
to the definition of E′. By definition, we have ewt′(e′i,ki) = ewt(ei,ki). The assumption
w = w1; ...;wm implies (ti+1,0, νi+1,0) = (ti,ki , νi,ki) for each i ∈ {1, ...,m − 1}. Thus we
can compose the clock runs r′1, ..., r

′
m−1, rm, obtaining a new run r = r′1...r

′
m−1rm, which

is a clock run of A′ on w. Using the same lines of argumentation as above, we can prove
rwt(r) = rwt(r1) · ... · rwt(rm).

Note that construction 1 and 2 are inverse to each other. Altogether, we have

(‖A′‖n, w)

=
∑
{rwt(r) : r is a clock run of A′ on w}

⋆
=

∑
{rwt(r1) · ... · rwt(rm) : ri is a clock run of A on wi,

for each i = 1, ...,m, such that w = w1; ...;wm, 1 ≤ m ≤ |w|}

=
∑

1≤m≤|w|

∑

w=w1;...;wm

∑
{rwt(r1) · ... · rwt(rm) : ri is a clock run

of A on wi for each i = 1, ...,m}

=
∑

1≤m≤|w|

∑

w=w1;...;wm

∑
{rwt(r1) : r1 is a clock run of A on w1}

· ... ·
∑
{rwt(rm) : rm is a clock run of A on wm}

=
∑

1≤m≤|w|

∑

w=w1;...;wm

(‖A‖n, w1) · ... · (‖A‖n, wm)

⋆⋆
=

∑

1≤m≤|w|

((‖A‖n)
m, w)

= ((‖A‖n)
∗, w)
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where ⋆ uses the weight-preserving bijective correspondence described above, and ⋆⋆ is
an application of Lemma 4.4.

Now let w ∈ En. In A′ there is exactly one location l such that in′(l) 6= 0 and out′(l) 6=
0, namely lε. In fact, we have in′(lε) = out′(lε) = 1, and thus we have (‖A′‖n, w) = 1 =
((‖A‖n)

∗, w) Hence, S∗ = ‖A′‖n is F-recognizable. x+ y = z �

Theorem 4.15. Let S : CnΣ
∗ → K be an F-rational n-clock series. Then S is F-

recognizable.

Proof. Follows from Lemmas 4.6, 4.7, 4.8, 4.10 and 4.14. x+ y = z �

4.4 From Recognizability to Rationality

In this section, we show the other inclusion of the Kleene-Schützenberger theorem,
namely that each F-recognizable n-clock series is F-rational. We do this by solving
a system of equations induced by the given weighted timed automaton. The solution
of the system corresponds to an F-rational n-clock series. Before we present the ac-
tual result, we give some lemmas. Let A = (L, C, E, in, out, ewt, lwt) be a weighted
timed automaton over K, Σ and F . For any two locations l , l ′ ∈ L, we define
Al ,l ′ = (L, C, E, in′, out′, ewt, lwt), where

in′(l1) =

{
1 if l1 = l

0 otherwise

and

out′(l1) =

{
1 if l1 = l ′

0 otherwise.

Lemma 4.16. Let A = (L, C, E, in, out, ewt, lwt) be an initial- and final-location-
normalized weighted timed automaton. If lf denotes the sink location of A, then we
have

‖A‖n =
∑

l∈L
in(l) 6=0

(
in(l)

)
ε; ‖Al ,lf ‖n.

Proof. For w ∈ En, the assertion is clear. So let w ∈ CnΣ
+. Then we have

(‖A‖n, w) =
∑
{rwt(r) : r is a clock run of A on w}

=
∑
{rwt(r) : r is a clock run of A on w from l to lf for some l ∈ L such

∑
{rwt(r) : that in(l) 6= 0}
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=
∑

l∈L
in(l) 6=0

∑
{rwt(r) : r is a clock run of A on w from l to lf}

=
∑

l∈L
in(l) 6=0

∑
{in(l) · rwt(r) : r is a clock run of Al ,lf on w}

=
∑

l∈L
in(l) 6=0

in(l) ·
∑
{rwt(r) : r is a clock run of Al ,lf on w}

=
∑

l∈L
in(l) 6=0

in(l) · (‖Al ,lf ‖n, w)

⋆
=

∑

l∈L
in(l) 6=0

(
(in(l))ε; ‖Al ,lf ‖n, w

)

=




∑

l∈L
in(l) 6=0

(
in(l)

)
ε; ‖Al ,lf ‖n, w


 ,

where at ⋆ we use the fact that for each n-clock series S : CnΣ
∗ → K and k ∈ K, we

have k · S = kε;S. x+ y = z �

Lemma 4.17. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton and let
lf ∈ L. Then, for every l ∈ L we have

‖Al ,lf‖n =





∑
(l ,a,φ,λ,l ′)∈E

‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf ‖n + 1ε if l = lf ,

∑
(l ,a,φ,λ,l ′)∈E

‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf ‖n otherwise,

where k = ewt(l , a, φ, λ, l ′).

Proof. First we assume l 6= lf . For w ∈ En, the assertion is obvious. So let w =
(t0, ν0)(a1, t1, ν1)...(am, tm, νm) ∈ CnΣ

+. We show that there is a weight-preserving
bijective correspondence between the set of clock runs of Al ,lf on w and the set of pairs
of clock runs of A〈lwt(l),k,a1,φ,λ〉 on w1 = (t0, ν0)(a1, t1, ν1) and clock runs of Al ′,lf on w2 =
(t1, ν1)(a2, t2, ν2)...(am, tm, νm) for some (l , a1, φ, λ, l

′) ∈ E. Observe that w = w1;w2.

Let r = (l0, t0, ν0)
δ1−→

e1−→ (l1, t1, ν1)
δ2−→

e2−→ ...
δm−→

em−→ (lm, tm, νm) be a clock
run of Al ,lf on w, where l0 = l and lm = lf . We split r after the first transition,

obtaining the clock run r1 = (l0, t0, ν0)
δ1−→

e1−→ (l1, t1, ν1) on w1 and the clock run

r2 = (l1, t1, ν1)
δ2−→

e2−→ ...
δm−→

em−→ (lm, tm, νm) on w2. Assuming e1 = (l0, a1, φ1, λ1, l1)
and k = ewt(e1), we know that r1 is also a clock run of A〈lwt(l),k,a1,φ1,λ1〉 on w1 with
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4 A Kleene-Schützenberger Theorem for Weighted Timed Automata

rwt(r1) = 1 · lwt(l0)(δ1) · ewt(e1) · 1. In addition, r2 is a clock run of Al1,lm on w2 with
rwt(r2) = 1 ·

∏
2≤i≤m lwt(li−1)(δi) · ewt(ei) · 1. Then, we obtain

rwt(r1) · rwt(r2)

= 1 · lwt(l0)(δ1) · ewt(e1) · 1 · 1 ·
∏

2≤i≤m

ewtli−1
(δi) · ewt(ei) · 1

= 1 ·
∏

1≤i≤m

lwt(li−1)(δi) · ewt(ei) · 1

= rwt(r).

Clearly, this construction establishes a weight-preserving bijective correspondence as
claimed. Also notice that r1 is the only clock run of A〈lwt(l),k,a1,φ,λ1〉 on w1 with a running
weight different from 0. Thus we have (‖A〈lwt(l),k,a1,φ,λ1〉‖n, w1) = rwt(r1). Using this,
associativity (⋆) and distributivity (⋆⋆), we obtain

(‖Al ,lf ‖n, w)

=
∑
{rwt(r) | r is a clock run of Al ,lf from l to lf on }

⋆
=

∑

(l ,a,φ,λ,l ′)∈E

∑

w1;w2=w

∑
{(‖A〈lwt(l),k,a,φ,λ〉‖n, w1) · rwt(r2) : r2 is a clock run of Al ′,lf

on w2}
⋆⋆
=

∑

(l ,a,φ,λ,l ′)∈E

∑

w1;w2=w

(‖A〈lwt(l),k,a,φ,λ〉‖n, w1) ·
∑
{rwt(r2) : r2 is a clock run of Al ′,lf

on w2}

=
∑

(l ,a,φ,λ,l ′)∈E

∑

w1;w2=w

(‖A〈lwt(l),k,a,φ,λ〉‖n, w1) · (‖Al ′,lf ‖n, w2)

=
∑

(l ,a,φ,λ,l ′)∈E

(‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf‖n, w)

where k = ewt(l , a, φ, φ, l ′).
Now assume l = lf . Let w ∈ En. Then we have

(‖Al ,lf ‖n, w) = in(l) · out(lf )

= (1ε,w)

= 0 + (1ε,w)

= (
∑

(l ,a,φ,λ,l ′)∈E

‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf ‖n, w) + (1ε,w)

= (
∑

(l ,a,φ,λ,l ′)∈E

‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf ‖n + 1ε,w).

For w ∈ CnΣ
+, we adopt the proof from above and use (1ε,w) = 0. x+ y = z �
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The objective of these lemmas is to provide the basis for building a system of linear
equations that represents the behaviour of a given weighted timed automaton. The
solution of this system corresponds to an F-rational clock series that is equivalent to
the behaviour of the weighted timed automaton. However, we need to show that it is
guaranteed that there is such a solution. Lemma 4.3 supplies us with an even stronger
result, namely that there is a unique solution. Finally, we present the crucial property
between F-recognizable and F-rational n-clock series. For proving it, we use Lemmas
4.16, 4.17 and 4.3.

Theorem 4.18. If S : CnΣ
∗ → K is an F-recognizable n-clock series, then S is F-

rational.

Proof. Let S′ : CnΣ
∗ → K be F-recognizable and write S′ = S+kε, where S is proper.

Let A be an initial- and final-location-normalized weighted timed automaton such that
‖A‖n = S. We use lf to denote the sink location of A. By Lemma 4.16, it suffices
to show that the clock series ‖Al ,lf‖n is F-rational for any l ∈ L such that in(l) 6= 0.
Using Lemma 4.17, we build a system of linear equations as follows. We first note that
‖Alf ,lf ‖ = 1ε as there are no outgoing edges from lf . For every l ∈ L\{lf} we consider
the equation

‖Al ,lf ‖n =
∑

(l ,a,φ,λ,l ′)∈E

‖A〈lwt(l),k,a,φ,λ〉‖n; ‖Al ′,lf ‖n,

where k = ewt(l , a, φ, λ, l ′). In each of these equations, we replace the occurrence of
‖Alf ,lf ‖ by 1ε. In this system of linear equations of size |L|:

• clock series of the form ‖Al ,lf‖n correspond to unknown variables, and

• the clock series ‖A〈lwt(l),k,a,φ,λ〉‖n correspond to the coefficients of the system, as
does the clock series 1ε. By Lemma 4.7 and definition of F-rational clock series,
these clock series are F-rational.

We show that clock series of the form ‖Al ,lf‖n are also F-rational. Formally, this cor-
responds to solving the system of linear equations. We let l1 < l2 < ... < lm be an
arbitrary order on L\{lf}. We solve the equation ‖Alm,lf‖ (with ‖Alm,lf ‖ as possible
unknown variable) as follows. We split the sum over the edges as follows

‖Alm,lf ‖n =
∑

(lm,a,φ,λ,lm)∈E

‖A〈lwt(lm),k,a,φ,λ〉‖n; ‖Alm,lf ‖n

+
∑

(lm,a′,φ′,λ′,l′)∈E

lm 6=l′

‖A〈lwt(l),k′,a′,φ′,λ′〉‖n; ‖Al ′,lf‖n

where k = ewt(lm, a, φ, λ, lm), k′ = ewt(lm, a
′, φ′, λ′, l ′). Recall that each series of the

form ‖A〈lwt(lm),k,a,φ,λ〉‖n corresponds to the F-monomial 〈lwt(lm), k, a, φ, λ〉 and hence is
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proper. Thus, if the first sum is not empty, we may apply Lemma 4.3 and obtain

‖Alm,lf ‖n = (
∑

(lm,a,φ,λ,lm)∈E

‖A〈lwt(lm),k,a,φ,λ〉‖n)
∗

;
∑

(lm,a′,φ′,λ′,l′)∈E

lm 6=l′

‖A〈lwt(lm),k′,a′,φ′,λ′〉‖n; ‖Al ′,lf ‖n.

If, on the other hand, the first sum is empty, i.e., equal to 0ε, the clock series ‖Alm,lf ‖n
disappears from the right hand side of the equation. Hence, in both cases, in the right
hand side of the equation there are only unknown variables ‖Al ′,lf ‖ with l ′ 6= lm. We
now substitute ‖Alm,lf ‖n in the other m − 1 equations. We repeat the procedure of
solving the equations step by step and observe that, indeed, at each step the conditions
of Lemma 4.3 are satisfied. In the last step, we obtain a clock series ‖Al1,lf ‖n that can be
expressed using monomials, F-monomials and the rational operations. Thus, altogether,
we have shown that ‖A‖ = S is F-rational. However, for each k ∈ K, the monomial kε
is also F-rational by definition, and thus also is S′. x+ y = z �

We are finally ready to present a Kleene-Schützenberger theorem for the class of weighted
timed automata.

Theorem 4.19. Let S : CnΣ
∗ → K be an n-clock series. Then S is F-recognizable if

and only if S is F-rational.

Proof. This follows immediately from Theorems 4.15 and 4.18. x+ y = z �

4.5 From Clock Series to Timed Series

As mentioned before, the clock semantics is used for defining the concatenation op-
eration in a natural way. However, research in the real-time community focuses on
timed languages rather than clock languages. In this section, we show that a Kleene-
Schützenberger theorem can also be given for timed series.

The use of timed semantics sacrifices some significant information concerning the val-
ues of the clock variables, which precludes us from defining the notion of rationality for
timed series in the same way as for clock series. For this reason, we use the approach
of Bouyer and Petit [29], and introduce a projection that maps F-recognizable clock
series to F-recognizable timed series. Let π : CnΣ

∗ → TΣ∗ be the partial function de-
fined by π

(
(t0, ν0)(a1, t1, ν1)...(ak, tk, νk)

)
= (a1, t1)...(ak , tk) if (t0, ν0) = (0, 0n) for each

(t0, ν0)(a1, t1, ν1)...(ak, tk, νk) ∈ CnΣ
∗, undefined otherwise. We extend π to a function

π̄ : KF−rec〈〈CnΣ
∗〉〉 → KF−rec〈〈TΣ∗〉〉 : S 7→ π̄(S), where

(π̄(S), v) =
∑

w∈CnΣ∗

π(w)=v

(S,w)
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for each timed word v ∈ TΣ∗. Notice that the sum in the equation is finite: for each
timed word v there is only a finite number of runs of a weighted timed automaton on
v. Each of these runs uniquely determines an n-clock word w such that π(w) = v. For
each other n-clock word w with π(w) = v there is no such run and thus (S,w) = 0. In
fact, we need to restrict π̄ to F-recognizable n-clock series, because for arbitrary n-clock
series this property does not hold.

A timed series T : TΣ∗ → K is F-rational over K and Σ if it can be defined by a
single application of π̄ to an F-rational n-clock series S : CnΣ

∗ → K over K and Σ, i.e.,
T = π̄(S). The following lemma gives the relation between F-recognizable timed series
and F-recognizable n-clock series.

Lemma 4.20. For each weighted timed automaton A, we have (‖A‖, v) = (π̄(‖A‖n), v)
for every timed word v ∈ TΣ∗.

Proof. Let A be a weighted timed automaton over K, Σ and F and v =

(a1, t1)...(ak, tk) ∈ TΣ∗ be a timed word. Let r = (l0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, νk) be

a run of A on v. We define the clock run r′ by (l0, τ0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, τk, νk),
where τ0 = 0 and τi = τi−1 + δi for each i ∈ {1, ..., k}. Hence, τi = ti for each
i ∈ {1, ..., k} and r′ is a clock run of A on (t0, ν0)(a1, t1, ν1)...(ak, tk, νk) ∈ CnΣ

∗. Clearly,
π((t0, ν0)(a1, t1, ν1)...(ak , tk, νk)) = v. Moreover, we have rwt(r′) = rwt(r).

Now, let w = (t0, ν0)(a1, t1, ν1)...(ak , tk, νk) ∈ CnΣ
∗ be an n-clock word such that

t0 = 0 and ν0 = 0C and r = (l0, t0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, tk, νk) be a clock run of
A on w. We let r′ be the run that is obtained by removing the second element from

each state in r, i.e., r′ is of the form (l0, ν0)
δ1−→

e1−→ ...
δk−→

ek−→ (lk, νk). Clearly, r′ is a
run of A on (a1, t1)...(ak, tk) ∈ TΣ∗ and we have π(w) = (a1, t1)...(ak, tk). Furthermore,
rwt(r′) = rwt(r).

Altogether, we have shown that for any clock run of A on an n-clock word w, there
is a run of A on v such that π(w) = v and vice versa. One can easily see that applying
both constructions back and forth to a run r, we obtain r again. Moreover, both runs
have the same running weight. Hence, the correspondence between the two kinds of runs
is bijective and weight-preserving. In the following, we use this at ⋆.

(‖A‖, v) =
∑
{rwt(r) : r is a run of A on v}

⋆
=

∑
{rwt(r) : r is a clock run of A on w such that π(w) = v}

=
∑

π(w)=v

∑
{rwt(r) : r is a clock run of A on w}

=
∑

π(w)=v

(‖A‖n, w)

= (π̄(‖A‖n), v).
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x+ y = z �

So, this implies that also F-recognizable timed series correspond to a single application
of π̄ to an F-recognizable n-clock series. As a result, we obtain a Kleene-Schützenberger
theorem also for the usual timed semantics of weighted timed automata.

Theorem 4.21. Let T : TΣ∗ → K be a timed series. Then T is F-recognizable if and
only if T is F-rational.

Proof. The definition of F-rational timed series and Lemma 4.20 ensure that both
F-rational and F-recognizable timed series correspond to a single application of π̄ to an
F-rational (F-recognizable, respectively) n-clock series. This and Theorem 4.19 imply
the result. x+ y = z �

4.6 Conclusion

In this chapter, we presented a Kleene-Schützenberger theorem for weighted timed au-
tomata, which can be seen as a timed and weighted analogue to the famous Kleene
theorem for finite automata over words [76]. Not only is the Kleene theorem one of the
most significant theorems in formal language theory. Rational timed series may also be
used as a convenient formalism for specifying the behaviour of weighted timed automata.
In this regard, we point out that the translation procedures from rational timed series to
weighted timed automata and vice versa are effective. In future work one may investi-
gate the complexity bounds of our constructions. Also, we would like to remark that the
Kleene-Schützenberger theorem we presented here and all the constructions are close to
the classical untimed case, albeit different in some important aspects. The definition of
the concatenation operation (adopted from Bouyer and Petit [29]) is simple and similar
to the classical concatenation operation. The formalism we presented is an intuitive
algebraic characterization of recognizable timed series. This argues for the clock seman-
tics we used here. However, we do not want to conceil that one may also argue against
the clock semantics for the following reason. In the theory of formal languages, regular
expressions do not disclose any internal description, whereas here, by using the clock
semantics, we mention explicitly some internal information in form of the current values
of the clock variables. Hence, it may be of interest to use other approaches that provide
a Kleene theorem for the class of timed automata, e.g. the latest approach of Asarin
and Dima [14], which does not make use of information external to the timed language.

Another direction for future work on this field concerns the model of weighted timed
automata with infinite behaviour, which is of great interest particularly in the area
of verification. We note that Bouyer and Petit [29] introduced the clock semantics
approach to obtain a Kleene-type theorem for timed automata over infinite timed words.
However, in the weighted setting, one has to compute the running weight of infinite runs,
which may lead to problems of convergence. Possibly, one may solve this using complete
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semirings [59, 60] or distributive lattices [52], which allow for infinite sums and products,
or considering models with a discounting factor [42, 51, 56].
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5 A Büchi Theorem for Weighted Timed Automata

5.1 Introduction

In this chapter, we will define a logic for the specification of timed series. Then we
aim to to show that this logic is expressively equivalent to weighted timed automata.
The first result of this kind - the equivalence between finite automata and sentences
in MSO logic over some alphabet Σ, denoted by MSO(Σ), was obtained by Büchi [36].
This logical characterization of recognizable languages is one of the most fundamental
theorems in theoretical computer science. It is also of great practical interest: a specifi-
cation expressed by a MSO formula often is much easier to read and understand than an
automaton. By Büchi’s theorem, each MSO formula corresponds to an automaton. The
most important questions that arise in the context of specification are the satisfiability
of a formula, and the model checking problem, i.e., the question whether all behaviours
of an automaton satisfy the formula. Now, owing to Büchi’s theorem, these questions
can be answered using well known methods from automata theory.

For the class of WFA-recognizable series, a Büchi theorem has been presented by
Droste and Gastin [46, 49]. They introduce a weighted MSO logic for characterizing the
behaviours of weighted finite automata defined over a semiring. They extend classical
MSO logic with formulas of the form k (where k is an element of the semiring), which
may be used to define the weight of a transition of a weighted finite automaton. They
show that weighted finite automata are expressively equivalent to a certain fragment
of this logic. Recently, this result has been generalized to weighted settings of infinite
words [54, 55], trees [57], pictures [85], traces [86], texts [83] and nested words [84].

Here, we aim to generalize the result to timed series. The basis of our work is a Büchi
theorem for the class of timed automata by Wilke [107]. For this result, Wilke introduces
a timed extension of classical MSO logic. The intuitive idea is to extend MSO(Σ) with
formulas of the form d(y, z) ∼ c, called distance predicates, where y, z are first-order
variables, ∼ ∈ {<,≤,=,≥, >} and c ∈ N. A formula of this form, interpreted over
timed words, is supposed to express that the time distance between the positions y and
z satisfies the constraint ∼ c. However, it is shown by Alur and Henzinger [95], that the
unrestricted use of distance predicates leads to an undecidable theory. Moreover, since
TA-recognizable timed languages are not closed under complement, one cannot expect
to find a full MSO logic that is expressively complete for timed automata [107]. For this
reason, Wilke restricts the use of distance predicates. He introduced relative distance

predicates of the form
←−
d (D, y) ∼ c, where D is a second-order variable, which may

only be existentially quantified. Furthermore, this may only be done at the beginning
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5 A Büchi Theorem for Weighted Timed Automata

of a formula. The resulting logic is known as relative distance logic. Wilke [107] shows
that timed languages definable in this logic can be fully characterized in terms of timed
automata.

In the next section, we recall the definition of the relative distance logic. For techni-
cal simplicity, we do this in two steps. First, we define an auxiliary logic, which is an
extension of MSO(Σ) with relative distance predicates. However, within this logic, the
second-order variables used as first argument in a relative distance predicate are inter-
preted as constants. The result is a full MSO logic denoted by MSO(TΣ∗). Second, we

define the relative distance logic L
←−
d (Σ), where the second-order variables used as argu-

ment in relative distance predicates may be existentially quantified at the beginning of
the formula. Then, we will turn to the definition of the weighted relative distance logic.

We extend L
←−
d (Σ) with two kinds of weighted formulas of the form k (where k ∈ K) and

f (y) (where f ∈ F and y is a first-order variable), the semantics of which correspond
to the weights of edges and locations, respectively, in weighted timed automata. For
proving a Büchi theorem, we stepwisely define a fragment of our logic and show that the
semantics of sentences definable in this fragment precisely correspond to the behaviours
of weighted timed automata.

5.2 Weighted Relative Distance Logic

We recall the syntax and semantics of the relative distance logic over Σ. As mentioned
in the introduction, we do this in two steps. We start with the definition of the under-
lying auxiliary logic MSO(TΣ∗). Formulas of MSO(TΣ∗) are defined by the following
grammar

ϕ ::= Pa(y) | y = z | y < z | y ∈ X |
←−
d (D, y) ∼ c | ¬ϕ | ϕ ∨ ϕ | ∃y.ϕ | ∃X.ϕ,

where y, z are first-order variables, X,D are second-order variables, a ∈ Σ, c ∈ N and

∼ ∈ {<,≤,=,≥, >}. Formulas of the form
←−
d (D, y) ∼ c are called relative distance

predicates. Notice that the syntax of MSO(TΣ∗) does not allow for the quantification of
the first argumentD of a relative distance predicate. For this reason, we may temporarily
interprete D as a constant and note that MSO(TΣ∗) is a full MSO logic. As usual, we
may use true, ϕ ∧ ψ, ϕ −→ ψ, ϕ ←→ ψ, ∀y.ϕ and ∀X.ϕ as abbreviations for ¬ϕ ∨ ϕ,
¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ, (ϕ −→ ψ) ∧ (ψ −→ ϕ), ¬∃y.¬ϕ, and ¬∃X.¬ϕ respectively.

In the relative distance logic, D will be allowed to be existantially quantified at the
beginning of a formula. Formally, we define the relative distance logic, denoted by

L
←−
d (Σ), to be the smallest class of formulas containing all formulas generated by the

next two rules.

1. If ϕ ∈ MSO(TΣ∗), so is ϕ ∈ L
←−
d (Σ).

2. If ϕ ∈ L
←−
d (Σ), so is ∃D.ϕ ∈ L

←−
d (Σ).
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5.2 Weighted Relative Distance Logic

Formulas of L
←−
d (Σ) are interpreted over timed words over Σ. For this, we associate with

w ∈ TΣ∗ the relational structure consisting of the domain dom(w) together with the
binary relation Pa = {i ∈ dom(w) : ai = a} and the usual = and < relations on dom(w).

We further define the binary relation
←−
d (·, ·) ∼ c to be (I, i) ∈ 2dom(w) × dom(w) such

that one of the following conditions is satisfied

• there is some j ∈ I such that j < i, ti− tj ∼ c and there is no k ∈ I with j < k < i,

• there is no j ∈ I such that j < i, and ti − 0 ∼ c.

For ϕ ∈ L
←−
d (Σ), let Free(ϕ) be the set of free variables, i.e., variables not bound by any

quantifier, V ⊇ Free(ϕ) be a finite set of first- and second-order variables, and σ be a
(V, w)-assignment mapping first-order (second-order, respectively) variables to elements
(subsets, respectively) of dom(w). For i ∈ dom(w), we let σ[y → i] be the assignment that
maps y to i and agrees with σ on every variable V\{y}. Similarly, we define σ[X → I]
for any I ⊆ dom(w). For Σ, we define the extended alphabets ΣV = Σ× {0, 1}V for
every finite set V of variables. A timed word w ∈ TΣ∗ and a (V, w)-assignment σ are
encoded as timed word over the extended alphabet ΣV . A timed word over ΣV is written
as ((ā, σ), t̄), where (ā, t̄) is the projection over TΣ∗ and σ is the projection over {0, 1}V .
Then, σ represents a valid assignment over V if for each first-order variable y ∈ V, the
y-row of σ contains exactly one 1. In this case, σ is identified with the (V, w)-assignment
such that for every first-order variable y ∈ V, σ(y) is the position of the 1 in the y-row,
and for each second-order variable X ∈ V, σ(X) is the set of positions with a 1 in the
X-row.

Example 5.1. Let Γ = {a, b} and w = (a, 2.0)(a, 3.5)(b, 4.2) be a timed word over Γ.
Further let V = {y,X} and consider the valid (V, w)-assignment σ with σ(y) = 2 and

σ(X) = {1, 2}. We encode w and σ as the timed word

(
a
0
1
, 2.0

) (
a
1
1
, 3.5

) (
b
0
0
, 4.2

)
over

ΓV .

We define NV = {((ā, σ), t̄) ∈ T (ΣV)∗ : σ is a valid (V, (ā, t̄))-assignment}. The defi-
nition that ((ā, σ), t̄) satisfies ϕ, written ((ā, σ), t̄) |= ϕ, is as usual provided that the
domain of σ contains Free(ϕ). We let LV(ϕ) = {((ā, σ), t̄) ∈ NV : ((ā, σ), t̄) |= ϕ}. The
formula ϕ defines the timed language L(ϕ) = LFree(ϕ)(ϕ). A formula ϕ is a sentence if

Free(ϕ) = ∅. A timed language L ⊆ TΣ∗ is L
←−
d (Σ)-definable if there exists a sentence

ϕ ∈ L
←−
d (Σ) such that L(ϕ) = L.

Theorem 5.2 ([107]). A timed language L ⊆ TΣ∗ is L
←−
d (Σ)-definable if and only if L

is TA-recognizable over Σ. The transformations from a timed automaton over Σ to a

L
←−
d (Σ)-sentence and back can be done efficiently.
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Now, we turn to the weighted extension of these logics. For this, we fix a semiring K
and a family F of functions from R≥0 to K containing 1. Again, we start with the
underlying auxiliary logic and define it by the following grammar.

ϕ ::= Pa(y) | ¬Pa(y) | y = z | ¬(y = z) | y < z | ¬(y < z) | y ∈ X | ¬(y ∈ X) |
←−
d (D, y) ∼ c | ¬(

←−
d (D, y) ∼ c) | k | f (y) | ϕ ∨ ϕ | ϕ ∧ ϕ | Qy.ϕ | QX.ϕ

where y, z are first-order variables, X,D are second-order variables, Q ∈ {∃,∀}, a ∈ Σ,
c ∈ N, ∼ ∈ {<,≤,=,≥, >}, k ∈ K and f ∈ F . We use MSO(K, TΣ∗,F) to denote
the collection of all such formulas. Formulas of the form k and f (y) are called weighted
atomic formulas.

Notice that negation may only be applied to atomic formulas of MSO(TΣ∗). This is
because for arbitrary semirings it is not clear what the negation of a weighted atomic
formula should mean. In the following, we use the term atomic formulas to refer atomic
formulas of MSO(TΣ∗) and their negations.

Finally, we define the weighted relative distance logic, denoted by L
←−
d (K,Σ,F),

to be the smallest class of formulas containing all formulas generated by the next two
rules.

1. If ϕ ∈ MSO(K, TΣ∗,F), then ϕ ∈ L
←−
d (K,Σ,F).

2. If ϕ ∈ L
←−
d (K,Σ,F), then ∃D.ϕ ∈ L

←−
d (K,Σ,F).

Next, we define the semantics of this logic. Let ϕ ∈ L
←−
d (K,Σ,F) and V ⊇ Free(ϕ). The

V-semantics of ϕ is a timed series [[ϕ]]V : T (ΣV)∗ → K. Let (ā, t̄) ∈ TΣ∗. If σ is a valid
(V, (ā, t̄))-assignment,

(
[[ϕ]]V , ((ā, σ), t̄)

)
∈ K is defined inductively as follows:

(
[[ϕ]]V , ((ā, σ), t̄)

)
=

(
1LV (ϕ), ((ā, σ), t̄)

)
if ϕ is atomic(

[[k]]V , ((ā, σ), t̄)
)

= k(
[[f (y)]]V , ((ā, σ), t̄)

)
= f (tσ(y) − tσ(y)−1)(

[[ϕ ∨ ϕ′]]V , ((ā, σ), t̄)
)

=
(
[[ϕ]]V , ((ā, σ), t̄)

)
+

(
[[ϕ′]]V , ((ā, σ), t̄)

)
(
[[ϕ ∧ ϕ′]]V , ((ā, σ), t̄)

)
=

(
[[ϕ]]V , ((ā, σ), t̄)

)
·
(
[[ϕ′]]V , ((ā, σ), t̄)

)
(
[[∃y.ϕ]]V , ((ā, σ), t̄)

)
=

∑

i∈dom((ā,t̄))

(
[[ϕ]]V∪{y}, ((ā, σ[y → i]), t̄)

)

(
[[∀y.ϕ]]V , ((ā, σ), t̄)

)
=

∏

i∈dom((ā,t̄))

(
[[ϕ]]V∪{y}, ((ā, σ[y → i]), t̄)

)

(
[[∃X.ϕ]]V , ((ā, σ), t̄)

)
=

∑

I⊆dom((ā,t̄))

(
[[ϕ]]V∪{X}, ((ā, σ[X → I]), t̄)

)

(
[[∃D.ϕ]]V , ((ā, σ), t̄)

)
=

∑

I⊆dom((ā,t̄))

(
[[ϕ]]V∪{D}, ((ā, σ[D → I]), t̄)

)
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5.2 Weighted Relative Distance Logic

(
[[∀X.ϕ]]V , ((ā, σ), t̄)

)
=

∏

I⊆dom(ā,t̄)

(
[[ϕ]]V∪{X}, ((ā, σ[X → I]), t̄)

)

For σ not a valid (V, (ā, t̄))-assignment, we define
(
[[ϕ]]V((ā, σ), t̄)

)
= 0. We write [[ϕ]] for

[[ϕ]]Free(ϕ).

Remark 5.3. IfK is the Boolean semiring, then L
←−
d (K,Σ,F) corresponds to L

←−
d (Σ). This

is because every formula in L
←−
d (Σ) is language equivalent to a formula where negation

is applied to atomic subformulas only. Also, every such formula in L
←−
d (Σ) can be seen

as a formula of L
←−
d (K,Σ,F).

Example 5.4. Consider the formula ϕ = ∃D.∃y.Pb(y) ∧
←−
d (D, y) < 2 and let w =

(a, 1.0)(a, 2.0)(b, 3.0). If K is the Boolean semiring or, equivalently, we interprete ϕ as

an L
←−
d (Σ)-formula, we have ([[ϕ]], w) = 1, as, for instance, the time difference between

the third and second position is less than 2, so we may choose σ(y) = 3 and σ(D)
such that 2 ∈ σ(D). If on the other hand, we let K be the semiring of the natural
numbers with ordinary addition and multiplication, we have ([[ϕ]], w) = 4, since there

are 4 different assignments such that Pb(y) ∧
←−
d (D, y) < 2 is evaluated to 1. In fact,

using this semiring, we can count how often a certain property holds. This may give rise
to interesting applications in the field of verification.

Example 5.5. We let K be the max-plus-semiring and f (δ) = δ for each δ ∈ R≥0. Then,
the formula ϕ = ∃y.f (y) computes for each timed word w the maximal time difference
ti−ti−1 between two consecutive events. Formally, ([[ϕ]], w) = max{ti−ti−1 : i ∈ dom(w)}
for each w ∈ TΣ∗. Note that [[ϕ]] is recognized by the weighted timed automaton of Ex.
3.2.

The following lemma states that for each formula ϕ of our logic, the semantics for
different finite sets V of variables containing Free(ϕ) are consistent with each other. It

can be proved by induction on the structure of L
←−
d (K,Σ,F)

Lemma 5.6. Let ϕ ∈ L
←−
d (K,Σ,F) and V a finite set of variables containing Free(ϕ).

Then (
[[ϕ]]V , ((ā, σ), t̄)

)
=

(
[[ϕ]], ((ā, σ|Free(ϕ)), t̄)

)

for each ((ā, σ), t̄) ∈ T (ΣV)∗ such that σ is a valid (V, (ā, t̄))-assignment.

Let L ⊆ L
←−
d (K,Σ,F). A timed series T : TΣ∗ → K is called L-definable if there is

a sentence ϕ ∈ L such that [[ϕ]] = T . The goal of this section is to find a suitable

fragment L ⊆ L
←−
d (K,Σ,F) such that L-definable timed series precisely correspond to

F-recognizable timed series. In other words, we want to generalize Theorem 5.2 to

the weighted setting. It is not surprising that L
←−
d (K,Σ,F) itself does not constitute
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a suitable candidate for L, since also in the untimed setting, the full weighted MSO
logics is expressively stronger than weighted finite automata [49]. In the next section,
we explain the problems that occur when we do not restrict the logic. For simplicity,
we do this exemplarily for the case of idempotent and commutative semirings. To be as
general as possible, we will moreover consider families of functions that are not closed
under pointwise product. Notice that this setting includes weighted timed automata over
the max-plus-semiring and the family of functions of the form δk for some k ∈ N and

each δ ∈ R≥0. Stepwisely, we develop solutions resulting in a fragment of L
←−
d (K,Σ,F)

for which we are able to present a Büchi theorem for weighted timed automata over
this particular setting. Later we will show how to generalize this approach to arbitrary
semirings.

5.3 From Definability to Recognizability

In this section, we fix an idempotent and commutative semiring K. Moreover,
we assume that F is not necessarily closed under pointwise product.

We want to develop a fragment L ⊆ L
←−
d (K,Σ,F) such that for every sentence ϕ ∈ L,

[[ϕ]] is an F-recognizable timed series. As in the classical setting, the proof for this is
done by induction over the structure of the logic: for the induction base, we show that

for every atomic formula ϕ in L
←−
d (K,Σ,F), there is a weighted timed automaton A over

K, ΣFree(ϕ)
1 and F such that ‖A‖ = [[ϕ]]. For the induction step, we need to show that F-

recognizable timed series are closed under the operators of L. In the case of disjunction
and existential quantification, the proofs are very similar to the classical case [103, 49]. In
the case of conjunction and universal quantification, however, problems arise. Problems
with unrestricted use of conjunctions are due to the fact that F-recognizable timed
series are not closed under Hadamard product in general (see Example 3.4). Problems
with unrestricted use of universal quantification are due to the fact that the semantics
of formulas may grow too fast with the size of a timed word to be recognizable by a
weighted timed automaton. This is demonstrated in the next example.

Example 5.7. Let K be the max-plus-semiring and F be the family of functions of
the form δk for some k ∈ N and all δ ∈ R≥0. We let f be the function defined by
f (δ) = δ1 for each δ ∈ R≥0. We consider the formula ϕ = ∀z.∃y.f (y). Then we have
([[ϕ]], w) = |w| · max{ti − ti−1 : i ∈ dom(w)} for each w ∈ TΣ∗. However, [[ϕ]] is not
F-recognizable, as is proved in the following: assume A = (L, C, E, in, out, ewt, lwt) is a
weighted timed automaton over K, Σ and F such that ‖A‖ = [[ϕ]]. Notice that the weight
functions in, out and ewt assign constants to the locations and edges, respectively. Thus,
for each location l , there is some δ ∈ R≥0 such that lwt(l)(δ) is strictly greater than each

1Notice that atomic and weighted atomic formulas may contain free variables. Thus the weighted timed

automata recognizing the semantics of an atomic formula ϕ are defined over the extended alphabet

ΣFree(ϕ).
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of these constants. For this reason, we may assume in(l) = out(l) = 0 for each l ∈ L and
ewt(e) = 0 for each e ∈ E. For each l ∈ L, we use cl to denote the constant to which
power the time delay in l is taken of, i.e., if lwt(l)(δ) = δn for each δ ∈ R≥0 and some
n ∈ K, then, cl = n. Let M = max{cl : l ∈ L}. Then, for every timed word w ∈ TΣ∗

and for each run of A on w we have rwt(r) ≤
∑

1≤i≤|w|(ti − ti−1)
M . Furthermore, we

have (‖A‖, w) = max{rwt(r) : r is a run of A on w} and thus (‖A‖, w) ≤
∑

1≤i≤|w|(ti −

ti−1)
M . Now choose w ∈ TΣ∗ such that |w| > 2M and there exists some i ∈ dom(w)

such that ti − ti−1 = 2 and for all j ∈ dom(w) with j 6= i we have tj − tj−1 = 0. Then
we obtain (‖A‖, w) < [[ϕ]], a contradiction. The timed series [[ϕ]] grows too fast to be
F-recognizable.

Similar examples can be given for ∀X. It turns out that we have to restrict the appli-
cation of these operators syntactically to show that they preserve F-recognizability of
timed series. We restrict the application of conjunction and universal quantification and
consider a syntactically restriced fragment of MSO(K, TΣ∗,F). We present the definition
of this fragment in the following. We start with the definition of unweighted and almost
unambiguous formulas.

We say that a formula ϕ ∈ MSO(K, TΣ∗,F) is unweighted, if it does not contain
any weighted atomic formulas. It can be easily seen, that unweighted formulas are in
MSO(TΣ∗).

Let y be a first-order variable. We say that a formula ψ ∈ MSO(K, TΣ∗,F) is almost
unambiguous over y, if it is in the disjunctive and conjunctive closure of unweighted
formulas, constants k ∈ K and formulas f (y) for some f ∈ F , such that f (y) may appear
at most once in every subformula of ψ of the form ψ1 ∧ ψ2.

Given a formula ϕ ∈ MSO(K, TΣ∗,F), we define the set Vf (ϕ) to be the set of all
first-order variables y such that f (y) appears in ϕ.

We define the syntactically restricted auxiliary logic sRMSO(K, TΣ∗,F) to be
the smallest class of formulas generated by the following rules.

1. If ϕ ∈ MSO(K, TΣ∗,F) is an atomic or a weighted atomic formula, then ϕ ∈
sRMSO(K, TΣ∗,F).

2. If ϕ,ψ ∈ sRMSO(K, TΣ∗,F), then ϕ ∨ ψ,∃y.ϕ,∃X.ϕ ∈ sRMSO(K, TΣ∗,F).

3. If ϕ ∈ sRMSO(K, TΣ∗,F) is unweighted, then ∀X.ϕ ∈ sRMSO(K, TΣ∗,F).

4. If ϕ ∈ sRMSO(K, TΣ∗,F) is almost unambiguous over y, then ∀y.ϕ ∈
sRMSO(K, TΣ∗,F).

5. If ϕ,ψ ∈ sRMSO(K, TΣ∗,F) and at least one of the following conditions hold

• Vf (ϕ) = ∅,

• Vf (ψ) = ∅,
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5 A Büchi Theorem for Weighted Timed Automata

• Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSO(K, TΣ∗,F).

Remark 5.8. If F is closed under pointwise product, we can replace condition 5 by the
following rule: if ϕ,ψ ∈ sRMSO(K, TΣ∗,F), then ϕ ∧ ψ ∈ sRMSO(K, TΣ∗,F).

Now, we want to show that for each formula ϕ ∈ sRMSO(K, TΣ∗,F), there is a weighted
timed automaton A such that ‖A‖ = [[ϕ]]. As mentioned before, this is done by induction.
However, due to our restriction on conjunction in sRMSO(K, TΣ∗,F), we will prove an
even stronger result, stated in the next theorem.

Given a formula ϕ ∈ MSO(K, TΣ∗,F), we let Func(ϕ) be the set of functions f ∈ F
such that ϕ contains a subformula f (y) for some first-order variable y. Given a weighted
timed automaton A, we let Func(A) be the set of functions f such that lwt(l) = f for
some location l in A.

Theorem 5.9. Let ϕ ∈ sRMSO(K, TΣ∗,F) be a syntactically restricted formula. Then
for each finite set V ⊇ Free(ϕ) there is some weighted timed automaton Aϕ over K, ΣV

and F such that

1. ‖Aϕ‖ = [[ϕ]]V ,

2. Func(Aϕ) ⊆ Func(ϕ) ∪ {1},
3. for each formula f (y) occurring in ϕ with y ∈ Free(ϕ), whenever lwt(l) = f for

some location l in Aϕ, then for each edge (l , (a, σ), φ, λ, l ′) in Aϕ we have σ(y) = 1.

The remainder of this section is devoted to the proof of this theorem. Before, we present
some notations and lemmas.

Lemma 5.10. The semantics [[ϕ]] of each unweighted formula ϕ ∈ MSO(K, TΣ∗,F)
takes only values in {0, 1}. In particular, [[ϕ]] = 1L(ϕ).

Proof. Follows from semiring axioms and idempotence of K. �

We say that two formulas ψ and ζ are equivalent, written ψ ≡ ζ, if [[ψ]]Free(ψ)∪Free(ζ) =
[[ζ]]Free(ψ)∪Free(ζ). The next lemma can be proved using the semiring axioms and commu-
tativity of K and Lemma 5.10.

Lemma 5.11. Let y be a first-order variable, k1, k2 ∈ K, and ψ1, ψ2, ψ3 ∈
MSO(K, TΣ∗,F) be unweighted. Then, the following equivalences hold:

1. ψ1 ∧ (ψ2 ∨ ψ3) ≡ (ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3)

2. ψ1 ∧ ψ2 ≡ ψ2 ∧ ψ1
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3. ψ1 ≡ 1 ∧ ψ1

4. ψ1 ≡ 1(y) ∧ ψ1

5. ψ1 ≡ ψ1 ∧ true

6. k1 ∧ k2 ≡ k1 · k2

Lemma 5.12. Let y be a first-order variable and ψ ∈ MSO(K, TΣ∗,F) be almost un-
ambiguous over y. Then there is a formula ζ ∈ MSO(K, TΣ∗,F) such that ζ is of
the form

∨
1≤i≤n fi(y) ∧ ki ∧ ψi for some n ∈ N, fi ∈ F , ki ∈ K and unweighted

ψi ∈ MSO(K, TΣ∗,F) for each i ∈ {1, ..., n}, and ζ ≡ ψ.

Proof. We transform every almost unambiguous formula into the appropriate form
using Lemma 5.11. First, transform every formula of the form ψ1 ∧ (ψ2 ∨ ψ3) into the
form (ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3) and every formula of the form (ψ1 ∨ ψ2) ∧ ψ3 into the form
(ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3). Then, each disjunct can be put in the right form using Lemma
5.11. �

Let V,V ′ be two finite sets of first- and second-order variables such that V ⊆ V ′. Let
π : ΣV ′ → ΣV be a projection defined by (a, σ′) 7→ (a, σ′|V).

Lemma 5.13. For each weighted timed automaton A over ΣV , there is a weighted timed
automaton AV ′ over ΣV ′ such that

1. ‖AV ′‖ = π̄−1(‖A‖)⊙ 1NV′ ,

2. Func(AV ′) = Func(A),

3. for each f ∈ F and each first-order variable y ∈ V, if each edge of the form
(l , (a, σ), φ, λ, l ′) in A with lwt(l) = f satisfies σ(y) = 1, then each edge of the
form (l1, (b, σ

′), φ′, λ′, l2) in AV ′ with lwt′(l1) = f satisfies σ′(y) = 1.

Proof. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over ΣV . We
define A′ = (L, C, E′, in, out, ewt′, lwt) over ΣV ′ as follows. For each edge e ∈ E of the
form (l , (a, σ), φ, λ, l ′) with (a, σ) ∈ ΣV , for each y ∈ V ′\V and for each i ∈ {0, 1}, there
is an edge e′ ∈ E′ of the form (l , (a, σ′), φ, λ, l ′) with (a, σ′) ∈ ΣV ′, where

σ′(z) =

{
σ(z) if z ∈ V,

i otherwise.

Moreover, ewt′(e′) = ewt(e). There are no other edges in E′. Let ANV′ be a weighted
timed automaton over ΣV ′ with ‖ANV′‖ = 1NV′ and Func(ANV′ ) = {1}. In this way,
ANV′ is non-interfering with any weighted timed automaton. Now, let AV ′ be the product
automaton of A′ and ANV′ as defined in the proof of Lemma 3.5. It is straightforward
to show that AV ′ satisfies conditions 1. to 3. �
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Now, we prove Theorem 5.9. The proof is done by induction on the construction of
sRMSO(K, TΣ∗,F)-formulas. We remark that we only show the claim for V = Free(ϕ).
For each other finite set V ′ of variables with V ′ ⊇ Free(ϕ), the claim follows from Lemma
5.13 together with the fact that [[ϕ]]V ′ = π̄−1([[ϕ]]) ⊙ 1NV′ . For the induction base, we
consider the atomic and weighted atomic formulas in sRMSO(K, TΣ∗,F).

Atomic and Weighted Atomic Formulas Let ϕ ∈ sRMSO(K, TΣ∗,F) be atomic.
If ϕ equals Pa(y), y < z, y = z, y ∈ X, or one of its negations, we can construct
a timed automaton A′

ϕ using the same approach as for formulas in MSO(Σ) (see e.g.
Thomas [102]). We define Aϕ to be the weighted timed automaton obtained from A′

ϕ by
adding weight functions in, out, ewt and lwt defined by in(l) = out(l) = 1 and lwt(l) = 1
for each location l and ewt(e) = 1 for each edge e. For ϕ not as above, the corresponding
weighted timed automata Aϕ are shown in Fig. 5.1. The idea behind the construction

of Aϕ for ϕ =
←−
d (D, y) ∼ c is as follows: Aϕ non-deterministically guesses when the last

edge labeled with a letter in Σ{y,D} with a 1 in the D-row is taken and resets the clock
variable at this edge. Then it verifies that whenever an edge is labeled by a letter with
a 1 in the y-row, the time distance to the last event labeled with a letter with a 1 in the
D-row satisfies ∼ c. This can be done by adding a corresponding clock constraint to this

edge. The idea for ϕ = ¬
←−
d (D, y) ∼ c is similar. If ϕ = f (y), Aϕ verifies that whenever

an edge is labeled with a letter such that there is a 1 in the y-row, then the source
location of this edge must be assigned the weight function f . All the other locations
must be assigned the weight function 1. Finally, it can be shown in a straightforward
manner that conditions 2. and 3. of Theorem 5.9 are satisfied.

Remark 5.14. In a previous paper [53], we defined weighted timed automata with initial
and final locations, i.e., we restricted the image of the weight functions in and out to
{0, 1}. However, it turns out that for this model it is not possible to find a weighted
timed automaton whose semantics corresponds to the formula k. The problems are due
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5.3 From Definability to Recognizability

to the empty timed word, for which one cannot construct a weighted timed automaton
with the appropriate behaviour in the general case, i.e., for each semiring and each family
of functions.

For the induction step, we have to consider all operators of our logic. We start with
disjunction and existential quantification.

Disjunction Let ψ, ζ ∈ sRMSO(K, TΣ∗,F) and assume ϕ = ψ ∨ ζ. Note that
Free(ϕ) = Free(ψ) ∪ Free(ζ) and thus Free(ψ) ⊆ Free(ϕ) and Free(ζ) ⊆ Free(ϕ). By
induction hypothesis, there are weighted timed automata Aψ over ΣFree(ϕ) and Aζ over
ΣFree(ϕ), respectively, satisfying condition 1. to 3. of Theorem 5.9. Let Aϕ be the
weighted timed automaton obtained from Aψ and Aζ as defined in the proof of Lemma
3.3. Hence, we have ‖Aϕ‖ = ‖Aψ‖+‖Aζ‖ and thus ‖Aϕ‖ = [[ϕ]]. Clearly, also conditions
2. and 3. hold.

Existential quantification Let ψ ∈ sRMSO(K, TΣ∗,F) and assume ϕ = ∃y.ψ. We
further let V = Free(ϕ) and V ′ = V ∪ {y} = Free(ψ). By induction hypothesis, there
is a weighted timed automaton Aψ over ΣV ′ satisfying conditions 1. to 3. of Theorem
5.9. Let p : ΣV ′ → ΣV be the projection that simply erases the y-row. Let Aϕ be the
weighted timed automaton over ΣV obtained from Aψ as defined in the proof of Lemma
3.7. Hence, we have ‖Aϕ‖ = p̄(‖Aψ‖). However, for each ((ā, σ), t̄) ∈ T (ΣV)∗, we also
have

(
p̄(‖Aψ‖), ((ā, σ), t̄)

)

=
(
p̄([[ψ]]V∪{y}), ((ā, σ), t̄)

)

=
∑

((ā,σ′),t̄)∈T (ΣV∪{y})∗

p((ā,σ′),t̄)=((ā,σ),t̄)

(
[[ψ]]V∪{y}, ((ā, σ

′), t̄)
)

⋆
=

∑

i∈dom(ā,t̄)

(
[[ψ]]V∪{y}, ((ā, σ[y → i], t̄)

)

=
(
[[∃y.ψ]]V , ((ā, σ), t̄)

)

where ⋆ uses the equivalences

p
(
(ā, σ′), t̄

)
= ((ā, σ), t̄) ⇔ σ′ = σ[y → i] for some i ∈ dom(ā, t̄)

and
σ is a valid (V, (ā, t̄))-assignment

⇔

σ[y → i] is a valid (V ∪ {y}, (ā, t̄))-assignment for every i ∈ dom(ā, t̄).
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5 A Büchi Theorem for Weighted Timed Automata

Hence, ‖Aϕ‖ = [[ϕ]]. It is obvious that condition 2. is satisfied. For showing condition
3., let f (z) be a subformula occuring in ϕ with z ∈ Free(ϕ). Thus, z 6= y. Since Aϕ is
obtained from Aψ by only removing the y-row from the labels of all edges, condition 3.
is satisfied.

The proof for the case ϕ = ∃X.ψ can be done analogously.

Conjunction Let ψ, ζ ∈ sRMSO(K, TΣ∗,F) and assume that one of the following
conditions hold:

• Vf (ψ) = ∅,

• Vf (ζ) = ∅,

• Vf (ψ) ∩ Vf (ζ) = ∅, Vf (ψ) ⊆ Free(ψ), and Vf (ζ) ⊆ Free(ζ),

Further assume ϕ = ψ ∧ ζ ∧
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z).

Note that Free(ϕ) = Free(ψ) ∪ Free(ζ) and thus Free(ψ) ⊆ Free(ϕ) and Free(ζ) ⊆
Free(ϕ). By induction hypothesis, there are weighted timed automata Aψ over ΣFree(ϕ)

and Aζ over ΣFree(ϕ) satisfying conditions 1. to 3. of Theorem 5.9.
We now distinguish between three cases.

(Case 1) We assume that Vf (ψ) = ∅. Hence, Func(ψ) = ∅. By induction hypothesis,
we thus have Func(Aψ) = {1}. This implies that Aψ is non-interfering with Aζ . We
let Aϕ be the product automaton of Aψ and Aζ as defined in the proof of Lemma 3.5.
Hence, we have ‖Aϕ‖ = ‖Aψ‖ ⊙ ‖Aζ‖ and thus ‖Aϕ‖ = [[ϕ]]. It is straightforward to
show that Aϕ also satisfies conditions 2. and 3.

(Case 2) We assume that Vf (ζ) = ∅. This case be done analogously to case 1.

(Case 3) Assume that both Vf (ψ) 6= ∅ and Vf (ζ) 6= ∅, and thus we may assume

(a) Vf (ψ) ∩ Vf (ζ) = ∅,

(b) Vf (ψ) ⊆ Free(ψ), and

(c) Vf (ζ) ⊆ Free(ζ).

Let χ =
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z) and put ̺ = ζ ∧ χ. Since Vf (χ) = ∅, the conditions

of case 2 are satisfied and hence there is a weighted timed automaton A̺ over ΣFree(ϕ)

satisfying conditions 1. to 3.

Next, we show that Aψ and A̺ are non-interfering. For this, let l be a location in Aψ
such that lwtψ(l) = f for some f ∈ F . By condition 2. of Theorem 5.9, there is some
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subformula f (y) occurring in ψ for some first-order variable y. By (b), we know that
y ∈ Free(ψ), and thus by condition 3. of Theorem 5.9, for each edge (l , (a, σ), φ, λ, l1) in
Aψ we have σ(y) = 1.

Now, let l ′ be a location in A̺ such that lwt̺(l
′) = f ′ for some f ′ ∈ F . By condition

2. of Theorem 5.9, there is some subformula f ′(z) occurring in ̺ for some first-order
variable z. Clearly, by definition of ̺, this subformula f ′(z) can only occur in ζ. Let
(l ′, (b, σ), φ′, λ′, l2) be an edge of A̺. By (b), we have z ∈ Free(ζ) ⊆ Free(̺), and thus
by condition 3. of Theorem 5.9, we have σ(z) = 1. We further know by (a) that y 6= z,
which implies σ(y) = 0. From this it follows that for l and l ′, there is no edge labeled
with a common letter in ΣFree(ϕ). Hence, from (l , l ′) there is no run into Lf (see Sect.
3), and thus Aψ and A̺ are non-interfering.

Finally, let Aϕ be the product automaton of Aψ and A̺ as defined in the proof of
Lemma 3.5. Clearly, we have

‖Aϕ‖ = [[ψ ∧ ζ ∧
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z)]].

It is straightforward to show that conditions 2. and 3. also hold.

Second-Order Universal Quantification Now, let ψ ∈ MSO(K, TΣ∗,F) be un-
weighted and assume ϕ = ∀X.ψ. Clearly, ϕ is also unweighted. By Lemma 5.10,
[[ϕ]] = 1L(ϕ). By Theorem 5.2, there is a timed automaton A such that L(A) = L(ϕ).
Let Aϕ be the weighted timed automaton obtained from A as defined in the proof of
Lemma 3.9.2. Then Aϕ satisfies conditions 1. to 3. of Theorem 5.9.

Before we come to first-order universal quantification, we introduce a normalization
technique and some notations.

Lemma 5.15. For every TA-recognizable timed language L ⊆ TΣ∗, there is a timed
automaton A′ such that L(A′) = L, and for each location l in A′ there is a unique a ∈ Σ
such that every edge (l , a′, φ, λ, l ′) in A′ satisfies a′ = a.

Proof. Let L ⊆ TΣ∗ be TA-recognizable over Σ. Then there is a timed automaton
A = (L,L0,Lf , C, E) such that L(A) = L. Define A′ = (L′,L′0,L

′
f , C, E

′), where

• L′ = L× Σ,

• L′0 = L0 × Σ,

• L′f = Lf × Σ,

• E′ = {((l , a), a, φ, λ, (l ′ , a′)) : (l , a, φ, λ, l ′) ∈ E, a′ ∈ Σ}.
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5 A Büchi Theorem for Weighted Timed Automata

Then we have L(A′) = L(A), which can be proved in a straightforward way. x+ y = z�

Let n ∈ N\{0}. We define Σ(n) = Σ×{1, ..., n}. Similarly to timed words over extended
alphabets of the form ΣV for some finite set V of variables, we write ((ā, µ), t̄) to denote
a timed word over Σ(n), where (ā, t̄) ∈ TΣ∗ and µ ∈ {1, ..., n}dom(ā,t̄). We define for
every ξ ∈ MSO(TΣ∗) the formula ξ̃ ∈ MSO(T (Σ(n))∗) by replacing in ξ every occurence
of Pa(y) by

∨
1≤j≤n P(a,j)(y).

Lemma 5.16. Let ξ ∈ MSO(TΣ∗) and V ⊇ Free(ξ). Then for every ((ā, µ, σ), t̄) ∈
T ((Σ(n))V)∗ with ((ā, σ), t̄) ∈ NV we have

((ā, σ), t̄) |= ξ if and only if ((ā, µ, σ), t̄) |= ξ̃.

First-Order Universal Quantification Let ψ ∈ MSO(K, TΣ∗,F) be almost unam-
biguous over y and assume ϕ = ∀y.ψ. By Lemma 5.12, we may assume that ψ is of the
form

ψ =
∨

1≤j≤n

fj(y) ∧ kj ∧ ψj

where n ∈ N, kj ∈ K, fj ∈ F , unweighted ψj ∈ MSO(K, TΣ∗,F) for each j ∈ {1, ..., n}.
Let W = Free(ψ) and V = Free(ϕ) =W\{y}. Recall that ψ1, ..., ψn can be considered

as formulas in MSO(TΣ∗). We may assume that ψ1, ..., ψn define a partition of NW . We
define L̃ ⊆ T ((Σ(n))V)∗ to be the set of timed words ((ā, µ, σ), t̄) in T ((Σ(n))V)∗ such
that ((ā, σ), t̄) ∈ NV , and for all i ∈ dom(ā, t̄) and j ∈ {1, ..., n} we have

µ(i) = j implies ((ā, σ[y → i]), t̄) |= ψj.

Notice that for every ((ā, σ), t̄) ∈ NV , there is a unique µ such that ((ā, µ, σ), t̄) ∈ L̃,
since (ψ1, ..., ψn) forms a partition of NW . Next, we prove that L̃ is TA-recognizable.
For this, consider the formula ζ ∈ MSO(T (Σ(n))∗)

ζ = ∀y.
∧

1≤j≤n

∧

a∈Σ

(
P(a,j)(y) −→ ψ̃j

)
.

Let ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)∗ such that ((ā, σ), t̄) ∈ NV . Using the semantics of
MSO(T (Σ(n))∗), one can show that ((ā, µ, σ), t̄) |= ζ if and only if for every i ∈ dom(ā, t̄)

and j ∈ {1, ..., n} we have that µ(i) = j implies ((ā, µ, σ[y → i]), t̄) |= ψ̃j. This, by
Lemma 5.16, holds if and only if ((ā, σ[y → i]), t̄) |= ψj . Thus, ((ā, µ, σ), t̄) |= ζ if and

only if ((ā, µ, σ), t̄) ∈ L̃, and we have L(ζ) = L̃. By Theorem 5.2, L̃ is TA-recognizable
over (Σ(n))V .

Next, we will use the information encoded in µ to build a weighted timed automaton
over K, (Σ(n))V and F . Let Ã = (L,L0,Lf , C, E) be a timed automaton such that

L(Ã) = L̃. By Lemma 5.15, there is a timed automaton A′ = (L′,L′0,L
′
f , C, E

′) such
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that L(A′) = L(Ã), the locations in A′ are elements in L × (Σ(n))V , and for each
(l , (a, b, σ)) ∈ L′, every outgoing edge is labeled with (a, b, σ). Observe that this latter
fact is crucial for assigning the weight functions to the locations in a proper way. Now
define A = (L′, C, E′, in, out, ewt, lwt) by

• in(l) = 1 if l ∈ L′0, and in(l) = 0 otherwise,

• out(l) = 1 if l ∈ L′f , and out(l) = 0 otherwise,

• ewt
(
(l , (a, b, σ)), (a, b, σ), φ, λ, (l ′ , (a′, b′, σ′))

)
= kb for each(

(l , (a, b, σ)), (a, b, σ), φ, λ, (l ′ , (a′, b′, σ′))
)
∈ E′,

• lwt
(
(l , (a, b, σ))

)
= fb for every (l , (a, b, σ)) ∈ L′.

Note that Func(A) = {f1, ..., fn}. We also observe that for each w = ((ā, µ, σ), t̄) ∈
T ((Σ(n))V)∗, and for each run r of A on w with rwt(r) 6= 0 we have

rwt(r) =
∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i). (5.1)

Consider the renaming p : (Σ(n))V → ΣV defined by (a, b, σ) 7→ (a, σ) for each
(a, b, σ) ∈ (Σ(n))V . We show that p̄(‖A‖) = [[∀y.ψ]]. First, for every ((ā, σ), t̄) ∈ NV

and the unique µ such that ((ā, µ, σ), t̄) ∈ L̃, we have
(
p̄(‖A‖), ((ā, σ), t̄)

)
=

(
‖A‖, ((ā, µ, σ), t̄)

)

⋆
=

∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i)

=
∏

i∈dom(ā,t̄)

(
[[ϕ]]W , ((ā, σ[y → i]), t̄)

)

=
(
[[∀y.ϕ]], ((ā, σ), t̄)

)

where ⋆ is due to (1) and idempotence of K. For every ((ā, σ), t̄) 6∈ NV , we obtain 0 for
both

(
p̄(‖A‖), ((ā, σ), t̄)

)
and

(
[[∀y.ϕ]], ((ā, σ), t̄)

)
. Thus, p̄(A) = [[∀y.ψ]].

Finally, let Aϕ be the weighted timed automaton over ΣV obtained from A as defined
in the proof of Lemma 3.7. Hence, we have ‖Aϕ‖ = p̄(‖A‖) = [[ϕ]]. Since the construction
of Aϕ according to Lemma 3.7 does not add any location weight functions, condition 2.
is satisfied. Condition 3 is trivially satisfied, since the set of subformulas f (z) occurring
in ϕ with z ∈ Free(ϕ) is empty. This finishes the proof of Theorem 5.9.

�

We proved that each formula ϕ ∈ sRMSO(K, TΣ∗,F) is recognizable by a weighted
timed automaton. Now, we give the definition of the syntactically restricted

weighted relative distance logic, denoted by sRL
←−
d (K,Σ,F). It is defined as the

smallest class of formulas containing all formulas generated by the next two rules.
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1. If ϕ ∈ sRMSO(K, TΣ∗,F), then ϕ ∈ sRL
←−
d (K,Σ,F).

2. If ϕ ∈ sRL
←−
d (K,Σ,F), then ∃D.ϕ ∈ sRL

←−
d (K,Σ,F).

Altogether, using the same lines of argumentation as in the proof of Theorem 5.9 in the

case of existential quantification, we can show that if the semantics of ϕ ∈ sRL
←−
d (K,Σ,F)

is F-recognizable over ΣFree(ϕ), so is the semantics of ∃D.ϕ F-recognizable over
ΣFree(∃D.ϕ). Altogether, we obtain the following theorem, which corresponds to one
direction of a Büchi theorem for the class of F-recognizable timed series.

Theorem 5.17. Let K be idempotent and commutative. If ϕ ∈ sRL
←−
d (K,Σ,F), then

[[ϕ]] is F-recognizable over ΣFree(ϕ).

5.4 From Recognizability to Definability

In this section, we show that the behaviour of each weighted timed automaton over K,

Σ and F can be defined by a sentence in sRL
←−
d (K,Σ,F). For this, we extend the proof

developed by Droste and Gastin for series to the timed series.

Theorem 5.18. Let K be idempotent and commutative. Each F-recognizable timed se-

ries is sRL
←−
d (K,Σ,F)-definable.

Proof. Let T : TΣ∗ → K be F-recognizable. Then there is a weighted timed
automaton A = (L, C, E, in, out, ewt, lwt) such that ‖A‖ = T . We choose an enu-
meration (x1, ..., xm) of C together with an enumeration (e1, ..., en) of E and assume
ei = (li, ai, φi, λi, l

′
i). Let D̄ = D1, ...,Dm, where Di stands for the clock variable xi

for each i ∈ {1, ...,m}, and let Ȳ = Y1, ..., Yn, where Yj stands for the edge ej for each
j ∈ {1, ..., n}. We define an unweighted formula ψ(D̄, Ȳ ) ∈ MSO(K, TΣ∗,F) describing
the runs of A.

First, we define

ψpartition := ∀y.
∨

1≤i≤n

(
y ∈ Yi ∧

∧

1≤j≤n
i6=j

¬(y ∈ Yj)
)

ψlabel := ∀y.
∧

a∈Σ

(
Pa(y) −→ (

∨

1≤i≤n
ai=a

y ∈ Yi)
)

ψconsistent := ∀y.∀z.(z = y + 1) −→
∨

1≤i,j≤n:

l′
i
=lj

(y ∈ Yi ∧ z ∈ Yj)

ψtest := ∀y.
∧

1≤i≤n


y ∈ Yi −→

∧

(xj∼c)∈φi

←−
d (Dj , y) ∼ c



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ψreset :=
∧

1≤i≤m

∀y.y ∈ Di ←→
∨

1≤j≤n
xi∈λj

y ∈ Yj

where y ≤ z := y < z∨ y = z, (z = y+1) := y ≤ z∧¬(z ≤ y)∧∀z′.
(
(z′ ≤ y)∨ (z ≤ z′)

)
.

Finally, put ψ(D̄, Ȳ ) = ψpartition ∧ ψlabel ∧ ψconsistent ∧ ψtest ∧ ψreset.

By Lemma 5.10, [[ψ(D̄, Ȳ )]] = 1L(ψ(D̄,Ȳ )). We define V = {D1, ...,Dm, Y1, ..., Yn} and

observe that Free(ψ(D̄, Ȳ )) = V. Let w = (ā, t̄) ∈ TΣ∗. We show that there is a bijective
correspondence between the set of runs of A on w and the set of (V, w)-assignments σ
with ([[ψ(D̄, Ȳ )]], ((ā, σ), t̄)) = 1.

Construction 1 Let r = (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|) be a run of A on w. We

define the (V, w)-assignment σr by σr(Dj) = {i : xj ∈ λi} and σr(Yj) = {i : ei = ej}.
Intuitively, σr(Dj) contains exactly the positions i ∈ dom(w), where the clock xj is reset,
and σr(Yj) contains exactly the positions i ∈ dom(w) that arose after the edge ej has
been executed. Then we have

(
[[ψ(D̄, Ȳ )]], ((ā, σr), t̄)

)
= 1.

Construction 2 Let σ be a valid (V, w)-assignment such that
(
[[ψ(D̄, Ȳ )]], ((ā, σ), t̄)

)
=

1. Using σ, we construct a unique run rσ = (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|) of A on

w as follows:

• δi = ti − ti−1 for each i ∈ dom(w),

• ei = ej such that i ∈ σ(Yj) for each i ∈ dom(w). Note that due to ψpartition, there
is exactly one such Yj.

It can be seen very easily, that rσ is a run of A on w. This establishes the bijective
correspondence mentioned above. Then, for every valid (V, w)-assignment σ, we have(
[[ψ(D̄, Ȳ )]], ((ā, σ), t̄)

)
= 1 if there is a run of A on w, and

(
[[ψ(D̄, Ȳ )]], ((ā, σ), t̄)

)
= 0

otherwise.

Now, we “add weights” to ψ(D̄, Ȳ ) to obtain a formula ξ(D̄, Ȳ ) whose semantics cor-
responds to the running weight of a run of A on (ā, t̄). Define

ξ(D̄, Ȳ ) = ψ(D̄, Ȳ ) ∧ ∃y.
(
∀z.y ≤ z ∧

∨

ei∈E

y ∈ Yi ∧ in(li)
)

∧
∧

ei∈E

∀y.
(
¬(y ∈ Yi) ∨ [y ∈ Yi ∧ lwt(li)(y) ∧ ewt(ei)]

)

∧ ∃y.
(
∀z.z ≤ y ∧

∨

ei∈E

y ∈ Yi ∧ out(l ′i)
)
.
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5 A Büchi Theorem for Weighted Timed Automata

Now, in general, for every k ∈ K, f ∈ F and valid (V, w)-assignment, we have

(
[[¬(y ∈ X) ∨ (y ∈ X ∧ f (y) ∧ k))]]V , ((ā, σ), t̄)

)
=

{
f (tσ(y) − tσ(y)−1) · k if σ(y) ∈ σ(X)

1 otherwise

and thus

(
[[¬(y ∈ X) ∨ (y ∈ X ∧ f (y) ∧ k))]]V , ((ā, σ), t̄)

)
= (f (tσ(y) − tσ(y)−1) · k)

|σ(X)|.

This will be used in the following. Let r = (l0, ν0)
δ1−→

e1−→ ...
δ2−→

e|w|
−→ (l|w|, ν|w|) be a run

of A on w. Further, we let σr be the associated (V, w)-assignment (see construction 1
above). Then, we have

(
[[ξ(D̄, Ȳ )]], ((ā, σr), t̄)

)

= in(l0) ·


 ∏

1≤i≤|w|

(
lwt(li)(tσ(y) − tσ(y)−1) · ewt(ei)

)|σr(Yi)|

 · out(l|w|)

= rwt(r).

Notice that due to the subformulas starting with existential first-order quantification,
we have

(
[[ψ(D̄, Ȳ )]], ε

)
= 0. Thus, we need to construct a sentence that is equivalent to

the behaviour of A for ε. This can be done as in the classical case, i.e., for instance we
can choose ϕ = (‖A‖, ε) ∧ ∀y.¬(y ≤ y). For w ∈ Σ+, we obtain

(
[[∀y.¬(y ≤ y)]], w

)
= 0,

whereas
(
[[∀y.¬(y ≤ y)]], ε

)
= 1 since an empty product is 1 by convention. Hence,(

[[ϕ]], ε
)
= (‖A‖, ε). Now, define ζ = ∃D1...∃Dm∃Y1...∃Yn.ξ(D̄, Ȳ ). Observe that ζ ∈

sRL
←−
d (K,Σ,F). We further have

(
[[ζ]], ε

)
=

(
[[ϕ]], ε

)
= (‖A‖, ε). Using the bijective

correspondence from above, we obtain for every (ā, t̄) ∈ TΣ+

(
[[ζ]], ((ā, t̄))

)
=

∑

σ
(V,(ā,t̄))−assignment

(
[[ξ]], ((ā, σ), t̄)

)

=
∑

r
run of A

(
[[ξ]], ((ā, σr), t̄)

)

=
∑

r
run of A

rwt(r)

= (‖A‖, (ā, t̄)).

x+ y = z �

As a consequence of Theorems 5.17 and 5.18, we obtain a Büchi theorem for the class of
F-recognizable timed series over idempotent and commutative semirings.
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Theorem 5.19. Let K be idempotent and commutative and F contain 1. Each timed

series T : TΣ∗ → K is F-recognizable if and only if T is sRL
←−
d (K,Σ,F)-definable.

We remark that the respective transformations can be done effectively provided that
the operations of K and F are given effectively. For the direction from weighted timed

automata to sentences in sRL
←−
d (K,Σ,F) this claim is obvious. For the other direction, we

point out that the only critical point in the proof is the construction of a weighted timed
automaton recognizing [[∀y.ϕ]] if ϕ is almost unambiguous. However, by Lemma 5.12
we can transform each almost unambiguous formula into the form

∨
1≤i≤n fi(y)∧ ki ∧ψi

with fi ∈ F , ki ∈ K and unweighted ψi ∈ MSO(K, TΣ∗,F) for each i ∈ {1, ..., n} and
some n ∈ N as it is required in the corresponding construction.

5.5 Generalizations to Arbitrary Semirings

In this section, we explain how we can generalize Theorem 5.19 to non-idempotent
semirings. Later on, we will indicate how we skip the restriction on the semiring being
commutative.

In the following, let K be a commutative semiring, not necessarily being idem-
potent. In the last section, we used the idempotence of K in two crucial steps. First, in
Lemma 5.10, where we claimed that each unweighted formula ψ ∈ MSO(K, TΣ∗,F) takes
only values in {0, 1}. This no longer holds if K is not idempotent. We thus cannot use
Lemma 5.10 to show Lemmas 5.11 and 5.12. Notice that if we exclude the usage of dis-
junction and existential quantification in an unweighted formula ϕ ∈ MSO(K, TΣ∗,F),
then the semantics of ϕ takes only values in {0, 1}. However, not every unweighted for-
mula can be transformed into a language equivalent such formula, due to the syntactical
restriction on negation. Instead, we will introduce syntactically unambiguous formulas.

Second, we used the idempotence of K in the proof of universal first-order quantifica-
tion. We used that for each timed word w, the running weights of all runs of A on w
are the same, and thus, by idempotence of K, the behaviour of A on w is the same as
the running weight of an arbitrary run of A on w. Notice that if there is exactly one
run of A on w, i.e., A is unambiguous, then the behaviour of A on w is the same as the
running weight of this run. However, as we have noted in Sect. 2.1, the class of unam-
biguously TA-recognizable timed languages is a strict subclass of TA-recognizable timed
languages. For this reason, we focus on a subclass of timed languages whose elements
have a bounded variability. Then we take advantage of the fact that every such timed
language is deterministically (and thus, unambiguously) TA-recognizable.

Bounded Variability of Timed Languages The notion of bounded variability of
timed words has been introduced by Wilke [107]. Intuitively, the variability of a timed
word corresponds to the maximum number of events that may occur within one time
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5 A Büchi Theorem for Weighted Timed Automata

unit. When bounding the variability of timed words, we can always construct deter-

ministic timed automata. Using this, Wilke showed that L
←−
d (Σ) is fully decidable over

the class of timed languages with bounded variability (as opposed to the class of all
timed languages) [107]. The restriction to timed languages with bounded variability is a
reasonable assumption as practically any system can only handle a bounded number of
tasks within a time unit. Recently, another positive decidability result concerning MTL
model checking was shown for this particular class of timed languages [66].

Let M ⊆ TΣ∗ be a set of timed words. We say that L ⊆ TΣ∗ is TA-recognizable over
Σ relatively to M if there is a timed automaton A over Σ such that L = L(A) ∩M .
Let w = (a1, t1)...(ak, tk) ∈ TΣ∗. The variability of w, denoted by var(w), is defined as
sup{b + 1 : ∃i.1 ≤ i ≤ k − b and ti+b − ti < 1}. Intuitively, the variability of a timed
word gives the maximum number of events in a unit time interval. We say that w is of
bounded variability b for some b ∈ N if the variability of w is less than or equal to b.
We use TbΣ

∗ to denote the set {w ∈ TΣ∗ : var(w) ≤ b} of all timed words of bounded
variability b. By bounding the variability of a timed word we fix the maximum number
of events in a unit time interval.

Remark 5.20. In the literature, there are also other restrictions on the occurence of
events within timed words, the most known of which is the restriction of being non-
Zeno. A timed word is non-Zeno if the sequence of timestamps of the word is diverging.
Hence, every finite word is non-Zeno and thus this notion is weaker than that of bounded
variability. The restriction of being non-Berkeley for some positive real number δ has
been introduced by Furia and Rossi [66] and means that between any two events more
than δ time units must pass. For a comparison between these three restrictions see the
paper of Furia and Rossi.

In the following, we fix a bound b ∈ N.

Proposition 5.21 ([106]). 1. If L ⊆ TΣ∗ is TA-recognizable over Σ, we can ef-
fectively construct a deterministic timed automaton A over Σ such that L(A) =
L ∩ TbΣ

∗.

2. The class of TA-recognizable timed languages over Σ relatively to TbΣ
∗ is closed

under boolean operations, renamings and inverse renamings.

3. The set TbΣ
∗ is L

←−
d (Σ)-definable.

We let ∃D1...∃Db.ϕb denote a sentence in L
←−
d (Σ) defining TbΣ

∗. For instance, ϕb may
be the formula

ϕb =




(1 ∈ D1 ∧ 2 ∈ D2 ∧ ... ∧ b ∈ Db)
∧∧

1≤i≤b ∀y.(y ∈ Di ←→ (y + b) ∈ Di)

∧∧
1≤i≤b ∀y.(y ∈ Di −→

←−
d (Di, y) < 1)



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where 1, 2, ..., b stand for the first, second,..., b-th position in w, and (y + b) stands for
the b-th position in w after y. These terms can easily expressed in MSO(TΣ∗).

Syntactically Unambiguous Formulas We define for each unweighted formula
ϕ ∈ MSO(K, TΣ∗,F) a language equivalent formula ψ that has at most one assign-
ment evaluating a timed word to 1. Since in general there may be more than one such
assignment, we choose the first such assignment, in the following sense: if y is a free
first-order variable, then we choose the smallest position with a one in the y-row; if X is
a free second-order variable, then we choose the set of the smallest positions with a one
in the X-row.

Let ϕ, ξ ∈ MSO(K, TΣ∗,F) be unweighted. We define the formulas ϕ+, ϕ−, ϕ
+
−→ ξ

and ϕ
+
←→ ξ inductively as follows.

1. If ϕ is of the form Pa(y), y < z, y = z, y ∈ X,
←−
d (D, y) ∼ c, then ϕ+ = ϕ and

ϕ− = ¬ϕ.

2. If ϕ = ¬ψ, then ϕ+ = ψ− and ϕ− = ψ+.

3. If ϕ = ψ ∨ ζ, then ϕ+ = ψ+ ∨ (ψ− ∧ ζ+) and ϕ− = ψ− ∧ ζ−.

4. If ϕ = ψ ∧ ζ, then ϕ− = ψ− ∨ (ψ+ ∧ ζ−) and ϕ+ = ψ+ ∧ ζ+.

5. If ϕ = ∃y.ψ, then ϕ+ = ∃y.(ψ+(y) ∧ ∀z.(z < y ∧ ψ(z))−) and ϕ− = ∀y.ψ−.

6. If ϕ = ∀y.ψ, then ϕ− = ∃y.(ψ−(y) ∧ ∀z.(y ≤ z ∨ ψ(z))+) and ϕ+ = ∀y.ψ+.

7. ϕ
+
−→ ξ = ϕ− ∨ (ϕ+ ∧ ξ+)

8. ϕ
+
←→ ξ = (ϕ+ ∧ ξ+) ∨ (ϕ− ∧ ξ−)

9. For second-order variables X,Y , we define

X = Y = ∀y.(y ∈ X
+
←→ y ∈ Y ),

X < Y = ∃y.(y ∈ Y ∧ ¬(y ∈ X) ∧ ∀z.[z < y
+
−→ (z ∈ X

+
←→ z ∈ Y )]),

X ≤ Y = (X = Y ) ∨ (X < Y ).

10. If ϕ = ∃X.ψ, then ϕ+ = ∃X.(ψ+(X) ∧ ∀Y.(Y < X ∧ ψ(Y ))−) and ϕ− = ∀X.ψ−.

11. If ϕ = ∀X.ψ, then ϕ− = ∃X.(ψ−(X) ∧ ∀Y.(X ≤ Y ∨ ψ(Y ))+) and ϕ+ = ∀X.ψ+.

We define the class of syntactically unambiguous formulas in MSO(K, TΣ∗,F) as the
smallest class of formulas containing all formulas of the form

• ϕ+, ϕ−, ϕ
+
−→ ξ and ϕ

+
←→ ξ if ϕ, ξ ∈ MSO(K, TΣ∗,F) are unweighted, and
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5 A Büchi Theorem for Weighted Timed Automata

• ∀y.ϕ,∀X.ϕ or ϕ ∧ ψ if it contains ϕ and ψ.

We say that a formula ϕ ∈ MSO(K, TΣ∗,F) is syntactically unambiguous of bounded
variability b if it is of the form ψ ∧ (ϕb)

+ for some syntactically unambiguous formula
ψ. Similarly, we say that ϕ is almost unambiguous over y of bounded variability b if it
is in the disjunctive and conjunctive closure of syntactically unambiguous formulas of
bounded variability b, constants k ∈ K and formulas f (y) for some f ∈ F , such that
f (y) may appear at most once in every subformula of ϕ of the form ϕ1 ∧ ϕ2.

We define the syntactically restricted auxiliary logic of bounded variability
b sRMSOb(K, TΣ∗,F) to be the smallest class of formulas generated by the following
rules.

1. If ϕ ∈ MSO(K, TΣ∗,F) is an atomic or a weighted atomic formula, then ϕ ∈
sRMSOb(K, TΣ∗,F).

2. If ϕ,ψ ∈ sRMSOb(K, TΣ∗,F), then ϕ ∨ ψ,∃y.ϕ,∃X.ϕ ∈ sRMSOb(K, TΣ∗,F).

3. If ϕ ∈ sRMSOb(K, TΣ∗,F) is syntactically unambiguous of bounded variability b,
then ∀X.ϕ ∈ sRMSOb(K, TΣ∗,F).

4. If ϕ ∈ sRMSOb(K, TΣ∗,F) is almost unambiguous over y of bounded variability b,
then ∀y.ϕ ∈ sRMSOb(K, TΣ∗,F).

5. If ϕ,ψ ∈ sRMSOb(K, TΣ∗,F) and at least one of the following conditions holds

• Vf (ϕ) = ∅,

• Vf (ψ) = ∅,

• Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSOb(K, TΣ∗,F).

Note that the definition of sRMSOb(K, TΣ∗,F) differs from the definition of
sRMSO(K, TΣ∗,F) only in rules 3. and 4. Next, we want to prove the following theorem.

Theorem 5.22. Let ϕ ∈ sRMSOb(K, TΣ∗,F). Then for each finite set V ⊇ Free(ϕ)
there is some weighted timed automaton Aϕ over K, ΣV and F such that

1. ‖Aϕ‖ = [[ϕ]]V ,

2. Func(Aϕ) ⊆ Func(ϕ) ∪ {1},
3. for each formula f (y) occurring in ϕ with y ∈ Free(ϕ), whenever lwt(l) = f for

some location l in Aϕ, then for each edge (l , (a, σ), φ, λ, l ′) in Aϕ we have σ(y) = 1.
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The proof is along the lines of the proof of Theorem 5.9. However, we have to give new
proofs for both universal quantifiers. We start with some lemmas. By induction it is
easy to show:

Lemma 5.23. Let ϕ ∈ MSO(K, TΣ∗,F) be unweighted. Then we have

1. L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ),

2. [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

Lemma 5.24. Let ψ1, ψ2 ∈ MSO(K, TΣ∗,F) be unweighted. Then the following equiv-
alences hold.

1. ψ−
1 ≡ (ψ−

1 )+,

2. ψ+
1 ∧ ψ

+
2 ≡ (ψ1 ∧ ψ2)

+.

Second-Order Universal Quantification Let ψ ∈ MSO(K, TΣ∗,F) be syntactically
unambiguous of bounded variability b and assume ϕ = ∀X.ψ. Hence, ψ is of the form
ζ∧(ϕb)

+ for some syntactically unambiguous ζ. Note thatX does not occur in ϕb. Hence,
we have ∀X.(ζ ∧ (ϕb)

+) ≡ ∀X.ζ ∧ (ϕb)
+, and thus ϕ is also syntactically unambiguous

of bounded variability b. We consider the case where ζ is of the form η+ for some
unweighted η ∈ MSO(K, TΣ∗,F). The other cases can be reduced to this case. By
definition of syntactically unambiguity and Lemma 5.24, we obtain

∀X.η+ ∧ (ϕb)
+ ≡ (∀X.η)+ ∧ (ϕb)

+ ≡ (∀X.η ∧ ϕb)
+.

By Lemma 5.23, [[(∀X.η ∧ ϕb)
+]] = 1L(∀X.η∧ϕb ). We also have

L(∀X.η ∧ ϕb) = L(∀X.η) ∩ L(ϕb) = L(∀X.η) ∩ TbΣ
∗.

By Theorem 5.2, L(∀X.ζ) is TA-recognizable over ΣFree(ϕ). Hence, by the first claim of
Prop. 5.21, there is a deterministic timed automaton A such that L(A) = L(∀X.ζ ∧ϕb).
Let Aϕ be the weighted timed automaton obtained from A as defined in the proof of
Lemma 3.9.1. Then Aϕ satisfies conditions 1. to 3. of Theorem 5.22.

For proving Theorem 5.22 for first-order universal quantification, we have to consider
a modification of Lemma 5.15.

Lemma 5.25. For every unambiguously TA-recognizable timed language L ⊆ TΣ∗ over
Σ, there is an unambiguous timed automaton A′ over Σ such that L(A′) = L and for
each location l in A′ there is a unique a ∈ Σ such that every edge (l , a′, φ, λ, l ′) in A′

satisfies a′ = a.
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Proof (sketch). The construction of A′ is very similar to that in the proof of Lemma
5.15. However, for maintaining unambiguity ofA′, we let L′f be a singleton set containing
a new location lf , and we add new edges of the form (l , a, φ, λ, lf ) for each (l , a, φ, λ, l ′)
such that l ′ ∈ Lf . This must be done to guarantee the uniqueness of the successful runs,
because if we let L′f = Lf × Σ (as in the proof of Lemma 5.15), we could not conclude
that the last location (l , a) of a successful run is uniquely determined by the subsequent
letter as it is for the other locations in the run. �

First-Order Universal Quantification The proof is along the lines of the proof of
Theorem 5.9. However, we have to show that L̃ is unambiguously TA-recognizable in
order to apply Lemma 5.25.

Let ψ ∈ MSO(K, TΣ∗,F) be almost unambiguous over y of bounded variability b and
assume ϕ = ∀y.ψ. We may assume that ψ is of the form

ψ =
∨

1≤j≤n

fj(y) ∧ kj ∧ ψ
+
j ∧ (ϕb)

+

where n ∈ N, kj ∈ K, fj ∈ F , unweighted ψj ∈ MSO(K, TΣ∗,F) for each j ∈ {1, ..., n}.
Let W = Free(ψ) and V = Free(ϕ) = W\{y}. For each i ∈ {1, ..., n}, we have

ψ+
j ∧ (ϕb)

+ ≡ (ψj ∧ϕb)
+ by Lemma 5.24, and thus [[ψ+

j ∧ (ϕb)
+]] = 1L(ψj∧ϕb) by Lemma

5.23. We define L̃ ⊆ T ((Σ(n))V)∗ to be the set of timed words ((ā, µ, σ), t̄) in T ((Σ(n))V)∗

such that ((ā, σ), t̄) ∈ NV , and for all i ∈ dom(ā, t̄) and j ∈ {1, ..., n} we have

µ(i) = j implies ((ā, σ[y → i]), t̄) |= ψj ∧ ϕb

We prove that L̃ is unambiguously TA-recognizable. For this, consider the formula
ζ ∈ MSO(T (Σ(n))∗)

ζ = ∀y.
∧

1≤j≤n

∧

a∈Σ

(
P(a,j)(y) −→ ψ̃j ∧ ϕ̃b

)
.

Let ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)∗ such that ((ā, σ), t̄) ∈ NV . Then we have

((ā, µ, σ), t̄) |= ζ

⇔ ∀i ∈ dom(ā, t̄),∀j ∈ {1, ..., n}.µ(i) = j ⇒ ((ā, µ, σ[y → i]), t̄) |= ψ̃j ∧ ϕ̃b

⇔ ∀i ∈ dom(ā, t̄),∀j ∈ {1, ..., n}.µ(i) = j ⇒ ((ā, σ[y → i]), t̄) |= ψj ∧ ϕb

⇔ ((ā, µ, σ), t̄) ∈ L̃.

Now, observe that for each i ∈ dom(ā, t̄) there exists some j ∈ {1, .., n} and some a ∈ Σ
such that P(a,j)(y) holds. This implies that ϕb always holds. Hence, ζ is equivalent to

ζ ′ ∧ ϕb, where ζ ′ = ∀y.
(∧

1≤j≤n

∧
a∈Σ(P(a,j)(y) −→ ψ̃j)

)
. Now, Theorem 5.2 implies
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that L(ζ ′) is TA-recognizable over (Σ(n))V . But then, by Prop. 5.21, we know that there
is a deterministic timed automaton Ã recognizing L(ζ) = L̃.

From Ã, we construct an unambiguous timed automaton A′ using Lemma 5.25. From
this, we can define an unambiguous weighted timed automaton A as described in Section
5.3. Since A is unambiguous, we have

(
‖A‖, ((ā, µ, σ), t̄)

)
=

∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i)

for each ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)∗. Then we can proceed exactly as in Section 5.3. This
finishes the proof of Theorem 5.22.

�

We define the syntactically restricted weighted relative distance logic of

bounded variability b, denoted by sRL
←−
d b(K,Σ,F) to be the smallest class of for-

mulas containing all formulas generated by the next two rules.

1. If ϕ ∈ sRMSOb(K, TΣ∗,F), then ϕ ∈ sRL
←−
d b(K,Σ,F).

2. If ϕ ∈ sRL
←−
d b(K,Σ,F), then ∃D.ϕ ∈ sRL

←−
d b(K,Σ,F).

For the other direction, i.e., that every F-recognizable timed series can be defined by

a sentence in sRL
←−
d b(K,Σ,F), we can adopt the proof of Theorem 5.18 by

• considering the syntactically unambiguous version of ψ(D̄, Ȳ ), and

• combining formulas with ϕb whenever it is needed.

We obtain a Büchi theorem for the class of F-recognizable timed series over commu-
tative semirings.

Theorem 5.26. Let K be commutative and F contain 1. Each timed series T : TΣ∗ →
K is F-recognizable if and only if T is sRL

←−
d b(K,Σ,F)-definable.

Remark 5.27. The problems we solved here are due the fact that - unlike recognizable
languages in the classical framework of formal languages - TA-recognizable timed lan-
guages are not determinizable (see Ex. 2.3). In the literature, one can find weighted
MSO logics for other types of languages that in general are also not determinizable. In
the setting of picture languages, Fichtner [85, 63, 62] introduces first-order step func-
tions (rather than recognizable step functions as in [48]), and exploits the fact that every
first-order definable picture language can be recognized by an unambiguous (rather than
deterministic) picture automaton [85]. The same approach is followed by Bollig and
Meinecke[20] for Mazurkiewicz traces running over directed acyclic graphs. Here, we re-
strict the application of first-order quantification to the subclass of timed languages with
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5 A Büchi Theorem for Weighted Timed Automata

bounded variability for which it is known that it is determinizable [107]. However, there
are also other characterizations of determinizable subclasses of TA-recognizable timed
languages, e.g. timed languages recognizable by event-clock automata [7], or timed lan-
guages characterizable by a right morphism from the timed monoid into a bounded subset
of itself [82]. Hence, it may be possible to find other restrictions on the application of the
universal first-order quantifier than the restriction we propose here. Moreover, it would
be interesting, also for the present context, to have an alternative characterization of
unambiguously TA-recognizable timed languages.

Next, we explain how we can even skip the restriction on K being commutative.

In the following, let K be a semiring, not necessarily being commutative.
We follow the approach of Droste and Gastin [49], and only present the main ideas.
Commutativity of K mainly is needed for showing closure of the class of F-recognizable
timed series under the Hadamard product (Lemma 3.5). In the proof, we exploit the
fact that the weights occuring in the runs of A1 commute element-wise with the weights
occuring in the runs of A2. However, commutativity of K is a sufficient but not a
necessary condition for the element-wise commutativity of weights occuring in the runs
of weighted timed automata. For instance, the weights occuring in a weighted timed
automaton over K commute element-wise with the weights occuring in a weighted timed
automaton over the semiring which is generated by {0, 1} ⊆ K.

For the proof of the following lemma we may proceed as in the proof of Lemma 3.5.

Lemma 5.28. Let K1,K2 be two subsemirings of K such that K1 commutes element-
wise with K2. If T1 is recognizable by a weighted timed automaton A1 over K1, Σ and
F , and T2 is recognizable by a weighted timed automaton A2 over K2, Σ and F , and A1

and A2 are non-interfering, then T1 ⊙ T2 is F-recognizable.

Let ϕ ∈ L
←−
d (K,Σ,F). We define wgt(ϕ) = wgtE(ϕ) ∪ wgtF (ϕ), where wgtE(ϕ) =

{k : k is a subformula of ϕ} and wgtF (ϕ) = {f (δ) : f (y) is a subformula of ϕ, δ ∈ R≥0}.
We define the syntactically restricted auxiliary logic of bounded variability b
for non-commutative semirings sRMSObnc(K, TΣ∗,F) to be the smallest class of
formulas generated by the following rules.

1. If ϕ ∈ MSO(K, TΣ∗,F) is an atomic or a weighted atomic formula, then ϕ ∈
sRMSObnc(K, TΣ∗,F).

2. If ϕ,ψ ∈ sRMSObnc(K, TΣ∗,F), then ϕ ∨ ψ,∃y.ϕ,∃X.ϕ ∈ sRMSObnc(K, TΣ∗,F).

3. If ϕ ∈ sRMSObnc(K, TΣ∗,F) is syntactically unambiguous of bounded variability
b, then ∀X.ϕ ∈ sRMSObnc(K, TΣ∗,F).

4. If ϕ ∈ sRMSObnc(K, TΣ∗,F) is almost unambiguous over y of bounded variability
b, then ∀y.ϕ ∈ sRMSOb(K, TΣ∗,F).
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5.5 Generalizations to Arbitrary Semirings

5. If ϕ,ψ ∈ sRMSObnc(K, TΣ∗,F) and at least one of the following three conditions
hold

• Vf (ϕ) = ∅,

• Vf (ψ) = ∅,

• Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

and

• ϕ and ψ are not in the scope of a universal first-order quantifier, and

• wgt(ϕ) and wgt(ψ) commute element-wise,

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSObnc(K, TΣ∗,F).

We use sRL
←−
d bnc(K,Σ,F) to denote the smallest class of formulas containing formulas

generated by the next two rules.

1. If ϕ ∈ sRMSObnc(K, TΣ∗,F), then ϕ ∈ sRL
←−
d bnc(K,Σ,F).

2. If ϕ ∈ sRL
←−
d bnc(K,Σ,F), then ∃D.ϕ ∈ sRL

←−
d bnc(K,Σ,F).

Note that, as opposed to the other conditions, it depends on K and F whether one can
check syntactically whether two given formulas ϕ and ψ satisfy that wgt(ϕ) and wgt(ψ)
commute element-wise. For instance, if K is commutative, we do not need to check
syntactically for element-wise commuting of the weights appearing in the formula. If
on the other hand K is not commutative but wgt(ϕ) is a finite set, which is e.g. the
case if there are no location weight functions occuring in ϕ, or F is the family of step
functions, then we can easily check syntactically whether the weights in wgt(ϕ) commute
element-wise. For other cases, this might not be so easy or even impossible.

The proof for the direction from definability to recognizability is analogous to the
proofs for commutative semirings, using Lemma 5.28. For a proof for the direction
from recognizability to definability, we must be careful with the construction of the
formula ξ(D̄, Ȳ ) (see Theorem 5.18). Note that the constants in(li) and out(li) need not
necessarily commute element-wise, and thus, ξ(D̄, Ȳ ) is not guaranteed to satisfy the
fourth condition. In the untimed case, this can be solved using a result of Eilenberg [58],
which allows us to choose an equivalent initial- and final-state-normalized weighted finite
automaton in which in(q), out(q) ∈ {0, 1} for each q ∈ Q [49]. However, as explained in
Remark 4.12, for weighted timed automata A over arbitrary K and F , we cannot provide
an initial-location-normalized weighted timed automaton A′ with the same behaviour like
A such that in(l) ∈ {0, 1} for each l ∈ L′. For this reason, if K is not commutative, we
cannot give a Büchi theorem for weighted timed automata A over arbitrary F . We may
consider weighted timed automata with restricted functions for entering locations of the
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5 A Büchi Theorem for Weighted Timed Automata

Weighted Timed Auxiliary Syntactical F-Rec.Timed Series
MSO Logic Logic Restrictions over K and Σ

L
←−
d (K,Σ,F) MSO(K, TΣ∗,F) no restriction none

sRL
←−
d (K,Σ,F) sRMSO(K, TΣ∗,F) (1),(2),(3) K is idempotent and

commutative

sRL
←−
d b(K,Σ,F) sRMSOb(K, TΣ∗,F) (1),(2b),(3b) K is commutative

sRL
←−
d bnc(K,Σ,F) sRMSObnc(K, TΣ∗,F) (1),(2b),(3b),(4) ε is excluded

(1) Restriction on conjunction.

(2) If ϕ contains ∀y.ψ, then ψ is almost unambiguous over y.

(2b) If ϕ contains ∀y.ψ, then ψ is almost unambiguous over y of bounded variability b.

(3) If ϕ contains ∀X.ψ, then ψ is unweighted.

(3b) If ϕ contains ∀X.ψ, then ψ is syntactically unambiguous over y of bounded

variability.

(4) If ϕ contains ϕ1 ∧ ϕ2 and this is not in the scope of a universal first-order

quantifier, then wgt(ϕ1) and wgt(ϕ2) commute element-wise.

Table 5.1: Overview of Weighted Timed MSO Logics

form in : L → {0, 1} (or, equivalently, with a designated set of initial states, as in [53]).
However, as mentioned in Remark 5.14, in this case a Büchi theorem can only be given
for F-recognizable timed series T : TΣ+ → K, i.e., excluding the empty timed word.

Theorem 5.29. Let F contain 1. Then a timed series T : TΣ+ → K is F-recognizable

if and only if T is sRL
←−
d bnc(K,Σ,F)-definable.

We note that we may also come up with a Büchi theorem for F-recognizable timed series
if F is the family of step functions, because for this family of functions we can present
an initial-location-normalization such that in(l) ∈ {0, 1} (see Remark 4.12). In Table
5.1, we give a summary of the different weighted timed MSO logics we defined in this
article. In the third column, we list the syntactical restrictions of the logic. In the fourth
column, we specify the class of F-recognizable timed series such that a Büchi theorem
holds. Note that we always assume 1 ∈ F .

5.6 Conclusion

We have presented the weighted relative distance logic, which is - at least to our knowl-
edge - the first MSO logic allowing for the description of both timed and quantitative
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properties. On the one hand, our logic may be used as a new tool for specifying prop-
erties. It sometimes may be easier to specify properties in terms of logic rather than by
automata devices. As an example, consider the simple formula given in Ex. 5.5 and the
weighted timed automaton of Ex. 3.2, both of which represent the same behaviour. On
the other hand, this logic gives rise to some interesting new directions in future research
work. For instance, Wilke [107] showed that some real-time temporal logics are effec-
tively embeddable into the relative distance logic. All his constructions for obtaining
a Büchi theorem are effective. By the decidability of the emptiness problem for timed
automata (cf. Theorem 2.5), one can thus conclude that these real-time temporal logics
have a decidable theory. This gives rise to the question whether one can obtain similar
results for weighted extensions of real-time temporal logics.

We also would like to mention that our logic and constructions follow the ideas of
the work of Droste and Gastin [49] and thus we keep the spirit of the untimed theory.
However, we additionally allowed functions from the family as atomic formulas, which
complicates most of the proofs, first and foremost the proof for showing closure of the
class of recognizable timed series under first-order universal quantification. Moreover,
we had to deal with the problem that - unlike finite automata - timed automata are not
determinizable in general. Similarly to the Kleene-Schützenberger theorem, one may
also ask for a Büchi theorem for weighted timed automata on infinite words. For this,
one may consider the work by Droste and Rahonis [54] on weighted logics on infinite
words. Last but not least, it is an interesting question to which class of automata the

unrestricted logic L
←−
d (K,Σ,F) is expressively equivalent.
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6 Supports and Timed Cut Languages

6.1 Introduction

In this chapter, we aim to shed light on the supports of timed series, consisting of
all timed words which are not mapped to zero. Within the theory of weighted finite
automata, supports have been extensively studied (see e.g. [19, 98]). For instance,
for large classes of semirings, the support of a WFA-recognizable series is known to be
recognizable by a finite automaton (see e.g. Theorem 2.8). This implies the decidability
of weighted versions of some of the fundamental decision problems of formal language
theory as e.g. the emptiness problem. For the semiring of the reals with addition
and multiplication and the family of linear functions, we can show that the question,
whether the support of a recognizable timed series is empty, is decidable. This and
results obtained in previous chapters imply that it is decidable whether two recognizable
timed series are equal. For this, we use that two timed series T1 and T2 are equal if
and only if the difference T1− T2 equals the constant zero timed series (or, equivalently,
the support of this difference is empty). For recognizable timed series T1 and T2 over
the semiring of the reals with addition and multiplication we can construct a weighted
timed automaton recognizing the difference T1−T2, because this semiring is a field. Note
that for recognizable timed series over e.g. the Boolean semiring this construction is not
possible. Indeed, the corresponding problem of equality of two TA-recognizable timed
languages is undecidable.

We also want to investigate the TA-recognizability of timed cut languages. These
are sets of timed words which are assigned a weight smaller than (or greater than,
respectively) a given value. Both supports and timed cut languages may be useful in
analysing real-time systems. For instance, we may be interested in whether the set of
timed words whose weight under a weighted timed automaton is not exceeding a given
value satisfies a specification. Problems like this can be solved by using the automata-
theoretic methods presented in this chapter. Moreover, from the decidability results we
are going to present here, we immediately obtain decidability results for the weighted
relative distance logic introduced in Sect. 5.

Here, we focus on F-recognizable timed series over semirings having weights in the
reals, where F is the family of linear functions. This setting allows for interesting
applications in the theory of weighted timed automata [17, 8, 22]. Many algorithms
for decision problems in the theory of weighted finite automata rely on the fact that
the set of weights occuring in a weighted finite automaton is finite. However, in a
weighted timed automaton with linear weight functions this is not the case. Thus, the
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main challenge is to deal with the potentially infinite number of weights occuring in a
weighted timed automaton. We can show that for some problems and semirings it is not
necessary to consider the exact weights of the transitions participating in a run. Besides
linear functions, we consider weighted timed automata over step functions for which the
problem of infinite weights does not occur. For this kind of functions we can show that
most of the results of the untimed setting can be carried over to the timed setting.

6.2 Recognizability of Supports of Recognizable Timed Series

In this section, we fix a semiring K, an alphabet Σ and a family F of functions fromR≥0 to K. We study whether the support of an F-recognizable timed series is a TA-
recognizable timed language. Recall that in the untimed setting the support of every
WFA-recognizable series over a positive semiring is recognizable by a finite automaton
(Theorem 2.8). The main idea for the construction of the finite automaton is to remove
edges with weight 0 from the given weighted finite automaton and ignore the remaining
weights. For the timed setting, this idea can more or less be adopted by removing not
only the edges with weight 0 but also edges whose source location is assigned a weight
function that maps all time delays to 0. However, for certain positive semirings and
families the method only works for strictly monotonic F-recognizable timed series, as
the following example illustrates.

Example 6.1. Let K be the semiring of the real numbers with ordinary addition and
multiplication, F be the family of linear functions and A be a weighted timed automaton
over K, Σ and F . Let w ∈ TΣ∗. Then, whenever there is some i ∈ dom(w) with
ti − ti−1 = 0, we have (‖A‖, w) = 0. So, the zero behaviour of A with respect to w is
due to the form of w and has nothing to do with the particular definition of A.

For this reason, in the next lemma we distinguish between two cases.

Theorem 6.2. Let K be positive.

1. Assume that for all f ∈ F we have either f (δ) 6= 0 for all δ ∈ R≥0 or f (δ) = 0 for
all δ ∈ R≥0. Then the support of each F-recognizable timed series over K and Σ is
TA-recognizable over Σ.

2. Assume that for all f ∈ F we have either f (δ) 6= 0 for all δ ∈ R≥0\{0} or
f (δ) = 0 for all δ ∈ R≥0\{0}. Then the support of each strictly monotonic and F-
recognizable timed series over K and Σ is strictly monotonic and TA-recognizable
over Σ.

Proof. 1. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automa-
ton over K, Σ and F , where F satisfies the assumption stated. We define
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E′ = {e ∈ E : ewt(e) 6= 0, lwt(source(e))(δ) 6= 0 for each δ ∈ R≥0}. We further de-
fine L0 = {l ∈ L : in(l) 6= 0} and Lf = {l ∈ L : out(l) 6= 0}. We show that for the timed
automaton A′ = (L,L0,Lf , C, E

′) we have L(A′) = supp(‖A‖).

First, let w ∈ supp(‖A‖), i.e., (‖A‖, w) 6= 0. Since K is zero-sum free, there must be

a run r of A on w such that rwt(r) 6= 0. Let r be of the form (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→

(l|w|, ν|w|). Then, we have in(l0) · (
∏

1≤i≤|w| lwt(li−1)(δi) · ewt(ei)) · out(l|w|) 6= 0. Since 0
is absorbing, each of the factors must be different from 0. In particular, we must have
in(l0) 6= 0 and thus can conclude l0 ∈ L0. Similarly, out(l|w|) 6= 0 and thus l|w| ∈ Lf .
Further, we have lwt(li−1)(δi) 6= 0 for each i ∈ dom(w) and thus, by the restriction we put
on F , we know that lwt(li−1)(δ) 6= 0 for each δ ∈ R≥0. This, together with ewt(ei) 6= 0
implies ei ∈ E

′ for every i ∈ dom(w) and r is a successful run of A′ on w, which implies
w ∈ L(A′).

Second, let w ∈ L(A′). Hence, there must be a successful run r of A′ on w. Let r be

of the form (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|). Clearly, r must also be a run of A on

w. By definition of L0 and Lf , we have in(l0) 6= 0 and out(l|w|) 6= 0. By definition of
E′, for every i ∈ dom(w), we have ewt(ei) 6= 0 and li−1 satisfies lwt(li−1)(δ) 6= 0 for each
δ ∈ R≥0. Hence, lwt(li−1)(δi) 6= 0 for every i ∈ dom(w). Now, K is zero-divisor free and
thus we must have rwt(r) 6= 0. The zero-sum freeness of K implies (‖A‖, w) 6= 0 and
thus w ∈ supp(‖A‖).

2. The proof can be done analogously. Additionally, in the proof of L(A′) ⊆ supp(‖A‖)
we use the fact that zero time delays are not allowed to conclude that lwt(li−1)(δi) 6= 0.
x+ y = z �

As a consequence, the support of the behaviour of each weighted timed automaton over
the widely-used [17, 8, 22] setting of the min-plus-semiring and the family of linear
functions is TA-recognizable.

In the past few years, weighted timed automata with multiple prices have attracted
interest [24, 81]. These may be modelled using the direct product of e.g. the min-plus-
semiring with itself and componentwise defined linear functions. Unfortunately, while
still being zero-sum free, the direct product of two positive semirings is not necessarily
zero-divisor free and thus Theorem 6.2 cannot be applied. Very recently, Kirsten [75]
came up with a result supplementing Theorem 2.8, see Theorem 2.9 given in Sect. 2.3.
Kirsten’s proof method relies on the fact that the set of disjoint weights occurring in
any of the runs of the weighted finite automaton is finite. However, for weighted timed
automata over e.g. the family of linear functions this is not the case. Nevertheless, for
certain semirings we can adapt the proof by exploiting the fact that the exact weights
emerging from staying in a location are not crucial for deciding whether the running
weight of a run equals 0 or not, but rather it is sufficient to consider the semiring
coefficients that the time delay is multiplied with, as the following example shows.
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Example 6.3. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over
the min-plus-semiring and the family of linear functions. For the sake of simplicity, in
this example we assume that in(l) = out(l) = 0 for each l ∈ L and ewt(e) = 0 for each
e ∈ E. Let w ∈ TΣ∗. Then for each run r of A on w we have rwt(r) = ∞ if and only
if there is some i ∈ dom(w) such that lwt(li−1)(δi) = ∞. However, for every location
l and time delay δ, we have lwt(l)(δ) = ∞ if and only if lwt(l)(δ′) = ∞ · δ′ for each
δ′ ∈ R≥0. Hence, the exact time delays are not important but it is sufficient to consider
the coefficients of the weight functions of the participating locations in a run to decide
whether rwt(r) =∞. For weighted timed automata over the direct product of the min-
plus-semiring with itself and the family of componentwise defined linear functions, we
have a similar result, namely rwt(r) = (∞,∞) if and only if there are i, j ∈ dom(w) such
that lwt(li−1)(δi) = (k,∞) and lwt(lj−1)(δj) = (∞, k′), for some k, k′ ∈ K. Again, the
exact time delays are not important.

This leads us to the following result.

Theorem 6.4. 1. Let K be commutative and zero-sum free and let F be the family
of step functions. Then the support of each F-recognizable timed series over K and
Σ is TA-recognizable over Σ.

2. Let K be one of the following semirings

a) the min-plus-semiring,

b) the max-plus-semiring,

c) the min-max-semiring,

or the direct product of any two of these semirings, and let F be the family of
(componentwise defined) linear functions. Then the support of each F-recognizable
timed series over K and Σ is TA-recognizable over Σ.

3. Let K be the semiring of the positive real numbers together with ordinary addition
and multiplication or the direct product of this with itself, and let F be the family
of (componentwise defined) linear functions. Then the support of each strictly
monotonic and F-recognizable timed series over K and Σ is strictly monotonic
and TA-recognizable over Σ.

Before we present the proof of this theorem, we recall some notions and results introduced
by Kirsten [75]. For n ∈ N, given two tuples ȳ, z̄ ∈ Nn, we let ȳ ≤ z̄ if yi ≤ zi for every
i ∈ {1, ..., n}. Given some subset M ⊆ Nn, we denote by Min(M) the set of all minimal
tuples of M , formally Min(M) = {ȳ ∈ M : for every z̄ ∈ M, z̄ ≤ ȳ implies ȳ = z̄}.
Given some ȳ ∈ Nn and some z ∈ N, we denote by ⌊ȳ⌋z the tuple defined by (⌊ȳ⌋z)i =
min{yi, z} for every i ∈ {1, ..., n}. Let (K, ·, 1) be a monoid with a zero element 0 such
that 0 · k = k · 0 = 0 for each k ∈ K.
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Let V = (c1, ..., cn) ∈ Kn be a tuple. We define the monoid morphism η :
(Nn,+, 0n) → (K, ·, 1) by η(ȳ) = cy11 · ... · c

yn
n for every ȳ = (y1, ..., yn) ∈ Nn. By

Dickson’s Lemma [43], the set Min(η−1(0)) must be finite. By dg(V ) we denote the least
non-negative integer such that Min(η−1(0)) is a subset of {0, ...,dg(V )}n.

We define a partial mapping ± : {0, ...,dg(V )}n ×K → {0, ...,dg(V )}n. For this, let
ȳ ∈ {0, ...,dg(V )}n and k ∈ K. We define ȳ ± k if k occurs in V . So assume there is
some unique i ∈ {1, ..., n} such that ci = k. Then, z̄ ∈ {0, ...,dg(V )}n is defined by

zj =

{
yj + 1 if j = i,

yj otherwise.

We define ȳ ± k = ⌊z̄⌋dg(V ). Let m,m′ ∈ N and k1, ..., km, k
′
1, ..., k

′
m′ ∈ K. The zero

generation problem (ZGP) means to decide whether there exists some k in the monoid
generated by k′1, ..., k

′
m′ such that k1 · ... · km · k = 0.

Lemma 6.5 ([75]). If the ZGP is decidable in K, then we can effectively compute dg(V )
from V .

Lemma 6.6 ([75]). For every ȳ ∈ Nn we have η(ȳ) = 0 if and only if η(⌊ȳ⌋dg(V )) = 0.

The following observation is crucial for applying Kirsten’s proof method irrespective
of the fact that wgt(A) may be infinite.

Lemma 6.7. Let K be one of the following semirings

1. min-plus-semiring,

2. max-plus-semiring,

3. min-max-semiring,

or the direct product of any two of these semirings. Furthermore, let n ∈ N and ki ∈
K, δi ∈ R≥0 for each i ∈ {1, ..., n}. Then we have

∏

1≤i≤n

ki · δi = 0 if and only if
∏

1≤i≤n

ki = 0.

Proof. We let K be the direct product of the min-plus-semiring with itself. The proof
for the other semirings can be adapted. So let n ∈ N and ki ∈ K, δi ∈ R≥0 for each
i ∈ {1, ..., n}. Then we have

∑

1≤i≤n

ki · δi = (∞,∞)

⇔ there exist i, j ∈ {1, ..., n} such that ki = (k,∞) and kj = (∞, k′) for some k, k′ ∈ K

⇔
∑

1≤i≤n

ki = (∞,∞).

z = x �
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For proving the effectiveness of the construction, we use the next Lemma.

Lemma 6.8. Let K be one of the following semirings

1. min-plus-semiring,

2. max-plus-semiring,

3. min-max-semiring,

or the direct product of any two of these semirings. Then the ZGP is decidable.

Proof. We show the proof for the min-plus-semiring. So let k1, ..., km, k
′
1, ..., k

′
m′ ∈R≥0 ∪ {∞} for some m,m′ ∈ N. We want to decide whether there is some k in the

monoid generated by k′1, ..., k
′
m′ such that k1 + ...+ km + k =∞. Clearly, this is the case

if and only if there is some i ∈ {1, ...,m} such that ki =∞ or there is some i ∈ {1, ...,m′}
such that k′i =∞. x+ y = z �

Proof of Theorem 6.4. We present the proof for the second claim. The proof of 1.
can be done analogously to the proof by Kirsten [75]. The proof of 3. can be done as the
proof of 2., and by additionally exploiting the fact that zero time delays are not allowed.

So let K be the direct product of the min-plus-semiring with itself. The proof for
the other semirings can be done analogously. Let F be the family of componentwise
defined linear functions and T : TΣ∗ → K be an F-recognizable timed series. Then
there is a weighted timed automaton A = (L, C, E, in, out, ewt, lwt) over K, Σ and F
such that ‖A‖ = T . For each l ∈ L, we let kl ∈ (R≥0 ∪ {∞}) × (R≥0 ∪ {∞}) denote
the coefficient used in the weight function of l , i.e., if lwt(l)(δ) = (k · δ, k′ · δ) for each
δ ∈ R≥0 and some k, k′ ∈ R≥0 ∪ {∞}, then kl = (k, k′). Let n ∈ N and V = (c1, ..., cn) ∈
((R≥0 ∪ {∞})× (R≥0 ∪ {∞}))

n such that

• for every e ∈ E there is exactly one i ∈ {1, ..., n} satisfying ci = ewt(e),

• for every l ∈ L there is exactly one i ∈ {1, ...n} satisfying ci = in(l), there is
exactly one i ∈ {1, ...n} satisfying ci = out(l), and there is exactly one i ∈ {1, ..., n}
satisfying ci = kl .

Furthermore, for every i ∈ {1, ..., n}, ci either is the weight of an edge e ∈ E, the weight
for entering or leaving some location l ∈ L or it is the coefficient kl with which a time
delay is multiplied in some location l ∈ L. Notice that by Lemmas 6.8 and 6.5, dg(V )
is effectively computable. We define the timed automaton A′ = (L′,L′0,L

′
f , C, E

′) as
follows:

• L′ = L × {0, ...,dg(V )}n,

• (l , ȳ) ∈ L′0 if and only if there is some i ∈ {1, ..., n} such that yi = 1 and in(l) = ci
and for all j ∈ {1, ..., n} with j 6= i we have yj = 0,
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6.2 Recognizability of Supports of Recognizable Timed Series

• (l , ȳ) ∈ L′f if and only if η(ȳ ± out(l)) 6= (∞,∞),

• ((l , ȳ), a, φ, λ, (l ′, z̄)) ∈ E′ if and only if there exists an edge (l , a, φ, λ, l ′) ∈ E such
that ȳ ± kl ± ewt(l , a, φ, λ, l ′) = z̄. We say that ((l , ȳ), a, φ, λ, (l ′ , z̄)) stems from
(l , a, φ, λ, l ′).

Next, we show that L(A′) = supp(‖A‖). For this, let w ∈ TΣ∗ and assume w ∈ L(A′).

Then there is a successful run ((l0, ȳ0), ν0)
δ1−→

e′1−→ ...
δ|w|
−→

e′
|w|
−→ ((l|w|, ȳ|w|), ν|w|) of A′

on w. For every j ∈ dom(w), let ej ∈ E such that e′j stems from ej . Clearly,

r = (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|) is a run of A on w. First of all, we have

(l0, ȳ0) ∈ L
′
0 and thus, by definition of L′0, η(ȳ0) = in(l0). For j ∈ {0, ..., |w|}, let

z̄j ∈ Nn be the tuple such that for every i ∈ {1, ..., n}, zj,i is the number of oc-
curences of ci among in(l0), kl0 , ewt(e1), ..., klj−1

, ewt(ej). In particular, z̄0 = ȳ0. Let
z̄ ∈ Nn such that for every i ∈ {1, ..., n}, zi is the number of occurrences of ci among
in(l0), kl0 , ewt(e1), ..., kl|w|−1

, ewt(e|w|), out(l|w|). Clearly, η(z̄) = rwt(r′). By induction,
one can show that for every j ∈ {0, ..., |w| − 1}, ȳj = ⌊z̄j⌋dg(V ) and ȳ|w| ± out(l|w|) =
⌊z̄⌋dg(V ). As (l|w|, ȳ|w|) ∈ L

′
f , we must have η(ȳ|w| ± out(l)) 6= (∞,∞). Hence, we

also have η(⌊z̄⌋dg(V )) 6= (∞,∞). By Lemma 6.6, we obtain η(z̄) 6= (∞,∞). This to-
gether with Lemma 6.7 implies rwt(r) 6= (∞,∞). Since K is zero-sum free, we get
w ∈ supp(‖A‖).

The proof for the other direction can be done analogously: for w ∈ supp(‖A‖), there
must be a run of A on w, for which a corresponding successful run of A′ can be con-
structed according to the definition of E′. For proving w ∈ L(A′) one can show that
this run must be successful using fairly the same methods as in the proof for the other
direction. �

We combine the results of this section with some decidability results for timed au-
tomata, namely the decidability of the emptiness problem (see Theorem 2.5) and decid-
ability of the universality problem for single-clock timed automata (see Theorem 2.6).
The latter can be done since none of the constructions in the proofs of the previous
lemmas increase the number of clock variables in the timed automaton A′. As a result,
we obtain decidability results for weighted versions of the classical emptiness problem
and the universality problem.

Corollary 6.9. The emptiness of the support of an F-recognizable timed series over a
semiring and a family as specified in Theorems 6.2 and 6.4 is decidable. Moreover, it is
decidable, for a given timed series that can be recognized by a single-clock weighted timed
automaton over such a semiring and family, whether its support is universal.

The weighted version of the emptiness problem, called the empty support problem is also
subject of the next section.
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6.3 The Empty Support Problem for Recognizable Timed Series over

Fields

We consider F-recognizable timed series over fields, i.e., semirings where (K,+, 0) is a
group and (K\{0}, ·, 1) is a commutative group. Recall that already in the untimed
setting there are WFA-recognizable series over fields for which the support is not recog-
nizable by a finite automaton (see Example 2.10). Yet, by Theorem 2.11 it is decidable
whether the support of a WFA-recognizable series over a field is empty. In this section,
we show that this also holds for F-recognizable timed series over some fields and families
F . The main idea is to reduce the problem to the corresponding problem for the class of
WFA-recognizable series. For this, we construct weighted versions of the classical region
automaton [6].

Let K be a field and F be the family of step functions. Given a weighted timed
automaton A = (L, C, E, in, out, ewt, lwt) over K, Σ and F , we define the weighted finite
automaton Rstep(A) = (Q,∆, in′, out′,wt) over K and I ×Σ, where (Q,∆, in′, out′) is the
region automaton defined in Sect. 2.1, and the weight function wt is defined as follows:
let t =

(
(l , r), (I, a), (l ′ , r′)

)
∈ ∆ stem from e and δ for some e ∈ E and δ ∈ I. Further

assume that lwt(l) is of the form
∑

1≤i≤n αi ·χAi(δ
′) for every δ′ ∈ R≥0. By the definition

of step functions, there must be some i ∈ {1, ..., n} such that δ ∈ Ai, and we have δ 6∈ Aj
for each j ∈ {1, ..., n} with j 6= i. Note that i is uniquely determined. Then, we define
wt(t) = αi · ewt(e).

Lemma 6.10. Let K be a field and let F be the family of step functions. Then for each
weighted timed automaton A over K, Σ and F we have

supp(‖A‖) = ∅ if and only if supp(‖Rstep(A)‖) = ∅.

Proof. Let A = (L, C, E, in, out, ewt, lwt) over K, Σ and F . Like the classical region
automaton [6], the weighted region automaton Rstep(A) is bisimulation equivalent to
the infinite state-transition system induced by A. Using this, one can easily show that
there is a weight-preserving bijective correspondence between the set of runs of A and
Rstep(A), used in the following.

Now, assume supp(‖A‖) 6= ∅. Then there is some w ∈ TΣ∗ such that (‖A‖, w) 6= 0.
Hence,

∑
{rwt(r) : r is a run of A on w} 6= 0. However, for every run r of A on w there

is a run r′ of Rstep(A) on abs(w) such that rwt(r′) = rwt(r). Moreover, there are no other
runs of Rstep(A) on abs(w). Hence, we have (‖Rstep(A)‖, abs(w)) 6= 0 and this implies
supp(‖Rstep(A)‖) 6= ∅.

For the other direction, assume supp(‖Rstep(A)‖) 6= ∅. Hence there is some v ∈ (I×Σ)∗

such that (‖Rstep(A)‖, v) 6= 0, i.e.,
∑
{rwt(r′) : r′ is a run of Rstep(A) on v} 6= 0. By the

definition of Rstep(A), there must be some w ∈ TΣ∗ such that v = abs(w). For every run
of Rstep(A) on v there is a run of A on w. Moreover, there are no other runs of A on w.
Hence,

∑
{rwt(r) : r is a run of A on w} 6= 0 and we have (‖A‖, w) 6= 0. This implies

supp(‖A‖) 6= ∅. x+ y = z �
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Next, we want to go a step further and consider weighted timed automata over fields
and more interesting families of weight functions, e.g. linear functions. Clearly, in a
construction as above, the running weights of the runs in A and the corresponding
weighted region automaton cannot be equal, since in the weighted region automaton, we
abstract from the concrete time delays, which determine the weight of a timed transition
of A. However, similarly to the case of semirings which are not zero-divisor free in the
previous section, for certain settings we do not need to consider the exact weight of a
timed transition in order to decide whether the running weight of a run equals 0 or not.
We start with the definition of another weighted version of the region automaton.

Let K be the semiring of the real numbers with addition and multiplication, and
F be the family of linear functions. Given a weighted timed automaton A =
(L, C, E, in, out, ewt, lwt) over K, Σ and F , we define the weighted finite automa-
ton Rlin(A) = (Q,∆, in′, out′,wt) over K and I × Σ, where (Q,∆, in′, out′) is the
region automaton as defined in Sect. 2.1, and wt is defined as follows: let t =(
(l , r), (I, a), (l ′ , r′)

)
∈ ∆ stem from e and δ for some e ∈ E and some δ ∈ I. Fur-

ther assume that lwt(l) is of the form k · δ′ for some k ∈ K and each δ′ ∈ R≥0. Then, we
define wt(t) = k · ewt(e) if δ 6= 0, and wt(t) = 0 otherwise.

Lemma 6.11. Let K be the semiring of the real numbers with addition and multiplica-
tion and F be the family of linear functions. Then, for each weighted timed automaton
A over K, Σ and F , we have

supp(‖A‖) = ∅ if and only if supp(‖Rlin(A)‖) = ∅.

Proof. Let A = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over K, Σ and

F and let w ∈ TΣ∗. Note that for each run of A on w of the form r = (l0, ν0)
δ1−→

e1−→

...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|), by commutativity of · we have

rwt(r) = in(l0) ·


 ∏

1≤i≤|w|

kli−1
· ewt(ei)


 · out(l|w|) ·

∏

1≤i≤|w|

δi.

Let n be the finite number of runs of A on w and use ri to denote a run of A on w for
each i ∈ {1, ..., n}. By distributivity, we have

(‖A‖, w) =
∑

1≤i≤n

rwt(ri)

=
∑

1≤i≤n




in(l i0) ·


 ∏

1≤j≤|w|

kl ij−1
· ewt(eij)


 · out(l i|w|)


 ·

∏

1≤j≤|w|

δj




=


 ∑

1≤i≤n

in(l i0) ·


 ∏

1≤j≤|w|

kl ij−1
· ewt(eij)


 · out(l i|w|)


 ·

∏

1≤j≤|w|

δj. (6.1)
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The crucial point here is that the time delays δj are the same for each run and thus can
be distributed.

Now, assume supp(‖A‖) 6= ∅. Thus, there is some w ∈ TΣ∗ such that (‖A‖, w) 6=
0. Hence, the right hand side of equation (6.1) must be different from 0. Since 0

is absorbing, we conclude
∑

1≤i≤n in(l i0) ·
(∏

1≤j≤|w| kl ij−1
· ewt(eij)

)
· out(l i|w|) 6= 0 and

∏
1≤j≤|w| δj 6= 0. In particular, δj 6= 0 for each j ∈ dom(w). However,

∑
1≤i≤n in(l i0) ·(∏

1≤j≤|w| kl ij−1
· ewt(eij)

)
· out(l i|w|) corresponds to the behaviour of Rlin(A) on abs(w)

and thus, this and the definition of wt implies

(‖Rlin(A)‖, abs(w)) =
∑

1≤i≤n

in(l i0) ·


 ∏

1≤j≤|w|

kl ij−1
· ewt(eij)


 · out(l i|w|) 6= 0.

Thus, supp(‖Rlin(A)‖) 6= ∅.
Now, assume supp(‖Rlin(A)‖) 6= ∅. Hence, there is some v ∈ (I × Σ)∗ such that

(‖Rlin(A)‖, v) 6= 0. Let v = (I1, a1)(I2, a2)...(Ik, ak). We further let n be the number of
runs of Rlin(A) on v and use ri to denote a run of Rlin(A) on v.

(‖Rlin(A)‖, v)

=
∑

1≤i≤n

{rwt(ri) : ri is a run of Rlin(A) on v}

=
∑

1≤i≤n

in
(
(l i0, r

i
0)

)
·


 ∏

1≤j≤k

wt
(
(l ij−1, r

i
j−1), (Ij , aj), (l

i
j , r

i
j)

)

 · out

(
(l ik, r

i
k)

)

Now, assume there is some j ∈ {1, ..., k} such that Ij = [0, 0]. Then, for each i ∈ {1, ..., n}
the transition tj =

(
(l ij−1, r

i
j−1), (Ij , aj), (l

i
j , r

i
j)

)
stems from e and δ = 0 for some e ∈ E.

In this case we have wt(tj) = 0 by definition. This implies rwt(ri) = 0 for each i ∈
{1, ..., n} and thus (‖Rlin(A)‖, v) = 0, a contradiction. Hence, for each j ∈ {1, ..., k} we
must have Ij 6= [0, 0]. By the definition of wt we obtain

(‖Rlin(A)‖, v) =
∑

1≤i≤n

in(l i0)


·

∏

1≤j≤k

kl ij−1
· ewt(eij)


 · out(l ik)

Now, let w ∈ abs−1(v) be a timed word. For each run r of Rlin(A) on v there is a
corresponding run r′ of A on w. Moreover, there are no other runs of A on w. As shown
in the proof for the other direction, we have

(‖A‖, w) =


 ∑

1≤i≤n

in(l i0)


·

∏

1≤j≤|w|

kl ij−1
· ewt(eij)


 · out(l i|w|)


 ·

∏

1≤j≤|w|

δj
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Since for each j ∈ {1, ..., k} we have Ij 6= [0, 0], we also know that δj 6= 0 for each j ∈
{1, ..., k}. Hence,

∏
1≤j≤|w| δj 6= 0. However, by assumption we also have (‖Rlin(A)‖, v) 6=

0. Hence, (‖A‖, w) 6= 0, and thus supp(‖A‖) 6= ∅. x+ y = z �

Now, we use the previous two results together with Theorem 2.11 (decidability of the
empty support problem for WFA-recognizable series over fields) to obtain the following
theorem.

Theorem 6.12. The emptiness of the support of an F-recognizable timed series over a
semiring and a family as specified in Lemmas 6.10 and 6.11 is decidable.

In the following, we present an interesting result concerning the equality of two F-
recognizable timed series over fields. A corresponding result is known for the class of
WFA-recognizable series (see e.g. [58]).

Corollary 6.13. The equality of two given F-recognizable timed series over a semiring
and a family as specified in Lemmas 6.10 and 6.11 is decidable.

Proof. Let Ai = (Li, Ci, Ei, ini, outi, ewti, lwti) be two weighted timed automata over
K, Σ and F such that ‖Ai‖ = Ti (for i = 1, 2). We may assume that L1 ∩ L2 = ∅ and
C1 ∩ C2 = ∅. We define A = (L, C, E, in, out, ewt, lwt), where

• L = L1 ∪ L2, C = C1 ∪ C2, E = E1 ∪ E2,

• in(l) =





−in1(l) if l ∈ L1

−in2(l) if l ∈ L2 and in2(l) 6= 0

−in2(l) otherwise

• out = out1 ∪ out2, ewt = ewt1 ∪ ewt2, lwt = lwt1 ∪ lwt2.

Clearly, ‖A‖ = ‖A1‖ − ‖A2‖. We further have T1 = T2 if and only if supp(T1 − T2) = ∅.
From this together with Theorem 6.12, we can decide whether T1 = T2. x+ y = z �

In contrast to this, recall that for TA-recognizable timed languages (or, equivalently,
F-recognizable timed series over the Boolean semiring), the equality problem is unde-
cidable [6].

Remark 6.14. As mentioned in Sect. 2.3, for the class of WFA-recognizable series over
fields and Σ it is not decidable whether the support equals Σ∗ [19]. Hence, we cannot use
a reduction as above to solve the weighted version of the classical universality problem,
which we call the universal support problem, for timed series that are recognizable by
single-clock weighted timed automata.
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6.4 Timed Cut Languages

In this section, we are interested in timed languages consisting of those timed words
whose weights under a given F-recognizable timed series exactly correspond to a given
value, or whose weights do (not) exceed a given value from the semiring. Sets of words of
the second category are known as cut languages and play an important role in the theory
of weighted finite automata and series (see e.g. [61, 96]). Here, we want to investigate the
following problems: for each semiring K and family F , given an F-recognizable timed
series T over K, k ∈ K and ∼ ∈ {<,≤,=,≥, >}, is the set T −1

∼ (k) = {w ∈ TΣ∗ :
(T , w) ∼ k} TA-recognizable? We call timed languages of the form T −1

∼ (k) timed cut
languages. Timed cut languages may give rise to interesting new applications in the
analysis of real-time systems. For instance, we may be given a real-time system that
consumes a resource, e.g. energy, money or bandwith. While running the system, we
want to consume as little as possible of this resource, but nonetheless some minimal
conditions on the behaviour of the real-time system, given by a formal specification,
must be satisfied. We want to find out the minimal value k ∈ K such that the system
both satisfies the specification and does not consume more than k units of the resource.
A first approach may be to check whether T −1

≤ (k) is TA-recognizable for some acceptable
and realistic bound k ∈ K, and, if so, to further use model checking techniques to test
whether this set satisfies the specification. If yes, we may decrease the bound, otherwise,
we may increase it.

Besides new applications in the analysis of real-time systems, the problem of TA-
recognizability of timed cut languages shows also strong relations to other problems in the
theory of timed languages, as the following example (adopted from [61]) shows: assume
there was some semiring K and a family F containing 1, and we showed that T −1

= (k) is
TA-recognizable over Σ for every F-recognizable timed series T and every k ∈ K. Then,
we could conclude that the complement L̄ of every unambiguously TA-recognizable timed
language L was TA-recognizable. The proof of this is as follows: let L ⊆ TΣ∗ be an
unambiguously TA-recognizable timed language over Σ and A = (L,L0,Lf , C, E) be an
unambiguous timed automaton over Σ such that L(A) = L. Define in(l) = 1 if l ∈ L0

and in(l) = 0 otherwise, out(l) = 1 if l ∈ Lf and out(l) = 0 otherwise, and lwt(l) = 1
for each l ∈ L and ewt(e) = 1 for each e ∈ E. Then, the behaviour ‖A′‖ of the weighted
timed automaton A′ = (L, C, E, in, out, ewt, lwt) over K, Σ and F corresponds to the
characteristic series 1L of L. But then by assumption the timed language ‖A′‖−1

= (0) = L̄
must be TA-recognizable over Σ. However, recall that by now it is not known whether
negation preserves TA-recognizability of unambiguous timed languages [106].

Proposition 6.15. Let K have characteristic zero and assume that 1 ∈ F . Then, for
each TA-recognizable timed language L ⊆ TΣ∗, there is some F-recognizable timed series
T over K and Σ such that supp(T ) = L.
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Proof. Let L ⊆ TΣ∗ be a TA-recognizable timed language over Σ. Then there is a
timed automaton A = (L,L0,Lf , C, E) over Σ such that L(A) = L. For each l ∈ L, we
define in(l) = 1 if l ∈ L0 and in(l) = 0 otherwise, out(l) = 1 if l ∈ Lf and out(l) = 0
otherwise, and we further put lwt(l) = 1. For each e ∈ E, we define ewt(e) = 1. We
let A′ = (L, C, E, in, out, ewt, lwt) be a weighted timed automaton over K, Σ and F and
show that supp(‖A′‖) = L(A).

Let w ∈ supp(‖A‖). Hence, (‖A′‖, w) 6= 0. Now, we know that the running weight of
each run of A on w must be 1 or 0 due to the definition of the weight functions. We
can conclude that there must be at least one run of A′ on w with a running weight of 1.
Clearly, by definition of the weight function, this run must also be a successful run of A
on w, and thus w ∈ L(A).

Now, let w ∈ L(A). Every successful run r of A on w is also a run of A′ on w with
rwt(r) = 1. Moreover, the running weight of each other run of A′ on w must be 0.
Since K has characteristic zero, we can conclude (‖A′‖, w) 6= 0. Hence, w ∈ supp(‖A′‖).
x+ y = z �

As a direct consequence of Prop. 6.15 and non-closure of TA-recognizable timed lan-
guages under complement, we get the following lemma.

Proposition 6.16. Let K have characteristic zero and assume that 1 ∈ F . Then there
is some F-recognizable T : TΣ∗ → K such that T −1

= (0) is not TA-recognizable over Σ.

Proof. Let L ⊆ TΣ∗ such that L is TA-recognizable over Σ and the complement of
L, denoted by L̄, is not TA-recognizable over Σ. For instance, let L be the language
Lnd from Ex. 2.3. By Prop. 6.15, L is the support of some F-recognizable timed series
T : TΣ∗ → K. Hence, T −1

= (0) = L̄ and thus T −1
= (0) is not TA-recognizable over Σ.

x+ y = z �

The condition on the semiring in the two previous propositions is satisfied by every
semiring which is not a ring, as e.g. the semiring of the positive reals together with
addition and multiplication or the min-plus-semiring; but also e.g. by the semiring of
the integers with addition and multiplication (which is a ring). In particular, given an
F-recognizable timed series T over the min-plus-semiring, where F is the family of linear
functions, in general we can conlude that there is some F-recognizable timed series T
such that T −1

= (0) is not TA-recognizable over Σ. However, in contrast to this, Prop.
6.16 cannot be applied if T is F-recognizable over the semiring of the positive reals with
addition and multiplication and the family F of linear functions. This is because for
this setting there is no 1 ∈ F mapping each time delay to 1. It is an open question
whether there is an F-recognizable timed series T over the semiring of the positive reals
and family F of linear functions such that T −1

= (0) is not TA-recognizable. Notice that
for the family of step functions we can apply Prop. 6.16, since 1 is simply the constant
function mapping each time delay to 1. This raises the interesting question whether in
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3δ 5δ
a a

Figure 6.1: A weighted timed automaton A with ‖A‖−1
= (6) not TA-recognizable

general, assuming that K is fixed, we cannot conclude from a “negative” result for the
family of step functions, that a negative result also holds for the (more expressive and
harder) family of linear functions.

The negative result in Prop. 6.16 mainly relies on the non-closure of TA-recognizable
timed languages under complement. The question arises whether we can obtain a positive
result for k 6= 0. Unfortunately, for the most interesting class of weighted timed automata
over the reals and linear functions we have to give a negative answer, even if we confine
our study to unambiguously F-recognizable timed series.

Proposition 6.17. Let K be one of the following semirings

• the min-plus-semiring,

• the max-plus-semiring,

• the positive real numbers with addition and multiplication,

and F be the family of linear functions. Then there is some unambiguously F-
recognizable T : TΣ∗ → K and some k ∈ K\{0} such that T −1

= (k) is not TA-recognizable
over Σ.

Proof. We show the proof for the min-plus-semiring. Let A be the weighted timed
automaton over the min-plus-semiring and the family of linear functions shown in Fig.
6.1. We further let k = 6. Now assume there is a timed automaton A′ such that
L(A′) = ‖A‖−1

= (k). Then there must be a successful run of A′ on (a, 1.5)(a, 1.8). Then,
since there are only finitely many edges in A′ and we are only allowed to check clock
variables against natural numbers, we can conclude that there is some ǫ ∈ R≥0 such
that the sequence of edges of each run of A′ on w is also the basis for a run of A′ on
(a, 1.5 + ǫ)(a, 1.8), a contradiction to L(A′) = ‖A‖−1

= (k). x+ y = z �

Next, we show that if we let F be the family of step functions and consider unambigu-
ously F-recognizable timed series, we can give a positive answer. This may be not too
surprising, as in this case the number of weights occuring in runs of the weighted timed
automaton is finite and we can apply proof methods known from the theory of weighted
finite automata (see e.g. [19]). For the sake of completeness we present some of the

94



6.4 Timed Cut Languages

results in the following. They may also serve as a starting point for further research on
other kinds of weight functions. First, let F be a family of step functions from R≥0 to
K and η : K → K ′ be a semiring morphism. Then, we define η(F) to be the family of
step functions from R≥0 to K ′ that is obtained from the functions in F by applying η to
each coefficient α ∈ K.

Lemma 6.18. Let K,K′ be two semirings and let F be the family of step functions. If
T : TΣ∗ → K is an F-recognizable timed series over K and η : K → K ′ is a semiring
morphism, then η ◦ T is η(F)-recognizable over K′.

Proof. Let T : TΣ∗ → K be an F-recognizable timed series over K. Then there is
a weighted timed automaton A over K, Σ and F such that ‖A‖ = T . We obtain the
weighted timed automaton A′ over K′, Σ and F by replacing all coefficients k ∈ K
occuring in the weight functions of A by η(k) ∈ K ′. Then one can show that there is a
bijective correspondence between the set of runs of A and the set of runs of A′. Since η
is a morphism, we can moreover prove rwt(r′) = η(rwt(r)), where r is a run of A, and r′

is the corresponding run of A′. Finally, we have for each w ∈ TΣ∗

(‖A′‖, w) =
∑
{rwt(r′)|r′ is a run of A′ on w}

=
∑
{η(rwt(r))|r is a run of A on w}

= η(
∑
{rwt(r)|r is a run of A on w})

= η(‖A‖, w).

z = x �

Before we come to the next result, we introduce some auxiliary notion. Let I be an
interval over R≥0 with borders in N and x be a clock variable. Then, we use cc(I, x) to
denote the clock constraint defined by

cc(I, x) =





a < x ∧ x < b if I = (a, b),

a ≤ x ∧ x < b if I = [a, b),

a < x ∧ x ≤ b if I = (a, b],

a ≤ x ∧ x ≤ b if I = [a, b].

Proposition 6.19. Let K be one of the following semirings

1. the min-plus-semiring,

2. the Viterbi-semiring,

3. ([1,∞),min, ·,∞, 1),
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and let F be the family of step functions. Then for each k ∈ K\{0} and each unambigu-
ously F-recognizable timed series over K, the timed language T −1

= (k) is unambiguously
TA-recognizable.

Proof. 1. Let K be the min-plus-semiring, F be the family of step functions, k ∈ R≥0

and T : TΣ∗ → K be an unambiguously F-recognizable timed series. Then there is
an unambiguous weighted timed automaton Ā over K, Σ and F such that ‖Ā‖ = T .
Let A be the final-location-normalized weighted timed automaton obtained from Ā by
applying the algorithm given in Lemma 4.9. Note that A is still unambiguous and we
have (‖A‖, w) = (‖Ā‖, w) for each w ∈ TΣ+. We will construct an unambiguous timed
automaton A′ over Σ such that L(A′) = {w ∈ TΣ+ : (T , w) = k}. We summarize the
idea of the construction. Assume that N is the minimal value in K occuring as a weight
in A. Then we only have to consider runs of length smaller than or equal to the ceiling
⌈ kN ⌉ of k

N . This is because every other run necessarily has a running weight greater than
k. Thus, the set of occuring weights relevant for solving the problem is finite and can
be remembered within the finite control part of a timed automaton.

Let A = (L, C, E, in, out, ewt, lwt). We use lf to denote the single sink of A. For each
l ∈ L, we assume lwt(l) to be of the form min{αl

i + χAl
i
|1 ≤ i ≤ nl} for some nl ∈ N,

αl
i ∈ R≥0 ∪ {∞}, intervals Al

i over R≥0 with borders in N such that Al
j ∩ A

l
k = ∅ for

j, k ∈ {1, ..., nl} such that j 6= k and
⋃

1≤i≤nl
Al
i = R≥0. Define N = min(wgt(A)\{0}).

We define the timed automaton A′ = (L′,L′0,L
′
f , C

′, E′) over Σ by

• L′ = L × {m ∈ K : m = m1 + ...+mp,m1, ...,mp ∈ wgt(A), p ∈ {1, ..., ⌈ kN ⌉}},

• L′0 = {(l , k′) : l ∈ L such that in(l) 6=∞, k′ = in(l)},

• L′f = {(lf , k)},

• C′ = C ·∪{x},

• E′ = {((l ,m), a, φ′ , λ′, (l ′,m′)) : (l , a, φ, λ, l ′) ∈ E such that φ′ = φ∧cc(Al
i, x), λ

′ =
λ ∪ {x},m′ = m + αl

i + ewt(l , a, φ, λ, l ′) for every i ∈ {1, ..., nl}}. We say that
((l ,m), a, φ′ , λ′, (l ′,m′)) stems from (l , a, φ, λ, l ′).

We show that L(A′) = ‖A‖−1
= (k). Let w ∈ TΣ+. First, assume w ∈ L(A′). Then there is

a successful run ((l0,m0), ν0)
δ1−→

e′1−→ ((l1,m1), ν1)
δ2−→

e′2−→ ...
δ|w|
−→

e′
|w|
−→ ((l|w|, k|w|), ν|w|) of

A′ on w, where l|w| = lf and k|w| = k. For every i ∈ dom(w), let ei ∈ E such that e′i stems

from ei. Consider the run r = (l0, ν0|C )
δ1−→

e1−→ (l1, ν1|C )
δ2−→

e2−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w||C).

Clearly this is a run of A on w. We show rwt(r) = k. For each i ∈ dom(w) there is a

unique j ∈ {1, ..., nli−1
} such that δi ∈ A

li−1

j , in the following denoted by ji. For each

i ∈ {0, ..., |w|}, we define ωi to be the sum of in(l0), α
l0
j1
, ewt(e1), ..., α

li−1

ji
, ewt(ei). We
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show inductively that mi = ωi for each i ∈ {0, ..., |w|}. For the base case, p = 0, this
is trivially the case. So assume that mi = ωi for each i ∈ {0, ..., p} for some p < |w|.
Notice that by the choice of the reset sets in E′, we have (νp + δp+1)(x) = δp+1. Since

(νp + δp+1) |= φ′p+1, we can conclude that φ′ = φp+1 ∧ cc(A
lp
jp+1

, x). But this implies

mp+1 = mp + α
lp
jp+1

+ ewt(ep+1) = ωp + α
lp
jp+1

+ ewt(ep+1) = ωp+1. Hence, we also have

ω|w| = k. However, we also have rwt(r) = ω|w| = k (since out(lf ) = 0). From A being
unambiguous, it follows (‖A‖, w) = k.

Now, let w ∈ ‖A‖−1
= (k). Since A is unambiguous, there is exactly one run r of A on w

with rwt(r) = k, the running weights of all the other runs of A on w equal 0. So let r be

of the form (l0, ν0)
δ1−→

e1−→ ...
δ|w|
−→

e|w|
−→ (l|w|, ν|w|). Let i ∈ dom(w). We let ji be the unique

j ∈ {1, ..., nli−1
} such that δi ∈ A

li−1

j . Clearly, we have lwt(li−1)(δi) = α
li−1

ji
. We assume

ei to be of the form (li−1, ai, φi, λi, li) and define e′i = ((li−1,mi−1), ai, φ
′
i, λ

′
i, (li,mi))

such that φ′i = φi ∧ cc(A
li−1

ji
, y), λ′i = λi ∪ {x} and mi = mi−1 + α

li−1

ji
+ ewt(ei), where

m0 = in(l0). Hence, e′i ∈ E
′. One can easily prove that ((l0,m0), ν

′
0)

δ1−→
e′1−→ ...

δ|w|
−→

e′
|w|
−→

((l|w|,m|w|), ν
′
|w|) is a run of A′ on w. Clearly, m|w| = rwt(r) = k and thus this run is a

successful run of A′ on w. Hence, w ∈ L(A′).
We thus have proved that T −1

= (k) is recognizable by the timed automaton A′ over Σ.
Now, if (‖Ā‖, ε) = k, then define A′′ to be the timed automaton over Σ obtained from
A′ by adding a new location l 6∈ L′ such that l both is initial and final. If on the other
hand (‖Ā‖, ε) 6= k, we let A′′ = A′. Then, we have L(A′′) = (T )−1

= (k).
2. Now, let ln(n) denote the natural logarithm of a number n. We define the semiring

morphism η : [0, 1] → R≥0 ∪ {∞} by η(n) = −ln(n) for each n ∈ [0, 1]. Let T be an
F-recognizable timed series over the Viterbi semiring, and let k ∈ [0, 1]\{0}. Then,
by Lemma 6.18, η ◦ T is η(F)-recognizable over the min-plus-semiring. Using 1., we
know that {w ∈ TΣ∗|(η ◦ T , w) = η(k)} is TA-recognizable. But this implies that
{w ∈ TΣ∗|(T , w) = k} is TA-recognizable.

3. This can be proved similarly to the proof of 2. by using the semiring morphism
η′ : [1,∞)→ R≥0 ∪ {∞} : n 7→ ln(n). x+ y = z �

A similar proof method to that of the first claim of Prop. 6.19 can be used to prove the
claim for the following semirings:

• max-plus-semiring,

• ([0, 1],max,min, 0, 1),

• min-max-semiring,

• (R≥0 ∪ {∞},min, ·,∞, 1),

• ([0, 1] ∪ {∞},min, ·,∞, 1).
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6 Supports and Timed Cut Languages

Using the semiring morphism η from (R≥0 ∪ {∞},max,min, 0,∞) to the min-max-
semiring as defined in the proof of the second claim of Prop. 6.19, we obtain the claim
also for (R≥0 ∪ {∞},max,min, 0,∞).

Remark 6.20. Note that the mapping η used in the proof of Prop. 6.19 is also an iso-
morphism between the more general algebraic structure ([0, 1],max, ·, 0, 1, (kδ)δ∈R≥0

) and
(R≥0 ∪ {∞},max,+,∞, 0, (k · δ)δ∈R≥0

). From this we can conclude that results concern-
ing weighted timed automata over the min-plus-semiring and linear functions presented
here or e.g. in [22] also hold for weighted timed automata over the Viterbi semiring and
the family of functions of the form f (δ) = kδ for each δ ∈ R≥0 and some k ∈ [0, 1].

Proposition 6.21. Let K be such that (K, ·, 1) is locally finite, let F be the family of
step functions, and let k ∈ K\{0}. Then for each unambiguously F-recognizable timed
series T over K, the timed language T −1

= (k) is unambiguously TA-recognizable.

Proof. (Sketch) We proceed similarly to the proof of the first claim in Prop. 6.19. The
crucial point is that wgt(A) (for A being the weighted timed automaton over K, Σ and
F recognizing T ) is finite and thus, by assumption, also is the submonoid generated by
wgt(A). Thus, the weights arising in A while reading a timed word can be remembered
in the finite control part of a timed automaton. For this, we introduce a new clock
variable used to check whether we have reached the weight k or not. x+ y = z �

Proposition 6.22. Let K be the min-max-semiring, let F be the family of linear func-
tions of the form c · δ such that c ∈ Z, and let k ∈ Z. Then, for each unambiguously
F-recognizable timed series T over K, the timed language T −1

= (k) is unambiguously TA-
recognizable.

Proof. Let K be the min-max-semiring, let F be the family of linear functions of
the form c · δ such that c ∈ Z, let k ∈ Z and let T : TΣ∗ → K be unam-
biguously F-recognizable. Then there is an unambiguous weighted timed automaton
A = (L, C, E, in, out, ewt, lwt) over K, Σ and F such that ‖A‖ = T .

First, assume k ≥ 0. We define the timed automaton A′ = (L′,L′0,L
′
f , C

′, E′
0) such

that

• L′ = L × {0, 1}

• L′0 =
(
{l ∈ L : in(l) < k} × {0}

)
∪

(
{l ∈ L : in(l) = k} × {1}

)

• L′f = {l ∈ L : out(l) ≤ k} × {1}

• C′ = C ·∪{x},

• E′ = E1 ∪ E2 ∪E3 ∪ E4 ∪E5 ∪ E6 ∪ E7,
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where

• E1 = {
(
(l , 0), a, φ′ , λ′, (l ′, 0)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
< k,

lwt(l)(δ) = k′ · δ for some k′ > 0, and φ′ = φ ∧ x < k
k′ , λ

′ = λ ∪ {x}},

• E2 = {
(
(l , 0), a, φ′ , λ′, (l ′, 1)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
= k,

lwt(l)(δ) = k′ · δ for some k′ > 0, and φ′ = φ ∧ x ≤ k
k′ , λ

′ = λ ∪ {x}},

• E3 = {
(
(l , 0), a, φ′ , λ′, (l ′, 1)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
≤ k,

lwt(l)(δ) = k′ · δ for some k′ > 0, and φ′ = φ ∧ x = k
k′ , λ

′ = λ ∪ {x}},

• E4 = {
(
(l , 1), a, φ′ , λ′, (l ′, 1)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
≤ k,

lwt(l)(δ) = k′ · δ for some k′ > 0, and φ′ = φ ∧ x ≤ k
k′ , λ

′ = λ ∪ {x}},

• E5 = {
(
(l , 0), a, φ, λ′ , (l ′, 0)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
< k,

lwt(l)(δ) = k′ · δ for some k′ ≤ 0, and λ′ = λ ∪ {x}},

• E6 = {
(
(l , 0), a, φ, λ′ , (l ′, 1)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
= k,

lwt(l)(δ) = k′ · δ for some k′ ≤ 0, and λ′ = λ ∪ {x}},

• E7 = {
(
(l , 1), a, φ, λ′ , (l ′, 1)

)
: (l , a, φ, λ, l ′) ∈ E such that ewt

(
(l , a, φ, λ, l ′)

)
≤ k,

lwt(l)(δ) = k′ · δ for some k′ ≤ 0, and λ′ = λ ∪ {x}}.

The idea of this construction can be summarized as follows. In the second component
of each location we remember whether we have already reached a weight of k (1) or
not (0). The former is the case if either the weight for entering a location, for taking
an edge or leaving a location equals k, or if we stay for exactly as many time units
in a location l such that the weight of a timed transition in l equals k. For the timed
transition, we get this information by a newly introduced clock variable x which measures
for each location the time that has been spent in this locations. At every edge a clock
constraint controls the behaviour of A′ depending on whether we have already reached
k and on how much time we have already spent in the source location. Doing so, we
distinguish between positive (E1, E2, E3, E4) and negative (E5, E6, E7) coefficients used
in the location weight functions.

Next, we show L(A′) = ‖A‖−1
= (k). For this let w ∈ TΣ∗ be of the form

(a1, t1)...(an, tn).
For the first direction, assume w ∈ L(A′). Hence there is a successful run

r′ = ((l0, b0), ν0)
δ1−→

e′1−→ ...
δn−→

e′n−→ ((ln, bn), νn) of A′ on w. Then, the run r =

(l0, ν0|C)
δ1−→

e′1−→ ...
δn−→

e′n−→ (ln, νn|C), where ei is obtained from e′i by removing all
information on x, is a run of A on w. We show that rwt(r) = k. Since r′ is successful,
we must have bn = 1 and either in(l0) < k and b0 = 0, or in(l0) = k and b0 = 1. In the
former case, there must be some i ∈ {1, ..., n} such that ei ∈ E2 ∪ E3 ∪ E6, and for all
j ∈ {0, ..., i−1}, we have ej ∈ E1∪E5 and for all j ∈ {i+1, ..., n}, we have ej ∈ E4∪E7.
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First, let j ∈ {1, ..., i− 1}. If ej ∈ E1, then ewt(ej) < k and lwt(lj−1)(δ) = k′ · δ for some
k′ > 0. By the fact that x is reset in every edge of A′ and νj−1 + δj |= φ′j , we know that

(νj−1 + δj)(x) = δj and thus δj <
k
k′ . Hence, we have lwt(lj−1)(δj) < k. If ej ∈ E5, we

also have ewt(ej) < k. Moreover, lwt(lj−1)(δ) = k′ · δ for some k′ ≤ 0. Thus, we obtain
lwt(lj−1)(δj) < k anyway. In all these case, we have not reached a weight of k yet.

Second, let j = i. If ej ∈ E2, then ewt(ej) = k and lwt(lj−1)(δj) ≤ k. If ej ∈ E3,
then ewt(ej) ≤ k and lwt(lj−1)(δj) = k. If, finally, ej ∈ E6, we have ewt(ej) = k and
lwt(lj−1)(δj) < k. In all these cases, we have reached a weight of k.

Third, let j ∈ {i + 1, ..., n}. If ej ∈ E4, then ewt(ej) ≤ k and lwt(lj−1)(δj) ≤ k. If
ej ∈ E7, then ewt(ej) ≤ k and lwt(lj−1)(δj) < k. In all these cases, we do not exceed the
weight of k.

Notice that we also have out(ln) ≤ k, and thus we do not exceed the weight k. Hence,
we can conclude rwt(r) = max{lwt(lj−1)(δj), ewt(ej) : 1 ≤ j ≤ n} = k, and thus (as A is
unambiguous) w ∈ ‖A‖−1

= (k).
Now, we assume the other case, namely that in(l0) = k and b0 = 1. Then, for all

i ∈ {1, ..., n}, we have ei ∈ E4 ∪E7. Using the same lines of argumentation as above, we
conclude that the weights of all transitions do not exceed k. Hence, we have rwt(r) = k,
and thus, by unambiguity of A′, w ∈ ‖A‖−1

= (k).
The proof for the other direction can be done analogously. Hence, we have L(A′) =

‖A′‖−1
= (k).

For k < 0, we can proceed in a similar way. x+ y = z �

Remark 6.23. We can use similar proof methods to show the claim of Prop. 6.22 for
each semiring K such that K ⊇ R≥0 and · = min or · = max, and F the family of linear
function.

Next, we can again generalize results from the theory of weighted finite automata and
WFA-recognizable series, respectively, to recognizable timed series over the family of step
functions owing to the finite number of weights occuring in a corresponding weighted
timed automaton. Notice that in the next theorem, in opposition to Prop. 6.19, we do
not require T to be unambiguously F-recognizable.

Theorem 6.24. 1. Let K be one of the following semirings

a) min-plus-semiring,

b) min-max-semiring,

c) (R≥0 ∪ {∞},min, ·,∞, 1),

d) ([0, 1] ∪ {∞},min, ·,∞, 1),

e) ([1,∞],min, ·,∞, 1).

Let F be the family of step functions, and k ∈ K\{0}. Then, for each F-
recognizable timed series T over K, the timed language T −1

≤ (k) is TA-recognizable.
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2. Let K be one of the following semirings

a) max-plus-semiring,

b) (R≥0 ∪ {∞},max,min, 0,∞),

c) ([0, 1],max,min, 0, 1),

d) ([0, 1],max, ·, 0, 1).

Let F be the family of step functions, and let k ∈ K\{0}. Then, for each F-
recognizable timed series T over K, the timed language T −1

≥ (k) is TA-recognizable.

Proof. We proceed as in the proof of Prop. 6.19. More detailed, we may start by
giving a direct construction of a timed automaton recognizing the timed cut language of
a weighted timed automaton over the min-plus-semiring. This construction goes along
the lines of the construction in the proof of Prop. 6.19(a), but note that here we do not
need unambiguity due to the relation ≤. Then the result follows also for weighted timed
automata over the Viterbi semiring using the homomorphism η defined in the proof of
Prop. 6.19(b). For this, we use the fact that η is an anti-isomorphism with respect to
the natural orderings in the Viterbi semiring and the min-plus-semiring. Thus, we have

{w ∈ TΣ∗|(η ◦ T , w) ≤ η(k)} = {w ∈ TΣ∗|(T , w) ≥ k)}

and we conclude that {w ∈ TΣ∗|(T , w) ≥ k)} is TA-recognizable over Σ. x+ y = z �

6.5 Conclusions and Further Research

In this chapter, we investigated decision problems concerning the supports and timed cut
languages of recognizable timed series. We believe that this work is only the beginning
of fruitful further research within this area, as there are a lot of open problems worth
considering. For instance, some results of this chapter do not cover recognizable timed
series over certain important semirings and families of functions. In particular, we would
like to know whether there is a recognizable timed series over the semiring of the positive
reals with addition and multiplication and the family of linear functions such that T −1(0)
is not TA-recognizable. We also note that for some results we assume that F contains1. However, for some settings of semirings and families, no such function exists. As an
example, consider the semiring of the positive reals with addition and multiplication and
the family of linear functions. A simple solution for this is to add the constant function
mapping each time delay to 1. However, for some results it is not possible to include
both linear and constant functions in F . For instance, we cannot apply the proof method
of Lemma 6.11 when F contains both linear and constant functions. For this reason, we
want to investigate whether we can extend some of the results to more general families
of functions. Of course, one may also think of completely other weight functions, for
instance logarithmic or exponential functions, and other semirings.

101



6 Supports and Timed Cut Languages

We further like to mention that the results presented in this chapter may be used to
obtain some decidability results for the weighted relative distance logic, particularly since
the constructions in Chapter 5 are effective. For instance, for the widely-used setting
of the min-plus-semiring and the family of linear functions, we obtain the following
consequence using Theorems 6.2 and 2.5.

Corollary 6.25. Let K be the min-plus-semiring and let F be the family of linear

functions. Then it is decidable, for a given sentence ϕ ∈ sRL
←−
d (K,Σ,F), whether

supp([[ϕ]]) = ∅. Hence the satisfiability problem of sRL
←−
d (K,Σ,F) for the min-plus-

semiring and linear functions is decidable.

Corollary 6.13 leads to the following consequence.

Corollary 6.26. Let K be the semiring over the reals with addition and multiplication
and let F be the family of linear functions. Then it is decidable, for two given sentences

ϕ1, ϕ2 ∈ sRL
←−
d b(K,Σ,F), whether ϕ1 ≡ ϕ2.

In future research, we would like to investigate other weighted versions of classical deci-
sion problems, for instance the language inclusion problem, in which one asks whether for
two recognizable timed series T1,T2 over an ordered semiring we have (T1, w) ≤ (T2, w)
for all timed words w ∈ TΣ∗. Since the language inclusion problem is not decidable
in general [6], we may have to confine the research on subclasses of weighted timed au-
tomata, e.g. with a single clock variable [91] or weighted event-clock automata [7]. Also,
one might consider the existential counterpart of this problem, i.e., whether there is some
timed word w ∈ TΣ∗ such that (T1, w) ≤ (T2, w). A starting point for research on these
problems could be the paper on quantitative languages by Henzinger et al. [38], where
they have been investigated under the names of quantitative universality and quantitative
emptiness problem. Also, Corollary 6.13 on the decidability of the equivalence of two
recognizable timed series is a promising source of further resarch.

102



7 Conclusion and Future Work

In this thesis we studied characterizations of recognizable timed series. For this, we
introduced a new definition of a weighted timed automaton over semirings and families
of weight functions. We obtained a general model of weighted timed automata, in which
we are not restricted to use a fixed set of weights and operations for computing the
behaviour of the automaton. In particular, our model subsumes other weighted timed
automata used in the literature so far, for instance the original proposals by Alur et al. [8]
and Behrmann et al. [17] and timed automata with stopwatch observers [34]. We can also
model new interesting instances of weighted timed automata never considered before, e.g.
weighted timed automata over the Viterbi semiring and exponential functions to model
probabilities. Our new definition discloses that this particular setting is isomorphic to
the model of weighted timed automata over the min-plus-semiring and linear functions.
Also, by defining weighted timed automata over a semiring, we build a bridge to the
classical theory of weighted finite automata. In this thesis, we aimed to provide the
reader with a new theoretical perspective on weighted timed automata by transferring
some of the fundamental results from the theory of weighted finite automata to the
timed setting. However, there is a big difference between weighted finite automata and
weighted timed automata in that in the latter model one is allowed to assign weights
not only to the edges (transitions) but also to the locations (states). This additional
feature accounts for the practical interest in this model as it allows for the modelling of
continuous resource consumption. However, it also complicates (or excludes, in the worst
case) some of the constructions known from the theory of weighted finite automata. In
the following, we summarize the main problems and their solutions.

First of all, we showed that due to the weight functions assigned to the locations,
recognizable timed series are not closed under the Hadamard product in general. Recall
that the Hadamard product corresponds to intersection if we consider weighted timed
automata over the Boolean semiring and constant functions. We presented an example
showing that the classical product construction does not work if the family of weight
functions is not closed under the pointwise product. We defined a general condition
on two weighted timed automata, captured by the notion of being non-interfering, for
which the classical product construction works. However, notice that for weighted timed
automata over the min-plus-semiring and the family of linear functions [8], we do not need
to restrict the application of the Hadamard product to non-interfering weighted timed
automata, since the family of linear functions is closed under the pointwise product.

Second, in chapters 4 and 5, we needed initial- and final-location-normalization
constructions of weighted timed automata. These normalization techniques are well
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known from the theory of weighted finite automata [58]. However, the initial-location-
normalization construction we propose here is a bit less restricted than that of Eilenberg.
In his construction, there is a single location with an entering weight of 1, and the en-
tering weights of all other locations are 0. Due to problems that arise with the location
weight functions, we can neither construct an equivalent weighted timed automaton
with a single location only, nor can we restrict the entering weights to 1. In the proof of
the Kleene-Schützenberger theorem, we get by with this less restricted notion of initial-
location-normalization. In chapter 5, however, we had to exclude the empty timed word
in our construction of a logical sentence from a given weighted timed automaton due to
this less restricted definition.

Third, in chapter 5, we extended the weighted MSO logic proposed by Droste and
Gastin [46] with a new kind of weighted formulas to be able to define the weight func-
tions assigned to the locations of a weighted timed automaton. We also had to extend
the notion of almost unambiguous formulas to avoid the problems that occur in the com-
bination of conjunction (whose semantics is defined by the Hadamard product) and these
new atomic formulas. We point out that, unlike the untimed case [46, 49], the semantics
of an almost unambiguous formula is not guaranteed to have a finite image. Nonetheless,
we were able to adopt parts of the proof for closure under first-order universal quantifi-
cation from Droste and Gastin [46]. A crucial part in the proof is a new normalization
technique (Lemma 5.15). Furthermore, due to the non-determinizability of timed au-
tomata [6], when considering weighted timed automata and logics over non-idempotent
semirings, we had to strike a completely new path. We restricted the application of the
universal quantifiers of our logic to formulas whose semantics correspond to timed series
over a restricted timed alphabet, namely a set of timed words with a bounded variabil-
ity. For TA-recognizable timed languages over this restricted alphabet, a deterministic
timed automaton is guaranteed to exist [106].

Fourth, the location weight functions may give rise to an infinite set of weights that
occur in a weighted timed automaton. This is for instance the case for weighted timed
automata over the family of linear functions. Here we cannot simply transfer construc-
tions used for solving decision problems for supports and cut languages from weighted
finite automata to weighted timed automata, as most of them rely on the finiteness of
the number of weights occuring in the automaton, see e.g. the construction of a finite
automaton recognizing the support of the behaviour of a weighted finite automaton over
a commutative and zero-sum free semiring [75]. However, for some semirings and fami-
lies of functions, we can show that the exact weights arising from letting time elapse in a
location are not important to give a correct decision procedure. Amongst others, this is
the case for the empty support problem for weighted timed automata over the semiring
of the reals and the family of linear functions. Furthermore, when generalizing known
results from the classical theory, we have to be a bit careful with zero time delays (or
non-strictly monotonic timed series, respectively), e.g. in Theorem 6.2.

Overall, in this thesis we came up with two alternative characterizations of recogniz-
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able timed series, namely in terms of rational timed series and in terms of sentences of a
weighted timed MSO logic. We presented the corresponding generalizations of two fun-
damental theorems in theoretical computer science, the Kleene theorem and the Büchi
theorem. These results are not only of theoretical interest, but may be useful also for
practical purposes. Rational expressions are widely used as they provide a concise for-
malism that can easily be read and interpreted by a rational expression processor. Also,
the logical formula ∃y.f (y) is much easier to read than the weighted timed automaton
with the corresponding behaviour (see Fig. 5.1). Furthermore, the two main theorems
in chapters 4 and 5 show the robustness of our model of a weighted timed automaton
and recognizable timed series, respectively. We further like to mention that we can
provide corresponding results for a strict subclass of weighted timed automata, called
weighted event-clock automata [92, 94], a weighted extension of event-clock automata [7].
As a consequence of these results, the open problem whether we can provide Kleene and
Büchi theorems for weighted timed automata over infinite timed words arises. For this,
we have to consider convergency problems that occur when the weight of infinite runs
is computed. However, for the untimed setting, there are several proposals to solve this
problem [54, 55], which may be a promising starting point for research in this matter.

In future work, we would like to investigate whether there are timed extensions
of algebraic characterizations of untimed series like linear representations [19] and
aperiodic series [47]. In this context it may be useful to consider a weighted version
of data automata, a strict superclass of timed automata introduced by Bouyer et al. [30],
of which a monoid-based algebraic characterization (along the lines of the classical no-
tion of monoid-recognizability) exists. In the theory of weighted finite automata, many
important results rely on such algebraic characterizations, for instance, algorithms to
minimize the size of a weighted finite automaton [19]. By adopting notions and concepts
from the classical theory, we hope to obtain a deeper insight in our model and come
up with new algorithms and instruments for the verification and analysis of real-time
systems.

A first step in this direction was done in chapter 6, where we investigated the support
and timed cut languages of recognizable timed series. Both notions are borrowed from
the theory of weighted finite automata, where they have been investigated thoroughly [19,
98]. The results on supports we presented here shed light on the relation between
weighted timed automata and timed automata. But first and foremost, they imply the
decidability of weighted versions of some classical decision problems like the emptiness,
universality and equivalence problem. We further investigated the TA-recognizability of
timed cut languages of recognizable timed series. This may be useful from a practical
point of view, when one is interested in checking whether the set of timed words which
is assigned a weight greater than or equal to a given value satisfies a given property.
We also argued that the results we presented here are connected to other interesting
theoretical problems concerning e.g. unambiguously TA-recognizable timed languages.

An interesting future research question brought up by our new definition of a weighted
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timed automaton is whether recently obtained results concerning e.g. the optimal cost
reachability problem [9, 17, 22], model checking [32, 21, 23, 34, 26] or weighted timed
games [4, 33, 21, 23, 27] can be extended to our general model of weighted timed au-
tomata. We recall that these results only apply to weighted timed automata over the min-
plus-semiring (max-plus-semiring, respectively) and the family of linear functions (and
isomorphic structures, see Remark 6.20). Some of the results [17, 16, 9, 32, 21, 22, 26]
are based on the classical region graph construction introduced by Alur and Dill [6] or
extensions of it, respectively. In chapter 6, we defined a weighted extension of the region
automaton to solve the empty support problem for weighted timed automata over the
semiring of the reals and linear functions. It would be interesting to formulate general
conditions on the semiring and the family of weight functions such that the behaviour
of a weighted extension of the region automaton corresponds in some sense to the be-
haviour of the underlying weighted timed automaton. The results of this work may be
significant for generalizing some of the results mentioned above on weighted timed au-
tomata. In the same spirit, we would like to investigate whether we can generalize the
results on weighted timed games and model checking to arbitrary semirings and families
of functions.

Furthermore, we want to move our research towards quantitative languages, which
have been introduced by Henzinger et al. [38]. Quantitative languages are functions that
map each word over an alphabet to a value. They can be recognized by quantitative
automata, i.e., finite automata whose transitions are assigned weights, but, as opposed
to weighted finite automata, these weights do not necessarily come from a semiring. Also
the operations used to define the running weight and behaviour of such an automaton
do not need to form a semiring. It is a natural step to lift the notion of quantitative
languages to the timed setting. In fact, some of the previously defined models of weighted
timed automata do not fit in our proposed model of weighted timed automata over a
semiring, since the operations do not form a semiring (e.g. [80, 24]). We would like to
define a more general notions of quantitative timed languages and quantitative timed
automata, which allow for more general conclusions. Then it would also be interesting
to establish the exact border between the two notions of recognizable timed series and
quantitative timed languages, i.e., to figure out the similarities and differences between
these two concepts.
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