
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Enabling framework for service-oriented collaborative networks

Sargolzaei, M.

Publication date
2018
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
Sargolzaei, M. (2018). Enabling framework for service-oriented collaborative networks.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/enabling-framework-for-serviceoriented-collaborative-networks(85ac5e36-240f-434d-8815-c7ac2c2dc9ac).html

E
nabling

Fram
ew

ork
for

Service-oriented
C

ollaborative
N

etw
orks

M
ahdiSargolzaei

Enabling Framework for Service-oriented
Collaborative Networks

Mahdi Sargolzaei

Enabling Framework for
Service-oriented Collaborative

Networks

Mahdi Sargolzaei

Enabling Framework for
Service-oriented Collaborative

Networks

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof.dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie,
in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 15 mei 2018, te 10.00 uur

door

Mahdi Sargolzaei

geboren te Mashhad, Iran.

Promotor: Prof.dr. H. Afsarmanesh Universiteit van Amsterdam
Promotor: Prof.dr. F. Arbab Universiteit Leiden
Co-promotor: Dr. F. Santini Universit di Perugia

Overige leden: Prof. Dr. F.C.A. Groen Universiteit van Amsterdam
Prof. Dr. M. Worring Universiteit van Amsterdam
Prof. Dr. R. Meijer Universiteit van Amsterdam
Prof. Dr. P.W.P.J. Grefen Technische Universiteit Eindhoven
Dr. M.M. Dastani Universiteit Utrecht
Dr. L. Xu Bournemouth University
Dr. A. Belloum Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Copyright c© 2018 by Mahdi Sargolzaei

Printing production: Off Page, Amsterdam

ISBN: 978-94-6182-890-3

to my little angel, Sarina

v

Contents

List of Figures 1

List of Tables 5

1 Introduction 7
1.1 Problem Definition . 7
1.2 Research Questions . 11
1.3 Research Method . 14
1.4 Thesis Structure . 15
1.5 Main Contributions . 17

2 Service Oriented Collaborative Networks - SOCN 21
2.1 Introduction . 21
2.2 Service Oriented Architecture . 22

2.2.1 Applying SOA . 23
2.2.2 Web services . 24

2.3 Migrating to SOA-based organizations 26
2.4 Towards Service Oriented Collaborative Networks - SOCN 28

2.4.1 Needs and Challenges . 30
2.4.2 Proposed Architecture . 32
2.4.3 Implementation Architecture 34

2.5 Conclusion . 37

3 Specification of Business Services 39
3.1 Introduction . 39
3.2 Related work . 40
3.3 C3Q Model of VO Business Services 42

3.3.1 Syntax . 45
3.3.2 Semantics . 46

vii

3.3.3 Behavior . 47
3.3.4 Quality Criteria of Services 49
3.3.5 Cost . 52
3.3.6 Conspicuity . 52

3.4 XWSDL . 53
3.4.1 XWSDL Meta-model . 56

3.5 Graphical User Interface . 57
3.6 Registration of business Services 58
3.7 Conclusion . 59

4 QoS-aware behavior-based Services Discovery 61
4.1 Introduction . 62
4.2 Related Work . 63
4.3 Soft Constraint Automata . 66
4.4 Representing the behavior of Services with SCA 69
4.5 Tool Description . 72
4.6 On Comparing behavior Signatures 76
4.7 QoS-aware Service Discovery . 80
4.8 Conclusion . 84

5 Service Coordination and Composition 85
5.1 Introduction . 86
5.2 Related work . 88
5.3 Coordination . 91
5.4 Reo in a Nutshell . 95

5.4.1 Modeling Reo Circuits . 99
5.4.2 Eclipse Coordination Tools 100

5.5 Orchestrating SOCN web services with Reo 100
5.5.1 Proxies: Motivation and Working 101
5.5.2 Generating Proxies and Orchestrations 106

5.6 Case Study . 111
5.7 Conclusion . 114

6 Validation and Evaluation 115
6.1 Introduction . 116
6.2 Validation and evaluation methods 116
6.3 Evaluation through Feature Analysis 117

6.3.1 Assessment of XWSDL . 117
6.3.2 Assessment of BehSearch 119
6.3.3 Assessment of ProxCG 120

6.4 Evaluation through Formal Experiments 124
6.4.1 Correctness Evaluation 124
6.4.2 Scalability and Performance 127

viii

6.5 Case Study: GloNet . 129
6.5.1 Product/Service Specification(PSS) 131
6.5.2 Service Specification & Registration Tool (SST) 133
6.5.3 Composite service specification 137
6.5.4 Viewing / managing existing service specifications 140

6.6 Conclusion . 143

7 Conclusion, and Future work 145
7.1 Addressing Research Questions 145
7.2 Discussion and Future Work . 149
7.3 Overview and Conclusion . 150

8 Annex I 153

Summary 155
8.1 Summary . 155

Publication List 159

Bibliography 161

Samenvatting 177

Acknowledgments 181

Abbreviations 183

SIKS Dissertation Series 185

ix

List of Figures

2.1 The history line of programming. 25
2.2 SOA paradigm for web services. 26
2.3 A sample of SOA setup between organizations. 27
2.4 Two kinds of SOA-based organizational applications. 28
2.5 Service life cycle’s phases. 30
2.6 The UML sequence diagram for SLC. 31
2.7 Traditional view of Service oriented architecture. 33
2.8 The first variation of SOA Needed for service design in SOCN. . . 33
2.9 The second variation of the SOA addressing service composition

in SOCN. 34
2.10 Implementation architecture for service oriented collaborative net-

works. 35

3.1 Views of business services. 43
3.2 The C3Q services profile. 45
3.3 Example of the WSDL extension for semantic description. 47
3.4 Operations of a restful example: the Hotel booking service [94]. . 48
3.5 The behavior specification of the Hotel booking service in terms of

Constraint Automata. 49
3.6 Example in XWSDL (WSDL extension) for the behavior description. 50
3.7 Example in XWSDL (WSDL extension) for quality criteria for ser-

vices. 51
3.8 Example in XWSDL (WSDL extension) for the cost. 52
3.9 Example in XWSDL (WSDL extension) for the conspicuity. . . . 53
3.10 Standard WSDL vs XWSDL. 54
3.11 The schema of XWSDL. 55
3.12 The XWSDL meta-model. 56
3.13 The preliminary behavioral-specification of “Purchase” service. . . 57
3.14 The revised version of the behavioral description of Figure 3.13. . 58

1

2 LIST OF FIGURES

3.15 Registration of Atomic & Composite Service. 59

4.1 An example of a SCA, as well as its associated weighted constraints. 69
4.2 Two example queries represented by soft Constraint Automata. . 70
4.3 A set of registered services for the queries in Figure 4.2a; d per-

forms both kinds of search (by author and by title). 70
4.4 Two examples of stateless/stateful queries. 72
4.5 The architecture of the tool. 73
4.6 An example of WSBS. 74
4.7 Text file representing the WSBS in Figure 4.6. 74
4.8 A single-state query asking for the weather conditions over a City,

or a Zipcode. Different user preference scores are represented
within square brackets. 75

4.9 A query example. 77
4.10 A possible service in a registry related to the query in Figure 4.9. 77
4.11 Two possible subgraph epimorphisms of the Figure 4.10. 78
4.12 A stateful query asking for a purchase online scenario including

buying, shipping and charging. 80
4.13 Lattice of subsets of tA,R, T u, partially ordered by “is subset of”. 83

5.1 Service orchestration vs service choreography. 93
5.2 An example of Reo nodes. 98
5.3 Exclusive router: an example of Reo circuits. 99
5.4 2-coloring examples for the exclusive router. 99
5.5 Constraint automata of common Reo channels and our example

circuit. 100
5.6 Architecture of a Reo-based orchestration scenario with service

proxying. 102
5.7 Architecture of a proxy. 103
5.8 Simulation automaton of IncService. 104
5.9 Architecture of ProxCG. 107
5.10 Architecture of OrchCG. 108
5.11 Impression of the ECT (right panel) + the GUI version of ProxCG

and OrchCG (left panel). 110
5.12 The sequential coordination of four WSs represented as a Reo cir-

cuit: the numbers, on comment notes, represent the ordering of
the exchanged messages. 111

6.1 Comparison of XWSDL with similar models/standards. 119
6.2 Comparison of ProxCG with similar models/systems. 121
6.3 Comparison of ProxCG with similar models/systems. 123
6.4 The query for discovering WSs that can search and apply for jobs. 126
6.5 The R-P curve of some the related works. 128

LIST OF FIGURES 3

6.6 The graphs of execution time and speed-up rate for the example
mentioned in Table 6.3. 129

6.7 the general view of the Product & Service Specification (PSS). . . 133
6.8 Main flow of the Product & Service Specification (PSS) Process. . 134
6.9 New Service specification form. 135
6.10 Flow of the service specification (within SST). 136
6.11 Flow of the product specification (within PST). 137
6.12 An example of composite business service for solar plants called

site maintenance service. 138
6.13 New composite service form. 139
6.14 Flow of the composite service specification (PST). 140
6.15 View form of a Service Specifications. 142
6.16 Service Discovery form. 143
6.17 An example of Service Result window. 143

8.1 The XSD tags of the schema. 154

List of Tables

1.1 The main contributions of this disertation 17

4.1 The ranking of the top-ten matched WSs, based on the query rep-
resented in Figure 4.8. 76

4.2 The ranking of the top-ten matched WSs, based on the query rep-
resented in Figure 4.12. 81

5.1 Comparison of web services coordination languages. 95
5.2 Six primitive channels of Reo. 97

6.1 The top-ranked matched WSs, based on the query: q0 SendSMS q0.126
6.2 The top-ranked matched WSs, based on the query represented in

Figure 6.4. 127
6.3 Evaluation of the distributed model by matching the achieved

speed-up with respect to the number of used nodes. 129

5

Chapter 1

Introduction

1.1 Problem Definition

With the increasing adoption of the Global Village phenomenon, the fundamental
aspects of economic systems have exponentially extended from the family, first to
the small village and the region, and then growing into the country and nation,
and finally to the entire world [20]. As such, over the last several centuries, many
businesses have become truly global. Historically, the ancient Silk Road exem-
plifies one of the first global supply chains in the world [45]. During the recent
centuries however, global supply chains have mainly focused on the basic needs
for agricultural goods and raw materials. The Industrial Revolution especially,
caused further extension of global trades, due to the increase in trade volume, as
well as in the capabilities of the sources (regions and nations) in producing their
products that finally resulted in the emergence of industrial networks. Over the
last decades, the industrial networks and distributed manufacturing got consider-
ably matured and now present themselves as potential solutions to facilitate the
fast changing requirements in market demands, i.e. the provision of flexibility
and agility [30].

In a nutshell, business globalization has now reached the point that mandates
increasing the integration of societies and the synergy in their economies and in-
dustries. Consequently, a growing trend has also emerged in service industries,
moving towards collaboration and cooperating through participation in networks.
In a broad sense collaboration means working together and networking by a group
of people and organizations that are closely connected. Although the notion of
network is addressed in many fields, such as in communications, social sciences,
computer science, biology, etc., the special relevance in the context of our research
work is the area of Collaborative Network (CN), and mostly pertinent to organi-
zations. A set of definitions addressing different kinds of collaborative networks
are addressed in [32]. For example, the Collaborative Networked Organization
(CNO) is defined as a structured form of organizations that follow a predefined set

7

8 Chapter 1. Introduction

of governance principles and rules, while the Ad-hoc Collaborations are defined as
those spontaneously formed, without any precise structure and predefined targets,
and that are not business oriented. There are also two specific forms of CNOs
closely applied in our research, namely: the long-term strategic networks and the
goal-oriented networks. One instance of the goal-oriented collaborative network
especially is called the Virtual Organization (VO), which is aimed at achieving
its members’ common business goals. The definition of a VO as adopted in our
research follows [31]:

“Virtual Organization (VO) is a dynamic and temporary form of collaborative net-
works, comprising a number of independent organizations that wish to share their
resources and skills to achieve its common mission/goal.”

One instance of the long-term strategic network especially is called the Vir-
tual organizations Breeding Environment (VBE), which is established with the
purpose of providing an environment and the conditions to support rapid config-
uration of the virtual organizations. The formal definition of a VBE as adopted
in our research follows [1]:

“VO Breeding environment (VBE) represents an association of organizations
and their related supporting institutions, adhering to a base long term cooper-
ation agreement, and adoption of common operating principles and infrastruc-
tures, with the main goal of increasing their preparedness towards rapid configu-
ration of temporary alliances for collaboration in potential Virtual Organizations.”

With rapid advances in ICT, nowadays collaborative networks are supported
by a large set of diverse tools, including broadband mobile computing and cloud
computing that further push early concepts of collaborative networks into much
wider and completely new territories. In many areas of production and services,
Small and Medium-sized Enterprises (SMEs) provide their business services on-
line. SMEs are increasingly interested in working together and establishing collab-
orative networks , through joining their skills, resources, abilities, and knowledge.
Usually a VO is established by SMEs to fulfill the following two purposes.

A first purpose for VO formation is to best target a specific emerged oppor-
tunity in the market or society, which either requires the combination of different
capabilities and resources provided by collaborating organizations, or simply re-
quiring the accumulation of their resources and/or capacities. The formation
process of a VO typically starts in a VBE, where the candidate SMEs are usu-
ally selected by the VO broker and invited to jointly accept the responsibility of
fulfilling the tasks needed to achieve the common goals of the VO.

A second purpose for VO formation is to support innovation. For instance, one
or more SMEs together foresee the potential of investing into the development and

1.1. Problem Definition 9

provision of a certain new service in the market, and one acts as the VO broker,
to combine some of the abilities, resources, capacities, etc. from a number of
participating SMEs, who can then together fulfill the development of the planned
innovation.

Nevertheless, in either case, in order to act agile and to be able to compete in
the market and society against the real large existing organizations, a minimum
base platform for collaboration must pre-exist among the SMEs before the forma-
tion/operation of the VO. For this purpose, the Virtual organizations Breeding
Environment serves as the base environment that provides this minimum collab-
oration base, within which the VOs can then be launched.

In order to collaborate effectively and to become time/cost efficient, SMEs in
the VO must act together as a single larger entity, and thus sharing with each
other their resources and capabilities, and co-working efficiently. One important
set of resources to be shared among such SMEs in the VO consists of the pool
of their online business services. These services must be shared as if all involved
SMEs belong to one larger real organization. These services must also be inte-
grable, to support the creation of value-added services within the VO.

Clearly, in order to share and compose software services that represent busi-
ness services provided by different SMEs in a VO, they need to be formally and
uniformly defined. In fact, such unification in their definition format must be
properly addressed and pre-defined at the VBE level, in order to enhance their
sharing and collaboration among SMEs, once the VO is established. In other
words, when all VBE members formally and uniformly define their business ser-
vices, once in a VO, all partners will be able to seamlessly share each others
services and to integrate them for creating new value-added services and/or for
innovation purposes in their sector, as if these SMEs all belong to one large or-
ganization. At present however, due to the lack of uniformity in full and formal
definition of implemented business services, as provided on-line by SMEs, neither
their effective discovery as existing software services, nor their effective composi-
tion toward creation of integrated services, can be supported. For instance today,
creating a new value-added service out of the existing services within the VOs,
to provide it as a new online service to the customer, is quite challenging in the
needed efforts, and the time and cost spent, as also exemplified below [4].

As an example, consider a VBE in which a partner SME-1 plans to simply
create a new integrated tourism package to include the reservation of flight-tickets,
hotel-rooms, day-trips, and dinners at restaurants in a specific touristic region. In
an ideal situation, all SMEs involved in the VBE would have already implemented
and provided their individual business services as shared web services. As such,
SME-1 could have discovered all needed services and identified the most-fit SMEs
for sharing their services and working together to create this new package as
an integrated service. SME-1 could then also act as the VO broker, start the
formation of the new needed VO, and invite the other SMEs for it. But at
present, due to the lack of such uniform and unambiguous formal definition for

10 Chapter 1. Introduction

the provided business services through the VBE, SME-1 can neither be properly
supported with the discovery of such existing services, nor with facilitating their
composition. In other words, currently even the discovery task of the most-
fitting services can at best perform a search/match based only on the service’s
capability and interface, including the service names, operation names, and a few
other additional information source related to the functionality of the requested
service, e.g. in terms of its preconditions, assumptions, post-conditions, and
effects [166].

However, in order to effectively co-work and co-develop in VOs, organizations
need to both discover much more than this about the VBE’s shared services and
be assisted with their potential composition. As a first step, the shared business
services in the VBE need to be concisely specified and accessible through a vir-
tual common pool of uniformly defined services. As such, organizations need to
accordingly register/publish their services in this virtual common pool, search-
able through the directory. When achieved, SME-1 would be able to discover the
needed web services for the tourism package such as flight-tickets, hotel-rooms,
and day-trips. These services in fact need to be retrieved from the common pool
based on their functional and non-functional properties. For example, SME-1 can
investigate/discover services based on which operations they invoke and in which
sequence, i.e. based on our so-called behavior of the service. Finally, SME-1 as
a service integrator needs support to bundle its selected services in order to offer
the tourism package as a new composite service.

While the above is needed and desired in service providing VOs, the following
business service related challenges must be first tackled and resolved before they
can be supported. The main challenges identified and addressed by our research
include the following:
(1) There is no uniformity in business service definition among organizations,
since organizations are and remain independent and autonomous.
(2) There is a lack of common ontology for definition of business services, even at
the level of existing associations/clusters of organizations related to each industry
sector.
(3) There is no unambiguous/concise specification for business services, specifi-
cally for service functionality, as it is vital to developing their equivalent software
services.
(4) There is a lack of support for selecting most-fit business services against
the user-defined desired criteria, in relation to the syntax, semantics, and func-
tion/behavior of the service.
(5) There is no support for business service integration/composition, to allow
creating value-added services in the VOs.

This thesis addresses the above challenges as its main contribution. Our
approach goes beyond the existing business services (BSs) standards and tools
through proposing a competency model for business services within the VOs. The
proposed BS competency model represents a number of characteristics that are

1.2. Research Questions 11

needed for the description of BSs as web services. As such, VO business services
can be uniformly and concisely defined and published in order to support their
sharing and reuse. The thesis also defines an approach and the needed system
architecture supporting the semi-automation of its proposed solution to the last
critical challenges.

1.2 Research Questions

Uniform definition for business services and specially the concise specification of
their behavior are of great importance for co-working in VOs. Semi-automation
of business service manipulation tasks e.g. the service composition tool, greatly
enhances the effective co-development within service industry. Our proposed ap-
proach and system is developed to properly respond to the following fundamental
research questions:

RQ1: How to support VO member organizations to co-work/co-develop
through sharing their capabilities when defined as business services?

This research question primarily requires the design of a holistic framework to
support service oriented VOs and is addressed in Chapter 2 of the thesis. In order
to address service oriented collaborative networks, first we extend the traditional
architecture of the SOA in support of the identified needs, challenges and new op-
portunities raised in collaborative networks area. We introduce a new variation
to the SOA paradigm for this purpose, and thus propose a framework to sup-
port establishing service oriented computing in VOs. At the abstract level, our
framework consists of three software modules, including: Specification Mod-
ule, Discovery Module, and Composition Module, as are further explained
in Chapter 2.

RQ2: How to effectively support service reusability in service-oriented
VOs?

This research question is related to the specification and representation of busi-
ness services that are mainly addressed in Chapter 3. It includes the following
two sub-questions:

S1-RQ2: How to uniformly define business services from independent and au-
tonomous organizations participating in the VO?

Our concise definition of business services is supported through the C3Q model,
addressed in Chapter 3. This model addresses the Capability (i.e. addressing
functional properties of services including their syntax, semantics, and behavior),

12 Chapter 1. Introduction

Cost, Conspicuity, and Quality criteria of the service, each defined through
its shared common ontology. As such, all VO business services can be uniformly
published in the common VBE directory, and efficiently shared and reused by all
VBE members.

S2-RQ2: How to specify in an unambiguous/concise representation manner, the
behavior/functionality of business services, as required for developing their equiv-
alent software services?

This research question is also addressed in Chapter 3, through the formal rep-
resentation introduced for service behavior. This representation can sufficiently
support generating machine readable specification of business processes that run
at each organization in the VO. As such, the defined service behavior can be
reused unambiguously, for developing equivalent software services, and thus pro-
viding an executable definition for business services.

RQ3: How to enhance discovery/selection of most-fit business ser-
vices in VOs, while supporting a number of user-specified criteria?

This research question is primarily related to provision of the required frame-
work and the implementation of the required architecture and mechanisms for
automated discovery of component services. The discovery task involves proper
matchmaking between the characteristics of existing services against their de-
sired user-defined syntax, semantics, behavior and quality criteria. This is
mainly addressed in Chapter 4, which tackles the following two sub-questions:

S1-RQ3: How to enhance the search criteria, thus improving accuracy of ser-
vice discovery results?

The power and efficiency of the discovery module here, similar to any other
information retrieval method, is bound to the number of relevant accurate results
that it generates. A relevant result in discovery cases, is a registered service that
is potentially able to do what user requires, i.e. it is functionally matched to the
user query. Many approaches have tackled this concern and even some of their
related tools have achieved good results for service discovery based on searching
the syntactic and semantic properties of web services. However, to the best of our
knowledge, none of the provided approaches consider searching also based on the
behavioral properties of services, which can play a very important role in search
results. To deal with this deficiency, we introduce a tool for behavior-based
Discovery of matched services, in which also the requested behavior specified
within the user’s query is taken into account.

1.2. Research Questions 13

S2-RQ3: How to ensure the quality aspects of retrieved/discovered services?

While the proposed search engine can discover services according to their func-
tional properties, non-functional properties (especially quality parameters of ser-
vices) also play an important role in users selection. In other words, when several
web services offer similar capabilities, it is necessary to also consider the non-
functional properties of services carefully as selection criteria. Thus, besides the
functional requirements, our tool supports users to also consider the set of QoS
(quality of services)requirements in their queries in order to assist with ser-
vice selection in a lexicographic order.

RQ4: How to semi-automate integration/composition of component
business services in VOs, to support the creation of value-added ser-
vices and co-innovation?

This research question is addressed in Chapter 5, in which enhancing service
integration and semi-automated composition of the existing published services in
the VBE are addressed. In other words, reusability of business services existing in
the virtual VBE service pool, and the creation of new value-added services in the
VOs are supported by our introduced approach and implemented mechanisms.
This topic is addressed through the following two sub-questions:

S1-RQ4: How to represent internal configuration (i.e. behavior) of the component
services, as required to be concisely defined for the purpose of their automated in-
vocation?

Stateful services, with more than one internal configuration, may permit the
exchange of messages of different types in their different configurations. To ap-
proach this challenge, we propose the use of web service behavior Specifi-
cation (WSBS) in terms of constraint automata, in order to show the desired
configuration of the defined service, i.e. the sequence of its operations’ invoca-
tions, and to call the operations according to it. Our proposed tool can then
monitor the transitions of the WSBSs to follow the proper configurations of the
service. It then packs both the data items and the synchronization points (of the
orchestrator) into some appropriate message format, and then sends these mes-
sages over the network to the actual service for its proper invocation when needed.

S2-RQ4: How to model the complex interactions and communications among sev-
eral component services as required to be defined for their proper integration into
a composite service and how to semi-automate the process?

With the added challenge of executability aimed for this task, a software co-
ordination language was needed to be adopted as the base. We studied many

14 Chapter 1. Introduction

coordination languages, and chose to adopt Reo [9] as the most suitable base
language and environment to both model and handle the interaction protocols
among the component services. We present a compositional construction of web
services in this chapter, while using Reo and constraint automata. For each
web service, our approach automatically generates a proxy that then manages
the communication between this service and the Reo connectors. This proxy
component is therefore in charge of managing the communication between the
technology behind each service with the Reo environment.

Obtaining satisfactory answers to the above sub-questions have resulted in
developing our tool for specification, discovery, and composition of business ser-
vices and effectively support and promote collaboration, competition, and co-
innovation among a network of organizations in the VOs.

1.3 Research Method

This section addresses the main steps and the methods followed in our research
and addressed in the thesis.
(1) Establishing the Motivation. This phase aims at indicating the impor-
tance of developing a framework for service oriented collaborative networks. We
show how the proposed model is applied in a network of organizations, enables the
members to work as a network more effectively, and increase their collaboration
and even innovation. We address the shortcomings of the current supporting stan-
dards and tools that target employing software services in collaborative networks.
These aspects serve as the motivation for this dissertation research, and are in-
troduced in Section 2.4.1. These problems and required new elements to solve
them are addressed through our introduction of a variation of SOA paradigm, as
presented in Section 2.4.2.
(2) Reviewing the Related Work. This step targets providing enough infor-
mation for the approach pursued in this thesis, to specify, reuse, and integrate
business services shared within the networked organizations. Our study of related
work aims to provide solid understanding of the theoretical prospectives involved
and exploration of challenges, opportunities, and practicalities related to service
industries.
(3) Proposing Innovative Framework. This phase aims at introducing an
abstract framework to support service oriented collaborative networks. Apply-
ing SOA in VOs, we present a variation of the traditional SOA paradigm, which
is used to augment existing web services standards and tools, in order to over-
come their drawbacks for our purposes. Chapter 2 addresses our introduced
abstract framework, which is designed based on a new SOA paradigm, and used
in subsequent chapters for the implementation of our supporting business service
manipulation tools.
(4)) Developing Tools to Support the Framework. This step targets the

1.4. Thesis Structure 15

development of a set of needed tools to support the designed abstract frame-
work for service oriented collaborative networks. A GUI is implemented to ease
the behavioral specification of services, and which extends the WSDL standard.
Moreover, a tool is developed for similarity-based discovery of services and in or-
der to rank the service descriptions in our registry. Finally, a code generator for
the orchestration of services in Reo [9] is implemented. The tool automatically
generates a proxy for each service that manages the communication between this
service and the orchestrator. These tools are implemented in Java, and their
implementation details are respectively addressed in Chapters 3, 4 and 5.

(5) Evaluating the Proposed Approach. The goal of this phase is to
evaluate the efficiency and correctness of our proposed approaches. In Chapter
6, we evaluate each approach (i.e. XWSDL, BehSearch, and ProxCG) by
comparing them against several state of the art related work. Moreover, the
correctness of our search results according to the information retrieval metrics, as
well as its efficiency based on the scalability factors, are measured in this chapter.

(6) Validating with a Case Study. The validation phase aims at studying
the effects of the proposed approaches and tools on several case studies. We apply
some models and approaches depended in this dissertation to the GloNet project,
which is a European founded research project aimed at supporting development
of business service enhanced products in a collaborative network focused in the
area of solar power plants. This part of the research is also presented in Chapter
6.

1.4 Thesis Structure

This thesis addresses mechanisms that are used to support the reusability and
integration of business services in VOs. The structure of the thesis is as follows:

In Chapter 2, an abstract framework is specified to support collaboration
within a network of organizations, through sharing their business services. In
comparison with traditional collaborative networks, this style of CNs, i.e. service
oriented collaborative networks, promotes and simplifies reusability and intercon-
nection of shared assets especially in the information technology sector, i.e. re-
garding the handling of software services in a distributed manner. Our framework
is designed based on a new proposed variation of Service Oriented Architecture
(SOA) paradigm, which is applied in collaborative networks. This chapter further
provides a short survey that enables effective categorization and comparison of
different state of the art approaches addressed as related works.

Chapter 3 addresses and resolves several main obstacles and challenges ex-
isting for the definition and specification of business services, in order to provide a
basis for discovery and composition of these services. This chapter briefly outlines
some theoretical and technical assumptions made by works related to business
service specification. A brief description of business services is proposed in this

16 Chapter 1. Introduction

chapter and then we sketch out our own position to provide a specification model
for the VO business services called C3Q. A light extension of WSDL standard is
also presented to describe different aspects of the business services, as they are
considered in C3Q. Finally, a GUI is developed to assist users in specification of
services.

In Chapter 4, we present a tool that is able to discover web services registered
in a database and to rank them according to a similarity score that expresses the
affinities between each service and a user-submitted query. To determine these
affinities, both the behavior of the user’s query and the behavior of the services are
taken into account and compared. The name of service operations, their desired
order of invocation (i.e. the service behavior) and their parameters, form the
functional similarity score for the discovery. This information is expressed and
formalized in the user’s queries by soft constraints, to accommodate the user’s
needs in the best possible way. The behavior-based specification and discovery
is proposed for the stateful services, and we argue that a proper formalization
for the behavior of many services that are commonly thought to be stateless, in
fact do require a stateful representation. As such, our method and our tools can
accommodate discovery of these services better than the alternatives that consider
them as stateless. The discovery process is modeled as a Constraint Optimization
Problem. We also enhance our discovery tool, considering QoS metrics to further
meet the non-functional needs specified by the users.

The focus of Chapter 5 is on the composition of services in our framework,
in which services distributed over a network of organizations can be composed
according to the requirements defined by a service integrator. The composition
of services needs additional efforts to impose coordination among the component
services. We study and compare several alternative coordination languages and
standards that can model the interaction protocols among component services in
an integrated/composite service. We pick Reo [115] as the coordination language
to use, and recall the most relevant aspects of Reo for the sake of our VO service
composition, as the necessary background notions.

In Chapter 6, we first validate the proposed approaches and tools through
applying our tools in the European R&D project GloNet [36] that involves real
cases in the context of service enhanced products in solar power plants. We then
evaluate our proposed approaches (including XWSDL, BehSearch, and ProxCG)
by comparing them to several related work results. Furthermore, we also measure
the correctness of our discovery tool by calculating its precision and recall. Finally,
we present a peer-to-peer implementation of the tool to overcome the scalability
issues.

The Chapter 7 concludes the thesis and addresses how we have answered to
the defined research questions. The assessment of our approaches and the devel-
oped tools, as well as several on going and future works are also addressed in this
chapter.

1.5. Main Contributions 17

1.5 Main Contributions

The main contributions of this thesis is in the field of handling business ser-
vices specification, discovery, and composition within collaboration networks, as
presented in Table 1.1.

Table 1.1: The main contributions of this disertation

Title Description Place
SOCN A framework that addresses the needed

modules to implement service oriented
collaborative networks

Chapter 2

C3Q A competency model for business ser-
vices specification

Chapter 3

XWSDL An extension of WSDL to describe web
services, based on the C3Q model

Chapter 3

Fizzim+B A GUI to ease behavioral specifica-
tion of services, through extending the
Fizzim tool

Chapter 3

BehSearch A behavior-based services discovery Chapter 4
ProxCG A tool for automated generating of

proxies, able to connect web services to
Reo circuits as the orchestrators

Chapter 5

The material represented in Chapters 2 to 6 of this thesis have been published
in a series of co-authored Journal articles and conference papers, as indicated
below.

• Service Oriented Collaborative Network Architecture [142].

– Partially presented in Chapter 2.

– Published in PRO-VE Conference Proc., 18th Conference on Collabo-
ration in a Data-Rich World, Springer, Berlin, Heidelberg, 2017.

– Mahdi Sargolzaei: Addressing a variation of the service oriented ar-
chitecture paradigm for collaborative network. Designing a new frame-
work to implement service oriented collaborative networks.

– Hamideh Afsarmanesh: Guidance and technical advice.

• Semi-automated software service integration in virtual organisations [4].

– Partially presented in Chapter 2 and Chapter 5.

18 Chapter 1. Introduction

– Published in Journal of Enterprise Information Systems, Volume 9, Is-
sue 5-6: Service-based interoperability and collaboration for enterprise,
Taylor & Francis, UK, 2015.

– Mahdi Sargolzaei: Proposing a meta-date to define business services
unambiguously in VOs. Discussing state of the art in the area of service
oriented computing. Developing a framework semi-automated software
service integration in VOs.

– Mahdieh Shadi: Proposing approach for trust evaluation.

– Hamideh Afsarmanesh: Guidance and technical advice.

• A framework for automated service composition in collaborative networks
[3].

– Partially presented in Chapter 2.

– Published in PRO-VE Conference Proc., 14th Conference on Collab-
orative Networks in the Internet of Services, Springer, Berlin, Heidel-
berg, 2012.

– Mahdi Sargolzaei: Designing a conceptual framework to facilitates
automated service composition in VOs.

– Mahdieh Shadi: Proposing approach for trust evaluation.

– Hamideh Afsarmanesh: Guidance and technical advice.

• C3Q: A Specification Model for web services within Virtual Organizations
[141].

– Partially Presented in Chapter 3.

– Published in PRO-VE Conference Proc., 18th Conference on Collabo-
ration in a Data-Rich World, Springer, Berlin, Heidelberg, 2017.

– Mahdi Sargolzaei: Designing a new competency model for business
services in VOs. Extending WSDL standard based on C3Q.

– Hamideh Afsarmanesh: Guidance and technical advice.

• A Tool for behaviour-Based Discovery of Approximately Matching of web
services [144].

– Partially presented in Chapter 4.

– Published in SEFM Conference Proc., 11th International Conference
on Software Engineering and Formal Methods, Part of the Lecture
Notes in Computer Science book series (LNCS, volume 8137), Springer,
Berlin, Heidelberg, 2013.

1.5. Main Contributions 19

– Mahdi Sargolzaei: Designing an architecture for approximate behaviour-
matching of web services. Implementation of the tool.

– Francesco Santini: Providing several of the formal definitions.

– Farhad Arbab: Guidance and technical advice.

– Hamideh Afsarmanesh: Guidance and technical advice.

• Automatic Code Generation for the Orchestration of web services with Reo
[83].

– Partially presented in Chapter 5.

– Published in ESOCC Conference Proc., European Conference on Service-
Oriented and Cloud Computing, Part of the Lecture Notes in Computer
Science book series (LNCS, volume 7592), Springer, Berlin, Heidelberg,
2012.

– Mahdi Sargolzaei: Designing and implementing the service side of
the Proxies.

– Sung-Shik T. Q. Jongmans: Designing and implementing the circuit
side of the proxies.

– Francesco Santini: Providing several of the formal definitions.

– Farhad Arbab: Guidance and technical advice.

– Hamideh Afsarmanesh: Guidance and technical advice.

• Orchestrating web services using Reo: from circuits and behaviours to au-
tomatically generated code [84].

– Partially presented in Chapter 5.

– Published in Journal of Service Oriented Computing and Applications,
Volume 8, Issue 4: service-oriented and cloud computing, Springer,
Berlin, Heidelberg, 2014.

– Mahdi Sargolzaei: Designing and implementing the service side of
the Proxies. Working on the case studies in order to validate the tool.

– Sung-Shik T. Q. Jongmans: Designing and implementing the circuit
side of the proxies.

– Francesco Santini: Providing several of the formal definitions.

– Farhad Arbab: Guidance and technical advice.

– Hamideh Afsarmanesh: Guidance and technical advice.

• A Competition Space for Complex Product Specification [152].

– Partially presented in Chapter 6.

20 Chapter 1. Introduction

– Published in PRO-VE Conference Proc., 16th Conference on Collabo-
rative Systems for Smart Networked Environments, 2014.

– Mahdi Sargolzaei: Designing and implementing the Service speci-
fication tool(SST), and service discovery module of product/Service
Discovery and Recommendation (PSDR).

– Mohammad Shafahi: Designing and implementing the product speci-
fication (PST) and Product/Service Discovery and Recommendation
(PSDR).

– Hamideh Afsarmanesh: Guidance and technical advice.

Chapter 2

Service Oriented Collaborative
Networks - SOCN

The research results presented in this chapter are partially published in the fol-
lowing papers:

• Sargolzaei, M. and Afsarmanesh, H., 2017. Service Oriented Collaborative
Network Architecture. In Collaboration in a Data-Rich World. Springer
Berlin Heidelberg.

• Afsarmanesh, H., Sargolzaei, M. and Shadi, M., 2015. Semi-automated
software service integration in virtual organisations. Enterprise Information
Systems, 9(5-6), pp.528-555.

• Afsarmanesh, H., Sargolzaei, M. and Shadi, M., 2012. A framework for
automated service composition in collaborative networks. In Collaborative
Networks on the Internet of Services (pp. 63-73). Springer Berlin Heidel-
berg.

2.1 Introduction

In today’s economy, cooperation among organizations tend to change from tra-
ditional static supply chains to dynamic organization networks [158]. In general,
networking organizations and co-development among business partners brings
forth lower cost, higher quality service/product, larger service/product portfo-
lio, faster delivery, and more agility. However, the pace at which these changes
in trend need to occur has resulted in high demands in supporting collabora-
tion through networks of organizations, i.e., establishing collaborative networks
(CNs). In another simultaneous emerging trend, organizations constantly search
for new ways to improve their business processes and to enrich collaboration
among their potentially distributed workers [81]. In our research work, the above

21

22 Chapter 2. Service Oriented Collaborative Networks - SOCN

two challenges are addressed, and the promising paradigm of Service Oriented Ar-
chitecture (SOA) is investigated and applied to the enhancement of organizations
collaborative networks. Besides proposing the use of SOA in effective support of
CNs, we needed to extend the generic model of SOA as the reference framework.
An implementation architecture is also elaborated based on our analysis of the
requirements from the reference framework.

This chapter specifically aims at introducing our proposed new framework to
support collaboration within a network of organizations, through their shared
business services (BSs). Applying this framework facilitates Service Oriented
Collaborative Networks (SOCN) by promoting and simplifying reusability and
interconnection of shared software services, in a distributed manner. Further-
more, a set of sub-systems is designed within an implementation architecture
that supports all SOCN’s required functionality.

This chapter starts by providing a short introduction to the Service Oriented
Architecture in Section 2.2. In Section 2.3 the role of SOA in today’s organizations
is discussed. An extended model of SOA paradigm is addressed in Section 2.4 to
identify the basic requirements for supporting SOCN. A reference framework and
architecture to facilitate assisting the implementation of our proposed model is
presented thereafter, identifying and briefly describing its main components. We
then conclude the chapter in Section 2.5.

2.2 Service Oriented Architecture

Recently, Service Oriented Architecture (SOA) has become well-known while
somewhat imprecisely defined. For example, an organizational methodology to
design systems, an IT infrastructure in business, and a structure for increasing the
efficiency of IT, are some of the definitions provided for SOA from three different
points of view. In fact, this problem with defining SOA reminds the author of
a poem by Rumi titled: “The blind men and the elephant” [146] about the men
examining an elephant in the dark, where each man depicts the elephant differ-
ent than the others, according to his own individual experiences. Similar to these
men, people from different contexts have correctly identified many capabilities of
SOA, but they almost failed to communicate this concept as a whole.

In our research, as a preliminary definition, we consider SOA as a loosely-
coupled architecture designed to meet the business requirements of the organiza-
tions. It means that the dependency among services is minimized, while they only
require being aware of each other. Being open, extensible, federated, and compos-
able are the characteristics we adopt for SOA, as formally defined by Erl in [56],
promoting service-orientation in enterprises. From his point of view, services in
SOA are autonomous, QoS-capable, vendor diverse, interoperable, discoverable,
and potentially reusable, which are implemented as web services.

Organization for the Advancement of Structured Information Standards (OA-

2.2. Service Oriented Architecture 23

SIS) also provides a holistic definition of SOA that we consider in our research as
follows:
“Paradigm for organizing and utilizing distributed capabilities that may be under
the control of different ownership domains. It provides a uniform means to offer,
discover, interact with and use capabilities to produce desired effects consistent
with measurable preconditions and expectations” [106].

Indeed, Service Oriented Architecture is a programming paradigm that uses
“services” as the constructs of distributed business applications to support reusabil-
ity and agility. Services in this architecture are autonomous and platform -
independent computational entities that can represent the steps of a business
process and communicate with each other [126]. These services can be described,
published, discovered, and dynamically integrated in order to develop massively
distributed, interoperable, and evolvable applications. Each service can perform
some functions that are able to execute either simple requests or complex busi-
ness processes through a peer-to-peer relationships between service clients and
providers.

The subject of Service Oriented Architecture and Computing covers many
concepts, standards and technologies that find their origins in a wide variety of
disciplines, including distributed computing systems, computer networking, com-
puter architectures, cloud computing, software engineering, programming lan-
guages, database systems, security, artificial intelligence and knowledge represen-
tation. An explanation of these related concepts is beyond the scope of this thesis.

2.2.1 Applying SOA

For a long time, increasing the level of abstraction in programming has been a
main motivation in software engineering. Therefore, we have witnessed evolu-
tions in programming approaches from sequential programming, respectively to
procedural programming, object-oriented programming, component-based pro-
gramming, and finally service oriented programming. Procedural programming
has been defined as a subtype of imperative programming that moves some state-
ments into procedures. During the 80s, object-oriented programming (OOP)
was introduced as an extension of procedural programming that increases the
level of abstraction and encapsulation of the programs by defining collections of
individual units called objects that form the programs. Then, in the 90s, the
component-based development models come to the programming paradigm. Fi-
nally, components in the programming model are enhanced to the services. There
is no clear dividing line between component oriented programming and service
oriented programming. In fact, services are the enhancement of components,
where the individual services can be considered as single components. Both SOA
and component based architecture support abstraction and loose-coupling. The
main difference between SOA and component based architecture is related to the

24 Chapter 2. Service Oriented Collaborative Networks - SOCN

connection between services, and also the ability to offer single services for third
parties [130]. In principle, SOA provides the services for third parties on the Inter-
net, therefore software developers are able to use foreign, external “components”
in the form of web services. Figure 2.1 shows the timeline of increasing abstraction
level in programming paradigm from procedural methodology to SOA.

Service oriented programming holds the promise of moving beyond the simple
exchange of information and remote invocation of methods on objects, to the
concept of encapsulating data and application to services and passing messages
between them. An important economic benefit of this shift in programming
paradigm is that it improves the effectiveness of software development activities
and enables enterprises to bring their new applications to the market more rapidly
and cost-effectively than ever before, by developing composite services from the
existing component applications [108] and [126].

2.2.2 Web services

Currently, web services are the most promising technology that implements the
concept of SOA, and provides the basis for the development and execution of busi-
ness processes that are distributed over the Internet. A web service is defined as
a self-contained, modular, loosely coupled, reusable software application that can
be described, published, discovered, and invoked over the world wide web [135],
[130] and [42]. They benefit from several Internet-based standards, such as web
services Description Language (WSDL) for service description of services, and
Simple Object Access Protocol (SOAP) to exchange messages and communicate
independently from the adopted platform [42]. The key-role in these standards
and protocols is their XML-based structures that ensure independence from im-
plementation and platform.
A web service consists of three main roles: Service Provider, Service Client, and
Service Repository.

• Service Provider implements the web service and makes it available on
the Internet. The service provider should define an abstract service de-
scription using the WSDL, and then register it in a registry or repository
of services.

• Service Repository is a logically centralized directory of services that al-
lows a web service to be registered by the service provider and discovered by
a service client. It returns a Uniform Resource Identifier (URI) as a result
of the search to service requester/client that points to the service itself, and
client can then use this information to bind to the web service and invoke it.

2.2. Service Oriented Architecture 25

F
ig

u
re

2.
1:

T
h
e

h
is

to
ry

li
n
e

of
p
ro

gr
am

m
in

g.

26 Chapter 2. Service Oriented Collaborative Networks - SOCN

Figure 2.2: SOA paradigm for web services.

• Service Client is any consumer of the web service that uses the repository
to find his/her desired service. The service client has to use and access the
WSDL document to select and invoke the web service.

Figure 2.2 shows the interactions among Service Provider, Service Client and
Service Repository, which is the principle of the usage of web services. Besides
standard web services, RESTful [94] is another implementation of a service, which
is the acronym of Representational State Transfer. There is a unique URI for each
RESTful service that is basically a representation of some objects. Standard web
services use a XML-based message protocol (SOAP) for communication between
the service provider and client, while RESTful services use JSON or XML (with-
out any specific protocol) to send and receive data after calling the URI path.

2.3 Migrating to SOA-based organizations

As a very promising methodology, SOA can support business processes of orga-
nizations. Applying the service oriented architecture paradigm and technologies
in organizations leads to reduction of complexity and costs in reusing business
supported functionality and operations, and increase in flexibility and efficiency
[126]. These advantages allow the organizations to adapt more easily to the
needed changes, and it is therefore expected that the SOA paradigm improves
the efficiency of organizations more than other previous approaches and technolo-
gies. It provides a logical approach to designing component-based applications
that can serve either the end-users or the other applications in a network. As
such, SOA can empower the business and organizational environments by offer-
ing independent, reusable automated business processes that can be materialized
through business services.

Figure 2.3 shows a trivial example of applying a SOA-based infrastructure
across organizations’ architectures. Enterprise-1 consists of a service provider that

2.3. Migrating to SOA-based organizations 27

Figure 2.3: A sample of SOA setup between organizations.

offers ServiceA, and a service client labeled as Client B, similarly, Enterprise-n
consists of a service provider that offers Service C, and service client D. Different
organizations (e.g., Enterprise-1 and Enterprise-n) publish their services in a
service registry, and then using the registry, clients at enterprises can look up
service details in order to select to execute them. In the context of web services,
service details is specified in WSDL and the data messages exchanged between the
enterprises are in the form of SOAP. This simple example shows how enterprises
interpretations can be obtained through SOA. These interpretations may occur
between different organizations or even within one large organization. In fact,
SOA offers new and flexible ways to develop tools for supporting the activities
both inter-organizations and intra-organization. Thus, two types of usages, the
Intra-Organizational and Inter-Organizational platforms, can utilize such service
oriented computing (SOC) tools.

Considering the example of a large enterprise. Each single department can
share its services through a common repository, and offer them for other depart-
ments to access and use for different purposes, and even use them for a different
purpose than what the business service was originally built for. So, this usage of
SOC tools could be seen as Intra-Organizational application of SOA. The other
type of use is for Inter-Organizational platform, as in the networks established
among different organizations as stakeholders in a VO. Each VO partner can then
announce and register its services within the collaboration space, i.e., a directory
of shared services, in order to make them identifiable and accessible by other VO
partners. Figure 2.4 shows these two kinds of SOA-based organizations.

28 Chapter 2. Service Oriented Collaborative Networks - SOCN

Figure 2.4: Two kinds of SOA-based organizational applications.

2.4 Towards Service Oriented Collaborative Net-

works - SOCN

In a large number of application areas, such as tourism, insurance, and e-commerce,
an increasing number of SMEs (Small and Medium Enterprises) are increasingly
formalizing the definition of their business services. This is primarily due to the
fact that further to the individual SMEs interested in providing their business
services on-line, in many areas of production and services, SMEs are increasingly
interested in working together and establishing collaborative networks (CNs),
through joining their skills, resources, and knowledge. VO is one form of CN,
which is usually established to fulfill the following two purposes. One purpose
of VO formation is to best target a specific opportunity emerging in the mar-
ket or society, which requires either the combination of different capabilities and
resources, provided by a number of different organizations, or simply the accumu-
lation of their resource capacities, or both. The candidate SMEs are then usually
selected by the VO broker and invited to accept the joint responsibility of fulfilling
the needed tasks to achieve the common goals of the VO. The second purpose of
VO formation is to support innovation. For instance, one or more SMEs together
foresee the potential of investing into the development of new services, and act as
the VO broker, targeting the merge of abilities, resources, capacities, etc. from
a number of SMEs who can then together fulfill the development of the planned
innovation.

Nevertheless, in either case, in order to act agile and be able to compete in the

2.4. Towards Service Oriented Collaborative Networks - SOCN 29

market and society against the real large existing organizations, a minimum base
platform for collaboration among SMEs must pre-exist before the formation/op-
eration of the VO. For this purpose, Virtual organizations Breeding Environment
(VBE) is usually established, providing this minimum collaboration base, within
which the VOs can then be launched.

In order to collaborate effectively and to become time/cost efficient, SMEs
in the VO must together act as a single larger entity, and thus sharing all their
resources and capabilities. An important set of resources to be shared among the
SMEs consists of their business services that are provided on-line, which must be
sharable as if they all belong to a larger real organization, and must be integrable
for creation of value-added services in the VO. But such unification in the defini-
tion format must be addressed at the VBE level, in order to enhance the sharing
and collaboration among SMEs once the VO is established. In other words, when
the VBE members formally and uniformly define their business services, once in
a VO, all partners will be able to share these services and to integrate them for
creating new value-added services, and/or for innovation purposes in their sector.
At present however, due to the lack of uniformity in the full and formal defini-
tion of the implemented business services, which are provided on-line by SMEs,
effective discovery of the existing software services and their composition toward
creation of an integrated service are not supported. For instance, today creating
a new value-added service out of the existing services in the VOs, and providing
it as a new online service to the customer is quite challenging. In other words,
currently, the discovery of most-fitting services can at best search/match based
on the service names or perhaps some semantics related to the requested service,
while our approach goes beyond that.

In this thesis, we aim to address this specific challenge and define an approach
and system architecture to support the semi-automation of this challenging task
that presents the contribution of this research. For this purpose, a new frame-
work is proposed in this chapter, based on which a tool is developed to support
service integration in VOs. The approach covers four aspects, including service
modeling/provision, service registering, service discovery, and service composi-
tion/integration. Except for the modules planned as building blocks of the Ser-
vice Provision, all other modules present in the architecture are implemented
and running. Furthermore, suitable mechanisms are introduced for discovery and
selection of the most-fit services, matching users’ requested criteria.

We believe that applying the SOA paradigm to collaborative networks ensures
a high level of abstraction for data and operations in the form of business services.
Higher level of abstraction makes integration with functional capabilities (i.e.,
services) easier.

30 Chapter 2. Service Oriented Collaborative Networks - SOCN

Figure 2.5: Service life cycle’s phases.

2.4.1 Needs and Challenges

Business services are naturally dynamic; therefore, the supporting tools for their
development and deployment are needed for different stages of the Service Life
Cycle (SLC). At the macroscopic level, the life cycle of business services consists of
four phases, i.e., Design, Construction, Operation, and Innovation, as illustrated
in Figure 2.5. The need for each phase of the SLC is briefly described below.

• 1st SLC phase- Design: This stage deals with strategic planning and
rough design specification of business services. In this stage, we need to
identify the required services (manual task or software services), their goals
and functionalities.

• 2nd SLC phase- Construction: This stage deals with the logistics,
construction, and procurement of business services. Therefore, a number
of functionalities (operations of a service) need to be implemented in this
stage to support the configuration and establishment of the needed business
services, for the purpose of service implementation. Moreover, this stage
encompasses a fully detailed specification of business services, such as the
interface of services (WSDL documents).

• 3rd SLC phase- Operation: This stage is considered as the long op-
eration phase of existing business services. Therefore, the operation phase
encompasses a large number of functionalities related to the operation, man-
agement, deployment, announcement, and delivery of the services. The uti-
lization of offered services, such as service registry, discovery and execution
continue heavily in this stage. Moreover, in this stage of SLC, the quality
of services are measured in order to make service level agreements (SLAs).

2.4. Towards Service Oriented Collaborative Networks - SOCN 31

Figure 2.6: The UML sequence diagram for SLC.

• 4th SLC phase- innovation: Finally, the innovation or design of new
business services would be necessary for solving some emerging problems,
or service enhancement/adaptation. In this stage of SLC, service design-
ers can design new value added services through adaptation of the service
interfaces, or compose some existing services. Moreover, it is possible to
identify exactly the same services (functionality) and replace them with the
optimized alternative service (non-functionality).

Figure 2.6 shows the UML sequence diagram for the main operations involved
with business services in SLC. At first, a Service Developer must add its provided
services to the Service Registry. Then, a Service Client can ask Service Discovery
for his/her desired business services, and consequently, receive a WSDL URI as
the response. The Service Discovery should send a query and receive correspond-
ing results from the Service Registry to provide response for the Service Client.
Moreover, for the purpose of providing composed business services, a Service In-
tegrator can retrieve two or more business services from the Service Registry as
the “Constituent Services”, and then integrate them as a composite or composed
business service, and finally publish it in the Service Registry.

Considering the discussion above, we have identified a set of functional and
non-functional requirements to establish a framework for business service interop-
eration in CNs. Note that SMEs (VO members) in the VBE are fully independent
and autonomous; therefore, the lack of uniformity in full and formal definition
of implemented software is quite challenging. Moreover, functionality and in-
teractions within each component service (we have called it behavior) are not
addressed in the former works, which raise some challenges in semi-automated
service discovery and composition.

The non-functional requirements mostly address the specifications of needed

32 Chapter 2. Service Oriented Collaborative Networks - SOCN

meta-data for business services, as follows:

• Unified formalism of syntax, semantics and quality criteria of services.

• Formalization of service behavior, which tries to model the externally ob-
servable behavior of business services.

• Other non-functional requirements for software systems, e.g., security, trust-
worthiness, and scalability.

Besides the non-functional requirements, there are also some functional re-
quirements for business services as described below, which need to be supported:

• Service specification/registration tool to store and index the specified meta-
data for services.

• Effective service discovery to search among registered services, based on
their specifications.

• Supporting bundled/composite services to make a bundle of atomic business
services as an integrated composed business service.

We address these functional and non-functional requirements in the design of
our proposed reference framework for service oriented collaborative networks (see
next section), except some non-functional requirements, such as security and
authorization that are out of the scope of this thesis.

2.4.2 Proposed Architecture

Figure 2.7 shows the traditional view of service oriented architecture, which con-
sists of three major tasks: Service Provision, Service Registry, and Service Con-
sumption.

In order to customize the traditional architecture of the SOA for our purpose,
we should first add another sub-task to this architecture, namely the “Service
Design & Implementation” sub-task beside the “Service Provision”. Figure 2.8
shows this variation of the SOA Architecture. As such, in fact we have extended
the traditional view of SOA by separating design/implementation from the ser-
vice provisioning task, to also emphasize providing the common VO business
service meta-data and elements that can serve as service selection criteria. The
meta-data mainly specifies the capability of a business service. The capability
consists of syntax, semantics and behavior of services, which are described in
Section 3.3. Moreover, the VBE that facilitates a collaborative environment for
business services, can then also monitor and adjust the non-functional values,
which are claimed for such services by their service providers.

Figure 2.9 shows our second variation to the SOA that focuses on service com-
position for SOCN. Similar to the atomic services (see Figure 2.8), provision of

2.4. Towards Service Oriented Collaborative Networks - SOCN 33

Figure 2.7: Traditional view of Service oriented architecture.

Figure 2.8: The first variation of SOA Needed for service design in SOCN.

a composite service is also separated from the composite service design and im-
plementation. To design composite services, first the “Service Integrator” should
discover (from the registry) the constituent services that he/she plans to involve
in the composite service. The details of the discovery task will be explained later
in Chapter 4. After that, one proxy should be automatically generated for each
selected constituent service, as it is needed to support the end users in execution of
the services. In fact, the generated proxies are required to support the automated
invocation and the data exchange among services. Moreover, the integrated ser-
vice designer/implementer needs to also interconnect (define the coordination of)
the selected services, and only then he/she can define a full specification of the

34 Chapter 2. Service Oriented Collaborative Networks - SOCN

integrated services to be provided as a new (composite) business service. Chap-
ter 5 addresses the needed steps that should be done by an Integrated service
designer / implementer to design a new composite service. Finally, the provided
composite services should be published in the “Service Registry”. As such, these
services can also be discovered through the SOA triangle, like the atomic services.

Figure 2.9: The second variation of the SOA addressing service composition in
SOCN.

2.4.3 Implementation Architecture

Each Business Service (BS) shared within the VO is represented by a set of
Business Processes (BPs), while each BP involves the invocation of one granular
software service. Therefore, designed BSs may be specified either as atomic ser-
vices or composite services, whereas each composite service is in turn composed of
several other atomic or composite services as its constituent. To support business
service composition in VOs, such software services need to be both discoverable
and integrable, as it is considered in the designed reference framework.

In a VO, there are usually two kinds of business services provided by its
organizations: manual tasks and software services. In our research and proposed
framework, we only deal with software services, which correspond to their defined
BPs. If desired by the environment, we can of course also define only a simple
software service for each of the manual tasks to include two basic operations for
them: Start and Stop, but nothing more than that.

Figure 2.10 illustrates an implementation architecture capturing the needed
elements for establishing service oriented computing in VOs. This architecture

2.4. Towards Service Oriented Collaborative Networks - SOCN 35

is designed in order to identify the significant sub-components and relationships
among them, for the development of the extended SOA model (as represented in
Figure 2.9). Note that the introduced implementation architecture is not directly
tied to any standards, tools, or other concrete implementation technologies. This
architecture seeks to provide common semantics that can then be used unam-
biguously across and between different implementation options, however in this
PhD work, we have developed a proof of concept (POC) for our approach which
presents particular architectures, standards, technologies and other implementa-
tion details to realize this implementation architecture. This architecture for our

Figure 2.10: Implementation architecture for service oriented collaborative net-
works.

developed POC is conceptually composed of three software modules, including:
Specification Module, Discovery Module, and Composition Module, as further
briefly explained below.

• Specification Module addresses the software services that are offered by dif-
ferent members/stakeholders of the VO in the role of service providers. The
shared services in the VO are published in a service registry or directory,
such as the UDDI [42], complying with specific Operational Level Agree-
ment (OLA) [70] defined at the VBE level. This OLA is then agreed among
the VO stakeholders, to describe the responsibilities of each VO member/s-
takeholder toward provision of both their own atomic services, as well as
when they are involved in the specified composite services. OLAs are also
supported by Service Level Agreements (SLAs) defined among web services
[105]. At VOs, SLA reflects an agreement between the provider and the
clients of a service to create assurance on the service level at the binding
time. As such, the expected performance behavior of a deployed software

36 Chapter 2. Service Oriented Collaborative Networks - SOCN

service is defined by the service level. For example, response time, sup-
ported throughput, and service availability are performance metrics, which
can be considered in SLA. In fact, SLAs provide some of the needed infor-
mation for developing a new service competency model in order to assist
the user in service selection. The approach adopted for service quality as-
sessment in our framework borrows ideas from [150], which monitors the
behavior of VO partners in order to identify their level of trustworthiness.
According to this approach, all agreements in OLA and SLA are consid-
ered as promises exchanged among the involved partners in the VO. Then,
by applying VO Supervisory Assisting Tool (VOSAT) [150], at any point
in time, the trust level of a VO partner would be reflected on its claims
about different characteristics of its own provided services, as well as on its
assesment and feedback related to other providers’ services.

The function labeled as “Agreement Management” manages all tasks related
to the service agreements, and keeps the results in the Service Registry.

Another function of this module is named “Software Service Specification”,
which presents the content for triple (syntax, semantics, behavior) meta-
data as the means to accurately formalize every atomic software service.
Every composite business service (in turn constituting a set of BPs), is
then represented by a set of contents for this meta-data, where each triple
provides the concrete formalization of one atomic service. Our introduced
meta-data captures the three characteristics of each service, namely its
syntax, semantics, and behavior in order to properly support machine-
to-machine service interoperation in VOs. The introduced meta-data in
turn facilitates service-oriented computing (i.e., service discovery and ser-
vice composition), which use these specifications, required by them to per-
form their tasks, in an automated way. These are described in more detail in
the next chapters. All of the specifications will be registered in the Service
Registry

• Discovery Module of the framework provides mechanisms for service dis-
covery and selection of most-fit service among the existing shared services
in the VO. Automated and successful application of search services of this
module requires the functional meta-data (i.e., syntax, semantics, and be-
havior of services) provided through the Specification Module. The Search
function returns a list of alternative services from the Service Registry that
can be matched with the service query (based on the functional properties
of services). After that step, the Service Selection function chooses one
of the provided service alternatives that is optimal for all non-functional
properties specified and requested for the service.

• Composition Module of the implementation architecture involves the func-
tions introduced to support service composition. This supports service de-

2.5. Conclusion 37

signers by offering new value-added services, through composition of ex-
isting shared services in the VO. Eficient service composition through this
module requires not only considering the rich meta-data captured in the
Service Registry, but also coordination of the required interaction protocols
among the constituent services that form a composed service. The infor-
mation about the constituent services, as well as what is needed for their
orchestration model, should be recorded in the Service Registry.

The requirements and implementation details of this framework are further dis-
cussed in the next chapters.

2.5 Conclusion

Emerging developments under the umbrella of Future Internet and particularly
on web services, highlight SOA-based paradigms and approaches to support ser-
vice oriented collaborative networks. Software services, e.g., the web services, and
the SOA paradigm provide rapid, cost-effective and standard-based means to im-
prove service interoperability and collaboration in CNs. Although the research
area of collaborative networks is active, the higher-level abstraction of the activ-
ities that simplify collaboration among organization members in software service
oriented CNs and specially using SOA is still lacking. The goal of this chapter
is to address a comprehensive framework in order to support a semi-automated
service discovery and compositions in VOs. With this in mind, we propose a
reference framework and an implementation architecture that allows us to effi-
ciently support service-oriented collaborative networks. The implementation of
the proposed framework consists of three main software modules that realize the
functional and non-functional requirements of SOCN, as addressed in the next
chapters.

Chapter 3

Specification of Business Services

Parts of the material in this chapter is published in the following papers:

• Sargolzaei, M. and Afsarmanesh, H., 2017. C3Q: A Specification Model for
web services within Virtual Organizations. In Collaboration in a Data-Rich
World. Springer Berlin Heidelberg.

• Afsarmanesh, H., Sargolzaei, M., and Shadi, M., 2015. Semi-automated
software service integration in virtual organisations. Enterprise Information
Systems, 9(5-6), pp.528-555.

3.1 Introduction

Fast pace in development in the area of services prompts exploration of the role
of Service Oriented Architecture (SOA) in assisting organizations to deal with
service interoperability and flexibility demands. Using SOA and its available
standards enable organizations to better connect their activities and operations.
To properly support VOs, as a first step, organization services should be con-
cisely specified, such that they are recognizable, discoverable, comparable and
integrable. Currently, web services are the most promising technology that im-
plements the concept of SOA, and provides the basis for the development and
execution of business processes that are distributed over the Internet. A web
service is defined as a self-contained, modular, loosely coupled, reusable software
application that can be described, published, discovered, and invoked over the
World Wide Web [56]. In the last decades, the Web Service Definition Language
(WSDL) [41] has emerged as the most prominent standard for the specification
of web services. This standard, however, does not provide the proper concise
specification basis for a service client to get a full understanding of “What the
service exactly does” and “How the service exactly performs”. This lack of in-
formation about services usually results in the mismatch between the providers

39

40 Chapter 3. Specification of Business Services

objective and consumers demands, when especially considering the functional-
ity of corresponding service. In spite of several proposed additional standards,
a comprehensive view on which aspects of a service is required to be concisely
specified is still lacking [158].

As mentioned in Chapter 2, in order to effectively share the business services
(BSs) and to facilitate their reusability and integration in VOs, it is necessary
to define and register the BSs in a common VO directory. Despite the simple
appearance of the above requirements, several complexities and challenges arise
that need to be precisely addressed, as mentioned below:

• There is no uniformity in service definitions, since VO partner organizations
are and remain independent and autonomous.

• There is a lack of common ontology for services that need to be shared in
the VO.

• There is no comprehensive and concise functional specification for services,
as required for their potential integration into value added services and to
deploy shared software services.

• There is lack of unambiguous machine interpretable (e.g., an XML-based
standard) representation of services including all aspects of BSs, as needed
to generate the required codes for their executions.

This chapter aims to define a model to address and resolve these obstacles and
challenges, and to provide a basis for discovery and composition of services in
VOs, as further discussed in Chapters 4 and 5. Our proposed service specifica-
tion model can be effectively applied for specifying software services (i.e. business
services of organizations materialized by software systems) and it can also mini-
mally support specifying the start and termination of manual tasks (i.e. business
services executed by human).

This chapter is organized as follows. Section 2 briefly outlines some theoretical
and technical aspects of the related works in order to serve as the base for our
service specification. Section 3 is devoted to a brief description of the business
service concept. In Section 4, we sketch out our proposed model for VO business
services, called C3Q. Section 5 represents our extension of WSDL documents
to address all aspects of C3Q. Moreover, a GUI is implemented to assist users
with behavioral description of their services, which is demonstrated in Section 6.
In Section 7, our designed model for registration of services is represented, and
finally we conclude the chapter in Section 3.7.

3.2 Related work

Web services have nowadays turned into a prominent research point in the field of
Service-Oriented Architecture [74], and has been widely accepted by the service

3.2. Related work 41

industry. One key point for the success of web services technology is the employ-
ment of XML-based standards, such as SOAP and WSDL both for communicat-
ing and self-describing [48]. The Web Services Description Language (WSDL)
is the most adopted standard for web service description, while it is limited to
self-describing of the structure of the messages and operations, but not for sup-
porting the concept or capability of the service. This limitation of WSDL which
is known as the “lack of semantics” [53] in describing the service capability, has
consequently required human intervention in order to interpret and assume the
semantics of the message content, and the capability of the web service, as it is
vital to ensure valid and befitting use of the service. Apart from lack of semantics,
another limitation of WSDL is not addressing the configuration of stateful web
services, or the so-called behavior of services. A single web service that consists of
several operations can be considered as a stateful web service, where the state of a
specific instance of the service can be kept between its invocations. The behavior
specification of a service in fact, indicates the valid sequence of its operations’
invocations, which is absent in WSDL. Specification of behavior plays a vital role
in service composition and also improves service discovery as discussed in the
subsequent chapters. Thus, the lack of semantics and behavioral specification
are a major drawbacks of WSDL, and consequently become barriers to achieving
automatic or semi-automatic service discovery, composition, and execution.

Numerous standards and languages have been proposed to describe semantics
of web services, such as OWL-S [136], WSMF [58], and WSMO [100]. Neverthe-
less, the typical tendency of researchers is to build a semantic layer either on the
top of WSDL or to be integrated into WSDL, to semantically describe the func-
tionalists of web services. Some research efforts are spent on extending WSDL
with semantics annotations, such as WSDL-S [6] and SAWSDL [95]. WSDL-S can
annotate the information provided in WSDL using different semantic languages,
such as RDF and OWL. The elements of WSDL-S that are added to the WSDL
standard documents are the modelReference, category, precondition and effect.
SAWSDL is also defined as an extension of WSDL to describe the semantics of
its elements through providing the mechanisms to bind ontology concepts to the
semantic annotations of WSDL.

Although several researchers have tackled “the lack of semantics” problem and
also some developed tools (e.g., [133]) have achieved good results and succeeded
with specification of syntactic and semantic properties of web services, they hardly
address the behavioral signature of a service, describing a service’s sequence of
operations, which the user actually needs to properly use and interface with. This
is partly due to the limitations of today’s standard specifications, which do not
cover such aspects. Representation of the behavior of stateful services is very im-
portant during the discovery and composition of services, to provide users with
an additional means to refine their search and to automate its composition in
diverse environments. So far a few formalisms have been proposed that are able
to model the behavior of a service. For example, session types as a formalism

42 Chapter 3. Specification of Business Services

for structuring interactions and reasoning over communicating processes can be
applied as a model to describe the behavior of services. A session is defined as
a logical unit of information exchanged among participants, which specifies the
topic of conversation as well as the sequence of the communicated messages [46].
Session types, which can be assigned to end-point processes, describe the user
view of an interaction. In [47], the authors have specified component behavior as
session types showing that session types can also describe the behavioral signa-
ture of services. Several works such as [73] and [28] have also proposed to encode
the behavior of services in a BPEL (Business Process Execution Language) spec-
ification. They present some shortcoming in terms of performances, supporting
complex behavior, and representing an unambiguous machine interpretable (e.g.,
an XML-based standard) description of services’ behaviors. In our work, we use
constraint automata (CA) [18] as our base formalism for specification of behav-
ior, because the CA models are supported by our related tool sets for service
orchestration, can readily be extended to support soft constraints, and we be-
lieve automata models are more understandable and readable for engineers. As
a consequence, we propose to improve the WSDL documents through support-
ing a constraint automata specification as an extension. This light extension of
WSDL allows us to have an unambiguous machine interpretable description of
web services’ behaviors.

Besides the functional description of services, it is essential to also capture
non-functional properties or quality of service (QoS), of business services in order
to meet the performance requirements of clients, such as service availability, and
even to respond to providers’ requests, e.g., about cost. In other words, describing
and registering the non-functional service properties are necessary in order to
satisfy both the service clients and the suppliers. One such specification can be
found in [114], where the specification of the ith web service is represented as
a tuple pFi,Qi, Ciq. Fi is a textual description of the service functionality, Qi
specifies the QoS values, and Ci represents the costs associated with the web
service i. Several research works in this area are instead in favor of extending the
WSDL capabilities rather than introducing additional languages on top of it. The
works done in [128] and [43] are two instances that capture QoS specifications
with extensions of WSDL files. A lightweight WSDL extension called Q-WSDL
(QoS-enabled WSDL) is introduced in [43], which specifies the QoS characteristics
of web services.

3.3 C3Q Model of VO Business Services

For the sake of developing an architecture to support service oriented VOs, we first
define a holistic service model, on top of which this architecture can be founded.
Here, first a new meta-data based on this mode is introduced to formalize the
description of business processes. This model targets the comprehensive capture

3.3. C3Q Model of VO Business Services 43

Figure 3.1: Views of business services.

of all characteristics of BSs, through an unambiguous formal description. From
the service analysis point of view, all services intended to be shared within the VO
are required to be unambiguously defined, according to C3Q, by their providing
enterprises.

In VOs, there are usually two kinds of business services, including the manual
services and the software services. Figure 3.1 shows that each business service
can be realized by one or more business processes (BPs). In fact, sometimes the
BS might be carried out through alternative kinds of business processes, based
on different triggering events. As such, a business service might be seen as an
abstract construct that encapsulates the external or client’s view. This “con-
struct” describes “what” added values would be delivered by the service to the
client, as well as their delivery conditions. Furthermore, the internal view of
the business services illustrates “how” the BS is performed through the business
processes/sub-processes, and with which corresponding triggering events (see Fig-
ure 3.1). The actions involved in the business service execution might be materi-
alized either automatically, through some software functions (the so-called soft-
ware services), manually through some human-based tasks (the so-called manual
tasks), or through a combination of these two. In a nutshell, each BS may in-

44 Chapter 3. Specification of Business Services

volve a number of BPs, while each BP may involve either the invocation of more
granular software services or performance of some manual tasks. In our proposed
framework, we only deal with software services, which correspond to their defined
one or more BPs. For manual task, we can only define a simple software service
that includes two of their basic operations: Start and Stop. Through this speci-
fication only, manual tasks can also be specified and treated in the framework as
software services, otherwise these are outside the scope of this thesis. Considering
that a defined business service may be composed of several software services as
its components, the business service designer shall also present a complete flow
of interaction protocols, e.g., through a BPMN diagram.

We propose a concise representation model for business services, our so-called
C3Q model, namely addressing their Capability, Costs, Conspicuities, and Qual-
ity criteria. As such, VO business services can be uniformly defined by their
providers and published in the common pool of VO services in order to support
their effective sharing and reuse. Figure 3.2 shows our service profile that we
define as an extended instance of the “business service competency” consisting of
capability, cost, conspicuity, and quality criteria as defined in [3]. For our concern,
Capability is the most important part of the service profile, which represents the
functional properties of business services, and we have extended it with syntax,
semantics, and behavior. An example of the syntactic aspects of a BS description
include its input and output, while the semantic aspects of the BS description
include its textual description, and the purpose-classification, under which the BS
falls. The behavioral aspects of a BS description address the concise definition
of its functionality, based on which it can be unambiguously implemented by a
software developer. Services’ syntax, semantics, and behavior are each defined
in detail in the next subsections. The other elements of C3Q model, including
the costs, conspicuities and quality criteria of services, represent the other im-
portant required descriptions related to non-functional properties of BSs. These
three are also further defined in the next subsections. Since two different BSs
may offer similar functionality but have distinct non-functional characteristics, it
is necessary to consider both the functional and non-functional properties as the
BS competency, in order to fully satisfy the demands of a service client, espe-
cially during the service selection phase [104], [113]. There is no widely accepted
standard for definition of different component of the C3Q service profiles except
for representing the syntactical properties of the web services, which is through
WSDL. Since all web services, as the most popular business service implementa-
tion, already contain their WSDL documents, we extend WSDL to support the
C3Q service profile. In the next subsections, we study different elements of C3Q
model in detail. Moreover, we introduce several new tags that must be added
to standard WSDL, in order to form our proposed extension of WSDL, namely
XWSDL. We can apply a number of different notational options for representing
each C3Q aspect in XWSDL. We have adopted a specific notation for formalizing
each of these aspects, as later addressed in this section. Furthermore, in Section

3.3. C3Q Model of VO Business Services 45

Figure 3.2: The C3Q services profile.

3.4, we will discuss more about the XWSDL documents and introduce the data-
model for our proposed extensions to achieve a complete definition of XWSDL.

3.3.1 Syntax

Typically, the syntactic properties of a service are represented by XML-based
standards and languages, such as through Web Service Description Language
(WSDL) and Simple Object Access Protocol (SOAP) [42]. A WSDL description
is an XML document that contains the following information about a specific web
service:

• What the service does, which textually describes the service’s operations,
as well as the input and output parameters that define the operation’s
messages.

• How the service is accessed, which describes the data structures, binding
implementation and protocols needed for sending messages through the web
to reach the service location.

• Where the service is located, i.e. the hosting address that executes the
service implementation.

46 Chapter 3. Specification of Business Services

3.3.2 Semantics

The conceptual properties of software services, here referred to as semantics, are
typically defined with an ontology, i.e. an explicit specification of a conceptual-
ization of knowledge related to services. The service ontology definition, also in
the VO context, encompasses a group of vocabularies that specify the semantic
attributes of the services (e.g., goals and category) and their inter-relationships,
which together present a meaningful concept about the service [33]. In fact, the
semantic description of business services would enrich the information about ser-
vices to the level that cannot be specified by their mere syntactic description.
Purpose-classification of the BS (e.g., goals and context) are good examples of
the semantic aspects of the BS specification, which aim to categorize services in
order to improve service discovery and matchmaking.

The proposed service semantics within our C3Q-based service description con-
sists of a set of conceptual information that is more understandable for both the
human and the machine using third-party ontologies. For example, “goal” as a
semantic attribute can describe the business logic of the service (e.g., the goal of
Monitoring). An ontology for this semantic attribute describes the “things” that
exist in the domain (i.e., goal) including the concepts, relations, etc., in a con-
sensual and formal way [107]. The ontology thus provides the stable baseline for
shared understanding of the domain that can be communicated between service
providers, clients, and inter-organizational service integrators. It is also possi-
ble to consider an existing element of the WSDL document, e.g. “operations”,
as a semantic attribute, by annotating that element and linking it to a domain
ontology.

To support semantic discovery, we must link each attribute to a particular ref-
erence domain ontology. Such ontologies encompass a set of well-founded struc-
tured data and their semantic inter-relationships, which can then be used to
improve the matchmaking and discovery of services. In this research, we do not
deal with challenges of ontology construction. Rather, we assume the existence of
a pre-defined domain-specific ontology or simply a taxonomy for the specific do-
main related to each semantic attribute. We capture the three elements described
below to specify each service semantic attribute.

• name that represents the title of the attribute, e.g., goal or context.

• taxonomyUri that refers to the link to a related domain ontology or tax-
onomy for the attribute.

• value that represents the value of that attribute for the service.

An example of service semantic specification in our model, including the two
semantic attributes of context and goal, are represented in Figure 3.3.

3.3. C3Q Model of VO Business Services 47

Figure 3.3: Example of the WSDL extension for semantic description.

3.3.3 Behavior

Beyond the semantic description for the operations that a service can provide,
and the syntax description of how they are to be invoked, a specification of the
proper order in which those operations can be invoked is also a prerequisite for
correct implementation and use of a service. Behavioral specification of a service
refers to the specification of all admissible invocation orders of the operations of
that service. The discovery of suitable services that can match a query must also
consider the behavioral specification of candidate matches. Furthermore, what
operations can be performed at a given point in time by a client of a service
may depend on the history of the previous operations that have already been
performed (usually, by the same client) on that service. Therefore, a specification
of the behavior of a service is in general, “stateful”. However, these states are not
typically maintained within the service itself. Specifically, the so-called “stateless”
services do not maintain a state between requests, which means the result of each
service invocation request is completely independent from the previous requests.
RESTful [94] is an implementation of such services. We have proposed the term
exostate to denote the states of a running service or system that are maintained
outside of the implementation of that service, and similarly we have used the
term endostate to capture the service’s internal configuration states. Trading
endostates for exostates has important architectural advantages. For instance,
because a REST service has only a single endostate, it never needs to reset itself
to recover from a potential previous communication failure that disrupts a client’s
session. However, most of such services are not truly stateless, in the sense that to
use them properly, a client must still follow a permissible sequence of invocation
for their operations, encoded in their exostates. The exostates of a REST service

48 Chapter 3. Specification of Business Services

are represented by the values of a set of context parameters that are passed back
and forth between the service and each of its clients.

Figure 3.4: Operations of a restful example: the Hotel booking service [94].

Consider a hotel booking example, such as the restful service of defined in [94],
illustrated in Figure 3.4. In our terminology, as a restful service, the implemen-
tation of this service has a single endostate. However, this service cannot be
used properly unless for instance getHotelDetails operation is invoked only after
a search operation. Any proper use of this service requires remembering whether
or not a search has indeed been performed yet, and perhaps also remembering the
results of such a search, etc. The REST architecture requires such information
to be kept outside of the service implementation itself, on the client/user side
(perhaps kept as cookies), and passed back and forth between the client and the
service, during the service invocation. From the perspective of a client however,
the stateless service of [94] depicted in Figure 3.4 cannot be used without con-
sidering an specification of its stateful behavior. In our approach, we represent a
formal and concise specification of the behavior of services in terms of Constraint
Automata (CA) [18]. A CA is essentially a labeled transition system (LTS) that
resembles classical finite state automaton in the sense that they consist of finite
sets of states and transitions. When a CA is applied for modeling the behavioral
specification of a service, its states represent the configuration of the service,
and every transition describes how the configuration of this service changes from
one state to another by execution of one of the service’s operations. Figure 3.5
shows the CA which specifies the behavior of the example service represented in
Figure 3.4.

The above example illustrates that many more systems and services than com-
monly acknowledged are truly stateful, in that the specification of their behavior

3.3. C3Q Model of VO Business Services 49

involves more than a single state, regardless of whether such states are imple-
mented as endostates or exostates. Searching for an appropriate service, as well
as its manual or (semi-)automated adaptation, composition, or invocation must
take its desired behavior into account. In our research, we use the term state-
ful comprehensively to refer to any service specification whose behavior requires
more than a single state.

To the best of our knowledge, previous works on matching and retrieval of
services do not consider the impact of exostates on the suitability of the behavior
of services in their search. This fact makes our behavior-based discovery tool
represented in Chapter 4 novel, while not directly comparable with search and
retrieval tools, such as the work presented in [133]. The service behavior specifi-
cation also assists us in developing a tool to support automatic code generation
for the orchestration of component web services, as represented later in Chapter
5.

Figure 3.5: The behavior specification of the Hotel booking service in terms of
Constraint Automata.

Although WSDL provides required information to establish a connection with
a web service, this specification lacks the behavior description of the services [4].
We propose XWSDL to also incorporate behavioral information to extend a
WSDL document. Note that our approach retains the original structure of the
WSDL documents and merely enhances them by adding a few new tags in the
XML-based files. Figure 3.6 shows an example of the WSDL extension with the
behavior description of the example represented in Figure 3.5.

3.3.4 Quality Criteria of Services

The model for quality of service (QoS) consists of a number of properties, each
related to an aspect of QoS.

Large number of reported research have focused on supporting QoS for busi-
ness services. Although so many QoS solutions are proposed, service developers

50 Chapter 3. Specification of Business Services

Figure 3.6: Example in XWSDL (WSDL extension) for the behavior description.

and clients still are not able to handle QoS-related concerns easily. The reason is
that a universal QoS specification standard is still absent.

Gu et all [69] define a QoS specification language for web applications, which
mainly includes three levels: user-level QoS specifications, application-level-QoS
specifications, and resource-user-level QoS specifications. The user-level QoS
specification consists of the overall descriptions about the application (e.g., name
and provider) and associated qualitative user-level QoS criteria (e.g., low, average,
high, excellent).

Web service selection process is an important aspect of service-oriented com-
puting, also when considering the increasing growth of Internet. However, by
considering the Quality of Service (QoS), an optimal service selection can be guar-
anteed. As such, service providers have to enhance not only the functionalities
of web services, but also their QoS, such as reliability, response time, availability,
etc.

3.3. C3Q Model of VO Business Services 51

QoS documents quality criteria such as performance, reliability, availability,
response time, etc. Web service quality however cannot be measured by only one
quality criterion, or even by several fixed and pre-defined criteria. Indeed, the
quality criteria of each business service can be varied based on the purpose of
the service evaluation or the domain area of the user service. As an example,
resolution is a very relevant quality criterion for image-based services. Therefore,
in our framework we need to provide an approach for QoS specification that
supports defining quality criteria dynamically.

We consider that a QoS specification has the following attributes, in order to
assure an expressive formal description of the quality of services.

• Criterion which represents a quantifiable aspect of a service like availabil-
ity.

• Unit that is used as a standard for counting or measuring the corresponding
quality criterion, e.g., hours per day, hours per week, etc. for availability.

• Range (Min and Max) which depicts the highest and lowest possible values
for the quality criteria. The range is needed when we want to compare the
same quality criteria with different units.

• Value that represents the amount of the corresponding quality criterion.

An example of QoS specification in XWSDL is represented in Figure 3.7.

Figure 3.7: Example in XWSDL (WSDL extension) for quality criteria for ser-
vices.

The ă QualityCriteria ą tag is a container tag, which contains at least one
ă Criterion ą tag. The ă Criterion ą tag is also a container tag indicating the
required attributes of the corresponding criterion including “Name” “Unit” and

52 Chapter 3. Specification of Business Services

“Value”. The ă V alue ą tag also provides the minimum and maximum values
of the criterion, i.e., the “Range” attribute.

3.3.5 Cost

Cost is a key economic attribute that affects selection and usage of business ser-
vices. Thus, we introduce cost as an additional QoS parameter for specification
of business services. A cost specification consists of three attributes:

• Initial price which represents the value of the cost, e.g., 5.

• Unit that defines the unit of the cost, e.g., Dollar or Euro.

• Price plan which is used to model the method of cost estimating, e.g., per
invocation, per transmitted byte charges, etc.

in Figure 3.8, an example of cost description is provided in our proposed
XWSDL specification.

Figure 3.8: Example in XWSDL (WSDL extension) for the cost.

The ă Cost ą tag is a container tag involving three other sub-tags in order
to specify the cost of the services. The ă InitialPrice ą tag indicates the initial
charging price when the user invokes the business service. The unit of the price
is revealed within the ă Unit ą tag. Finally, the ă Priceplan ą tag represents
the method that the service provider would like to adopt for cost estimation.

3.3.6 Conspicuity

Conspicuity for a business service is the quality or state of indicating proof of good
performance, from the prospective of the service client. It represents the means to
identify the validity of information related to a provided service, as claimed by its
provider. A business service’s conspicuity is measured both through studying the
behavior of the corresponding service provider and by capturing the past service
consumers’ feedbacks.

In our approach for VO support, we have adopted the VO Supervisory Assess-
ment Tool (VOSAT) [149] to assess service conspicuity. The approach adopted
for VOSAT monitors the behavior of VO members for identifying their level of

3.4. XWSDL 53

trustworthiness [151]. Applying this approach, all agreements in Operational
Level Agreement (OLA) and Service Level Agreement (SLA) are considered as
“promises” exchanged among the involved partners in the VO. In the proposed
framework, the trustworthiness of each VO partner is reflected, as calculated by
VOSAT during the VO operation phase, considering the claims made by each
partner, as explained in [151] and [121]. As indicated in [148] different intro-
duced states for promises include: conditional, unconditional, kept, not kept,
withdrawn, released, and invalidated, which address different stages within the
entire life-cycle of every promise. The life-cycle of every promise is then formal-
ized and monitored, and the trust level of VO partners are assessed through a set
of pre-defined causal-relationships among different promise states, and the trust-
worthiness of the VO members. Therefore, at any point in time, the trust level of
a VO member would be reflected on its claims about different characteristics of
its provided services, as well as on its feedback about other VO member services.
The trust level of each partner is calculated in reference to its own performance
in the VO by VOSAT during the VO operation phase.

In our framework, the calculated trust level of each VO member is used as the
conspicuity specification for its provided services in the C3Q service competency
model defined in this research.

An example of conspicuity description focused on trust level in our proposed
specification is represented in Figure 3.9.

Figure 3.9: Example in XWSDL (WSDL extension) for the conspicuity.

The technical details of measuring the organizations’ trustworthiness is out of
the scope of our research. The authors of [149] show how such trust measurements
can be calculated to serve as an input for conspicuity specification of our business
services.

3.4 XWSDL

As mentioned before, there is no widely accepted standard for any of the parts
of the C3Q services profile, except for representing the syntax for specification of
the properties that we define in the web services through WSDL. Furthermore,
since WSDL is widely adopted by the web services community, and most web
services already have WSDL documents, we have extended the WSDL to support
the other properties of the C3Q service profile. Figure 3.10 shows the new tags

54 Chapter 3. Specification of Business Services

added to the standard WSDL that form our proposed extension of the WSDL,
namely the XWSDL.
The XWSDL extension follows the defined rules for extending WSDL [41], to

Figure 3.10: Standard WSDL vs XWSDL.

guarantee that any service consumer unaware of the extensions can still parse,
validate and use the extended version of WSDL files, i.e., an XWSDL documents.
Only, a new namespace “XWSDL” should be used to identify the tags part of the
extension. Our approach retains the original structure of WSDL documents and
enhances it with new tags in the XML-based files. In order to extend WSDL,
we need to define a schema of the elements of XWSDL as its name space. Fig-
ure 3.11 shows our schema designed for XWSDL to define all C3Q service profile’s
properties in the form of an xml-based elements schema.

We used XML-Liquid 2.0 to translate the schema to XML documents, which
consist of XSD tags in order to define the elements of the schema. This XML doc-
ument is used later as the namespace for defining XWSDL documents. Figure 8.1
in Annex I shows a part of the XSD tags of this schema.

3.4. XWSDL 55

F
ig

u
re

3.
11

:
T

h
e

sc
h
em

a
of

X
W

S
D

L
.

56 Chapter 3. Specification of Business Services

Our XWSDL definition also adopts “Model-Driven Architecture” (MDA) [112]
as the guideline. The Object Management Group (OMG) has proposed MDA as
a vision for software development that relies on linking object models together
to build complete systems [112]. Model Driven Architecture focuses on provid-
ing meta-model, which is simply a model of a modeling language. This kind of
meta-models is defined by the use of the Meta Object Facility (MOF1), which is
the OMG’s standard to specify meta-models aimed at describing another model.
Nowadays, employing MDA in web service standards has received significant at-
tention, also to assist the automated generation and extension of web service
models [62], [43]. Therefore, we apply MDA to our definition of XWSDL through
designing a meta-model for it in order to appropriately enrich our web service
descriptions based on the C3Q.

3.4.1 XWSDL Meta-model

Figure 3.12: The XWSDL meta-model.

Figure 3.12 introduces the XWSDL meta-model, as an extension to WSDL
meta-model, from which the XWSDL XML Schema is derived. In fact, the XML
schema defines the XWSDL language, and in the same respect, the meta-model
introduced in Figure 3.12 is used to define the schema. Representing an XML-
based language in terms of a meta-model allows to enhance its comprehensibility

1http://www.omg.org/mof/.

3.5. Graphical User Interface 57

and to facilitate its extension [43]. The basic WSDL meta-model is represented
in the portion of Figure 3.12 bounded by a dashed line rectangle. Note that
some classes related to specific documenting and extensibility features of XML
are removed from this basic WSDL meta-model, for brevity and readability. The
other classes and associations outside the dashed lined area in Figure 3.12 indi-
cate our extension of the WSDL meta-model to include the description of C3Q
for a web service. In other words, all classes and associations represented in
Figure 3.12, both inside and outside the dashed lined area, form the XWSDL
meta-model. Obviously, the multiplicities of 0..1 or 0..* indicate optional associa-
tions, while associations with multiplicities of 1 or 1..* show required associations.
This means, for example, that transition is required for the Behavior class, while
Attribute is optional for Semantics (see Figure 3.12).

Figure 3.13: The preliminary behavioral-specification of “Purchase” service.

Since XWSDL is a lightweight extension of standard WSDL, the existing
WSDL documents can easily be enriched without altering their original content.
The introduced meta-model of XWSDL assists service providers in order to trans-
form their WSDL documents to the proposed XWSDL descriptions.

3.5 Graphical User Interface

As mentioned earlier, a WSDL document is our selected standard to represent the
required syntactical elements of the meta-data for web services. As such, service
providers can edit/load and then parse WSDL documents of their web services,
and finally enrich a document according to suggested XWSDL schema. All of
these activities should be done within the “Specification Module of the proposed
implementation architecture presented in Figure 2.10 of Chapter 2.

58 Chapter 3. Specification of Business Services

Figure 3.14: The revised version of the behavioral description of Figure 3.13.

We have implemented in Java a GUI to ease the users task of behavioral spec-
ification of services and to allow their visualization. For this, we have extended
Fizzim, which is an open-source graphical finite state machine (FSM) design
tool [171]. Fizzim is developed in Java, with its back-end in Perl that is used for
its portability and ease of modification. Our extension of the Fizzim tool sup-
ports opening of a WSDL document of a service as input, and then automatically
draws a preliminary design of the service’s behavioral specification. This prelim-
inary specification assumes each operation of the service as a self-loop transition
on a single state, which means the execution of each operation is independent of
the other operations. Figure 3.13 shows a screen-shot example of a preliminary
behavioral-specification, obtained by loading a purchase.wsdl document. The
WSDL document describes that there are two operations for this service, namely
“sendPurchaseOrder” and “invoiceCallbackPT”, so two self-loop transitions for
them are drawn automatically in the preliminary behavioral-specification of this
service. Then, the user can exploit our developed tool to interactively adjust the
constraint automaton to reflect the relation between these operations as states
and transitions that specify the concise behavior of the represented service. For
example, Figure 3.14 is a revised version of the description specified in Figure 3.13,
as specified by the user. Finally, the designed graphical description of the ser-
vice behavior is exported as an XWSDL document for this service. We call our
developed GUI Fizzim+B, for behavior.

3.6 Registration of business Services

AS we mentioned in Figure 2.10 a specified business service, including both atomic
and composite services, should be registered in a service registry in the VO.

3.7. Conclusion 59

Figure 3.15 shows that all information specified for services would be captured
in this Service Registry. As such, the VO Service Registry supports two kinds

Figure 3.15: Registration of Atomic & Composite Service.

of registration corresponding to the atomic services and composed/composite
services. Each atomic service has one functional service specification including its
syntax, semantics and behavior, while each of component of a composite service
has a different functional specification. These functional specifications together
with the other parts of C3Q, as they are described by the service provider, would
be captured in this registry in order to publish the service. Furthermore, the
coordination pattern of the component services in every composite service could
also be captured and registered in the service registry for reusability of that
composite service.

3.7 Conclusion

In this chapter, we presented an extension and improvements to the current web
service description approaches and standards, in order to support more efficient
service discovery and composition in VOs. First, we presented a data model,
C3Q, to represent the various information needed for the description of BSs as
web services. C3Q is considered as the competency model for reusability within
the VOs.

Then, we introduced a light extension of WSDL that we call XWSDL, to in-
corporate the C3Q model in the specification of web services. To the best of our
knowledge, XWSDL is the first model that provides a comprehensive description

60 Chapter 3. Specification of Business Services

of capabilities over web services, and that highlights the important role of service
behavior in the realization of the semi-automated service oriented computing.
Since XWSDL is a lightweight extension of standard WSDL, the existing WSDL
documents can easily be enriched with it, without altering their original con-
tent. The meta-model of XWSDL is also presented here that assists transforming
WSDL documents to the proposed XWSDL descriptions, through our Fizzim+B
tool. In XWSDL, the power and flexibility of the C3Q model have been combined
with the simplicity and convenience of standard WSDL, thus reaching the right
balance between flexibility and expressiveness for VO services.

Finally, we developed a GUI, which assists service designers to describe and
visualize the behavioral specification of the web services correctly and easily.

Chapter 4

QoS-aware behavior-based Services
Discovery

Parts of the material in this chapter is published in the following papers:

• Sargolzaei, M., Santini, F., Arbab, F. and Afsarmanesh, H., 2017. A Tool
for QoS-aware Behaviour-based Discovery of Approximately Matching web
services. Submitted to the International Journal on Software and Systems
Modeling (SoSyM). Springer Berlin Heidelberg.

• Sargolzaei, M., Santini, F., Arbab, F. and Afsarmanesh, H., 2013. A tool
for behaviour-based discovery of approximately matching web services. In
International Conference on Software Engineering and Formal Methods (pp.
152-166). Springer Berlin Heidelberg.

In this chapter, we present a tool that is able to discover stateful web services
in a registry, ranked according to a similarity score that expresses the affinities
between each service and the user-submitted query. To determine these affinities,
we also take the service behavior into account, both of the user’s query, and of the
web services. In fact, a web service behavior, addressing the names of its service
operations, their order of invocation, and their parameters, may differ from those
required by the user’s query, but still it may be identified as similar so long as
its operations collectively represent similar behavior. We use soft constraints to
formalize the requirements that a user expresses in her query, the solutions to
which accommodate her needs in the best possible way. We argue that a proper
formalization of the behavior of many services that are commonly thought of as
stateless, in fact requires a stateful representation (see Section 3.3.3). As such,
our method and our tool can accommodate discovery of these services better
than alternatives that consider them as stateless. Our tool uses a procedure
to assess an approximate operational-similarity score among a set of services
requested by their Soft Constraint Automata, which we use as the formal model of
service behavior. As such, the discovery is modeled as a Constraint Optimization

61

62 Chapter 4. QoS-aware behavior-based Services Discovery

Problem (COP) [138]. Finally, we enhance our tool by also considering a set of
QoS metrics to further meet the user’s needs.

4.1 Introduction

Web services (WSs) [8] constitute a typical example in the Service Oriented Com-
puting (SOC) paradigm. WS discovery is the process of finding a suitable WS for
a given task. To enable a consumer to use a service, its provider usually augments
a WS endpoint with an interface description, using the web service Description
Language (WSDL1). In a loosely-coupled environment such as SOC, automatic
discovery becomes even more complex, since users’ decisions must be supported
by taking into account a similarity score that describes the affinity between a
user’s requested service (the query) and the specifications of a number of actual
services available in the environment.

Although several researchers have tackled this problem and some search tools
(e.g., [133]) have achieved good results, very few (see Section 4.2) consider the
behavioral signature of a service that describes the sequence of operations in which
a user is actually interested. This is partly due to the unavoidable limitations
of today’s standard specifications, e.g., WSDL, which do not encompass such
aspects. Despite this fact, the behavior of stateful services represents a very
important issue to be considered during service discovery, to provide users with
an additional means to refine the search in such a diverse environment.

The impact of considering stateful behavior in search of services is indeed
broader than it may seem at first. As we argue in Section 3.3.3, our notion of
stateful services in fact covers a much wider class of services, and includes many
of those that are commonly considered as stateless.

We first describe a formal framework (originally introduced in [15]) that, dur-
ing the search procedure, considers both a description of the requested (state-
ful) service behavior, and a global similarity score between services and the
queries. This underlying framework consists of Soft Constraint Automata (SCA),
where semiring-based soft constraints (see Section 4.3) enhance classical (not soft)
CA [18] with a parametric and computational framework that can be used to ex-
press the optimal desired similarity between a query and a service. In our work,
we use CA as our base formalism for the specification of WS behavior. Since
CA models are supported by our related tool in [61], it can readily be extended
to also support soft constraints. Overall, we observe that automata models are
more understandable and readable for engineers than other models. However, we
do not unavoidably depend on CA, and in principle we can use other formalisms,
and then internally convert their behavior to CA for our discovery purposes.

The main contribution of the work reported in this chapter is the design and
implementation of such a framework using an approximate operational-similarity

1web services Description Language: https://www.w3.org/TR/wsdl.

https://www.w3.org/TR/wsdl

4.2. Related Work 63

evaluation method, applied to two SCAs. We implement this inexact comparison
between a query and a service, as a Constraint Optimization Problem (COP),
by using JaCoP libraries2. We are eventually able to rank all search results ac-
cording to their similarity with a proposed query. In this way, we can benefit
from off-the-shelf techniques with roots in Artificial Intelligence (AI), in order
to tackle the complexity of search over large databases. To evaluate a similarity
score we use different metrics to measure the syntactical distance between opera-
tions and between parameter names (see Section 4.6), e.g., between “getWeather”
and “g weather”. These values are then automatically cast into soft constraints
as semiring values (see Section 4.3), to enable parametric composition and opti-
mization during the process of discovery. Thus, a user is enabled to eventually
choose a service that better adheres to his needs than the other ones in a registry.

Exploitation of the service behavior during a search process applying a formal
framework, represents the main feature of our tool. SCA represent the formal
model that we use to represent behaviors: the different states of an SCA represent
different states of a stateful service and/or query. Relying on SCA allows us to
have a framework that comes along with a set of sound operators for composition
of queries [15].

Furthermore, we describe a QoS-based service recommendation mechanism
besides our discovery tool, to assist users in service selection. The reason for
this feature is that non-functional properties such as QoS parameters play an
important role in user’s selection. Due to already having scores that represent
functional similarity, using further QoS metrics in the same framework comes at
a reduced cost. We propose a lexicographic composition of soft constraints to
capture the trade-off of preferences in selecting the best fitting WS. We evaluate
the results of our proposed tool in Chapter 6.

The rest of this chapter is structured as follows. In Section 4.2, we report
on the related work. In Section 4.3 we summarise the background on semiring-
based soft constraints [24], as well as the background on SCA [15]. Section 4.4
shows some examples of how to use SCA to represent the behavior of services
and the similarity between their operation and parameter names. In Section 4.5
we describe the architecture of a tool that implements the search introduced in
Section 4.4. In Section 4.6 we focus on how we measure the similarity between
two different behavioral signatures. In Section 4.7 we explain our QoS-based
service recommendation method that assists users with service selection. Finally,
in Section 4.8 we draw final conclusions and explain our future work.

4.2 Related Work

Compared to the work reported in the literature, the solutions in our approach
are more general, compact, and comprehensive, since it can encompasses any

2Java Constraint Programming solver (JaCoP): http://www.jacop.eu.

http://www.jacop.eu

64 Chapter 4. QoS-aware behavior-based Services Discovery

semiring-like metrics, and the whole framework is expressively modeled and solved
using Constraint Programming [137]. Moreover, elaborating on a formal frame-
work allows us to easily check properties of services/queries (e.g., to model-check
or bi/simulate them [15]), or to use join and hide operators for their composi-
tion and abstraction [15]. A first step towards this work has been developed in
[16]. The remaining of this section addresses and briefly analyses the most rel-
evant state of the art research. The modeling and verification of long-running
transaction involving composed WSs proposed in [90] and [117] are compatible
with our framework. Sharing the same underlying formal model also allows us to
apply model-based testing techniques such as in [91], and compliance verification
and analysis as addressed in [89]. Nevertheless, most related literature report on
more ad-hoc engineered, and specific solutions, instead of formal solutions, which
consequently are less amenable to formal reasoning.

In [153] the authors propose a new behavior model for services using automata
and logic formalisms. Roughly, the model associates messages with activities, and
adopts the IOPR model (i.e., Input, Output, Precondition, Result) of OWL-S 3

to describe activities. While the authors use an automaton structure to model
service behavior, similarity-based search is not mentioned in [153].

In [172] the authors present an approach that supports service discovery based
on structural and behavioral service models, as well as quality constraints and
contextual information. However, the behaviors are matched through a sub-graph
isomorphism algorithm, thus vertices cannot be merged or deleted when needed,
as in the case of a sub-graph epimorphism.

In [67] the problem of behavioral matching is translated to a graph matching
problem, and existing algorithms are only adapted for this purpose.

The model presented in [160] relies on a simple and extensible keyword-based
query language and enables efficient retrieval of approximate results, including
approximate service compositions. Further on, since representing all possible
compositions can result in an exponentially-sized index, the authors investigate
clustering methods to provide a scalable mechanism for service indexing.

In [22] the authors propose a crisp translation from interface description of
services to classical crisp Constraint Satisfaction Problems (CSPs). The work
in [22] does not consider service behavior however, and it does not support a
quantitative reasoning on similarity/preference involving different services.

In [169] a semiring-based framework is used to model and compose QoS fea-
tures of WSs. However, no notion of similarity relationship is provided in [169].

In [51], the authors propose a novel clustering algorithm that groups the names
of parameters of service operations into semantically meaningful concepts. These
concepts are then leveraged to determine similarity of inputs (or outputs) of
service operations.

In [124] the authors propose a framework of fuzzy query languages for fuzzy

3OWL-S: Semantic Markup for Services, 2004: www.w3.org/Submission/OWL-S/.

www.w3.org/Submission/OWL-S/

4.2. Related Work 65

ontologies, and present query answering algorithms for these query languages over
the fuzzy DL-Lite ontologies.

In [72] the authors propose a metric to measure the similarity of semantic ser-
vices annotated with an OWL ontology. They calculate similarity by defining the
intrinsic information value of a service description based on the “inferencibility”
of each of OWL Lite constructs.

The authors in [133] show a method of service retrieval called URBE (UDDI
Registry By Example). The retrieval is based on the evaluation of similarity be-
tween the interfaces of WSs. The algorithm used in URBE combines the analysis
of the structure of a WS and the terms used inside it.

Baresi et al. [19] introduce DREAM as an innovative infrastructure for the
distributed publication and discovery of WSs. DREAM provides partial solutions
for users requests through a set of matchmakers such as WSDL-based Matchmaker
and XPath-based matchmaker. The ability to adding new matchmakers gives
more flexibility to DREAM, but considering the experimental results, they should
improve the precision and recall without affecting the flexibility. Moreover, this
version of DREAM could not manage the behavioral and also non-functional
aspects of services.

In order to consider QoS metrics as additional criteria to select services from
a set of functionally equivalent candidates, we can simply specify QoS properties
as meta-attributes. However, the semantics of such schemes is too weak to allow
reasoning about QoS properties. In [116], the authors extend constraint automata
(CA) with Q-algebras to define Quantitative Constraint Automata (QCA) to spec-
ify the QoS properties of services for an optimized service selection and compo-
sition. Also in [116], they introduce Quasi-Classical Temporal Logic (QCTL) as
a logic for reasoning about both behavioral and QoS aspects of services modeled
by QCA. Because QCA and our work share constraint automata as their base
model, we can extend our soft constraint automata model by adopting and fur-
ther extending the QCA, which will enable us to use QCTL logic for a richer form
of reasoning about the properties of services, when needed.

Preference modeling is an important issue in various fields such as economics,
mathematics, informatics, and even psychology. We would deal with preferences
when we have to make choices on behalf of users [27].

In [63] the authors discuss soft constraint techniques and using the lexico-
graphic order for preferences. This work is pivotal for the use of soft constraints
when dealing with problems with a number of criteria that must be satisfied with
a fixed order of importance.

Managing tradeoffs of the QoS preferences has been addressed in [77] using a
lexicographic-based specification language for expressing the QoS preferences.

This is also addressed in [109] based on a model of lexicographic semi-order.
Although lexicographic semi-order seems to work better in our context by con-
sidering the threshold for each criterion, unfortunately it is not associative, and
therefore could not be applied.

66 Chapter 4. QoS-aware behavior-based Services Discovery

To the best of our knowledge, none of the related work presented in this section
comes with tools for direct behavioral discovery and approximate matching of
stateful web services. Our approach provides an achievement in which the VO
members can find such services more accurately within SOCN. Moreover, with our
tool, a user is able to compose all the constraints representing his or her required
functional and non-functional requirements in a given lexicographic order, i.e.,
different criteria have different precedences. While most of the QoS-aware related
work compute QoS ranking as an extra criterion for search that may impact
the results by giving higher ranking to completely irrelevant services that have
high QoS values, we avoid this problem by composing both functional and non-
functional requirements as semirings in our approach. This advantage is granted
by the formal definition of our proposed lexicographic ordering on soft constraints.

4.3 Soft Constraint Automata

Semiring-based Soft Constraints. A c-semiring [24] (simply semiring in the
sequel) is a tuple S “ xA,`,ˆ, 0, 1y, where A is a possibly infinite set with
two special elements 0, 1 P A (respectively the bottom and top elements of A)
and with two operations ` and ˆ that satisfy certain properties over A: ` is
commutative, associative, idempotent, closed, with 0 as its unit element and 1
as its absorbing element; ˆ is closed, associative, commutative, distributes over
`, 1 is its unit element, and 0 is its absorbing element. The ` operation defines
a partial order ďS over A such that a ďS b iff a ` b “ b; we write a ďS b if b
represents a value better than a. Moreover, ` and ˆ are monotone on ďS, 0 is
the min of the partial order and 1 its max, xA,ďSy is a complete lattice and ` is
its least upper bound operator (i.e., a` b “ lubpa, bq) [24].

Some practical instantiations of the generic semiring structure are the boolean
xtfalse, trueu,_,^, false, truey, fuzzy xr0..1s,max,min, 0, 1y, probabilistic xr0..1s,
max, ˆ̂ , 0, 1y and weighted xR`Yt`8u,min, ˆ̀ ,8, 0y (where ˆ̂ and ˆ̀ respectively
represent the arithmetic multiplication and addition).

A soft constraint [24] may be seen as a constraint where each instantiation of
its variables has an associated preference. An example of two constraints defined
over the weighted semiring is given in Figure 4.1b. Given S “ xA,`,ˆ, 0, 1y
and an ordered finite set of variables V over a domain D, a soft constraint is a
function that, given an assignment η : V Ñ D of the variables, returns a value of
the semiring, i.e., c : pV Ñ Dq Ñ A. Let C “ tc | c : D|IĎV | Ñ Au be the set of
all possible constraints that can be built starting from S, D and V : any function
in C depends on the assignment of only a (possibly empty) finite subset I of V ,
called the support, or scope, of the constraint. For instance, a binary constraint
cx,y (i.e., tx, yu “ I Ď V) is defined on the support supppcq “ tx, yu. Note that
cηrv “ ds means cη1 where η1 is η modified with the assignment v “ d. Note also
that cη is the application of a constraint function c : pV Ñ Dq Ñ A to a function

4.3. Soft Constraint Automata 67

η : V Ñ D; what we obtain is, thus, a semiring value cη “ a. The constraint
function ā always returns the value a P A for all assignments of domain values,
e.g., the 0̄ and 1̄ functions always return 0 and 1 respectively.

Given the set C, the combination function b : C ˆ C Ñ C is defined as
pc1 b c2qη “ c1η ˆ c2η [24]; supppc1 b c2q “ supppc1q Y supppc2q. Likewise, the
combination function ‘ : C ‘ C Ñ C is defined as pc1 ‘ c2qη “ c1η ` c2η [24];
supppc1‘c2q “ supppc1qYsupppc2q. Informally, b/‘ builds a new constraint that
associates with each tuple of domain values for such variables a semiring element
that is obtained by multiplying/summing the elements associated by the original
constraints to the appropriate sub-tuples.

The search engine of the tool we present in Section 4.5 relies on the solution
of Soft Constraint Satisfaction Problems (SCSPs) [24], which can be considered
as COPs. An SCSP is defined as a quadruple P “ xS, V,D,Cy, where S is the
adopted semiring, V the set of variables with domain D, and C is the constraint
set. SolpP q “

Â

C collects all solutions of P , each associated with a similarity
value s P S. Soft constraints are also used to define SCA.

Soft Constraint Automata. Constraint Automata were introduced in [18] as
a formalism to describe the behavior and possible data flow in coordination models
(e.g., Reo [18]); they can be considered as acceptors of Timed Data Streams
(TDS) [14, 18]. We now recall the definition of TDS from [14], while extending it
using the softness notions described in Section 4.3: we name this result as Timed
Weighted Data Streams (TWDS), which correspond to the languages recognised
by SCA.4 For convenience, we consider only infinite behavior and infinite streams
that correspond to infinite “runs” of our soft automata, omitting final states,
including deadlocks.

4.3.1. Definition. [Timed Weighted Data Streams] Let Data be a data set, and
for any set X, let Xω denote the set of infinite sequences over X; given a semiring
S “ xA,`,ˆ, 0, 1y, a Timed Weighted Data Stream (TWDS) is a triplet:

xλ, l, ay P Dataω
ˆ Rω

` ˆA
ω such that, @k ě 0 : lpkq ă lpk ` 1q and lim

kÑ`8
lpkq “ `8

Thus, a TWDS triplet xλ, l, ay consists of a data stream λ P Dataw, a time
stream l P Rω

`, and a preference stream a P Aω; k is a natural number that is
used to enumerate the elements of each stream. The time stream l indicates, for
each data item λpkq, the moment lpkq at which it is exchanged (i.e., being input
or output), while the apkq is a preference score related to λpkq.

In [15] we paved the way to the definition of Soft Constraint Automata (SCA),
which represent the theoretical foundation behind our tool. Use a finite set N
of names, e.g., N “ tn1, . . . , npu, where ni (i P 1..p) is the i -th input/output
port. The transitions of SCA are labeled with pairs consisting of a non-empty

4TWDSs do not imply time constraints, and thus our (soft) CA are not “timed” [18].

68 Chapter 4. QoS-aware behavior-based Services Discovery

subset N Ď N and a soft (instead of crisp as in [18]) data-constraint c. Soft data-
constraints can be viewed as an association of data assignments with a preference
for that assignment. Formally,

4.3.2. Definition. [Soft Data-Constraints] A soft data-constraint over a set of
port names N and data values Data, is an expression produced by the following
grammar, with c as its distinguished symbol:

c ::“ f | f ‘ f
f ::“ 0̄ | 1̄ | cb c | pcq | c

where for N Ď N , c represents a function c : ptdn | n P Nu Ñ Dataq Ñ A over
a semiring S “ xA,`,ˆ,0,1y, the set of variables tdn | n P Nu constitute the
support of the constraint, and tdn | n P Nu Ñ Data is a function that associates
with every variable dn in this support, a data item v P Data that passes through
the port n P N .

Informally, a soft data-constraint is a function that returns a preference value
a P A given an assignment for the variables tdn | n P Nu in its support. In the
sequel, we write SDCpN,Dataq, for a non-empty subset N of N , to denote the set
of soft data-constraints. We will use SDC as an abbreviation for SDC pN ,Dataq.
Note that in Definition 4.3.2 we assume a global data domain Data for all names,
but, alternatively, we can assign a data domain Datan for every variable dn.

We state that an assignment η for the variables tdn | n P Nu satisfies c with
a preference of a P A, if cη “ a.

In Definition 4.3.3 we define SCA. Note that by using the boolean semiring,
thus within the same semiring-based framework, we can exactly model the “crisp”
data-constraints presented in the original definition of CA [18]. Therefore, CA are
subsumed by Definition 4.3.3. Note also that weighted automata, with weights
taken from a proper semiring, have already been defined in the literature [52]; in
SCA, weights are determined by a constraint function instead.

4.3.3. Definition. [Soft Constraint Automata] A Soft Constraint Automaton
over a domain Data, is a tuple TS “ pQ,N,ÝÑ, Q0, Sq where i) S is a semiring
xA,`,ˆ, 0, 1y, ii) Q is a finite set of states, iii) N is a finite set of names, iv)
ÝÑ is a finite subset of Q ˆ 2N ˆ SDC ˆ Q, called the transition relation of

TS, and v) Q0 Ď Q is the set of initial states. We write q
N,c
ÝÝÑ p instead of

pq,N, c, pq PÝÑ. We call N the name-set and c the guard of the transition. For

every transition q
N,c
ÝÝÑ p we require that i) N ‰ H, and ii) c P SDCpN,Dataq (see

Definition 4.3.2). TS is called finite iff Q,ÝÑ and the underlying data-domain
Data are finite.

The intuitive meaning of an SCA TS as an operational model for service queries
is similar to the interpretation of labeled transition systems as formal models

4.4. Representing the behavior of Services with SCA 69

for reactive systems. The states represent the configurations of a service. The
transitions represent the possible one-step behavior, where the meaning of q

N,c
ÝÝÑ p

is that, in configuration q, the ports in n P N have the possibility of performing
I/O operations that satisfy the soft guard c and that leads from configuration q
to p, while the ports in NzN do not perform any I/O operation. Each assignment
of variables tdn | n P Nu represents the data associated with ports in N , i.e., the
data exchanged by the I/O operations through ports in N .

In Figure 4.1a we show an example of a (deterministic) SCA. In Figure 4.1b
we define the weighted constraints c1 and c2 that describe the preference (e.g., a
monetary cost) for the two transitions in Figure 4.1a, e.g., c1pdL “ 2q “ 5.

(a) A Soft Constraint Automaton. (b) c1 and c2 in Figure 4.1a.

Figure 4.1: An example of a SCA, as well as its associated weighted constraints.

In [15] we have also softened the synchronization constraints associated with
port names in N over the transitions. This allows for different service operations
to be considered somehow similar for the purposes of a user’s query. Note that
a similar service can be used, e.g., when the “preferred” one is down due to a
fault, or when it offers bad performance, e.g., due to the high number of requests.
Definition 4.3.4 formalises the notion of soft synchronization-constraint.

4.3.4. Definition. [Soft synchronization-constraint] A soft synchronization- con-
straint is a function c : pV Ñ Nq Ñ A defined over a semiring S “ xA,`,ˆ, 0, 1y,
where V is a finite set of variables for each I/O port, and N is the set of I/O port
names of the SCA.

4.4 Representing the behavior of Services with

SCA

In this section we show how the formal framework presented in Section 4.3 (i.e.,
SCA) can be used to consider a similarity score between a user’s query and the
service descriptions in a registry, in order to find the best possible matches for
the user.

We begin by considering how parameters of operations can be associated with
a score value that describes the similarity between a user’s request and an ac-
tual service description in a registry. We suppose to have two different queries:

70 Chapter 4. QoS-aware behavior-based Services Discovery

the first, getByAuthorpFirstnameq, which is used to search for conference pa-
pers using the Firstname (i.e., the parameter name) of one of its authors; the
name of our invoked service operation is, then getByAuthor. The second query,
getByTitle(Conference), searches for conference papers, using the title of the
Conference wherein the paper has been published; the name of our invoked
operation is getByTitle. These two queries are represented as the SCA (see Sec-
tion 4.3) q0 and q1, in Figure 4.2a. Soft constraints c1 and c2 in Figure 4.2b, define
a similarity score between the parameter name used in a query and all parameter
names in the registry (for the same operation name, i.e., either getByAuthor or
getByTitle). These similarity scores can be modeled with the fuzzy semiring
xr0..1s,max,min, 0, 1y wherein the aim is to maximise the similarity (` ” max)
between a request and a service returned as a matching result. Constraint c1

in Figure 4.2b states that similarity is full if a getByAuthor operation in the
registry takes Firstname as parameter (since 1 is the top preference of the fuzzy
semiring), less perfect, that is 0.8, if it takes Fullname (since usually, Fullname
includes Firstname), or even less perfect, that is 0.2, if it takes Lastname only.
Similar considerations apply to the operation name getByTitle (see Figure 4.2a)
and c2 in Figure 4.2b. The similarity scores are automatically extracted as it is
explained in Section 4.5.

(a) Two soft Constraint Automata repre-
senting two different queries.

(b) The definitions of c1 and c2 in Figure 4.2a.

Figure 4.2: Two example queries represented by soft Constraint Automata.

Figure 4.3: A set of registered services for the queries in Figure 4.2a; d performs
both kinds of search (by author and by title).

4.4. Representing the behavior of Services with SCA 71

Suppose now that our registry contains the four services represented in Fig-
ure 4.3. All these services are stateless, i.e., their SCAs have a single state each.
For instance, here service a has only one invokable operation whose name is
getByAuthor, which takes Lastname as parameter. Service d has two distinct
operations, getByAuthor and getByTitle.

According to the similarity scores expressed by c1 and c2 in Figure 4.2b,
queries q0 and q1 in Figure 4.2a return different result values for each of these
four operations/services, depending on the instantiation of variables dgetByAuthor

and dgetByTitle . Considering q0, services a, b, and d result respective preferences
of 0.2, 1, and 0.8. If query q1 is used instead, the possible results are services c
and d, with respective preferences of 1 and 0.3. When more than one service is
returned as the result of a search, the end user has the freedom to choose the best
one according to his preferences, for instance: for the first query q0, the user can
opt for service b, which corresponds to a preference of 1 (i.e., the top preference),
while for query q1 the user can opt for c (top preference as well).

We now move from the parameter names to operation names, and show that by
using soft synchronization constraints (see Definition 4.3.4), we can also compute
a similarity score among them. For example, suppose that a user queries q0

in Figure 4.2a. The possible results are services a, b and d in the registry of
Figure 4.3, since service c has an operation named getByTitle, different from
getByAuthor. However, these two services are also somewhat similar, since they
both return a paper even if the search is based either on the author or on the
conference. As a result, a user may be satisfied also by retrieving (and then,
using) service c. This can be accomplished with the query in Figure 4.4a, where
cxpx “ getByAuthorq “ 1, and cxpx “ getByTitleq “ 0.7 are its constraints. Note
that we no longer deal with constraints on parameter names, but on operation
names. Then, we can also look for services that have similar operations, not only
similar parameters in operations.

However, our main goal is to compute a similarity score considering also the
behavior of queries and services. For instance consider a query that may require
stateful services such as the query in Figure 4.4b, a user may need to find an
on-line purchase service satisfying the following requirements: i) shipping activity
must occur before charging activity, ii) to purchase a product, the requester first
needs to log into the system and finally log out of the system, and iii) filling the
electronic basket of a user may consist of a succession of “add-to-basket” actions.
In Section 4.6 we will focus on this aspect.

Constraints on parameters (their data-types as well) and operation names can
be straightforwardly mixed together to represent a search problem where both
are taken into account simultaneously for optimization. The tool in Section 4.5
exploits this kind of search: the similarity functions represented by constraints
are computed through the composition of different syntactic similarity metrics.

72 Chapter 4. QoS-aware behavior-based Services Discovery

(a) A similarity-based query for
the Author/Title example.

(b) A similarity-based query for the on-line pur-
chase service.

Figure 4.4: Two examples of stateless/stateful queries.

4.5 Tool Description

We have developed a tool that is able to discover stateful web services in the
registry of SOCN, ranked according to a score expressing the similarity between
each service and a user-submitted query, considering the behavior specification
of both the users query and the SOCN services. We call our behaviorally-based
web service discovery tool BehSearch. Conceptually, BehSearch proceeds in four
successive steps:

• i) Generate a web service Behavior Specification (WSBS) for each registered
WS (a WSBS is basically a CA).

• ii) Process preference-oriented queries (basically represented as SCA).

• iii) Compute an operational similarity-score between a query and our ser-
vices as an SCSP (see Section 4.3).

• iv) Solve this problem.

Step i is needed because no standard language or tool exists to specify the
behavior of stateful WSs. Therefore, we define our suggested WSBS as a behav-
ioral specification for WSs, extending WSDL with extra necessary annotations.
In step ii , we obtain the query from user and we process it to find the similarities
between the request and the actual services in the registry. In step iii , we set up
an SCSP (see Section 4.3), where soft-constraint functions are assembled by using
the similarity scores derived in step ii ; at the same time, we define those con-
straints that compare the two behavioral signatures (query/service), and measure
their similarity. Finally, we find the best solutions for this SCSP, and we return
them to the user. These steps are implemented by a set of software modules,
whose global architecture is illustrated in Figure 4.5. These modules are also one
by one defined below.

WSDL Parser. For our implementation, we rely on a repository of WSDL
documents that are captured in a registry, i.e., the WSDL Registry (see Fig-
ure 4.5). WSDL is an XML-based standard for syntactical representation of

4.5. Tool Description 73

Figure 4.5: The architecture of the tool.

WSs, which currently serves as the most suitable for our purpose. We parse these
XML-based documents to extract the names and interfaces of service operations
using the Axis2 technology.5

WSBS Generator. While a WSDL document specifies the syntax and the
technical details of a service interface, it lacks the information needed to convey its
behavioral aspects, as described in Section 3.3.3. In fact, a WSDL document only
reveals the operation names and the names and data types of their arguments, and
it does not indicate the permissible operation sequences of a service. If we know
that a WS is stateless, then all of its operations are permissible in any desired
order. For a stateful service however, we need to know which of its operations is
or is not allowed in each of its states. As described in Section 3.3.3, we formalized
the behavior of a web service (i.e., our so-called WSBS) in terms of CA [18]. The
generated CA are captured as XML documents, where the ătransitionsą tags
identify the structure of each automaton. In Figure 4.5, all WSBSs are stored in
a WSBS Registry.

We can automatically extract a single-state automaton from the operations
defined in a WSDL document describing a stateless WS: we use this support-tool
to extract the automata for the real-world WSs used in our following experiment.
For stateful WSs, we have developed an interactive tool that through a GUI allows
a programmer (see Figure 4.5) to visually create the automaton states describing
the behavior of a service, and tag its transitions with the operations defined in
its WSDL document.

Query Processor. For search purposes, a user specifies a desired service by
means of a text file, and feeds it to this module. An example of our query format
is represented in Figure 4.8. This query format allows to specify all desired tran-
sitions among states, including operation names, and the names and data types
of their arguments. It enables search for multiple similar services separated by
the “or” operators. The tool ranks all the results in the same list (see Table 4.1).

5http://axis.apache.org/axis2/java/core/.

http://axis.apache.org/axis2/java/core/

74 Chapter 4. QoS-aware behavior-based Services Discovery

Figure 4.6: An example of WSBS.

q0 AddToBasket q1;

q1 AddToBasket q1;

q1 Purchase q0.

Figure 4.7: Text file representing the
WSBS in Figure 4.6.

Finally, the tool assigns to each service description a preference score complying
with what is prescribed by the user. A user may use a score in his/her query, e.g.,
fuzzy preferences in r0..1s to weigh all the results, as represented in Figure 4.8.
Each query is represented as an SCA [15] (see Section 4.3), since preferences can
be represented by soft constraints. This textual representation resembles a list of
WSBSs, each of them associated with a preference score. See Table 4.1, Figure 4.8
and Figure 4.7 for a comparison.

Similarity Calculator. As Figure 4.5 shows, this module requires two in-
puts: the WSBSs and the processed query. It then returns three different kinds of
similarity scores, which reflect the similarities between one service and one query,
including: i) operations names, ii) names of input-parameters of operations, and
iii) data types of input-parameters. We use a number of different string similarity-
metrics (also known as string distance functions) as the functions to measure the
similarity between two text-strings. We have specifically chosen and implemented
three of the most widely known metrics that fit best to our purpose, the Leven-
shtein Distance, the Matching Coefficient, and the QGrams Distance [40]. Each
of these metrics operates receives two input strings and returns a score estimating
their similarity. Since each function returns a value in r0..1s, we average these
three resulted scores and merge them into a single value in r0..1s.

These similarity scores are subsequently used by the Constraint Assembler
module in Figure 4.5, in order to define the similarity functions that are translated
into soft constraints, as it was explained in Section 4.4. The representation of the
search problem in terms of constraints is completely constructed by the Constraint
Assembler module, while the Similarity Calculator only provides it with similarity
scores.

Constraint Assembler. This module produces a model of the discovery
problem, in the form of operational similarity-evaluation addressed in Section 4.6,
as an SCSP (see Section 4.3). To do so, it represents all preference and similar-
ity requirements as soft constraints. In order to assemble these constraints, we
use JaCoP, a Java library that provides a finite-domain constraint programming
paradigm. We have further needed to introduce ad-hoc extensions to the crisp
constraints supported by JaCoP in order to equip them with weights, and then we
have exploited the possibility to minimise/maximise a given cost function to solve
SCSPs. Specifically, we have expressed the WSs discovery problem as a fuzzy opti-

4.5. Tool Description 75

q0 Weather(City:string) q0, [1.0] or q0 Weather(Zipcode:string) q0,

[0.8]

Figure 4.8: A single-state query asking for the weather conditions over a City, or a
Zipcode. Different user preference scores are represented within square brackets.

mization problem, by implementing the fuzzy semiring, i.e., xr0..1s,max,min, 0, 1y
(see Section 4.3).

For instance, SumWeight is a JaCoP constraint that computes a weighted
sum as the following pseudo-code: w1 ¨ x1 ` w2 ¨ x2 ` w3 ¨ x3 “ sum, where sum
represents the global syntactic similarity between two operation in terms of the
similarity between their operation names (x1), their argument names (x2), and
their argument types (x3). These scores are provided by the Similarity Calculator.
Moreover, we can tune the weights w1, w2, and w3 to give more or less impor-
tance to the three different parameters. In the experiments in Section 4.5, as an
example we use equal weights. In Section 4.6, we discuss how to compute how
similar are two behavioral signatures (query/service), and how we construct our
general constraint-based model. More detailed information related this module
is addressed in Section 4.6.

SCSP solver. Finally, receiving the specification of the model of the problem
in terms of its variables and constraints, a search for a solution of the assembled
SCSP can be started. This represents the final step (see Figure 4.5). The result
can be generalized as a ranking of services in the considered registry, where at the
top positions the services that are more similar to a user’s request are positioned.

Experimental Results on a Stateless Scenario. In this section we show
the precision results generated by our developed tool through a scenario involving
stateless real WSs. Figure 4.8 shows a single-state query that searches for WSs
that return the “weather” forecast for a location indicated by: either the name
of a “city” (with a user’s preference of 1), or its “zip-code” (preference of 0.8).

We have developed a WS crawler to find WSDL documents, and check their
validations. With an open search for WSs on the Internet, we retrieved more than
2000 different WSDL documents, but only about 1000 of their corresponding WSs
are valid, i.e., they work yet. The validated WSDL documents form our WSDL
Registry in Figure 4.5.

Table 4.1 shows only the top-ten ranked experiment results, where the other
WSs obtained a similarity score less than 0.3. From left to right the columns
respectively show the position of WS in the final ranking, the obtained fuzzy
score, the WS name, and lastly the matched service operation.

76 Chapter 4. QoS-aware behavior-based Services Discovery

Table 4.1: The ranking of the top-ten matched WSs, based on the query repre-
sented in Figure 4.8.

4.6 On Comparing behavior Signatures

In this section we zoom inside the Constraint Assembler component that we
introduced in Section 4.5. We describe how we calculate approximate behavior
of a posed query against that of a service, since reaching a perfect match is quite
unusual and uncommon.

The basic idea is to compute an operational similarity-score between two au-
tomata, respectively representing a query and a WS in a registry. The notion
of operational similarity relation is obtained by relaxing the equality of output
traces. This means instead of requiring them to be identical, we require that they
remain “close”. Metrics represented as semirings, in our case, essentially quantify
how well a system is approximated by another, based on the distance between
their observed behaviors. In this way, we are able to consider different transition-
labels by estimating a similarity score between their operation interfaces, for
different numbers of states. To compute such operational similarity with con-
straints, our approach roots in constraint-based graph matching techniques [140];
thus, we are able to “compress” or “dilate” one automaton structure into another.
We take advantage of the notion of sub-graph epimorphism, corresponding to the
application of node delete and merge operations to pass from one SCA to another,
when checking operational similarity. The existence of an epimorphism from one
graph to another is an NP-Complete problem [65].

In the following, we use the query example in Figure 4.9, and the service ex-
ample in Figure 4.10 to describe our constraint-based model for the search. We
first subdivide this description, considering how we match different elements of
automata (transitions or states) and how we finally measure their overall similar-
ity.

States. To represent our signature-match problem, for each of the query-
automaton states (set Q) we define a variable that can be assigned to one or
several states of a service (set S). For this purpose, we use SetVar, i.e., JaCoP

4.6. On Comparing behavior Signatures 77

Figure 4.9: A query example.
Figure 4.10: A possible service in a reg-
istry related to the query in Figure 4.9.

variables defined as ordered collections of integers. Considering our running ex-
ample, one of the possible matches between these two signatures can be given by
M ” q0 “ ts0, s1, s3u, q1 “ ts2u. This matching is represented in Figure 4.9 and
Figure 4.10 using grey and black labels for states. Clearly, the proposed modeling
solution represents a relationship and not a function, since a query state can be
associated with one or more service-states; on the other hand, different query
states can be associated with the same service state, in case a query has more
states than a service. Thus, to match the two automata we allow to “merge”
together those states that are connected by a transition (e.g., s0, s1 and s3 in
Figure 4.10) into a single state (e.g., q0) at the cost of incurring a certain penalty.

Transitions. In our running example, if we match the two behaviors as
defined by M, we consequently obtain a match for the transitions (and their
labels) as well. Our model has a variable (IntVar, in JacoP) for each of the
transitions in a query automaton; considering the example in Figure 4.9, we have
three variables l1, l2, l3. In Figure 4.9 and Figure 4.10 we label each transition
with its identifier (l1, . . . , l3,m1, . . . ,m6), and a string that represents its related
operation-name. Note that in this example, we ignore parameter names and types
for the sake of brevity. Thus, the full match-characterisation is now M ” q0 “

ts0, s1, s3u, q1 “ ts2u, l1 “ m2, l2 “ m3, l3 “ m5. Note that, if a query has more
transitions than a service, it may happen to be impossible to match all of them;
for this reason, since we need to assign each of the variables in order to find a
solution, we assign a mark NM (i.e., Not Matched) to unpaired transitions.

Automata Epimorphism. Algorithm 1 shows our approach to find sub-
graph epimorphism of the automata to match behavior specification of the query
and services. The idea is that we can merge two or more neighboring states,
i.e., states connected by transitions, to one single state. Every such merged state
needs to adjust its transitions. In this way every in-coming transition to one of
the combined states comes to the new state, namely the merged one. Similarly,
outgoing transitions of both states become outgoing transitions of the combined
state.

For example, we can find two automata epimorphisms for the service repre-
sented in Figure 4.10 with the corresponding query-automaton depicted in Fig-
ure 4.9. The state cardinality of the service-automaton is four (|S| “ 4), while
it is two for the query-automaton (|Q| “ 2). Therefore there are two ways to

78 Chapter 4. QoS-aware behavior-based Services Discovery

Figure 4.11: Two possible subgraph epimorphisms of the Figure 4.10.

merge: (1) merge three neighboring states into one state besides the other state,
(2) merge two neighboring states into one state, and merge the remaining two
neighboring states into another single state.

Figure 4.11 shows a second example in which two possible automata epimor-
phisms for this example. These two results can be obtained through Algorithm 1
at the following steps. Note as a reminder that |Q| “ 2 and |S| “ 4:

The first sub-graph epimorphism is the result of step i “ 2, so three (i.e., i`1)
neighboring states are merged into one state, i.e., state s0 is merged with state
s1 and state s3, and then becomes s0’, and the other state, i.e., state s2 forms the
other node of the new automaton. By ignoring the dissolved transitions (i.e., the
internal transitions among the merged nodes), the transition matrix of the new
merged automaton is:

T “

„

Null AddToBasket
Shipping AddToBasket

The second sub-graph epimorphism is the result of step i “ 1, so two (i.e,
i ` 1) neighboring states are merged into one state (i.e., state s0 is merged with
state s1, and then becomes s0’), and the other two states form the other node
of the new automaton: state s2 is merged with state s3, and then becomes s1’.
By ignoring the dissolved transitions (i.e., internal transitions among the merged
nodes) the transition matrix of the new automaton (merged one) is:

T “

„

Null AddToBasket
Charging AddToBasket

4.6. On Comparing behavior Signatures 79

In order to compare the behavior of the query and services, we replace the
transition matrix T of each automaton by the adjacency matrix A, where Ari, js “
0 if T ri, js is Null, and 1 otherwise. While the transition matrices of the two
possible automata epimorphisms of the above example are different (at T r1, 1s),
their adjacency matrices both are the same with the adjacency matrix of the
query and it is:

A “

„

0 1
1 1

It means that new automata epimorphisms are behaviorally matched with the
query, but due to the incurring of the penalty factor (Q{S), their state similarity-
scores would be 0.5. Note as a reminder that |Q| “ 2 and |S| “ 4. The transition
similarity-scores for these two alternatives, which are derived from a comparison
between matched labels, would be respectively 0.36 and 0.43. Therefore, the
second epimorphism that results in a higher similarity score is considered during
the discovery process for the requested service.

Operational-similarity of the Match. In this paragraph we show how to
compute a global similarity score Γ for a matchM (i.e., ΓpMq). We consider two
different kinds of scores: i) a state similarity-score, σpMq, which is derived from
how much we need to (de)compress the behavior (in terms of number of states)
to pass from one signature to another, and ii) a transition similarity-score, θpMq,
which is derived from a comparison between matched labels. In a simple case, we
can consider the mean value ΓpMq “ pσpMq ` θpMqq{2, or we can apply more
sophisticated weighted aggregation functions. A rather straightforward function
is σpMq “ minp|SM|, |QM|q{maxp|SM|, |QM|q and if we have |SM| “ |QM|, our
match is perfect. But we can apply non-linear functions as well. The score θpMq
is computed by aggregating the individual syntactic similarity-scores (ssim), com-
puted by the Similarity Calculator proposed in Section 4.5, obtained for each label
match, and then averaging on the number of matched labels. In our example,
θpMq “ pssimplabel l1 , labelm2q ` ssimplabel l2 , labelm4q ` ssimplabel l3 , labelm5qq{3.

An Experiment with Stateful Services. As we discussed in Section 3.3.3,
proper descriptions of the behavior of many implementations of stateless services
are themeselves stateful. Therefore, we enrich our registered WSs with behavioral
descriptions and use the query represented in Figure 4.12 against this registry.
According to this stateful query, the ideal service matching the query first per-
forms the Add-to-Basket operation one or more times, and then completes the
required shipping processes, and finally charges the costumer for its purchase. Ta-
ble 4.2 shows the results of this experiment: the transition similarity-score θpMq,
the state similarity-score σpMq, the global similarity-score ΓpMq, and the rank
Rk of each service. These results match our expectations, since the behavior of
S6 is identical to the behavior of our query, and the behaviors of S3, S1, and S2

are approximately close to the behavior of our query.

80 Chapter 4. QoS-aware behavior-based Services Discovery

1. Let | Q | be the cardinality of the query-automaton states, and | S | be
the cardinality of a service-automaton

2. If p| Q |ă| S |q then

%Find all possible sequences of merges for neighboring states in the
service-automaton to reduce its state’s cardinality to | Q |.

2.1. For(i “| S | ´ | Q |; i ě p|S| ´ |Q|q{2; i “ i´ 1)
2.1.1. Merge i` 1 neighboring states of the service to a single state.
2.1.2. Merge p| S | ´ | Q |q ´ i` 1 neighboring states of the service to

a single state.
2.1.3. Adjust the transitions for the merged states.
2.1.3. If (the new automaton is equal to the query-automaton) then

consider it as a sub-graph epimorphism of the service-automaton.

3. If p|Q| ą |S|q then
Find all possible sub-graph epimorphism of the query-automaton to the

service-automaton similar to 2.1
Algorithm 1: The sub-graph epimorphism algorithm for behavior specifi-
cation matching.

q0 AddBasket() q1; q1 AddBasket() q1; q1 Shipping() q2; q2 Charge()

q0,[1.0]

Figure 4.12: A stateful query asking for a purchase online scenario including
buying, shipping and charging.

4.7 QoS-aware Service Discovery

While the proposed search engine discovers services according to their functional
properties, certainly non-functional properties, e.g., QoS parameters, also play an
important role in the user’s selection. Therefore, when many web services offer
similar capabilities, it is necessary to also consider non-functional properties of
services as selection criteria. While functional properties describe what a ser-
vice can do, non-functional properties depict how well the service can satisfy its
functional properties.

Besides the set of functional requirements (i.e., syntactical and behavioral
matching of services) that we model as soft constraints, we can also encode any
set of QoS requirements as soft constraints in order to assist users in service
selection. In principle, we can compute QoS ranking as an extra criterion for
search, but doing so may in turn impact the results of service discovery by giving
higher ranking to some functionally-irrelevant services that have high QoS values.
In order to avoid this potential problem, we use the lexicographic ordering, as

4.7. QoS-aware Service Discovery 81

Table 4.2: The ranking of the top-ten matched WSs, based on the query repre-
sented in Figure 4.12.

described below.

We compose all the constraints representing functional and non-functional
requirements in the constraint assembler, but in a given lexicographic order,
i.e., different criteria have different precedence. Assume that the user consid-
ers three QoS criteria for the service selection including: Availability, Reliability,
and Response-Time. Then she also states a lexicographic order among these cri-
teria: for example, the first preferred component is Reliability, the second one
is Response-Time, and the last one is Availability. In order to combine func-
tional requirements and QoS constraints into a single semiring for match-making
of services, we define the lexicographic product of the semirings.

Our definition of lexicographic ordering derives from a lattice-based distance
function we define in Definition 4.7.1. We use this function to exploit the structure
of the complete lattice defined by xA,`y. Below we explain why and how we
perform this, first defining the needed lattice. A complete lattice is a partially
ordered set in which all subsets have both a supremum (1) and an infimum (0).

4.7.1. Definition. [Lattice-based distance] The lattice-based distance is a func-
tion dist : AˆAÑ N defined on a semiring S “ xA,`,ˆ,0,1y, that returns the
distance between two elements (absolute value) on the lattice defined by xA,`y.
In the following we provide two examples, depending if A is:

Finite and partially ordered. Given a1, a2 P A, distpa1, a2q is the shortest
path between a1 and a2 on the complete lattice defined by xA,`y.

Infinite and totally ordered. Given a1, a2 P A and a1 ăS a2, distpa1, a2q is
the distance obtained through a weak inverse of ˆ, i.e., a1 ˜ a2 [64].6

6Please refer to [64] for a formal definition of ˜, which is outside the scope of this thesis.

82 Chapter 4. QoS-aware behavior-based Services Discovery

Since, semirings can be defined over partial order sets, they can be represented
as lattice graphs. The distance between two vertices in a lattice graph is the num-
ber of edges in a shortest path connecting them. To compute the dist function, we
can use a distance matrix that is a square matrix containing the distances, taken
pairwise, between the elements of a poset. For example, distptT u, tA,R,T uq in
Figure 4.13 is 2.

We now define a lexicographic ordering which takes advantage of Defini-
tion 4.7.1. The goal is to use the distance of two elements from their least upper
bound (obtained through `) as additional information to “stretch” the partial
order into a “more” total order, to be considered in the lexicographic order.

4.7.2. Definition. [Lexicographic product of semirings] The lexicographic prod-
uct of semirings S1 “ xA1,`1,ˆ1,01,11y and S2 “ xA2,`2,ˆ2,02,12y, denoted
as S1 � S2, is the semiring S “ xA,`,ˆ,0,1y where:

• The carrier of S is the Cartesian product of the carriers of S1 and S2, i.e.,
A “ A1 ˆ A2.

• The selection operator ` of S if given by:

xa1, a2y`xb1, b2y “

$

&

%

xa1, a2y if distpa1, lub1q ă distpb1, lub1q

xa1, a2y if a1 “ b1 and distpa2, lub2q ă distpb2, lub2q

undefined otherwise

where lub1 is the least upper bound of a1 and b1 (a1 ` b1), and lub2 is the
least upper bound of a2 and b2 (a2`b2); distpq is defined in Definition 4.7.1.
We can even further refine the definition of our selection operator in Defini-
tion 4.7.2 by choosing the element that is more distant from their common
greatest lower bound (glb) if two elements are equidistant from their lub.
Note that two elements in A are always comparable with respect to dist ,
while they may not be comparable in xA,`y.

• The composition operator ˆ of S is given by:

xa1, a2y ˆ xb1, b2y “ xa1 ˆ1 b1, a2 ˆ2 b2y

• 0 “ x01,02y and 1 “ x11,12y.

The notion of distance that we have defined in the selection operator, is helpful
in the case that two elements are not directly comparable. Assume several quality
criteria of services are defined to rank WSs. These criteria would be partially
ordered because all of their elements are not comparable. Figure 4.13 shows
the lattice graph of these criteria including Availability (A), Reliability (R) and
Throughput (T). For elements directly related by the partially order, for example

4.7. QoS-aware Service Discovery 83

tAu ă tA,Ru, the choice is clear, so tA,Ru would be preferred in this comparison.
However, we cannot compare some of these elements to each other, for instance
tAu and tR, T u. But using the dist function, tR, T u is preferred, because the
distptR,T u, tA,R,T uq is 1, which is smaller than distptAu, tA,R,T uq that is 2.
In fact, we expect that tR, T u would be better than tAu because it is closer to
the upper bound and satisfies more features.

We consider the lexicographic product operator on semirings to be right asso-
ciative, i.e., S1 �S2 �S3 “ S1 � pS2 �S3q. Accordingly, if A1, A2, and A3 are the
carriers of semirings S1, S2, and S3, respectively, for simplicity, we skip ordering
parentheses and denote the carrier of S “ S1 � S2 � S3 as A “ A1 ˆ A2 ˆ A3,
instead of A “ A1ˆpA2ˆA3q, and denote the elements of A as xa1, a2, a3y instead
of xa1, xa2, a3yy.

Let SFunc, Srel, Sret, and Savl denote the semirings for the functional require-
ments and the QoS constraints for Reliability, Response-Time, and Availability,
respectively. Then, S “ SFunc � Srel � Sret � Savl is the semiring that we use
to find the best match for a query. The fact that SFunc appears as the leftmost
operand in the lexicographic product that defines S ensures that we consider
QoS properties of services in our ranking of candidates only if their functional
similarity scores are the same.

Figure 4.13: Lattice of subsets of tA,R, T u, partially ordered by “is subset of”.

84 Chapter 4. QoS-aware behavior-based Services Discovery

4.8 Conclusion

We have presented our novel tool for similarity-based discovery of web service
that is able to rank the service descriptions in our registry, primarily focused on
service behavior as well as QoS, in accordance with a similarity score matching
each with the description of a service desired by a user. The formal framework be-
hind the tool consists of SCA [15], which can represent different high-level stateful
software services and queries. We can use SCA to formally reason on queries e.g.,
on operational similarity for SCA as we introduced in [15]. The tool is based
on implementing approximate operational-similarity evaluation with constraints
(see Section 4.6), allowing to quantitatively estimate the differences between two
behaviors. Defining this problem as an SCSP makes it parametric with respect
to the chosen similarity metric (i.e., a semiring), and allows using efficient AI
techniques for solving it. To the best of our knowledge, our proposed web ser-
vice search engine, BehSearch, is the only method that behaviorally matches
services against queries according to the approximate operational-similarity eval-
uation. BehSearch also support non-functional requirements of services besides
their functional constraints in a given lexicographic order.

The main intent for our approach has been to propose a formal framework and
a tool with an approximate operational-similarity of behaviors at its heart, and
not to directly compete against tools such as [133], that simply do not support
behavior specification of services in their matching.

Chapter 5

Service Coordination and Composition

Parts of the material in this chapter is published in the following papers:

• Afsarmanesh, H., Sargolzaei, M., and Shadi, M., 2015. Semi-automated
software service integration in virtual organisations. Enterprise Information
Systems, 9(5-6), pp.528-555.

• Jongmans, S. S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsar-
manesh, H. (2012, September). Automatic code generation for the or-
chestration of web services with Reo. In European Conference on Service-
Oriented and Cloud Computing (pp. 1-16). Springer Berlin Heidelberg.

• Jongmans, S. S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsar-
manesh, H. (2014). Orchestrating web services using Reo: from circuits
and behaviours to automatically generated code. Service Oriented Com-
puting and Applications, 8(4), 277-297.

A most important opportunity in collaborative networks that can benefit from
the application of service-oriented architecture paradigm, is the composition of
services. Although services composition has been heavily studied and discussed,
several issues related to the coordination and automated execution of composed
services still need to be addressed, especially when multiple service providers
as VO members aim to collaborate with each other in order to create a new
composite service.

In this chapter, we present our novel approach to compositional construction
of web services that uses the Reo together with our constraint automata repre-
sentation of web service behavior as the main “glue” ingredients. We apply Reo
in our approach that is a graphical and exogenous coordination language based
on channels. We propose a framework that, taking as input our proposed web
service behavior specification representation constraint automata, the interface
of services, and the description of their interaction in Reo, in an automated man-
ner generates the necessary Java code to both compose and orchestrate a set

85

86 Chapter 5. Service Coordination and Composition

of services in practice. For each web service, we automatically generate a proxy
that manages the communication between this service and the Reo circuit. These
proxies in turn will execute their respective services.

5.1 Introduction

Services are encapsulated applications that are platform independent and em-
ployed to support rapid, low-cost, loosely-coupled compositions. In a Service-
Oriented Collaborative Network (SOCN), services that are distributed over a
network of organizations are desired to be composed according to the require-
ments defined by a service integrator. In principle, the composition of services
requires additional efforts to impose coordination among the component services,
e.g., using work flows, connectors, or glue code.

The holy grail of service oriented computing is to support proper and efficient
reusability of software services and compose them in order to build new value
added composite services, which are also seen as a kind of co-innovation in col-
laborative networks. Research on coordination models and languages plays a key
role in this quest, as it facilitates flexible and formal ways to connect the compo-
nent services and integrate them. In fact, the functional aspects are implemented
and encapsulated in atomic services as the components, then the coordination
process controls the way that those components shall communicate with each
other to form the composite service. The coordination process in this context is
particularly essential in order to avoid using ad-hoc composition approaches [98].

In SOA, coordination is partitioned into two fundamental paradigms that al-
low complex combinations of components: orchestration and choreography [129].
Orchestration is the most common approach that creates a central controller to
implement the coordination among the involved components. Choreography is a
collaborative endeavour, which does not rely on a central coordinator, rather on
collaborative behavior of the services themselves. From the perspective of ser-
vice composition also in collaborative networks, orchestration is a more flexible
paradigm and has several advantages over choreography [86].

While traditional approaches use textual glue code to handle the coordina-
tion (e.g., [60], [111] and [173]), several coordination languages offer more visual
approaches that can be realized using the so-called “channels” or “connectors”,
in order to coordinate components in a composed system (e.g., [9], [102] and
[147]). Connectors provide the glue code specifying the needed interaction proto-
col among the components or services, while describing the coordination concerns
of a composed system independently from its implementation. In this way, they
enable separating the coordination concerns from the computation concerns in a
composite system, like the composed services [10]. We have therefore concluded
that employing connector-based coordination models and languages in service-
oriented systems, e.g., for our proposed SOCN, improves and simplifies describing

5.1. Introduction 87

and managing the interaction protocols among the component services.
Although several coordination languages are proposed to orchestrate or to

choreograph services, they mostly remain at the description level, without pro-
viding any kind of formal reasoning mechanisms or the practical tool to support
the proposed notation for checking the compatibility of services [117]. There-
fore, notwithstanding all the efforts spent on this topic, composition of services
still is a challenging task. We propose to orchestrate composite services using
Reo [9] which is a graphical and exogenous channel-based coordination language.
Although there are already several rather theoretical studies on service compo-
sition using Reo (e.g., [115] and [116]), in our research we have extended those
approaches through more practical perspectives.

In this chapter, we describe the design and development of a tool, which allows
us to easily deploy Reo circuits for orchestrating real web services for our service
composition approach. Our developed tool works as a specific wrapper, which:
connects web services to Reo nodes, automatically translates the Reo circuits,
and generates the executable orchestration of the Java code for the composed
services. We also present here how to generate all the necessary Java code in an
automated way, starting from the description of the orchestration (i.e. with a
Reo circuit), the description of the web service interfaces (i.e. with WSDL files),
and the behavioral specification of services (i.e. using constraint automata). For
each web service, we generate a proxy application that acts as an intermediary
relaying messages between the web service and the corresponding orchestrator
circuit. In other words, this kind of proxies bridge the gap between the web service
world and the Reo world. In our developed framework, all output code, which
is necessary to manage the orchestration in practice, is generated automatically
in a manner completely transparent to both client and service providers, whose
programmers do not have to be concerned with this middleware at all. This work
in turn also enhances Reo capabilities in service composition by implementation
of service orchestration, where Reo already supports the modeling and even the
verification of service composition [92]. Although the focus of our proposed tool
and experiments is on web services, the same framework can be used to compose
different kinds of service-oriented and component technologies, e.g., CORBA,
WCF, and RPC, at the same time, through generating their different proxies and
connecting them to the same Reo circuit.

The rest of this chapter is organized as follows: Section 5.2 describes the re-
lated work and further motivates this work with respect to the state of the art
literature. The concept of coordination, as well as a tabular comparison between
our choice of Reo and some other coordination languages is presented in Sec-
tion 5.3. Section 5.4 briefly recalls the Reo coordination model as the necessary
background notion, where we also present an example of a Reo connector for
illustrative purposes. Sections 5.5 form the core of this chapter, since it discusses
the details of the concepts behind, and the architecture of our Reo-based orches-
tration tool and shows how we have implemented it. In Section 5.6, we present

88 Chapter 5. Service Coordination and Composition

a case study of web service combination, whose code can be automatically gen-
erated with our tool, and in Section 5.7 we draw our final conclusions of this
work.

5.2 Related work

Web service composition has received much interest for supporting collabora-
tion among enterprise applications [168]. Many research projects have studied
the composition of web services as the most promising choice to implement ser-
vice oriented architecture and its strategic objectives. Some earlier approaches,
such as SWORD project [134] give a simple composition mechanism for combin-
ing web services, without considering the complexity of coordination among the
component services. SWORD uses an expert system to check whether a desired
composite service can be realized using existing services or not. If so, it designs
a plan for that service composition. However, SWORD does not benefit from the
service-description standards (e.g., WSDL, SOAP, RDF, etc.), instead, it uses the
Entity-Relationship (ER) model [161] to specify web services. In SWORD, each
service is only represented by its inputs and outputs. In fact, it focuses more on
the data integration, and no coordination issue has been addressed.

Several other research works on service composition rely on QoS concerns
rather than an service interoperability and coordination, in order to optimize
the quality of service composition. The eFlow project [37], WSQoSX [23], UP-
WSR [108] are some instances of this kind of research efforts. Due to the large
number of existing works on service composition, we are not going to give an
exhaustive survey, but we focus on several representative efforts that focus on
coordination concerns in service composition.

Many languages have emerged and been proposed in academia and industry
for coordination of composite web services, according to the choreography or or-
chestration principles. BPEL4WS [85], WS-CDL [68], BPML [164], YAWL [162],
WSCI [17], BPELgold [55], BPMN [44] and BPEL4Chor [44] are some examples
of these languages. BPEL4WS (Business Process Execution Language for web
services), or BPEL in short, is an XML-based language for web service composi-
tion through orchestration. There is also support in BPEL4WS for the specifica-
tion of processes that involve operations provided by one or several web services.
Furthermore, BPEL4WS draws upon concepts developed in the area of work-
flow management. When compared to languages supported by existing workflow
systems and to related standards (e.g., WSCI), BPEL4WS is relatively more ex-
pressive. Since BPEL does not directly support choreography, BPEL4Chor has
been proposed as a choreography-oriented version of BPEL4WS. BPELgold is
also proposed to support the representation of interaction models for collabora-
tive business processes in BPEL [96]. Neither of these two standards, however,
provide a full graphical notation, and thus they need to be combined with the

5.2. Related work 89

BPMN to fully support service interactions [97]. Additionally, a fundamental
concept in software engineering, “separation of concerns”, might be violated us-
ing combined BPMN and BPEL-based approaches for coordination of services
[50]. In [50] the authors argue that a business expert is aware of the BPs in an
organization, and he/she does not often know how to implement a service, while
a programmer does not have enough knowledge about processes, he/she only im-
plements services. It is therefore better to separate these two perspectives and
concerns through different notations and standards for business process model-
ing and coordination. Following this strategy, the proposed approach similarly
suggests using Reo as a graphical coordination language only for coordination
concerns, as addressed in Section 5.4 of this chapter.

The web service Choreography Description Languages (WS-CDL) is a W3C
candidate recommendation in the area of service coordination based on peer-
to-peer collaborations of participants, which are realized through defining their
observable behavior [154]. WS-CDL is an XML-based language that captures the
interaction protocols of web services from a global perspective, i.e. all participat-
ing services are treated equally, unlike the orchestration-based language, such as
BPEL and YAWL (Yet Another Workflow Language), where service interactions
are described from the perspective of one single participant. Like WS-CDL, WSCI
(web service Choreography Interface) focuses on the choreography of web services
[17]. WSCI is an XML-based interface description language, which defines multi-
party interaction scenarios through describing the flow of messages exchanged by
a web service participating in choreographed interactions with other web services.

The Business Process Modeling Notation (BPMN) offers a rich set of graph-
ical notations for control flow constructs and includes the notion of interacting
processes where sequence flow (within an organization) and message flow (be-
tween organizations) are distinguished [44]. The works are done in [99], [103],
and [123] indicate that BPMN, as the most prominent defacto standard to model
business processes (BPs), does not target supporting the direct software devel-
opment, and therefore lacks a formal declarative model defining precisely the
logic behind the diagrams. Furthermore, there are several ambiguities inherent
in BPMN diagrams, which also prohibit the direct development of equivalent web
services for BPs [167], [26]. Thus, numerous formal proposals have been made
for representing services using for example labeled transition systems, Petri nets,
and Reo itself ([75], [25], [170], and [115]).

The composition of services pivots on coordination concerns. Coordination
languages offer systematic middleware to support software composition in con-
current systems. In [10], a classification for coordination languages, is proposed
from three perspectives: focus, locus, and modus of coordination. The locus of the
coordination refers to where coordination activity takes place based on which the
author classifies coordination models and languages as endogenous or exogenous.
Endogenous languages provide primitives to support coordination within a com-
putation module, while the provided primitives of exogenous languages support

90 Chapter 5. Service Coordination and Composition

coordination of entities from without [10]. In fact, exogenous languages separate
coordination concerns from computation concerns, and the result of this separa-
tion makes composition of components easy to understand, and reusable in other
applications. Talcott et al. [156] have considered a set of representative coordina-
tion features to study three most widely used exogenous coordination languages,
i.e. Actors-Roles-Coordinators (ARC), Policy-based Russian Dolls (PBRD), and
Reo. ARC divides principles of coordination into two groups including intra-role
and inter-role coordination, and uses roles and coordinators, respectively as ab-
stractions. The “coordinatees” in the ARC model are entities that interact with
their environment via asynchronous message passing. In this model, coordination
is achieved by time-space manipulations of messages, which are transparent to
the coordinatees. In contrast to others, the RRD (Reflective Russian Dolls) uses
a hierarchical structure to provide a general layered coordination model that fo-
cuses on more abstract specifications. PBRD is a restricted form of the RRD in
which each layer (meta-object) is responsible for controlling the communication
and the execution of objects in the layer below it. Reo is a graphical and exoge-
nous coordination language based on channels, used for modeling the interaction
protocols, referred to as exogenous interactions, among components [18]. Reo has
been used in different applications especially in modeling of coordination in web
service composition. Talcott et al. conclude that Reo is a mature language and
it benefits from some formal semantics and tools for analysis, and finally Reo is
closer to being a programming model.

Considering existing implementations, one can find service-oriented workflow
research platforms, such as BliteC and Jolie, and even commercial offers such
as IBM WebSphere, Bea WebLogic Integrator, Windows Workflow Foundation
(WF), and Microsoft web services Support. Each of these systems provides
a design tool and an execution engine for business processes in some workflow
specification languages. For example, a part of Microsoft’s BizTalk suite is the
BizTalk Orchestration Engine. This engine implements XLANG, a predecessor
of BPEL4WS. WF is a Microsoft technology that provides an API (Applica-
tion Programming Interface), an in-process workflow engine, and a rehostable
designer to implement long-running processes as workflows within .Net applica-
tions. BliteC [38] is a software tool that translates service orchestrations written
in Blite, into readily executable Ws-BPEL programs. BliteC tries to solve some
programming problems of WS-BPEL, i.e. lack of a formal semantics, and non-
standardization of the deployment procedure. Jolie [118] is also a complementary
approach for orchestration of services. It is a Java-based interpreter and engine,
with a mathematical underlying model.

Comparing our work with the related work presented in this section, none of
the XML-based languages in the proposed standards, e.g., BPEL4WS or WS-
CDL, comes with tools for direct formal verification and model checking of pro-
grams or specifications in that language; therefore, verification of specifications
in these languages requires a translation to a different level of abstraction, in con-

5.3. Coordination 91

trast to other formal techniques, such as process algebra [25] and Petri nets [170].
Moreover, with Reo, a user is able to compose two orchestrators such that global
synchronicity emerges from the synchronous behavior of the individual orches-
trators [11] and [9]. This can be useful when different coordination protocols,
designed for different services, need to be merged together in order to integrate
all of them in the same single protocol. This advantage is granted by the formal
definition of the join operator on two circuits. Furthermore, the Reo language
allows direct declarative specifications of interaction, while with process algebra,
one has to define a sequence of actions to achieve the same interaction. Besides
the above features of the coordination languages, graphical modeling and visu-
alization of data flow among the participating services make the comprehension
of component interaction more intuitive [157]. A Reo IDE, called the Extensible
Coordination Tools (ECT), comes with a strong animation framework for visu-
alizing data-flows in Reo circuits. Moreover, thanks to the hide operation and
consequently hierarchical composition in Reo, connectors in Reo circuits can be
represented in an abstract level. Therefore, modeling the orchestration can be
more comprehensive and better matched with its real configuration regarding the
advantages of abstraction. Similarly, in WS-BPEL the complex processes can be
encapsulated in components.

5.3 Coordination

Service oriented computations take advantage of the bundling of atomic services,
as black-boxing of functional software artifacts, in order to yield new value added
composite services as needed in collaborative networks. However, the availability
of several services to work on a single composed service presents a new challenge to
software technology, namely requiring coordination of the cooperation of a number
of concurrent active services comprised into a composite service. The coordination
paradigm offers a promising way to alleviate this problems and address some issues
related to the development of composite services with complex interactions and
communications among their constituent services.

In general, programming a distributed software system, like a composite ser-
vice, can be divided into two orthogonal aspects of concerns and activities:

• An actual computation part, which comprises a number of processes in-
volved in manipulating data and performed by a set of autonomous com-
ponents or services.

• A coordination part, which is responsible for communication and coopera-
tion between the realized processes by a kind of “glue code”.

In fact, coordination can be used to distinguish the computational concerns
from the communication concerns, not only allowing the separate development

92 Chapter 5. Service Coordination and Composition

but also the eventual amalgamation of these two major development phases [125].
In general, executable languages, such as Java can be used to coordinate the pro-
cesses by putting code-your-own coordination logic in each process. But, this
scheme is not suitable for service composition, because it mixes the computation
code and the coordination code together, which raises the following two prob-
lems. First, this intermixing increases the complexity of programming. Second,
if the interaction protocol is changed then the programs should be rewritten and
therefore this approach is not a good candidate especially for dynamic service
composition.

The concept of coordination is by no means limited to programming languages.
There are many definitions for coordination, but one of the most widely accepted
definitions in the area of software engineering is given by Carriero and Gelernter,
where coordination is defined as the process of building programs by gluing active
pieces together [66].

Services are essentially self-contained functional building blocks, which can
be owned by third parties and are usually accessible only via published inter-
faces. Therefore, it is a natural choice to use an additional, external coordination
mechanism to handle the interaction protocols among the constituent services
from outside. The concept of “coordination from outside” the entities whose ac-
tions are coordinated is a notion that is called “exogenous coordination” [13].
Indeed, exogenous models of coordination offer the means to specify the demands
of service interaction mechanism explicitly. Consequently, in endogenous coordi-
nation models, the primitives that control the coordination of a component with
others can only settle inside of that component itself. It is increasingly becom-
ing apparent that using endogenous coordination increases the complexity of the
components, while exogenous coordination methods provide the means to specify
explicitly the interaction between components or services in order to avoid ad
hoc composition approaches [98]. While services implement only the functional
aspects of an application, their coordination can be realized through so-called
connectors, which describe and control the way the services communicate with
each other. Indeed, connectors provide the needed glue code for specification of
the interaction patterns in SOA-based systems.

Modeling of interaction protocols among components can be expressed as
predefined connectors explicitly and independently from the connectors’ imple-
mentation. Considering the paradigm of model-driven engineering, this alleviates
the complexity of the applications and allows to use code generation for deriv-
ing the implementations. Furthermore, this level of abstraction for coordination
models enables the use of formal verification and model checking. Therefore, we
can conclude that employing connector-based coordination models and languages
in service-oriented systems, e.g., our proposed SOCN, improves and simplifies de-
scribing and managing the interaction protocols among the component services.

In the literature, there are two main coordination paradigms to compose con-
stituent services in order to make up a business process, including orchestration

5.3. Coordination 93

or choreography languages [129]. In orchestration, the constituent services are
under the control of a single endpoint central process. This process coordinates
the execution of different operations on the services participating in the orches-
tra. An invoked service neither knows nor needs to know that it is involved in
an orchestra and that it is playing a role in a business process definition. Chore-
ography, in contrast, does not depend on a central coordinator. Each service
that participates in a choreography has to know exactly when to become active
and with whom to interoperate: it must be conscious of the business process,
operations to execute, messages to exchange, as well as the timing of message
exchanges. In fact, Choreography is typically defined as the interactions that oc-
cur between several services rather than a specific business process that a single
party executes [154].

As Figure 5.1 shows, an orchestration defines an executable process involving
message exchanges among different services, in which the sequences of message
exchanges are controlled by an orchestrator. Choreography, on the other hand,
proposes a protocol for peer-to-peer interactions among services, in order to guar-
antee the interoperability among these components. In other words, in orches-
tration the central control enforced by the conductor harmonizes the behavior of
different actors in a distributed system. In choreography however, the distributed
system behaves according to the rules individually complied by the actors to par-
ticipate in a collaboration, without a centralized control [115]. WS-BPEL and
WS-CDL are the most popular standards for orchestration and choreography,
respectively. However, in real-world scenarios, corporate entities are sometimes
unwilling to delegate control of their business processes to their integration part-
ners. Therefore, this dissertation focuses on the orchestration paradigm, although
Reo can be used to also describe choreographies [115].

Figure 5.1: Service orchestration vs service choreography.

In order to justify the adoption of Reo as the base for our SOCN development,
we have considered a large set of validation criteria. Sheng et al. [154] compare
several coordination standards and languages for service composition defines the
following six criteria. These are further extended by four more criteria supported
by Reo, as mentioned later. We adopt/adapt these ten criteria in our SOCN
development.

• Composability: The ability to assemble existing services into a new com-

94 Chapter 5. Service Coordination and Composition

posite service and model the interactions protocols among them.

• Role representation: The ability to demonstrate the role of a component
service, which is needed to interact with the other components in the com-
posite service.

• Complex structure support: The ability to model the complex structures,
which indicates the execution logic and the ordering rule of operations ex-
ecuted during a composite service invocation.

• Adaptability: The ability to cope with business exceptions and process
faults, which may occur within a composite service execution. It represents
the ability to reverse the effect of some unsuccessful work in cases where
exceptions occur.

• Compensability: The ability to neutralize the effect of unsuccessful actions
during the execution of a composite service.

• Semantic support: The ability to support semantic representation of the
services to improve automation and efficiency of service composition.

Four other criteria can be added to this comparison as described below.

• Visualization: The ability to visually represent dataflows among the com-
ponent services.

• Formal verification: The ability to prove the correctness of coordination
using the mathematical techniques and model checking.

• Abstraction support: The ability to encapsulate and represent the coordi-
nation elements in different abstract levels.

• Compositionally: The ability to compose individual coordinators (or coor-
dination parts) in order to have a composed one, in which properties of
program components, i.e. simpler connectors, are preserved when they are
composed as more complex connectors.

Table 5.1 gives a detailed comparison in a tabular form between BPEL, WS-CDL,
BPML, ebXML, OWL-S, and Reo, along the above ten major dimensions that
characterize a coordination language. From this table, we can derive that Reo
is the most-fit language that meets most of the needs for our purpose to com-
pose the services. In fact, Reo supports all criteria that we have defined here
for coordination. Reo as a domain specific coordination language provides full
support for both “Composability” and ”Role representation” [13]. Moreover, the
authors of [90] illustrate how Reo can enable “Adaptability” and “Compensabil-
ity”. We can observe that only Reo and OWL-S provide semantic support for

5.4. Reo in a Nutshell 95

Standards WS-BPEL WS-CDL BPML ebXML Owl-S Reo

Composability
‘ ‘ ‘ ‘ ‘ ‘

Role representation
‘ ‘ ‘ ‘

Complex structure
‘ ‘ ‘ ‘ ‘ ‘

Adaptability
‘ ‘ ‘ ‘ ‘

Compensability
‘ ‘ ‘ ‘

Semantic support
‘ ‘

Visualization
‘

Formal verification
‘

Compositionally
‘

Abstraction
‘ ‘

Table 5.1: Comparison of web services coordination languages.

services composition. Constraint automata, a semantic model for Reo, provide
state-based representations of process workflows and enable their automation by
means of translating constraint automata to Java code in ECT [89]. Further-
more, Reo benefits from a strong graphical tool and environment, i.e. ECT that
enables ”Visualization” and even animation of the circuits [88]. Separation of
coordination from computation in Reo allows formal verification of interaction
protocols [93], [12]. Such verifier and model-checker tools are also integrated in
ECT. While one of the main advantages of Reo is that it supports compositional
construction of connectors, i.e. “Compositionally” [120], it also support “Ab-
straction” (see Section 5.2). Finally, Reo potentially supports complex structures
during a composite service invocation through following behavior specification of
component services. Indeed, our proposed tool in this chapter, namely ProxCG,
helps to fill the blind spot. ProxCG generates proxies for the involved services
to automatically follow and execute the ordering rules of operations according to
the web service behavior specification. Additionally, in [12] Arbab shows that a
high-level protocol language, such as Reo, can have advantages with respect to
performance as well.

Considering all results generated in this comparison, has convinced us to adopt
Reo in our SOCN service composition approach for modeling of the interaction
protocols among the component services, as well as for supporting the orchestra-
tion of their execution. Further on, as addressed in Section 5.5, we develop a new
tool to extend Reo tools with the mechanisms needed for SOCN.

5.4 Reo in a Nutshell

In SOCN, we orchestrate our software services using the graphical language
Reo [9]. Several (rather theoretical) studies such as [116], [115], [117] focus on
service orchestration using Reo. Our tool is built upon the ideas presented in

96 Chapter 5. Service Coordination and Composition

these earlier works, and specially from a more practical perspective, we present
tools that enable employing Reo for orchestrating real services, deployed and run-
ning on different servers. Reo has been explained in details in [9] and [10]. We
briefly recall here the most relevant aspects of Reo for the sake of our service
composition.

Reo is presented as a channel-based coordination language, facilitating com-
positional construction of circuits as communication mediums that coordinate
interacting parties (i.e. software services in this work) each of them is built from
a number of primitive simple connectors, so-called channels. The ability to com-
pose connectors out of smaller channels is one of the strengths of Reo. It allows
complex circuits to be expressed as a composition of simple channels. Every
channel in Reo is able to impose a variety of relational constraints and behavioral
policies including synchronization on the timing of dataflow, lossiness, buffering,
and even the direction of dataflow.

A channel can communicate with others through its ports, which are called
“ends”. Each channel has exactly two ends, and each such end has exactly one
of two types: source or sink. Channels accept data items through their source
ends or offer data items through their sink ends. Note that, channels do not
necessarily have both a source end and a sink end, i.e. they can have only two
source ends or two sink ends. Table 5.2 shows six different channels and their
behavioral description at the disposal of Reo users. These channels handle the
dataflow between the components and, thus, impose interaction protocols among
them such as synchronous vs. asynchronous communication, buffering, filtering,
etc. More complex connectors called Reo circuits are built compositionally out of
these primitive channels. Note that Reo supports an open-ended set of channels
which can be used to construct circuits, enabling users to define their intended
channels according to their specific requirements.

When channel ends are plugged together to build Reo circuits, a node is
formed. In other words, a node is a fundamental concept of Reo representing a
topological place where some channel ends coincide. Obviously, every channel end
coincides on exactly one node. In such digraph view, each channel is presented as
an edge of the Reo circuit. Each node may be of one out of three following types:
source, sink and mixed. If all node’s coinciding channel ends are source ends,
the node is called “source node”. Analogously, a node is called “sink node” if all
its coinciding channels are sink ends. Finally, a node is known as “mixed node”
if plugged to a combination of both source and sink ends. Figure 5.2 shows an
example of the three kinds of nodes in Reo. We use the term “boundary nodes”
to refer the source and sink nodes that form together an interface of a connector
allowing interaction with its environment. This interface allows components or
services to connect and communicate anonymously with each other by performing
I/O operations (i.e. write operations on source nodes, and read operations on sink
nodes) on the boundary nodes. Subsequently, each source node of the connector
treats as a synchronous replicator, which atomically writes its data items to all

5.4. Reo in a Nutshell 97

Channel Name behavior Description

sync Atomically fetches an item on its source end a
and dispatches it on its sink end b.

syncdrain Atomically fetches (and loses) items on both of
its source ends a and b.

lossysync Atomically fetches an item on its source end a
and, non-deterministically, either dispatches it
on its sink end b or loses it.

filter(ϕ) Atomically fetches an item on its source end a
and dispatches it on its sink end b if this item
satisfies the filter constraint ϕ; loses the item
otherwise.

fifo Atomically fetches an item on its source end a
and stores it in its buffer.

fifo() Atomically dispatches the item on its sink
end b and clears its buffer.

Table 5.2: Six primitive channels of Reo.

98 Chapter 5. Service Coordination and Composition

of its outgoing source ends. In a sink node, but one of the data items received
from the sink ends is randomly selected, in order to be delivered to its connected
component. Likewise the boundary nodes, mixed nodes do not interact with the
environment, but instead, combine both behaviors by atomically receiving a data
item from one of the connected sink ends and then coping it to its all connected
source ends.

Figure 5.2: An example of Reo nodes.

In Figure 5.3, we present an example of Reo connectors that one can construct
through composing the primitive channels defined in Table 5.2 using Reo nodes.
Boundary nodes are represented as empty circles, and mixed nodes as filled circles
in the circuits. Figure 5.3 shows a circuit, named exclusive router, composed of
five Sync channels, two LossySync channels and one SyncDrain channel. This
circuit imposes a specific routing path when parties can write and take data items
to and from its boundary nodes (i.e. A,B and C): The exclusive router accepts
data from its source node, i.e. node A and then flows the data to one of the sink
nodes, i.e. B or C (but not both). In fact, this connector can consume data only
if there is a write operation at the source node A, and there is at least one service
attached to the sink nodes B or C, which performs a take/read operation. In the
case that both B and C are able to accept data by a take operation, the decision
of routing data to B or C is non-deterministically made by the mixed node I.
It should be noticed that the node I can accept data only from one of its sink
ends, and the latter’s respective LossySync loses its data obtained from A, while
the other LossySync passes its data. There are three possible dataflows for the
exclusive router, which are shown by 2-coloring diagrams in Figure 5.4. Please
note that the color of boxes in the figure, being white , and black . Figure
5.4a shows how the data available on node A is forwarded to the node B but
not to C, where the black boxes represent the data flow and empty boxes show
the lost data. The case is shown in Figure 5.4b illustrates the routing the data
from node A to the node C, i.e. the mirrored diagram w.r.t. Figure 5.4a. The
last valid 2-coloring case of this Reo circuit represented in Figure 5.4c shows no
dataflow.

In general, to model coordination among the services, a service integrator can
derive the behavior of a circuit from the behavior of its channels and nodes. [84].

5.4. Reo in a Nutshell 99

Figure 5.3: Exclusive router: an example of Reo circuits.

(a) Dataflow from A to
B

(b) Dataflow from A to
C (c) No dataflow

Figure 5.4: 2-coloring examples for the exclusive router.

For brevity, we skip more detailed descriptions and examples, however, you can
find more examples and details in [9] and [87].

5.4.1 Modeling Reo Circuits

There are various well-defined semantic models to formally describe the behavior
of Reo connectors [82]. These models allow us to verify the correctness of Reo-
based orchestration scenarios in composite services. For instance, Kokash et al.
employ the mCRL2 toolkit, to verify the correctness of Reo circuits and ensure
that the composed system behaves as intended [93]. They proposed an approach
for mapping Reo connectors to the process algebra mCRL2 to have a formal
verification for Reo circuits. In this work, the formal model of Reo channels,
i.e. constraint automata, is presented to achieve two other purposes. First, we
formally model the behavior of services in terms of constraint automata [18] (see
Section 3.3.3). Second, we convert Reo circuits to constraint automata in order to
automatically generate Java code for orchestrators, i.e. Reo circuits (see Section
5.5).

A Constraint Automaton (CA) is essentially a labeled transition system (LTS)
to model Reo channels and circuits. In fact, constraint automata resemble clas-
sical finite state machines in the sense that they consist of finite sets of states

100 Chapter 5. Service Coordination and Composition

and transitions. When a CA is applied for modeling a Reo circuit, its states
represent the internal configuration of the circuit, and its transitions describe the
atomic coordination steps. The labels of CA represent two kinds of constraints:
synchronization constraints and data constraints. A synchronization constraint
represents a set of nodes which should be synchronized. Indeed, it specifies that
through which nodes a data flow is simultaneously observed during a transition.
Data constraint reveals which particular data items flow in a coordination step.
Formally, we can define each transition of CA as a tuple of four elements: a source
state, a synchronization constraint, a data constraint, and a target state. Figure
5.5 shows the constraint automata for some primitive Reo channels, which also
represents the corresponding CA of the example shown in Figure 5.3 (exclusive
router).

Figure 5.5: Constraint automata of common Reo channels and our example cir-
cuit.

5.4.2 Eclipse Coordination Tools

The Extensible Coordination Tools (ECT) [88] is a collection of open-source
Eclipse plug-ins providing an strong visual programming environment as the de-
fault IDE for Reo. The ECT enables service integrators to design their intended
Reo circuit diagrams using a drag-and-drop graphical editor. Furthermore, among
other features, the designed Reo circuits can be animated in ECT in order to give
more impressions about the dataflow in circuits. Several model-checkers are also
integrated in ECT in order to verify the correctness properties of an interaction
protocol using its CA. Most importantly, ECT can convert a Reo circuit to CA.
Subsequently, ECT can also generate executable Java/C code from a CA as a
single sequential thread. We deploy these two last features to automatically go
from a circuit diagram (i.e. service orchestrator) to an executable code. However,
the challenges related to web service orchestration with Reo are addressed in the
next section.

5.5 Orchestrating SOCN web services with Reo

Conceptually, orchestrating web services (WSs) using Reo proceeds in three steps:

5.5. Orchestrating SOCN web services with Reo 101

• Step (i): Design a Reo circuit as an orchestrator.

• Step (ii): Deploy and run this circuit.

• Step (iii): Connect the constituent web services to the circuit to build a
composite service.

As mentioned earlier, the ECT perfectly supports the step (i): it allows to design
Reo circuits using a drag-and-drop interface. Step (ii) can also be supported by
a Reo-based tool called Circuit Code Generator (abbreviated “CircCG”), which
is a Java code generator for Reo circuits implemented on top of the ECT [83].
This tool allows Reo users to deploy and run circuit diagrams as Java code, after
having drawn and debugged them using the ECT.Suppose that a user of Reo
has drawn a circuit diagram using ECT and wishes to generate Java code for it.
Internally, ECT stores circuit diagrams as Xml documents, which serve as input
to CircCG. Subsequently, CircCG computes the constraint automaton (CA) that
models the behavior of the circuit. Finally, based on the CA just computed,
CircCG generates a Java class. For more details, see [83] and [84].

Unfortunately, step (iii) involves far less straightforward activities which are
challenging and not supported by an existing tool. How can we connect the
services oblivious to Reo to the Java code generated in step (ii)? How can we
exchange data between the services and the Reo part? In Sections 5.5.1 and 5.5.2,
we address these questions with the theory behind and our implementation of
tools for Reo-based service orchestration. These tools rely heavily on the concept
of proxies. In Section 5.5.1, we explain why we need these proxies, what they
look like, and how they work. Then, in Section 5.5.2, we detail the working of the
tools themselves, which automatically generate Reo-based service orchestrators
(including proxies). Postponing the details until Section 5.5.1, a proxy serves as
an intermediary between a circuit and a service. Essentially, it relays data items
from a Reo circuit to a service and vice versa, bridging the gap between them,
addressing step (iii).

5.5.1 Proxies: Motivation and Working

Suppose one wishes to include a service that is deployed remotely in a compo-
sition, orchestrated by a Reo circuit. Ideally, we would simply send this service
to the synchronization points of the boundary nodes to which it should connect.
Subsequently, this service would directly perform the I{O operations on the syn-
chronization points that it has received.

But unfortunately, the above approach does not work for a simple reason: vir-
tually no existing service supports direct communication via the synchronization
points of Reo circuits. In order to connect services oblivious to Reo and allow

102 Chapter 5. Service Coordination and Composition

them to exchange data between services and the Reo in SOCN, we use proxies.
In this approach, one creates a proxy for each service in an orchestration. These
proxies then act as intermediaries between a Reo circuit and the services in the
orchestration. Essentially, proxies just relay data items from circuits to services
and vice versa, bridging the technological gap that exists between them. Please
note that to a service, a proxy looks just like any other client.

Figure 5.6: Architecture of a Reo-based orchestration scenario with service prox-
ying.

Figure 5.6 shows what the architecture of a Reo-based service orchestration
scenario with proxying can look like. This particular scenario involves three ser-
vices, each of which running on a different machine. The fourth machine, in the
center, runs the code generated for the circuit that orchestrates the three services
(using CircCG) and one proxy for each of them. The services communicate di-
rectly only through their proxies, which relay messages to and from the circuit.
As shown in Figure 5.6, we assume that the proxies of services always run on the
same machine as the circuit. This has a practical reason: generally, one cannot
deploy applications on the machines on which the independent services run.

Henceforth, we call the circuit that orchestrates the services in a Reo-based
service orchestration scenario the orchestrator circuit. Then, an orchestrator con-
sists of (i) an orchestrator circuit and (ii) one proxy for each of the services in
the orchestration.

5.5. Orchestrating SOCN web services with Reo 103

Proxy

Service Communication Unit (SCU)

Simulation Automaton

Circuit

Service

Figure 5.7: Architecture of a proxy.

To explain service proxying in more details, Figure 5.7 shows the architecture
of a proxy P , together with a circuit C and a service S. Essentially, P consists of
two sides : a circuit side and a service side. On the circuit side, P has access to a
number of synchronization points. Thus, this side allows P to write and take data
items directly to and from C. On the service side, P has access to the network
infrastructure that connects P with S. Thus, this side allows P to directly send
and receive messages to and from S. Indeed, P has two following tasks:

• Take data items from C on its circuit side. Encode these data items into
messages that can be sent to S on its service side. Send these messages.

• Receive messages from S on its service side. Encode these messages into
data items that can be written to C on its circuit side. Write these data
items.

In the rest of this section, we elaborate on circuit sides and service sides of prox-
ies, illustrating some of the concepts in terms of the following running example:
a simple, yet stateful, service for incrementing numbers. This service, called Inc-
Service, exposes two operations to its clients, each of which takes an integer as
input. Operation SetInc stores its input value in a state variable i (and returns

104 Chapter 5. Service Coordination and Composition

Figure 5.8: Simulation automaton of IncService.

nothing); operation Inc returns its input value plus i. For the former operation,
IncService and its client exchange only one message, of type SetIncRequest (same
name as the name of the operation); for the latter operation, they exchange two
messages, of type IncRequest (same name as the name of the operation) and In-
cResponse. In every session, a client of IncService (i.e. a proxy in our examples)
can invoke SetInc only once and must invoke it before any invocation of Inc.

Circuit Side

The circuit side of a proxy interacts with the orchestrator circuit via the latter’s
synchronization points. Every such synchronization point represents a message
type whose instances the proxied service can exchange with its clients; the data
items passing through these synchronization points constitute the payloads of
actual instances. Note that a CA implementation of each circuit has a synchro-
nization point for each boundary node occurring in one of its transitions [83]. For
example, the proxy of IncService has access to a synchronization point for the
SetIncRequest message; the payload of an actual instance of such a message has
the form of a serialized data item taken from that synchronization point (e.g.,
“1”).

Inside the circuit side of a proxy, an executable constraint automaton (CA)
has direct access to (references to) the synchronization points of the orchestrator
circuit. This means that, while running, this executable CA can directly perform
write and take operations, as it sees fit. The box labeled “Simulation Automaton”
in Figure 5.7 represents this executable CA.

Simulation automata simulate the behavior of proxied services. In particular,
simulation automata simulate their external view [115]: every state of a simu-
lation automaton represents an externally observable internal configuration of a
service, while every transition represents the exchange of one or more messages
by this service.1 Figure 5.8 shows the simulation automaton—technically a CA
without data constraints—for IncService. The “nodes” in the synchronization
constraint have the syntax <operationName>.<messageType>. By letting sim-

1One can model stateless services with singleton automata.

5.5. Orchestrating SOCN web services with Reo 105

ulation automata perform operations on synchronization points shared with the
orchestrator circuit, a simulation automaton constrains which synchronization
points an orchestrator circuit can write to or take from, since for that to happen,
a simulation automaton always should perform a corresponding take or write
operation. Furthermore, since data items exchanged at synchronization points
correspond to messages, a simulation automaton effectively controls which mes-
sages at any point in time can be passed from the orchestrator circuit to the proxy
(i.e. to the wb service) and vice versa.

Proxies require simulation automata for the following reason. First, observe
that stateful services, with more than one internal configuration, may permit the
exchange of messages of different types in different configurations (e.g., in q1, in
Figure 5.8, IncService permits a SetIncRequest message but not an IncRequest
message). The correct functioning of proxies depends crucially on this informa-
tion: proxies must know which types of messages their services can exchange in
every instant to decide which synchronization points to allow interaction on. To
illustrate this, suppose that the current state of IncService forbids invocations of
SetInc. In that case, it makes no sense for its proxy to take data items from the
synchronization point for SetIncRequest messages: the proxy may try to relay
data items taken from this synchronization point, but it will certainly fail. After
all, IncService does not permit SetIncRequest messages in its current state.

To prevent such faulty behavior from happening, proxies must know the cur-
rent configuration of their services. Typically, however, a service encapsulates its
state and generally, it provides no means to access it. By simulating the behavior
of their services, proxies compensate for this lack of information: every time a
proxy exchanges a message with its service, its simulation automaton makes a
corresponding transition. In this way, a proxy can always derive which message
exchanges its service permits, namely from its simulation automaton.

Service Side

The service side of a proxy contains a component that takes care of the actual
network communication with its service. The box labeled “SCU” in Figure 5.7
represents the component of the proxy that does this, called Service Communi-
cation Unit (SCU). To explain it briefly, it works as follows.

• The SCU monitors the simulation automaton on the circuit side. If this au-
tomaton makes a transition, the SCU registers both the data items and the
synchronization points involved. It then packs these data items (payloads)
and synchronization points (message types) into some appropriate message
format, e.g., through SOAP for WSs. Finally, it sends these messages over
the network to the actual service.

• Concurrently, the SCU receives messages sent by the actual service. It
unpacks these messages (e.g., removes headers) and writes their payload as

106 Chapter 5. Service Coordination and Composition

data items on the appropriate synchronization points. In doing so, the SCU
forces a corresponding transition in the simulation automaton. Otherwise,
this automaton and the actual service can diverge.

For exchanging Soap messages between proxies and services (required for imple-
menting SCUs), we use the Dispatch api of the Jax-ws reference implementation2.

5.5.2 Generating Proxies and Orchestrations

In Section 5.5.1, we explained why we need proxies, what they look like, and
how they work. It seems unrealistic however, to ask of programmers to write
proxies for every service they wish to include in a Reo-based service orchestration
scenario. Therefore, we developed two tools, provisionally called Proxy Code Gen-
erator (abbreviated “ProxCG”) and Orchestration Code Generator (abbreviated
“OrchCG”), which automatically generate comprehensive Java code for individual
proxies and complete service orchestration scenarios—we present these tools in
this section. Since we implemented ProxCG and OrchCG for web services (WS),
we talk explicitly about WSs instead of services in general. Note however, that
the concepts behind our implementation apply equally well to the other kinds of
services.

A Tool for Generating Proxies

Figure 5.9 shows the architecture of ProxCG. To generate a proxy for some WS,
ProxCG requires two inputs: a WSDL document and a WS behavior specification
(WSBS) that we addressed earlier in Section 3.3.3. The WSDL document specifies
the syntax and technical details of the interface of the WS; the WSBS formally
describes its externally observable behavior. In this work, we use CA without
data constraints as simple WSBS. WSBS can be also represented in terms of
XWSDL(See Chapter 3), but in general, one can use also other specification
formats for this purpose, e.g., process algebra.

To explain in more details how ProxCG works, consider a WSDL document
s.wsdl and its corresponding behavior specification, i.e. WSBS. ProxCG pro-
ceeds in three steps.

• Step 1: First, ProxCG parses s.wsdl using Axis2 [80]; the box labeled
“WSDL Parser” in Figure 5.9 represents the component involved. Both
ProxCG and the proxies it generates use Axis2, albeit in different ways:
ProxCG uses Axis2 for parsing, while the generated proxies use Axis2 for
exchanging SOAP messages. After parsing, based on the information ob-
tained, e.g., the SOAP version that clients should use to send messages to
the WS, ProxCG generates code for a service communication unit (SCU);
the box labeled “SCU Code Generator” represents the component involved.

2http://jax-ws.java.net

5.5. Orchestrating SOCN web services with Reo 107

WSDL
File

WSBS
File

WSDL
Parser

WSBS
Parser

SCU
Code

Generator

Sim. Aut.
Code

Generator

Proxy
Code

Generator

Proxy
Code

P
ro

x
y
 C

o
d
e

G
en

er
at

or

Figure 5.9: Architecture of ProxCG.

• Step 2: Next, ProxCG parses the WSBS; the box labeled “WSBS Parser” in
Figure 5.9 represents the component involved. After parsing, ProxCG gen-
erates code for a simulation automaton; the box labeled “Sim. Aut. Code
Generator” represents the component involved. Internally, among other
generation activities, this component calls the functionality for translating
CA to Java code provided by CircCG [83].

• Step 3: Finally, ProxCG combines the code generated for the SCU and the
simulation automaton by adding glue code between them; the box labeled
“Proxy Code Generator” in Figure 5.9 represents the component involved.
More concretely, this step yields a Java class P; the box labeled “Proxy
Code” represents this class. Instances of P run as proxies, encapsulating
the constituent SCU and simulation automaton.

Instead of generating all the per-operation communication code statically at
compile time, our tool generates code for a more general, reusable, dynamic invo-
cation mechanism on top of the dispatch client of JAX-WS RI. This gives a bit
more flexibility. The code generated for the dynamic invocation mechanism con-
tains (a reference to) the original WSDL file; the initialization code parses that
file and extracts all necessary information, e.g., the address to send messages to,
types of parameters and results, etc., thus making that information quickly ac-

108 Chapter 5. Service Coordination and Composition

cessible when the dynamic invocation mechanism needs it later on for sending or
receiving messages.

A Tool for Generating Orchestrations

Proxy
Code

WSBS
Files

WSDL
Files

Proxy
Code

Generator

Circuit
Code

Generator

Reo
Diagram

File

WSDL
Files

WSBS
Files

Circuit
Code

Proxy
Code

Orchestration
Code Merger

Orchestration
Code

O
rc

h
es

tr
at

io
n
 C

od
e

G
en

er
at

o
r

Proxy
Code

WSBS
Files

WSDL
Files

Figure 5.10: Architecture of OrchCG.

Figure 5.10 shows the architecture of OrchCG. Conceptually, OrchCG takes as
input a Reo diagram containing the orchestrator circuit and a (WSDL, WSBS)-
pair (or a XWSDL document) for each of the WSs in the orchestration of the
scenario for which it is generating code. Using CircCG and ProxCG, the OrchCG
then generates Java code for the orchestrator circuit and the proxies of the WSs.
Below, we briefly explain how OrchCG combines the Java classes generated in
this way; the box labeled “Orchestration Code Merger” in Figure 5.10 represents
the components involved.

We start with some notation. Suppose that there is an XML document c.xml
specifying the orchestrator circuit C. Furthermore, suppose a set of (WSDL,

WSBS)-pairs pS representing the set S of those WSs that C orchestrates. Let
C denote the Java class generated by CircCG on the input c.xml (i.e. the box

5.5. Orchestrating SOCN web services with Reo 109

labeled “Circuit Code”); let P denote the Java class generated by ProxCG on input

of some xs.wsdl, s.wsbsy P pS (i.e. the box labeled “ Proxy Code”).
Essentially, the component represented by the box labeled “Orchestration Code

Merger” glues together C with the P class for every ps P pS. This gluing yields a
new class O, whose instances orchestrate the WSs in the set S as desired. More
precisely, the glue code in O carries out the following activities.

• It creates a synchronization point for each boundary node of C.

• It creates an instance c of class C generated by CircCG on input of c.xml.
Moreover, it passes the synchronization points created in the previous step
to c. These synchronization points constitute the interface through which
proxies communicate with c.

• It creates an instance p of class P generated by ProxCG on input of ps “
xs.wsdl, s.wsbsy for every ps P pS. Importantly, it also passes to this instance
the appropriate synchronization points created in step (1). The sharing of
synchronization points between c and p establishes the link between the
orchestrator circuit and a WS via a proxy.

The scenario displayed in Figure 5.11 involves two WSs: IncService and CalcSer-
vice. The latter, has only one operation, CalcPrimeFactors, which decomposes
natural numbers into prime factors. In every invocation, it exchanges two mes-
sages: an input message of type CalcPrimeFactorsSoapIn, which transports a
number, and an output message of type CalcPrimeFactorsSoapOut, which trans-
ports a list of primes. For instance, CalcService responds to the CalcPrime-
FactorsSoapIn message “12” with the CalcPrimeFactorsSoapOut message “2 2

3”.
Figure 5.11 gives an idea of how users of Reo can use ProxCG and OrchCG in

practice. The figure shows a screen shot of the drag-and-drop drawing interface of
the ECT (right panel) and the GUI version of ProxCG and OrchCG (left panel).

Suppose that we want to generate just a proxy for IncService. To do this,
we can fill in the form on the left panel (as done in the figure) and click the
“Generate Proxy” button. The tools will then generate all the proxy code and,
under the settings as displayed in Figure 5.11, put it in a new project in the
current workspace (different settings write the code to a user-defined location on
the local file system). Alternatively, we can click the “Draw” button to postpone
generating code and, instead, draw a representation of IncService on the canvas
on the right panel (more precisely: the box in the top–right corner in Figure 5.11).
By doing so, we can design a complete Reo-based service orchestration scenario,
including the orchestrator circuit and all the WSs in the orchestration, as in
Figure 5.11.

110 Chapter 5. Service Coordination and Composition

F
ig

u
re

5.
11

:
Im

p
re

ss
io

n
of

th
e

E
C

T
(r

ig
h
t

p
an

el
)

+
th

e
G

U
I

ve
rs

io
n

of
P

ro
x
C

G
an

d
O

rc
h
C

G
(l

ef
t

p
an

el
).

5.6. Case Study 111

Figure 5.12: The sequential coordination of four WSs represented as a Reo cir-
cuit: the numbers, on comment notes, represent the ordering of the exchanged
messages.

To generate all the necessary Java code for deploying and running the entire
orchestration, we can click the “Generate Orchestration” button on the left panel
in Figure 5.11. The resulting collection of classes contains one main class, O, for
accessing the orchestration, which programmers can use in their Java code as any
other class. As such, the WSs involved, as well as the orchestration circuit or the
underlying Reo technology, remain completely transparent to the programmer.
Note that one can make the functionality of this application available as a WS
by encapsulating O in a new WS.

5.6 Case Study

In this section, we present a nontrivial example to familiarize the reader with the
service orchestration scenario.

Figure 5.12 shows the complete representation of the circuit for the orches-
tration of four online sales-related WSs. The image has been created with our
extension of ECT tool. With the aid of CircCG, we generated the Purchase circuit
describing the interaction among these four WSs named: ClientBroker, StoreOf-
fice, SalesOffice, and Bank. This scenario implements the classical purchase-online
example. The ClientBroker WS takes care of interfacing the real client to the
other WSs, which deal with: the information about the store (i.e. the StoreOf-
fice WS), the procedure to prepare the invoice (i.e. the SalesOffice WS), and
the effective payment management (i.e. the Bank WS). The complete high-level

112 Chapter 5. Service Coordination and Composition

behavior of these WSs is described below:

ClientBroker: The ClientBroker interfaces the real client with the other WSs:

1. It receives information about the object to order (issued by the real
client), such as a product ID (e.g., #3, corresponding to a pair of shoes)
together with a string of complementary data (e.g., “color red”), as an
input message of type FindAndOrder (of operation FindAndOrder).

2. It finds a corresponding product and issues an order for this product
(represented by an order ID) as an output message of type FindAndOrder-
Response (of operation FindAndOrder).

Both the SalesOffice and the StoreOffice need to receive a copy of this
message.

3. It receives the price of the order (issued by the SalesOffice), as an
input message of type ConfirmPrice (of operation ConfirmPrice).

4. It issues the credit card information of the real client, as an output
message of type ConfirmPriceResponse (of operation ConfirmPrice).

The Bank needs to receive a copy of this message to proceed with the
payment.

5. It receives the confirmation of the payment (issued by the Bank), as an
input message of type SetPaymentStatus (of operation SetPayment-

Status).

StoreOffice: The StoreOffice checks the availability of the order request:

1. It receives an order ID (issued by the ClientBroker), representing the
order for some product, as an input message of type CheckInventory

(of operation CheckInventory).

2. It issues a confirmation that the object is in the store or not, as an out-
put message of type CheckInventoryResponse (of operation Check-

Inventory).

The SalesOffice needs to receive a copy of this message for further
processing.

SalesOffice: The SalesOffice computes the final price and sends the correspond-
ing invoice information:

1. It receives an order ID (issued by the ClientBroker), representing the
order for some product, as an input message of type ReceiveOrder (of
operation ReceiveOrder).

5.6. Case Study 113

2. It receives the confirmation that the product is in the store or not (is-
sued by the StoreOffice), with possible further pricing information, as
an input message of type ProcessStockInfo (of operation ProcessSto-

ckInfo.

3. It computes the final price and issues it together with the account num-
ber of the company, as an output message of type ProcessStockInfoRe-
sponse (of operation ProcessStockInfo).

Both the ClientBroker and the Bank need to receive a copy of this
message to proceed with the transaction.

4. It receives the confirmation of the payment (issued by the Bank), as an
input message of type SetPaymentStatus (of operation SetPayment-

Status).

Bank: The Bank manages the payment, issued by the ClientBroker, according
to the price information issued by the SalesOffice:

1. It synchronously (thanks to the syncdrain channel called BankSync in
Figure 5.12) receives the card info (from the Client) and the price of the
transaction (from the SalesOffice), as input message of type SetPrice

(of operation SetPrice) and SetCard (of operation SetCard).

2. While operations SetPrice and SetCard are invoked synchronously,
their responses occur asynchronously. If SetPrice responds before
SetCard, the Bank issues a payment status saying that the transac-
tion is in progress, as an output message of type SetPriceResponse.
Otherwise, if SetPrice responds after SetCard, the Bank issues a pay-
ment status saying that the transaction completed. Something similar
happens if SetCard responds before or after SetPrice, as output mes-
sages of type SetCardResponse.

The filter channel ensures that the Client and the SalesOffice receive
only the final confirmation of the payment.

From this description, we can generate the corresponding CA as described
in Section 5.5.1. By easily adapting the tool in [39], we will be able to directly
translate Sequence Diagrams into CA.

The dashed rectangle in Figure 5.12 contains the constituents of a Sequencer
of the messages, i.e. a Reo subcircuit that enforces the correct ordering of the
messages exchanged among the WSs. Consequently, the interaction of the WSs
is sequential: the sequence consists of six steps, whose ordering is shown in Fig-
ure 5.12 with ordinal numbers, written on comment notes. The presence of the
Sequencer in Figure 5.12 may seem redundant as the WSs themselves already im-
pose an ordering on their interactions. However, the sequencing of the messages
is also part of the protocol among the WSs and should therefore be part of the

114 Chapter 5. Service Coordination and Composition

protocol specification—regardless of what the involved WSs do. Therefore, it is
a best practice for the orchestration designer to include all the features that the
interaction requires, without exclusively relying on the service programmers. In
fact, this reasoning led to the development of the “safe” code.

We programmed and deployed the WSs on a server machine, and afterwards
we automatically generated their proxies with the help of OrchCG.

5.7 Conclusion

Composing business services to create new value added services in collaborative
networks requires standards to model the interactions among the component ser-
vices. Thus, service coordination constitutes one of the most challenging aspects
of this service composition. While orchestration and choreography are two alter-
native approaches to handle the coordination concerns of the composition, for our
purposes we advocate the use of orchestration through some extensions for the
Reo language. With Reo and our proposed tools extending some features in this
language, web services can be dynamically chained, and dynamically integrated
as a composite service in virtual organizations.

In this chapter, we have shown how to automatically generate an orchestration
framework for web services. The Reo circuits as the orchestrator are automatically
translated into Java code, and used to compose the services in a way transparent
to the client and all its involved component services. The input of our generated
tool consists of the externally observable behavior of each service in terms of
constraint automata, the WSDL description file of each component service, and
the specification of their orchestration as a Reo circuit. From all this information,
it is then possible to automate the Java code generation process from a Reo circuit
and a proxy for each web service. This proxy component is in charge of managing
the communication between the technology behind the web services and the Reo
environment.

In general, our approach is complete for any Reo circuit with a CA semantics
and any web service with a machine-processable interface definition and behav-
ioral specification. The machine processable interface definition for web services
supported by our current tools is WSDL, which is then enriched by behavioral
specification of the services (see also Section 3.3.3). For further generalizing,
please note that our framework is not limited to WSs, but it works also for other
kinds of protocol parties, e.g., legacy service components. This makes our ap-
proach suitable for composing services implemented using different technologies
and standards.

Chapter 6

Validation and Evaluation

Parts of the research results presented in this chapter are previously published in
the following papers and technical reports:

• Sargolzaei, M., Shafahi, M., and Afsarmanesh, H. (2017, April). Service-
enhanced product: from Specification to Composition. Submitted to the
Journal of Intelligent Industrial Systems.

• Afsarmanesh, H., Shafahi, M., and Sargolzaei, M. (2015, February). On
service-enhanced product recommendation guiding users through complex
product specification. In Computing and Communications Technologies
(ICCCT), 2015 International Conference on (pp. 43-48). IEEE.

• Shafahi, M., Afsarmanesh, H., and Sargolzaei, M. (2014, October). A
coopetition space for complex product specification. In Working Confer-
ence on Virtual Enterprises (pp. 83-97). Springer Berlin Heidelberg.

• Afsarmanesh, H., Shafahi, M., Unal-Karakas, O., and Sargolzaei, M. (2013).
D4.1 - Design report on approach and mechanism for effective customized
complex product specification.

• Afsarmanesh, H and Sargolzaei, M and Shafahi, M (2014). D4.3 Report on
dynamically customizable services enhancing complex products.

• Sargolzaei, M., Afsarmanesh, and H., Shafahi, M. (2014). D4.4 Prototype
of the system for enhanced services recommendation.

• Camarinha-Matos, Luis M., Macedo, Patricia, Sargolzaei, M and Afsar-
manesh, H (2013). D2.4 Mechanisms for defining composed services to
support collaboration.

115

116 Chapter 6. Validation and Evaluation

6.1 Introduction

This chapter addresses where and how the thesis and its results are evaluated and
validated. First, we compare the features and appropriateness of the components
developed in this dissertation, against a number of other competitor components
and systems, for which the results are provided in this section. Additionally,
the behavior-based service discovery component of our framework, BehSearch, is
evaluated in this chapter. This evaluation is divided into two parts. First, the
performance and scalability of the search engine, which is improved by offering
a distributed model, is evaluated. Then the correctness of the results produced
by the tool is examined through measuring, its information retrieval metrics.
For this purpose, we gauge our results according to two most frequent and basic
metrics in information retrieval context, i.e., the precision and recall. Although
our tool is not directly comparable with related work in this area because they
do not support behavior specification in their matching, we represent a short
comparison to the extent possible with such tools. The other goal of this chapter
is to demonstrate how we propose our results to be applied in industrial products.

The remaining sections of this chapter are structured as follows. First, we
briefly introduce a validation and evaluation methods, which we then apply to
our results in Section 6.2. In Section 6.3, we present a feature analysis method as a
validation mechanism to compare developed tools against some related works. In
Section 6.4 we present evaluation of our approach through formal experiments.
In Subsections 6.4.1 and 6.4.2, we focus on the evaluation concerns, including
performance and results correctness. Section 6.5 briefly recalls our real application
case, and the proof of concept that we have developed for the GloNet project.
Finally in Section 6.6, we provide some concluding remarks.

6.2 Validation and evaluation methods

In scientific research, it is important to evaluate and validate the results, as well
as the proposed applied approaches to achieve those results. There are several
validation techniques for software systems. Among different techniques that fit
more appropriately to our purpose, we apply the approach suggested by Pfleeger
[131]. This approach suggests a number of techniques among which the following
three techniques are applicable and chosen for our validation purposes:

• Feature Analysis (addressed in Section 6.3) - This is suitable to rate
and rank different features of a developed system, e.g., for its novelty, com-
plying to certain standards, or against competitor research results. This
technique is also used to validate our findings in scientific communities. A
feature analysis can be represented as a key indicator assessment that com-
pares some competitor systems according to several indicators/criteria. We

6.3. Evaluation through Feature Analysis 117

present a key indicator assessment for each of the developed tools in this dis-
sertation, consisting of: XWSDL, BehSearch and ProxCG, as respectively
proposed for service specification, discovery and composition.

• Formal Experiment (addressed in Section 6.4) - This technique
is mostly applied to evaluate metrics related to effectiveness and accuracy
of results produced by algorithms. In this work, a formal experiment is
used to evaluate the performance and accuracy of our discovery tool, i.e.,
BehSearch. We have proposed a decentralized model for BehSearch, and cal-
culate speed-up rate for it. Moreover, we measure the recall/precision curve
of the tool for estimation of its accuracy.

• Case Study (addressed in Section 6.5) - This is suitable for showing
a holistic picture of applying the approach and results related to the de-
veloped system. This technique suggests that according to what we as the
evaluator aim to examine, an application case shall be defined to test the
functionalities and usage of the results. In this direction, our experience in
the development of Product Service Specification (PSS) sub-system of the
GloNet project is reported at the end of this chapter. We discuss the advan-
tages that can be gained through applying our methods in GloNet. GloNet
as our application case involves various collaborative networks (including
VBEs and goal-oriented VOs) to facilitate the needed infrastructure and
tools for networks of SMEs in the context of complex products, applied to
solar power plants industry. Some major parts of our approaches especially
for service specification and discovery introduced in Chapters 3 and 4, are
validated through the real cases in GloNet.

6.3 Evaluation through Feature Analysis

In this section, we provide three key indicator assessments for our component
development validations.

6.3.1 Assessment of XWSDL

As mentioned in Chapter 3, we have proposed a new model and standard to spec-
ify services, named the XWSDL. We sought to validate XWSDL using some key
indicators to compare with widely used standards/models. First, we briefly in-
troduce these standards/models as our competitors in our validation comparison,
as also summarized in Figure 6.1.

• WSDL [41] describes all syntactical properties of a web service, including a
set of operations’ signatures and a set of network endpoints or ports (URIs)
at which these operations can be invoked. WSDL is the most adopted

118 Chapter 6. Validation and Evaluation

standard for web service description. However, it is unable to explain all the
functionalities of a web service, i.e., its semantics and behavioral properties.
According to the Model Driven Architecture (MDA), a WSDL metamodel is
introduced and then extended to support a number of extensions to WSDL.

• OWL-S (Web Ontology Language for Web Services) [100] is built on top of
the OWL language, in order to specify semantics of web services and conse-
quently help in the discovery of web services. OWL-S describes “individual”
services, together with the set of their “property assertions” relating indi-
vidual services semantically to each other [4]. OWL-S does not provide a
concise and formal description of behavioral and non-functional properties
of services, however it offers an unbounded list of service parameters that
can contain any type of information.

• WSDL-S (WSDL Semantics) [6] proposes an extension of WSDL by se-
mantics annotations. Unlike WSDL, WSDL-S can annotate the information
provided in WSDL using different semantic languages, such as RDF and
OWL. The elements of WSDL-S, which are added to the standard WSDL
document, are modelReference, category, precondition and effect. These
provide a rich description for the web services’ semantics.

• SAWSDL (Semantic Annotations for WSDL) [95] is also defined as an
extension of WSDL to describe the semantics of its elements through pro-
viding the mechanisms to bind ontology concepts to semantic annotations of
WSDL. A metamodel presented for SAWSDL supports Model Driven Archi-
tecture (MDA) approach. This metamodel is independent of the SAWSDL
language, but helps software developers to understand and work with this
language.

• Session Type [46] is appeared as a newly emerged issue in the world of
web services that allows modeling interactions and reasoning over commu-
nicating processes. Thus, a session type can be applied as a formal model to
describe the user view of an interaction, i.e., the behavior of services [144]
and [47]. This formalism can also describe the signature of services.

• Q-WSDL(QoS-enabled WSDL) [43] is a lightweight WSDL extension to
specify the QoS characteristics of web services. The extension is carried out
as a metamodel transformation, according to the Model Driven Architecture
(MDA) paradigm.

• XWSDL as our proposed extension of WSDL, which is designed to support
collaboration in networks of service providing organization, supports all as-
pects needed to specify services including syntax, semantics, behavior, QoS
and other non-functional properties of services (e.g., cost). We have also

6.3. Evaluation through Feature Analysis 119

introduced the XWSDL meta-model, as an extension of WSDL metamodel,
to support the Model Driven Architecture (MDA) paradigm.

Figure 6.1 shows a summary of our key indicator assessments for validation of
XWSDL and the above competitors according to the following criteria: Syntac-
tical description support, Semantics annotation support, behavioral description
support, QoS support, Other Non-functional properties support, Having Graph-
ical User Interface, and MDA-based approach.

Figure 6.1: Comparison of XWSDL with similar models/standards.

Note that a feature of an approach is shown as a “black” box when it is
satisfied well and it can provide all aspects of the criterion. If an approach
partially satisfies the required criterion, its corresponding feature is represented
as a “gray” box. Finally, if an approach does not provide what the criterion
requires, it is exhibited as a “white” box for that criterion.

6.3.2 Assessment of BehSearch

In this section, we compare our discovery tool, BehSearch, against five other
related works based on the following indicators: Signature Matching, Semantics
Search, behavioral Matching, QoS-aware Selection, and Decentralized Model Sup-
port. Note that a strong signature matching should match: similar operations,
similar input/output messages, as well as their data-types.

We first briefly introduce several related discovery tools as the competitor
systems below.

• WSXplorer (Web Service Explorer) [71] presents a method to retrieve de-
sired web-service operations from a given textual description. The method
uses the concept of tree edit distance to match similar operation names.

120 Chapter 6. Validation and Evaluation

Meanwhile, some algorithms are proposed for measuring and grouping sim-
ilar operations, based on some other features. The proposed WSXplorer
algorithm suggested for measuring and grouping similar operations catches
not only their structures but also their semantic information.

• Woogle [51] as a search engine for web services, supports similarity search
for web services. The similarity search supplements keyword search for web
services operations. Moreover, Woogle search engine goes beyond keyword-
search by exploring the semantics of web-service operations.

• Di Modica+ [49] proposes an architectural model for the discovery of ser-
vices based on a hybrid P2P approach. Di Modica+ partitions the P2P net-
work into several semantic groups of peers, where each group is associated
to answer queries of a specific applicative domain. In fact, this approach
aims for semantic-based clusterization of nodes that provide services.

• URBE [133] offers a recursive pairwise comparison among data types, mes-
sages, and operations of web services. Considering the similar tools (e.g.,
WSXplorer), URBE supports more efficient semantic search and gives bet-
ter performance with respect to both precision and recall.

• VU+ [165] provides a semantic description model for the QoS properties
of web services. It also performs a QoS enabled discovery and ranking of
web services based on their QoS compliance. The framework could be used
either as a centralized discovery component or as a decentralized repository
system.

• BehSearch [144] as our proposed approach, presents a similarity-based
method for discovery of web services that is able to rank service descriptions
in our registry, according to their similarity with the description of a service
desired by a user. The applied approach is primarily focused on service
behavior as well as QoS.

Figure 6.1 summarizes our comparison between BehSearch and the above
competitor systems according to the mentioned criteria.

6.3.3 Assessment of ProxCG

In this section we compare our tool for service composition, ProxCG and eight
of its competitors considering several criteria, defined below. First, we describe
these competitors: eFlow, Intalio BPMS, Self-Serv, SHOP2, Sword, XL, TQoS,
and YAWL.

• eFlow [37] is one of the first frameworks implemented for specifying, exe-
cuting, and monitoring composite services. eFlow uses visual notation and

6.3. Evaluation through Feature Analysis 121

Figure 6.2: Comparison of ProxCG with similar models/systems.

flow diagrams to model interaction patterns among constituent services.
This flow-based paradigm allows only basic control-flow patterns, i.e., se-
quence and parallel [101]. Moreover, some simple data mapping functions
are defined in eFlow. Most of the workflow based approaches, like eFlow
neglect specification of QoS properties. In eFlow, the selection of service
component in an eFlow service composition should be done at the design
time.

• Intalio BPMS [122] is a set of tools that provide various support functions
for workflow interactions. Open sourced Intalio BPM uses “Designer”, built
on top of Eclipse to supports BPMN for process modeling. Moreover, “De-
signer” converts BPMN to BPEL to orchestrate web services. In fact, Intalio
BPM provides a graphical interface to generate BPEL code for composition
of web services. However, “Intalio Designer” does not support all elements
of BPMN (e.g., loop transitions), because all BPMN diagrams cannot be
converted to BPEL. Note that, BPEL4WS also suffers from the lack of sup-
port for non-functional QoS measures [7]. Moreover, Intalio stores XML
data of the process instances to a database to support “Business Activity
Monitoring” [122].

• Self-Serv [21] offers an orchestration model to support the composition of
web services. Self-Serv aims to provide a multi-attribute dynamic selection
of services within a composition. It also uses state charts to model and to
encode the interactions among web services operations.

• SHOP2 (Simple Hierarchical Ordered Planner 2) [110] is one of the most
relevant tools especially implemented for semantic-based service composi-
tion. Shop2 is used for composition of OWL-S web services through a
hierarchical task network (HTN) planner that works with the hierarchically
structured OWL-S description of available web services. It supports only

122 Chapter 6. Validation and Evaluation

simple control flow patterns, such as sequence and exclusive choices [101].
OWL-S description of services specifies QoS measures as service parameters.

• SWORD [134] is a set of tools for composition of web services using rule-
based plan generation. SWORD does not deploy existing service-description
standards, such as WSDL, SOAP and RDF. Instead, it defines an Entity-
Relationship (ER) model to represent inputs and outputs of services. All
entities and relationships among those entities are specified in a “world
model” . A rule-based expert system is then used to generate the plan of
service composition using existing web services. Finally, SWORD provides
an execution environment to run the service(s) specified in the plan that
are offered at design time.

• XL [59] is a new platform for web service composition, which uses a textual
XML-based notation. The main advantage of XL is that a common data
model is used for both the description of web services and the programming
language. This advantage facilitates an automated data mapping in XL.
Moreover, XL supports complex control flow constructs, including sequence,
parallel, choice, and loop. The selection of components in XL occurs during
the design time, so XL cannot support dynamic binding of web services.

• TQoS [54] provides a framework for selecting and composing web services
not only according to their functional requirements but also according to
their transactional properties and QoS characteristics. TQoS works based
on two inputs: a workflow and the user’s preferences. The workflow defines
the execution order of component web services, and user’s preferences are
expressed as weights over QoS criteria. TQoS consists of a Planner Engine
that generates an execution plan, and an Execution Engine that orchestrates
the component web services to execute the instance of the composite web
service. Moreover, the QoS of a composite service is evaluated by using
several aggregation functions. The aggregation functions consider activities
in all execution paths between AND-split and AND-join. TQoS uses a
general workflow language to represent the orchestration patterns.

• YAWL (Yet Another Workflow Language) [163] is a work-flow language
based system that uses Petri nets [170] as a starting point and offers an ex-
ecution engine, a graphical editor, and a work-list handler. YAWL strongly
supports complex control flow patterns by its visual notations. YAWL en-
gine handles the execution of specified workflow instances (also called cases)
to run the composite services.

• ProxCG (Proxy Code Generator) [83] is our proposed approach to compose
web services, based on the Reo coordination language [9]. With Reo and our
proposed tools, web services can be dynamically chained, and dynamically

6.3. Evaluation through Feature Analysis 123

integrated as a composite service in virtual organizations. We define below
specific features of ProxCG under each applied criterion.

Figure 6.3 shows a summary of our feature analysis results for the above
competitors versus our proposed tool ProxCG. If a tool completely supports a
feature specified in the row, the corresponding box is black. If it partially supports
the feature, the box is gray, and otherwise, it is white.

Figure 6.3: Comparison of ProxCG with similar models/systems.

Below, we define the main features as our key indicators to evaluate our com-
position tool, ProxCG against its eight competitors.

• Being Domain-Specific. Each composition approach uses a coordination
language at its heart, which can be either a domain-specific language or
generic. When the language is specifically built for coordination, it increases
its efficiency. Our ProxCG tool works based on Reo, which is defined as a
domain-specific language for coordination of the components and services
[115].

• Allowing Complex Logic. The tools either can handle just simple inter-
action patterns (e.g., sequence choice) or complex ones. Supporting complex
logic is considered to be one of the key highlights of the composition of ser-
vices. In [84] we show how ProxCG supports complex behaviors of WS’s
orchestration by discussing some non-trivial examples.

• Automatic Data Mapping. Web services communicate with others only
through soap messages [105]. Thus, each tool working with web services
needs to build and/or parse SOAP messages, while automatic data mapping
between input/output of such tools and soap messages skips this step. The
Service Communication Unit (SCU) of our tool facilitates this kind of data
mapping.

124 Chapter 6. Validation and Evaluation

• QoS Support. To be satisfied by its clients, a composed business service
should try to provide good quality regarding the clients’ preferences. The
consideration of QoS when composing web services requires a careful QoS
aggregation of the QoS criteria of the constituent web services that compute
the QoS of the composed service. An excellent research for supporting QoS
aspects in composed services can be found in [159]. Most of the workflow
based approaches like eFlow neglect specification of QoS properties such as
reliability, availability, and throughput. BPEL4WS also suffers from the
lack of support for non-functional QoS measures [7]. In semantic-based
service composition approaches such as OWL-S and QoS measures are de-
scribed as service parameters. ProxCG does not consider QoS aggregation
when composing web services, however our specification and discovery tools
support QoS criteria of the constituent services well [144].

• Correctness Verifiability. Verifying correctness is addressed as an im-
portant criterion for service composition [155], which shows the correctness
of the composed services. While more of the other approaches offers sup-
port for the verification of a composed service, our tool is able to ensure
the correctness of composed services [84]. For instance, BPEL4WS does
not support any formalism to verify the correctness of the flows, because it
deals more with implementation than with specification. [155].

• Automatic Execution. The feasibility of automatically performing com-
position of web services significantly reduces the complexity of such systems
for end users [132]. ProxCG generates all necessary Java code to orchestrate
the services automatically.

• Dynamic Binding. The component web services that form a composite
service can be dynamically discovered, selected and bound, as in ProxCG.
This feature gives more flexibility to a composition platform in order to
replace or even find services at runtime.

6.4 Evaluation through Formal Experiments

The formal experiments with the tool are divided into two parts. First, in sub-
section 6.4.1 we validate the adequacy of the tool by measuring its information
retrieval metrics. Then, in subsection 6.4.2 we evaluate the performance and
scalability of the search engine in a decentralized implementation of the tool.

6.4.1 Correctness Evaluation

We have evaluated the quality of the computed results according to the two most
frequent and basic metrics used to measure the effectiveness of discovered/re-

6.4. Evaluation through Formal Experiments 125

trieved information: precision and recall [79]. Precision (also called positive pre-
dictive value) is defined as the number of relevant returned results divided by
the total number of returned results, while recall (also known as sensitivity) is
measured as the number of relevant returned results divided by the total number
of relevant entries in the database, which should have been retrieved.

Let Rel be the set of relevant WSs in the database. Let Ret be the set of
returned WSs, RetRel be the set of returned relevant WSs (true positives), and
RetRelk be the set of relevant results in the top k returned WSs. More precisely,
the parameters that we have adopted to evaluate the performance of our approach
are defined as follows:

Precision “ |RetRel |{|Ret |

Precisionk “ |RetRelk|{k

Recall “ |RetRel |{|Rel |

We have examined the results based on 20 test queries. For each of these queries,
we have also manually labeled our WSs in the database as relevant or irrelevant.
Since all queries had less than 10 results, we considered the precision at 2, 5 and
10 (for parameter k). The average Precision2, Precision5 and Precision10 for the
test queries are respectively 95%, 73.3% and 65.4%. This preliminary evalua-
tion is promising especially for stateful queries, although for stateless queries our
approach shows no advantage over the other similar approaches [133].

The Recall/Precision (R-P) curve is considered as the most informative graph
showing the effectiveness of a search engine [51]. An ideal search engine has
a horizontal curve with a high precision value and a bad search engine has a
horizontal curve with a low precision value. The traditional approach to build
a R-P curve is the 11-point interpolated average precision, where precision is
measured at the 11 recall levels of 0.0, 0.1, 0.2, . . . , 1.0. For each recall level, we
then calculate the precision of the results that meet that recall level of the test
collection. For example, if the number of relevant WSs (|Rel|) is 10, the number
of returned WSs (|Ret|) at recall level 0.1 would be the minimum number of the
top-ranked search results to see 0.1 portion of |Rel|, i.e., the first relevant WS.

The blue curve in Figure 6.5 shows the R-P graph of our tool (Beh-Search) for
the 20 test queries, where recall level of the graph varies from 0 to 100 percent.
For instance, Table 6.1 shows the results of search for one of the 20 queries to
draw the R P curve.

We have five relevant services in our database for this query. As we see in
Table 6.1, the first relevant service (i.e., serviceSMS) appeared as the first top-
ranked discovered service, so the precision at the recall level 0.2 (i.e., 1{5) would
be 100%. The precision for the second relevant service (i.e., recall level 0.4) is
also 100%, but for the third one it is 60% because the third relevant service is
the 5th top-ranked service in the list. The precision at the recall levels 0.8 and
1.0 is respectively, 66.67 and 71.43.

126 Chapter 6. Validation and Evaluation

Table 6.1: The top-ranked matched WSs, based on the query: q0 SendSMS q0.

Figure 6.4 shows one of the other queries that we used for drawing the R-P
curve. This query aimed at finding the services that can search and apply for
jobs. According to the query behavior represented in Figure 6.4, the intended
service should first register the client, then search for his/her desired jobs, and,
finally, apply for one of the retrieved jobs.

Figure 6.4: The query for discovering WSs that can search and apply for jobs.

Table 6.2 shows the top ranked results of the query represented in Figure 6.4.
As we see in the table, the first six top-ranked discovered services are relevant,
so the precision at recall levels 0.1, 0.2, . . . , 0.6 is 100%, which is very good. The
precision at the next recall levels, i.e., 0.7, 0.8 and 0.9 are still high (respectively,
87%, 89%, and 90%). The precision at the last recall level, i.e., 1.0, which is
the last relevant service for this query, drops to 59%. This service (behaviorally
represented by q0 LookingForJob q0 obtained 0.2 as the global similarity score,
and is at the 17th row of the table.

The top-ten ranked services in Table 4.2, which are based on the query repre-
sented in Figure 4.12, is another instance of the queries we used to draw our R P
curve. As we see in the table, the first seven top ranked discovered services are
relevant, so the precision at recall levels 0.1, 0.2, . . . , 0.7 is 100%. The precision
at the next recall levels is also still high, e.g., it is 89% at the recall level 0.8.
We can argue that the precision for multi-state queries are generally better than
those for single state queries, which is the biggest advantage of our tool. The
reason is that the transition-similarity score is only a part of the global similarity
score, which is used for ranking of services. Therefore, if a service can be matched

6.4. Evaluation through Formal Experiments 127

Table 6.2: The top-ranked matched WSs, based on the query represented in
Figure 6.4.

behaviorally with a query but uses different labels, it is still expected to obtain
a high global similarity score because it earns a good state similarity score. For
instance, consider the third (service S1) and forth (service S2) ranked services
in Table 4.2. The transition-similarity score of S1 (which is derived from a com-
parison between matched labels) is less than the transition-similarity score of S2,
but the state-similarity score of S1 (which is derived from an approximate match-
ing between the two automata) raises its global-similarity score. This means that
even in these cases the tool can discover relevant services with a significant global-
similarity score.

The R-P graph for our tool (see Figure 6.5) shows that for the first set of
relevant results (i.e., at recall level 10%), precision is appropriate. Also precision
for the last relevant results (i.e., at recall level 100%) is comparable with that
of other existing approaches presented in [133]. Figure 6.5 also shows the Recal-
l/Precision comparison for the studied approaches in [133]. Note that the data
set used to derive our R-P curve is different from those used for the approaches
studied in [133]. This is due to the lack of widely accepted benchmarks using
stateful services and the dearth of tools that work with such services makes it not
possible to have a meaningful direct comparison of our R-P curve with those of
the other tools.

6.4.2 Scalability and Performance

Distributed computing presents an alternative to traditional centralized systems
that can achieve high-performance in executing heavy-workload tasks [78]. In
order to improve the performance of our retrieval tool, we have designed a peer-
to-peer (P2P) model for its implementation on a network of equivalent com-
puter nodes. P2P systems offer efficiency, scalability, decentralized control, self-

128 Chapter 6. Validation and Evaluation

Figure 6.5: The R-P curve of some the related works.

organization, and symmetric communication [139]. In the P2P model of the tool,
every node contains a list of services, as well as their searchable attributes for
discovery. A query is passed to all of the nodes, and each node computes a list
of similarity scores for its own content that matches the query as search results
of our discovery tool. Each node sends its set of computed similarity scores to
an aggregator, which merges the sets from multiple nodes to create a single set
of ranked search results. Aggregators too send their results to other aggregators
higher up in a hierarchy, until they reach the top-level aggregator that presents
its ranked results to the user. The results of an aggregator node are directly com-
parable, because it receives the absolute similarity scores from different nodes.
As an alternative, each node can send only the ranking of services, and use an
aggregation function that weighs the ranking of each service by the number of
services in the corresponding sender-node. In our implementation we adopted the
former approach, which is based on the absolute similarity score.

The performance statistics that we describe below are calculated for 1000
registered services. Table 6.3 shows the execution time and the speed-up to obtain
the similarity scores for the registered services, which are distributed among 1
to 10 nodes. Table 6.3 shows that the minimum execution time is obtained
with 10 nodes, which is about 3.5 times smaller than the execution time with a
single node, i.e., without distribution. The processing time needed for parsing
the WSDL documents and generating the WSBS specifications is not considered
in this performance statistics because this parsing is executed only once (in the
registration step). The graph on the left in Figure 6.6 shows how the execution
time varies with the number of nodes (processors). It shows that the execution
time is inversely related with the number of distributed nodes. The graph on the

6.5. Case Study: GloNet 129

Table 6.3: Evaluation of the distributed model by matching the achieved speed-up
with respect to the number of used nodes.

Number of nodes Execution time Speed-up
1 417 Millisecond 1
2 213 Millisecond 1,957746479
5 135 Millisecond 3,088888889
10 117 Millisecond 3,564102564

right in Figure 6.6 shows the rate of speed-up, which is equal to

the execution time using 1 processor

the execution time using n processors

Figure 6.6: The graphs of execution time and speed-up rate for the example
mentioned in Table 6.3.

6.5 Case Study: GloNet

Nowadays, with fast development of cooperating/co-working consortiums, collab-
orative networks paradigm offers an efficient mechanism to enhance enterprises’
agility and resilience in disturbed business environments. Collaboration among
SMEs and/or organizations has been referred to as an important paradigm to
assuage the effects of market turbulence. In this regard, GloNet 1 as a funded
European research project has played an important role in addressing, implement-
ing, and supporing an agile virtual enterprise environment for networks of SMEs
targetly development of highly customized products, enhanced by a number of

1http://www.glonet-fines.eu/.

130 Chapter 6. Validation and Evaluation

business services. The development of such a system is realized through end-to-
end collaboration, namely co-creation between local product-suppliers/service-
providers and their customers. Pieces of this dissertation comprising of business
service specification and service discovery are applied and validated in the frame-
work of the GloNet project ([5], [2], [143], [35]).

Development of a collaborative tool to support service-enhanced products
(e.g., solar power plants) typically necessitates contributions from many stake-
holders/SMEs from diverse knowledge sectors in order to highly customize their
production and services (e.g., befitting design of what exactly fits each case). The
purpose of GloNet is to support such complex products, and involves a cloud-
based platform [34] offering a collaborative networking framework for all involved
stakeholders. The framework presents needed functionalities for tailored specifi-
cation and development of such products and their associated business services,
as well as for management of collaborative networks of involved SMEs. There
are two virtual spaces over the cloud in GloNet: Collaborative solution space and
Service provision space [29]. The former space is a VO for local manufacturers,
suppliers and clients to collaboratively co-design the products and enhanced ser-
vices. The latter space is a registry of such specified service enhanced products,
where the clients can access them.

The notion of “glocal” enterprise, which means thinking/acting globally and
responding adequately to local specificities, as well as value creation from global
networked operations and service-enhanced products is realized in the GloNet.
Our contribution in GloNet is mainly focused on implementation of the subsys-
tems for Service-Enhanced Product Support. The GloNet architecture consists
of several main components, however, in this thesis, design and implementation
of Service Specification & Registration as well as Product/Service Discovery &
Recommendation are addressed.

The term of service-enhanced product (also called complex product, and
product-service in the literature) defines its numerous sub-products, as well as
various business services that enhance those products (e.g., the monitoring ser-
vice for the status of an electronic equipment). Solar power plants and intelli-
gent buildings are two non-trivial examples of service-enhanced products, that are
adopted for the GloNet project as real case studies. These complex products need
to be collaboratively designed, developed, and verified by many involved stake-
holders. Note that each sub-product and even each business service involved in
a complex product might itself be offered by several manufacturers and/or sup-
pliers. In this context, service-enhanced product points out associating business
services that configure sub-products, in order to provide enhanced functionality
for the complex products, and to differentiate them from similar existing physical
products in the market. Such enhancement not only provides a higher level of
differentiation from the competing products, but also increases the value of the
products that are realized later. Indeed, the notion of enhancing services can also
be seen as a marketing mechanism that augments the typical functionalities of a

6.5. Case Study: GloNet 131

complex product, especially in global markets [35], [2].
Specification of a complex product is a demanding task, which can take advan-

tage of reusing already existing specifications, and customizing them. Since com-
plex products have a dynamic nature, the supporting tools for their specification
must be used at different stages of the Product Life Cycle (PLC) [152]. Complex
product specification is mostly performed during the design & engineering phase
of the PLC. However, it is also infrequently used in the operation & evaluation
as well as the Pre-PLC phases. Note that the specification of a complex product
is also updated iteratively and incrementally during its PLC, via collaboration
among the consulting EPC (Engineering, Procurement, and Construction) com-
panies, the corresponding customers, and the other involved partners, such as
manufacturers, suppliers and service providers. Thus, within the GloNet frame-
work, various stakeholders join together and form a working team, which is called
the “Design Group”, to provide the complex product’s specification, including its
sub-product specifications and business service specifications.

The targeted service enhanced products belong to young industries, and thus
their stakeholders can very much benefit from sharing assets, such as specification
of sub-products that are designed by other cooperators and competitors. There-
fore, supporting both the reusability of service enhanced product specifications
and the possibility of granting access privileges to other stakeholders are impor-
tant requirements for this subsystem. Furthermore, considering that the targeted
service enhanced products are one-of-a-kind, their designed sub-products and
business services can be meant for reusing, if only their specifications follow a
modular design approach so that within the VBE the pieces of service-enhanced
products’ specification can be discovered, accessed and copied for reuse. This
point represents another crucial requirement supported by our developed produc-
t/service specification subsystem.

To put it in a nutshell, supporting such complex products involves various col-
laborative networks, operating at different stages of the life-cycle of the products
and its enhancing business services development, which motivates the GloNet
project [36].

In the remainder of this section we exemplify some real cases taken from
GloNet, and we present the application of our approach and the developed pro-
totype.

6.5.1 Product/Service Specification(PSS)

The “Service Enhanced Product Support” of GloNet comprises two sub-systems:
Product Portfolio Management and Product/Service Specification (PSS). The
Product Portfolio Management aims to provide mechanisms and functionalities
supporting search and display of the portfolio of products, i.e., the repository that
stores all specifications of the service enhanced products. PSS on the other hand
is a sub-system in GloNet, consisting of three main sets of tools: the Product

132 Chapter 6. Validation and Evaluation

Specification & Registration Tool (PST), the Service Specification & Registra-
tion Tool (SST), and the Product/Service Discovery & Recommendation Engine
(PSDR). The PST and SST tools respectively support the reusability of detailed
specifications of sub-products and their enhancing business services. The speci-
fications which are generated for complex products in PSS, is then stored as an
input to product portfolio sub-system and associated to a customer. Moreover,
the PSS sends a request for launching a VO, which starts the configuration/forma-
tion process of a VO corresponding to the specified service or product. Therefore,
PSS plays a pivotal role in the success of functionalities addressed in the other
sub-systems of GloNet [2].

Together, the PST and SST tools effectively support the detailed complex
product specification that constitutes the main input to identify the required
offers (also called competencies) of supplying organizations, and thus enable the
m the seolecsoft-tion fit organizations for the VO creation. However, the main
contribution of this dissertation in relation to GloNet is to introduce the advanced
service specification tool SST, for specifying business services associated with
the complex product, as well as further supporting their reusability, potential
integration, and discovery through the PSDR tool.

PSS tool provides access to PST, SST, and PSDR tools, after a user has
logged in and authorized. Note that when the Design Group is set to Private,
the user works only on his/her own private space without any other partner
involved, but he/she can also indicate another Design Group in its sub-menu,
involving other partners in product/service specifications. This option provides
the possibility to assign different users the needed access right to their defined
service specifications. This is mainly used to assist the user with organizing
his/her own service specification folders/directories. Figure 6.7 shows the general
view of the PSS. In the figure on the left side, three tools (PST, SST and PSDR)
developed in the PSS sub-system of GloNet, and their main functionalities are
represented, each opening a set of menu items. In the center of PSS, a data
entry space for the tools (SST, PST, or PSDR) is represented according to the
called functionality, selected from the left side. On the right side, a number of
suggestions may be represented, to help the user with the specification processes.
These include suggestions of related classes, suitable sub-products, recommended
enhancing business services for sub-products, and suggested features, that can be
used by the designer in his/her design.

Figure 6.8 demonstrates the overall flow for the specification process of com-
plex products that happen in GloNet during the PLC. The process starts with
“Create Tender” and then continued by PSS to specify the complex product. In
PSS, a directory is created (labeled as “Create Directory”) to store the complex
product’s specification, and then a rough specification of the complex product is
provided as the “initial specification of the complex product”. Furthermore, a
“Design Group” is formed of the stakeholders that have the access rights to view,
edit and launch the complex product’s specification. Finally, the initial specifi-

6.5. Case Study: GloNet 133

Figure 6.7: the general view of the Product & Service Specification (PSS).

cation is shared among the “Design Group”, and it is ready to be extended by
detailed specification of the sub-products and enhancing services using PST and
SST. The sub-processes of “Detailed Complex Product Specification”, which is
done by Product Specification Tool (PST) and Service Specification Tool (SST)
are represented later below in details. Please note that all specified details related
to the sub-products and business services are supported for reusability. Thus,
the existing specifications can be reused for the specification of other further sub-
products/services. Finally, when a designer completes the process of specifying a
complex product, he/she may wish to initialize the process of realizing that ser-
vice. For this purpose, he/she can announce this fact through building a request
for launch, which is labeled as the ”Launch the Specification” in Figure 6.8.

6.5.2 Service Specification & Registration Tool (SST)

Although many approaches and standards have been developed by research com-
munity in the area of Service Oriented Architecture (SOA) that can be applied
for the purposes to specify, formalize and deploy business services, it is still a
challenging task to make these services interoperable, so that they can be shared,
searched and reused [4]. Another challenge of service industry is how to as-
sist authorized service providers with composing some of the existing services,
thus producing value-added new services in support of complex products. Fur-
thermore, there are still some gaps in correlation between existing services and
sub-products in the context of complex products.

The specification of services, as the first step to support service reusability
and interoperability, can be performed during different phases of the PLC. In
GloNet, we formalize a business service specification as a tuple S “ă Sn, Sm, Be,

134 Chapter 6. Validation and Evaluation

Figure 6.8: Main flow of the Product & Service Specification (PSS) Process.

Qcs ą, where Sn, Sm,Be, and Qcs respectively represent the Syntax, Semantics,
behavior and Quality criteria of the service. As described in chapter 3, each
business service can be materialized as a manual tasks, or a software service. The
SST tool supports and covers all four aspects of this proposed service specification
for both of these kinds of business services, as well as the business services with a
combination of some manual tasks and some software services, called composite
services. Each element related to the service specification, so-called “feature” is
registered in GloNet as a data object, with four properties, including service’s
Feature-Kind, Type, Value and Unit. In fact, every specified service through
SST, is characterized by a set of features. The data stored for specification of
the manual tasks is also similar to the software services. In other words, for
uniformity purposes, and for the purpose of monitoring service executions, we
also define a simple web service for each manual task that includes only two basic
operations: Start and Stop. It is also possible to define a composed business
service through SST. We call this kind of services as composite business service
in the sequence.

Figure 6.9 shows a snapshot of the interface window for SST, where the Add
sub-menu is selected from the menu under the service Specifications (SST). This
window is used to support specifying a new atomic and/or composite business
service. In the New Service window, the user can add an atomic/composite service
specification by first providing a unique name for the service. The user can then
optionally define one or more classes for the specified service.

Once the user, who is specifying a service, defines a class for it (e.g., the class

6.5. Case Study: GloNet 135

Figure 6.9: New Service specification form.

“Atomic Service” as in the example in Figure 6.9) through the system, all features
defined for that specific class will automatically pop up in this window. As such,
the user is then assisted with receiving the names of all features, which he/she
should fill and specify as a part of the specification of that service. Furthermore,
while providing input for some of those features might be optional, some other
features of the class might be defined as mandatory, obliging the user to provide
the needed input. For example, in Figure 6.9 since the user has added the class
“Atomic Service”, for the new service which he/she is specifying, a set of feature-
kinds for this service have popped up in the center of the New Service specification

136 Chapter 6. Validation and Evaluation

form (Figure 6.9) for its further specification. These include the mandatory set of
feature-kinds (as marked with “*”) such as “Context”, “capabilities”, and “Re-
sponse time”, which show up automatically on the screen. Therefore, providing
input value (i.e., features) for these feature-kinds are obligatory. User must define
both value and unit for these features.

The features used for service specification can be added/removed dynamically
in SST. If the user wishes to add new features to a service specification, the new
feature can be specified at the bottom of the screen through the “New Features”
icon of the interface. The user will then need to indicate the feature-kind to which
the new feature corresponds, and then the value and the unit for that feature. It is
important to note that based on the feature-kind that the user selects/identifies
for a new feature, the data-types for its value and unit will differ, according
to those that are defined for the corresponding feature-kind. However, if the
mentioned feature-kind is not already defined in the system; the user will then
be immediately prompted with the window that asks him/her to first create that
feature kind, before going further with the definition of the newly introduced
feature. Indeed, every specified service through SST, is characterized by a set
of features. For consistency reasons, any identified feature in this sub-system
requires that its feature-kind is defined priori to its definition.

Figure 6.10: Flow of the service specification (within SST).

Figure 6.10 illustrates the sub-processes within the SST for specifying business
services. To specify services, first the required features, and then the needed base
classes, which do not already exist, should be defined. The next step for the user
is to identify which high level class (e.g., Atomic Service) this business service
falls under. The box labeled “Specify Classes” in Figure 6.10 represents the
specification of the sub-process involved. In the case that the service is atomic,
the flow is followed by specifying its features. For the composite services however,
it is also needed to both attach the component sub-services and the orchestration
workflow, which are described in the next subsection. Finally, the specification
of business service is saved.

6.5. Case Study: GloNet 137

Figure 6.11: Flow of the product specification (within PST).

Although, the focus of this work is on service specification, the flow of the
product specification is very similar and represented in Figure 6.11. As you see
in this figure, the process of PST is close to the process of SST (see Figure 6.10)
while the a set of enhancing business services are also defined to be associated to
the product (i.e., the box labeled “Enhanced by business services”).

6.5.3 Composite service specification

As mentioned earlier, SST enables users to define atomic business services, which
may include both software services and manual tasks. These can in turn be
used as constituent services for specification of composite business services. Fig-
ure 6.12 shows an example of a composite business service in GloNet, which is a
site maintenance service for solar plants consisting of four atomic services as its
components, including: “Check & Report”, “Vegetation Management”, “Wildlife
Prevention”, and “Water Drainage”. As shown in Figure 6.12, these four com-
ponent business services are provided by three different companies, including: a
Security Company, a Site Cleaning Company and a Wildlife Prevention Com-
pany. The atomic services as the components of this composite service, are a
combination of software services (e.g., Check & Report) and manual tasks (e.g.,
Water Drainage).

138 Chapter 6. Validation and Evaluation

Figure 6.12: An example of composite business service for solar plants called site
maintenance service.

The information required for composite business service specification is similar
to that for the specification and registration of atomic business services, except
that it does not include the syntax and behavior aspects, since these are cap-
tured in details within their constituent services, e.g., their corresponding atomic
service specifications. But additionally, the composite service, e.g., Site mainte-
nance service, specification includes an aspect called “Bundling”, which consists
of a feature-kind called “Constituent Services”, to clearly specify the set of its
component service constituents, e.g., “Check & Report” and “Vegetation Manage-
ment”, etc. Therefore, composite services are defined through their three aspects
of Semantics, Quality Criteria, and Bundling. Moreover, the proper specification
of a composite service must accompany the concise specification of the inter-
connections among its constituting atomic services, i.e., its coordination model.
For this purpose, an orchestration workflow (e.g., a BPMN diagram) is needed for
the composite business services specification in GloNet framework, representing
the coordination among its constituent services. This aspect is supported by an-
other subsystem of the GloNet, namely BPMN Modeler [145], which models the
interaction patterns among the component services in terms of BPMN diagrams.
The PSS sub-system and BPMN Modeler are connected and integrated through
the GloNet platform.

There are several other aspects involved in specifying a service that can be
defined through this interface. For instance, to define a new composite service,
the user can easily indicate the components of this composite service using the

6.5. Case Study: GloNet 139

Figure 6.13: New composite service form.

“New constituent Services” part of the “New Service Form”. Note that for each
constituting service, its needed quantity should also be specified. Figure 6.13
shows the new service form for the maintenance composite service (see Figure
6.12) that needs to deploy the “Check and Report” service twice, assuming that
it is needed once before the analysis of the damage and once afterward. There-
fore, the user has indicated “Check & Report” with the quantity 2, “Wildlife
Prevention” with the quantity 1, and the “Water Drainage” with quantity 1. But

140 Chapter 6. Validation and Evaluation

clearly, as well as the quantity, the interaction protocol of the composite service
must be specified to model the coordination of constituting atomic services. The
“Process Description” feature of new composite service form (see Figure 6.13)
is used to provide a reference to the desired orchestration workflow for compos-
ite business services. For this purpose, the service designer (current user) creates
his/her intended workflow through the BPMN Modeler subsystem of GloNet plat-
form, and uploads it to the platform. Then through the PSS subsystem when
specifying composite services, the system provides a selection menu including
the list of existing workflows owned by the user, to potentially select from. As
shown in Figure 6.13, the designer is choosing his/her desired workflow, the “Site
Cleaning-BP”, for the composite business service.

Figure 6.14: Flow of the composite service specification (PST).

Figure 6.14 shows the flow of the process to specify composite services. The
flow is commenced with identification of the constituent services. Such services
can then be either specified from scratch as a new service, or retrieved through
discovery of already existing service specifications. The boxes labeled as ”Specify
Services” and “Discover Services” in Figure 6.14 respectively represent the sub-
processes involved. Please note that a discovered constituent service can be either
atomic or composite. The constituent services resulted from the last two steps
are then bundled to form a new composite service. As mentioned earlier, we
need to attach a workflow to coordinate the composite service as its final step of
specification.

6.5.4 Viewing / managing existing service specifications

Once services are specified, they can be viewed by selecting the “Existing Spec-
ifications” item under the service specification menu. As such, depending on

6.5. Case Study: GloNet 141

the selected Design Group (as indicated in the upper right corner of the screen
in Figure 6.7), their associated existing specification window will appear, show-
ing the list of all relevant existing service specifications (sorted by their names),
which the user is then authorized to view. In other words, the specifications that
are included in this window are all those related to the specified Design Group.
For example, in Figure 6.7, the “iPLON” user has selected/indicated his “Pri-
vate” Design Group. Consequently, in this example, only the restricted service
specifications that belong to this Design Group are shown.

Other than viewing the service specifications, authorized users can also man-
age these specifications by preforming the following set of actions:

• View, which takes the user to the view details of the service specification.
Figure 6.15 shows an example of this view for the specification of “Analysis
Natural Damage” as an atomic service.

• Duplication, which takes the user directly to a pre-filled “New Service”
form. This simplifies the task of users since in that form the specification
information about the selected service is duplicated, which can then be
edited by the user, for defining a new similar service specification.

• Hide, which allows hiding the corresponding service specification from the
specific existing services window, which is restricted for only the Design
Group. For instance, the user finds a service that is useless for him/her use
and so the user hides this specification from his/her view.

• Add to Directory, which provides the possibility to assign an already defined
service specification, which user is authorized to access, to an existing di-
rectory of the user. This is mainly to assist the user with organizing his/her
service specification folders.

• Share with Design Group , which provides the user with the option to change
the access rights/sharing status of a certain service specification that he/she
owns. The share options are available through existing services window,
when the user clicks on its icon. Please note that when defining a new service
specification, the access right to that specification is made private to the
user who defined it by default, that is if the user has not indicated a Design
Group on the top right corner of the Figure 6.7, otherwise the specification
will become restricted to that Design Group by default. Clearly, at any
point in time, the owner of the service specification is allowed to broaden
the access to its owned service specification.

• Request for Launch , which enables the user to issue a request for launch of
a service specification. Using this option, the user can send a new launch
request for one of the already specified services. Please note that before
a new Launch Request can be built for a service that the service must be

142 Chapter 6. Validation and Evaluation

first properly specified. Then through the interface presented in the Launch
Request form, the user will identify the specified service (i.e., indicates its
specification), which will be included in the package for this request of
launch. For more details, we refer the reader to the report presented in
[143].

Figure 6.15: View form of a Service Specifications.

PSDR- Product/Service Discovery and Recommendation

In Figure 6.7, the menu item on the left side for Discover Service is located under
the Product/Service Discovery (PSDR) menu item. It opens a form to both
discover services and to rank the matched suggestions based on the user query.
This constitutes a part of the product/service discovery and recommendation
engine of the general GloNet architecture. This part of the tool addresses our
mechanisms for discovering and matchmaking between the users’ required criteria
and the existing service specifications, in order to support the service designers
with offering them the best-matched business services to their request. As we
described in Chapter 4, the ranking is done according to the similarity score
that expresses approximate bi-simulation between registered specification of each
service and the users-submitted query. The discovery of best-fitting services can
be done based on the entire service specification features, including the service’s
syntax, semantics, behavior and quality criteria aspects. Figure 6.16 shows a
screenshot of the Service Discovery form, where the user can select some of the
service features as the criteria for his/her search, and also set his/her desired
values for them. Figure 6.17 shows the result window of the matched services
for the example query, which is represented in Figure 6.16. The figure shows the

6.6. Conclusion 143

Figure 6.16: Service Discovery form.

first highly ranked discovered services. The results are ranked by the calculated
similarity scores of the registered services.

Figure 6.17: An example of Service Result window.

6.6 Conclusion

This chapter presents a summary of the achieved results and their validation.
First, it briefly presented how in the thesis the developed tools and results can
be evaluated in relation to our targeted research objectives. The chapter then
addressed a feature analysis evaluation of our proposed solutions and concepts.

144 Chapter 6. Validation and Evaluation

In this way, XWSDL, BehSearch and ProxCG as the new methods and tools
introduced in this thesis, are compared with several related works. After that, it
showed the evaluation results for the performance and accuracy of the discovery
tool, which is at the heart of its framework. The scalability and accuracy of the
BehSearch is measured based on some experiments. Finally, GloNet is introduced
as the case study to demonstrate and validates the usage of our approach, concepts
and prototype in real case from the service enhanced solar power plant industry.
We use our methods and tools for service specification and service discovery to
support Service-enhanced products in GloNet.

Chapter 7

Conclusion, and Future work

Service oriented architecture (SOA) is gaining more and more attention in busi-
ness and industry since it offers new, agile and flexible ways of supporting the
intra- and inter-organization activities. It propounds the idea of service orien-
tated collaborative networks (SOCNs). However, the current implementations of
the SOA approaches often do not deliver the expected advantages [158]. Several
major problems in this area can be identified. First, for inter-organization activ-
ities a completes and clear understanding of the notion and support for SOCN
is still lacking. As a consequence, it is unclear what functionality should be
implemented to realize such systems [4]. Second, an appropriate framework for
concisely specifying business services is needed, to supplement the insufficient
information about business services, and concerning details of various aspects
of the respective services [158] and [53]. Third, an enhanced service discovery
mechanism is needed in order to give more flexibility and efficiency to search
for services, through their various aspect and criteria, rather than only through
their general keyword-based delineation [3] and [53]. Finally, to fully leverage
the opportunities provided by service oriented architectures within organizations,
integration of existing services must be simplified [155], [76] and [4]. As a con-
sequence, approaches for automated service composition, as well as execution of
integrated services are needed.

The above problems were posed as the research questions for this thesis in the
Introduction Chapter. In this chapter, we briefly recall and discuss the answers
to these questions, and point out several future research directions.

7.1 Addressing Research Questions

To answer the first main question RQ1 on how to support organizations to effec-
tively co-work and co-develop in VO’s, in order to share a part of their business
service capabilities and allow their reuse and integration, we introduce a new
framework for service oriented collaborative networks in Chapter 2. Applying

145

146 Chapter 7. Conclusion, and Future work

Software services, e.g. web services, and SOA paradigm in collaborative networks
using rapid, cost-effective and standard-based means, results in more successful
interoperability and collaboration among involved organizations. For this pur-
pose, a new high-level abstract framework for service oriented VOs is introduced
in Chapter 2.

This framework consists of three software modules, i.e. Specification Module,
Discovery Module, and Composition Module. Specification Module is responsi-
ble to fully specify all aspects of software services offered by service providers
as VO partners. This module has two functions: Agreement Management and
Software Service Specification to capture the agreements and responsibilities of
VO members, as well as needed meta-data of services (e.g. syntax, semantics,
and behavior of services). The second module is the Discovery Module, which
addresses mechanisms for service discovery and selection of the existing shared
services in the VOs. Finally, the Composition Module of the abstract framework
offers new value-added services to the service designer, through the composition
of the existing shared services in the VO.

In order to answer the second main question RQ2 on how to address the busi-
ness services in service oriented collaborative networks to support their effective
reusability and integration, we pinpoint below each of its two subsidiary questions
introduced in the Introduction Chapter, and specify where they are addressed fur-
ther in the thesis.

In Chapter 3, we address the sub-question S1-RQ2:

How to uniformly define business services of independent and autonomous or-
ganizations constituting the VO?
To answer this question, the C3Q model of service competency is proposed in
Chapter 3 to have a uniform definition for business services. The 4C-model of or-
ganizations’ competency introduced in [57], forms the basis of our proposed C3Q
model of service competency. The C3Q model characterizes Capability, Conspicu-
ity, Cost, and Quality specification criteria. As such, VO business services can
be uniformly defined and published in order to support their sharing and reuse.
Capability is the most important part of the service profile, which represents the
functional properties of the business services including syntax, semantics, and
behavior. Nevertheless, one aspect which deserves further emphasis here is the
behavioral aspect. To the best of our knowledge, C3Q is the only complete ser-
vice profile that addresses behavioral properties of the services in addition to their
other aspects. The C3Q model can also be considered as the service competency
model within the VOs.

The sub-question S2-RQ2 below is also addressed in Chapter 3:

7.1. Addressing Research Questions 147

How to specify, in an unambiguous/concise representation manner, the function-
ality/behavior of business services, as required for developing their equivalent soft-
ware services?

In our approach, the current business service description approaches and stan-
dards are extended and improved in order to support efficient service discovery
and composition. First, we present the C3Q data model to represent the various
information needed for description of the business services within the VOs.

A number of different notational options can be applied for representation
of each of the three aspects of this data model, we have however adopted one
specific notation in our proof of concept prototype for formalizing each of these
aspects, as addressed in Chapter 3. WSDL that represents the most prominent
standard for describing web services, provides only the syntactical description,
and lacks representing the other properties of services, e.g. semantics and the
behavioral specification which is required to represent the functionalities of ser-
vices. Therefore, we introduce an extension of WSDL, the XWSDL, to specify
web services according to the aspects of services introduced in C3Q model. To
the best of our knowledge, XWSDL is the first model that provides a compre-
hensive description of capabilities over web services and highlights the important
role of service behavior in the realization of the semi-automated service oriented
computing. Finally, a prototype GUI is developed to assist service integrators
and service providers with describing and visualizing the behavioral specification
of their web services, correctly and easily.

To answer the third main question RQ3 on how to support the selection of most-
fit business services against user-defined desired criteria, we address below each
of its two subsidiary questions.

The sub-question S1-RQ3 below is addressed in Chapter 4.

How to enhance the accuracy of service discovery results?

In Chapter 4, a tool is developed for a similarity-based discovery of web services
that is able to rank the service descriptions in a database, based on their similarity
scores matching each with the description of a service desired by a user. The for-
mal framework behind the tool is based on Soft Constrain Automata (SCA) [15],
to represent high-level stateful software services and queries. We use SCA to
formally reason on queries, e.g. on their operational similarity. Our tool is based
on implementing approximate operational-similarity evaluation with constraints
(see Section 4.6), which allows to quantitatively estimate differences between two
behaviors. Defining this problem as an SCSP makes it parametric with respect
to the chosen similarity metric (i.e. a semiring), and allows using efficient AI
techniques for solving it.

148 Chapter 7. Conclusion, and Future work

The sub-question S2-RQ3 below is also addressed in Chapter 4.

How to ensure the quality of retrieved/discovered services?

Besides the set of functional requirements, which we model as soft constraints
in our discovery tool, we can also encode any set of QoS requirements as soft con-
straints, in order to assist users in their service selection. Therefore, we enhance
our tool by also considering QoS metrics to further meet users needs.

In principle, we can compute QoS ranking as an extra criterion for search, but
doing so may impact the results by giving higher ranking to completely irrelevant
services that have high QoS values. We have therefore used the lexicographic
ordering of our soft constraints in order to avoid this problem. Thus, we combine
the non-functional requirement constraints of services with all functional con-
straints in our constraint assembler, but doing this in a given lexicographic order.

To answer the fourth main question RQ4 on how to model the complex in-
teractions and communications among several component services that form a
composite service, in Chapter 5 we show how to automatically generate an or-
chestration framework for web services. Our answer is provided below, through
two sub-questions.

The sub-question S1-RQ4 below is addressed in Chapter 4.

How to represent internal configuration (i.e. behavior) of component services,
as required for their automated invocation?

We need to model and monitor the internal configuration of stateful services in
order to support their automated execution within a complex composed service.
Constraint automata [18], we specify the behavior of component services in our
proposed framework. In particular, we emphasize the external view of services,
namely every state of a simulation automaton represents an externally observable
internal configuration of a service, while every transition represents the exchange
of one or more messages by this service.

The sub-question S2-RQ4 below is also addressed in Chapter 4.

How to model complex interactions and communications among several compo-
nent services to be integrated into a composite service?

We have adopted Reo to support the orchestration among composing web ser-
vices. We then generate the Java code to compose the behavior of the WSs in a

7.2. Discussion and Future Work 149

way that is transparent to the client and all the WSs. Reo [9] is then interfaced
to constraint automaton, which provides a graphical language for modeling the
interaction protocols among composed software services and orchestration their
execution. The input to our Java code generation tool includes the web service
behavior specification of each WS (in terms of constraint automata), the WSDL
description file of each WS, and the specification of the interaction protocols
among the component services as a Reo circuit. Using these information, it is
then possible to automate the Java code generation process from a Reo circuit
and a proxy for each WS. Such a proxy manages the communication between
services and the Reo channels. Our developed ProxCG tool automatically trans-
lates Reo circuits generating the executable orchestration of the JAVA code for
composed services.

7.2 Discussion and Future Work

This research can proceed in the future along a number of different lines. Our
first intention is to be able to expand our current approach to generate differ-
ent communication units for the proxy (the service communication unit, Sect.
5.5.1), in order to include different technologies in the orchestration of compo-
nents and web services, e.g. CORBA, RPC, or WCF. We intend to support a
multi-technology platform that can support integration of services from different
kinds of third-parties.

Another related direction for future work is extending our work from Soap-
based WSs to Restful WSs. Such an extension would provide a powerful, declara-
tive platform for composing and mixing Soap-based WSs with Restful WSs, with
a view similar to the Pautasso’s work on Restful WSs for the imperative Bpel plat-
form [127]. We identify several challenges here. Perhaps the most crucial question
is how to map resources to boundary nodes, i.e. how to connect a circuit to a
Restful WS. The obvious choice of representing every resource location with a
boundary node may not work well in practice if a service uses many different
resource locations. Finding an optimal solution requires further study. Another
challenge here is the lack of standardized, widely adopted, machine-processable
interface description language for Restful services. Such a format seems essential
to generate proxies completely automatically. A third challenge concerns dealing
with the state of web services. Stateful Restful services do not maintain state at
the server, but at the client. The client includes all necessary state information
in each of its requests to the server; the server includes in each of its responses a
resource location for every admissible next transition. Interestingly, Restful WSs
thus provide more behavioral information at run-time than Soap-based WSs in
their WSDL file at compile time. We have in fact already introduced WSBS files
to compensate for this. However, it remains an open question for us how to har-
ness this information dynamically at run-time, instead of asking Restful service

150 Chapter 7. Conclusion, and Future work

providers to also publish a WSBS file of some kind for this purpose.

Furthermore, in future we would like to study different WS behavioral de-
scription schemes to generate the code of WS proxies according to different kinds
of input. A possible choice can be various UML diagrams, e.g. activity diagrams
or state machines. Finally, we certainly see as a future work to improve the
reusability of web services by designing and developing a mechanism for service
adaptation mechanism. Adaptation mechanisms are aimed at identifying and re-
solving of mismatches between service interfaces [119]. While the current service
adaptors focus on the interface-level mismatches of services (i.e. focused on syn-
tactical aspects), an adaptation of the behavioral specification of stateful services
increases their readability. For example, assume two online purchasing services
with similar behavior except that one of them needs an authentication process,
i.e. log-in and log-out operations. These two operations add one extra state and
two transitions to the web service behavior specification (WSBS). We can match
these two WSBSs by merging the extra nodes and transitions, similar to the ap-
proach discussed in Section 4.5. We believe that this direction is promising and
results would be encouraging.

7.3 Overview and Conclusion

A main goal of this thesis is to present a comprehensive enabling framework
for service-oriented collaborative networks in order to increase the efficiency and
effectiveness of software service discovery, composition and execution within a
network of organizations.

In collaboration networks, software services are simple self-contained appli-
cations that perform activities which are triggered by business processes. To
support this. web services can be considered as the natural choice for the im-
plementation of Service Oriented Architecture (SOA). They benefit from XML
encoded standards, e.g. WSDL and SOAP, which enable web services to become
independent of the programming language, operating system, and hardware [53].
Because of this independency that allows computer-to-computer communication
in heterogeneous environments, web services are ideally suited to provide dy-
namic information and functionalities for CNs. In service oriented collaborative
networks (SOCNs), e.g. in a VO, the SMEs can modularise their core business
into a number of services and reuse them in different business processes. However,
to fully achieve the features of SOA, its building blocks, i.e. the services, must
be well specified, in order toenable supporting semi-automated service discov-
ery and composition. Currently, the most promising research works in the area
of service description are semantic service description frameworks, such as the
OWL-S, WSMF, and WSDL-S [53] that provide machine understandable seman-
tic description of services, in order to facilitate the automatic service discovery
and composition. However, none of these efforts could effectively achieve this goal

7.3. Overview and Conclusion 151

in practice. In Chapter 3, we carried out a comprehensive literature study on the
existing web service description standards and found a list of problems that are
not adequately addressed. For example, the current web service specifications,
even the semantic-based ones, do not sufficiently address the behavioral service
information that indicates how a service should be used, and what is the proper
configuration of its operations. In Chapter 3, we introduced novel XML-based
metadata for business service (BS) competency specification within CNs, pro-
viding concrete formal machine readable definitions that improve discovery and
composition of services.

As a consequence of insufficient information in the current service specifica-
tions, precise matchmaking required to locate a demanded service is also not
sufficiently addressed or developed [144]. We have developed a tool for similarity-
based discovery of web services matching the user requests. The tool is aimed to
rank the identified registered services, according to their similarity/fitting score is
with the query presented by the user. The main formalism behind this similarity
matching is constraint automata definition, which represents the service behav-
ior, both for registered services and the requested stateful software service. The
general approach for the semiring-based search engine of this tool relies on the
solution of Soft Constraint Satisfaction Problems (SCSPs), which allows using
efficient AI solving techniques for search problem. Furthermore, for identifying
the most-fit service(s) among those matched for their functional similarity, the
user preferences on the criteria of service quality, such as the availability, and
reliability, are considered. In order to combine the functional requirements and
the QoS constraints into a single semiring for match-making of services, we define
the lexicographic product of semirings. Therefore, the proposed tool efficiently
discovers and recommends the most-fit software service(s) to the authorized users,
among all those services shared within the VBE environment. In Chapter 4, we
demonstrate how the proposed framework improves service discovery. Further-
more, the proposed service search engine tool produces results that measure well
against reasonable expectations, as shown in Section 6.2. Moreover, the GloNet
project [143] as an application demonstrates the real case application and benefit
gained from this tool.

As software services are functional units, they must interact with the external
environment, such as other services [53]. There is usually a group of services
that a given service can interact with, in order to form a new composite service
targeted to achieve certain tasks. If this potential ability of services is ignored,
The true essence of service-oriented computing is not realized [76] and [4]. Despite
all the efforts spent on composition of services, the current work has inadequately
addressed interrelationships among the constituents of a composite service, as well
as its automated execution [83]. In other words, the current service description
frameworks are unsuitable and incomplete to support automated (or even semi-
automated) service composition and execution. To address the above issues,
we developed ProxCG that uses Reo circuits as the coordination model to both

152 Chapter 7. Conclusion, and Future work

compose services and to coordinate complex process interaction protocols. These
two issues are among the most challenging for modeling and executing composite
BSs and their BPs in CNs. The proxies generated by ProxCG work as wrappers
to connect real web services to Reo circuits and thereby support the integration
of services.

Chapter 8

Annex I

153

154 Chapter 8. Annex I

F
ig

u
re

8.
1:

T
h
e

X
S
D

ta
gs

of
th

e
sc

h
em

a.

Summary

8.1 Summary

In today’s economy, collaboration and co-development among organizations has
evolved from the traditional format of static supply chains to the dynamic for-
mation of federated organization networks. Networking among business partners
has proven to yield lower costs, higher quality, larger service/product portfo-
lio, faster delivery, and more agility. However, the pace by which these trend
changes need to occur has raised the demand on ICT-enhanced support for inter-
organization collaboration, establishing the area of collaborative networks (CNs).
We particularly address in our research two forms of CNs, namely the VO (Virtual
Organization) and the VBE (VO Breeding Environment).

To enrich collaboration among potentially distributed partners, a challenging
area for CN research is focused on new approaches to specification, sharing and
integration of organizations business processes. Aiming to address this challenge,
in our research the promising paradigm of Service Oriented Architecture (SOA) is
investigated and applied as the base for enhancement of organizations collabora-
tion. However, we argue that the current implementations of the SOA approach
do not sufficiently support CN requirements and do not deliver the expected ad-
vantages for organizations sharing and integrating their business services. We
therefore introduce a new reference framework - the service orientated collabo-
rative networks (SOCN), as a customization of the traditional architecture and
generic model of SOA, in order to efficiently support service oriented CNs.

An implementation architecture is also elaborated that addresses our identi-
fied requirements for the reference framework, and captures the needed elements
and features for establishing the SOCN. Significant sub-components of the refer-
ence framework and their inter-relationships are introduced, as an extended SOA
model. The architecture seeks to introduce common service semantics and a novel
service behavior model, which can be used unambiguously across and between dif-
ferent implementation options. In this PhD work however, we have developed a

155

156 Summary

proof of concept (POC) for our approach, which employs particular architectures,
standards, and technologies. The implementation details that realize our SOCN
architecture are provided. The developed service-oriented architecture is concep-
tually composed of three main software modules: Specification Module, Discovery
Module, and Composition Module, as briefly described below.

• SOCN Specification Module deals with the specification of software ser-
vices that are offered by different members/stakeholders in the role of service
providers within a VO. Such shared services in the VO are published in a
service registry or directory, complying to some agreements, such as the
SLA and OLA defined at the VBE level. In this module, we present an ex-
tension and improvement to the current web service description approaches
and standards, in order to support more efficient service discovery and com-
position in VOs. First, we depict a data model namely C3Q (addressing the
Capability, Costs, Conspicuities, and Quality criteria of services) to repre-
sent the various information needed for the description of services. C3Q
is considered as the services competency model within the VOs. Then, we
introduce a light extension of WSDL that we call XWSDL, to specify web
services according to the C3Q model. XWSDL provides a comprehensive
description of capabilities of web services and particularly highlights the
important role of service behavior in the realization of the semi-automated
service oriented computing. We have also developed a user-friendly GUI,
assisting service designers to correctly describe and visualize the behavioral
specification of their services.

• SOCN Discovery Module of the framework provides mechanisms for ef-
ficient and accurate discovery and selection of the best-fit service among
the existing shared services in the VO. Successful automated application
of search-result services of this module requires the description provided
through the Specification Module. We have presented a tool for similarity-
based discovery of web services that is able to rank service descriptions
in our registry, in accordance with a similarity score matching each reg-
istry entry with the description of a service desired by a user. The tool is
based on implementing approximate operational-similarity evaluation with
constraints, which allows to quantitatively estimate the differences between
two behaviors. Defining this problem as an SCSP (Soft Constraint Satis-
faction Problem) makes it parametric with respect to the chosen similarity
metric (i.e. a semiring), and allows using efficient AI techniques for solving
it.

• SOCN Composition Module of the abstract framework involves the
functions introduced to support service composition. Efficient service com-
position to create new value-added services in the VO requires not only
considering the rich meta-data captured in the service specification module,

8.1. Summary 157

but also the modeling of the intended coordination among the component
services that form a composite service. While orchestration and choreogra-
phy are two alternative approaches to handle such coordination concerns of
the composition, we advocate orchestration for the VO service composition
using the coordination language Reo. We have further developed a tool
that automatically translates the orchestrators (i.e. the Reo connectors)
into Java code, and creates a proxy for each involved component service.
This proxy component is in charge of managing the communication between
the technology behind the web service and the Reo environment.

Publication List

• Sargolzaei, M., Santini, F., Arbab, F., and Afsarmanesh, H. QoS-aware and
Behavior-based Approximate Matching of Stateful Web Services. Submit-
ted to International Journal of Internet Services and Applications.

• Sargolzaei, M. and Afsarmanesh, H., 2017. C3q: A specification model for
web services within virtual organizations. In Collaboration in a Data-Rich
World. Springer Berlin Heidelberg.

• Sargolzaei, M. and Afsarmanesh, H., 2017. Service oriented collaborative
network architecture. In Collaboration in a Data-Rich World. Springer
Berlin Heidelberg.

• Sargolzaei, M., Shafahi, M., Afsarmanesh, H., Camarinha-Matos, L., and
Thamburaj, V., 2014. D4.4 prototype of the system for enhanced services
recommendation. In Glonet WP4.

• Sargolzaei, M., Santini, F., Arbab, F., and Afsarmanesh, H., 2013. A tool
for behaviour-based discovery of approximately matching web services. In
Software Engineering and Formal Methods, (pp. 152-166). Springer Berlin
Heidelberg.

• Afsarmanesh, H., Sargolzaei, M. and Shadi, M., 2015. Semi-automated
software service integration in virtual organisations. Enterprise Information
Systems, 9(5-6), pp. 528-555.

• Jongmans, S.-S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsar-
manesh, H. , 2014. Orchestrating web services using Reo: from circuits
and behaviors to automatically generated code. Service Oriented Comput-
ing and Applications, 8(4), pp. 277-297.

• Shafahi, M., Afsarmanesh, H., and Sargolzaei, M., 2014. A coopetition
space for complex product specification. In Working Conference on Virtual
Enterprises (pp. 83-97). Springer Berlin Heidelberg.

159

160 Publication List

• Afsarmanesh, H., Sargolzaei, M. and Shadi, M., 2012. A framework for
automated service composition in collaborative networks. In Collaborative
Networks in the Internet of Services (pp. 63-73). Springer Berlin Heidel-
berg.

• Jongmans, S.-S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsar-
manesh, H. , 2012. Automatic code generation for the orchestration of
web services with Reo. In European Conference on Service-Oriented and
Cloud Computing, (pp. 1-16). Springer Berlin Heidelberg.

Bibliography

[1] Afsarmanesh, H. and Camarinha-Matos, L. M. (2005). A framework for man-
agement of virtual organization breeding environments. In Working Conference
on Virtual Enterprises, pages 35–48. Springer.

[2] Afsarmanesh, H., Sargolzaei, M., others, and Shafahi, M. (2014). D4.3 report
on dynamically customizable services enhancing complex products.

[3] Afsarmanesh, H., Sargolzaei, M., and Shadi, M. (2012). A framework for au-
tomated service composition in collaborative networks. In Working Conference
on Virtual Enterprises, pages 63–73. Springer.

[4] Afsarmanesh, H., Sargolzaei, M., and Shadi, M. (2015). Semi-automated
software service integration in virtual organisations. Enterprise Information
Systems, 9(5-6):528–555.

[5] Afsarmanesh, H., Shafahi, M., Sargolzaei, M., et al. (2013). D4. 1 design
report on approach and mechanism for effective customized complex product
specification.

[6] Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., and
Verma, K. (2005). Web service semantics-wsdl-s. International Business Ma-
chines Corporation and University of Georgia.

[7] Al Ridhawi, Y. and Karmouch, A. (2015). Qos-based composition of service
specific overlay networks. IEEE Transactions on Computers, 64(3):832–846.

[8] Alonso, G. and Casati, F. (2004). Web Services - Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer.

[9] Arbab, F. (2004). Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14(03):329–366.

161

162 BIBLIOGRAPHY

[10] Arbab, F. (2006). Composition of interacting computations. In Interactive
computation, pages 277–321. Springer.

[11] Arbab, F. (2011). Puff, the magic protocol. In Formal Modeling: Actors,
Open Systems, Biological Systems, pages 169–206. Springer.

[12] Arbab, F. (2016). Proper protocol. In Theory and Practice of Formal Meth-
ods, pages 65–87. Springer.

[13] Arbab, F. and Mavaddat, F. (2002). Coordination through channel com-
position. In International Conference on Coordination Languages and Models,
pages 22–39. Springer.

[14] Arbab, F. and Rutten, J. (2002). A coinductive calculus of component con-
nectors. In Recent Trends in Algebraic Development Techniques (WADT) Re-
vised Selected Papers, volume 2755 of LNCS, pages 34–55. Springer.

[15] Arbab, F. and Santini, F. (2012). Preference and similarity-based behavioral
discovery of services. In ter Beek, M. H. and Lohmann, N., editors, WS-FM,
volume 7843 of Lecture Notes in Computer Science, pages 118–133. Springer.

[16] Arbab, F., Santini, F., Bistarelli, S., and Pirolandi, D. (2012). Towards a
similarity-based web service discovery through soft constraint satisfaction prob-
lems. In Proceedings of the 2nd International Workshop on Semantic Search
over the Web, Istanbul, Turkey, August 27, 2012, page 2. ACM.

[17] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard,
D., Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy, P., et al. (2002).
Web service choreography interface (wsci) 1.0, 2002. URL http://www. w3.
org/TR/wsci.

[18] Baier, C., Sirjani, M., Arbab, F., and Rutten, J. (2006). Modeling component
connectors in reo by constraint automata. Science of computer programming,
61(2):75–113.

[19] Baresi, L., Miraz, M., and Plebani, P. (2016). A distributed architecture for
efficient web service discovery. Service Oriented Computing and Applications,
10(1):1–17.

[20] Baruch, Y. (1995). Business globalization–the human resource management
aspect. Human Systems Management, 14(4):313–326.

[21] Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The self-serv environ-
ment for web services composition. IEEE internet computing, 7(1):40–48.

BIBLIOGRAPHY 163

[22] Benbernou, S., Canaud, E., and Pimont, S. (2004). Semantic web services
discovery regarded as a constraint satisfaction problem. In Flexible Query
Answering Systems, 6th International Conference, volume 3055 of LNCS, pages
282–294. Springer.

[23] Berbner, R., Spahn, M., Repp, N., Heckmann, O., and Steinmetz, R. (2007).
Wsqosx–a qos architecture for web service workflows. In International Confer-
ence on Service-Oriented Computing, pages 623–624. Springer.

[24] Bistarelli, S., Montanari, U., and Rossi, F. (1997). Semiring-based constraint
satisfaction and optimization. J. ACM, 44(2):201–236.

[25] Boreale, M., Bruni, R., De Nicola, R., and Loreti, M. (2008). Sessions
and pipelines for structured service programming. In International Conference
on Formal Methods for Open Object-Based Distributed Systems, pages 19–38.
Springer.

[26] Börger, E. (2012). Approaches to modeling business processes: a critical
analysis of bpmn, workflow patterns and yawl. Software & Systems Modeling,
11(3):305–318.

[27] Brafman, R. and Domshlak, C. (2009). Preference handling-an introductory
tutorial. AI magazine, 30(1):58.

[28] Brogi, A. and Popescu, R. (2006). Automated generation of bpel adapters.
In International Conference on Service-Oriented Computing, pages 27–39.
Springer.

[29] Camarinha-Matos, L. and Afsarmanesh, H. (2011). Behavioral aspects in
collaborative enterprise networks. In 2011 9th IEEE International Conference
on Industrial Informatics, pages 12–19. IEEE.

[30] Camarinha-Matos, L. and Afsarmanesh, H. (2012). Taxonomy of collabora-
tive networks forms. Final document of the FInES Task Force on Collaborative
Networks and SOCOLNET-Society of Collaborative Networks.

[31] Camarinha-Matos, L. M., Afsarmanesh, H., et al. (2006). Collaborative
networks: Value creation in a knowledge society. Knowledge enterprise, IFIP,
207:26–40.

[32] Camarinha-Matos, L. M., Afsarmanesh, H., Galeano, N., and Molina, A.
(2009). Collaborative networked organizations–concepts and practice in man-
ufacturing enterprises. Computers & Industrial Engineering, 57(1):46–60.

[33] Camarinha-Matos, L. M., Afsarmanesh, H., Oliveira, A.-I., Ferrada, F., et al.
(2013a). Collaborative business services provision. In ICEIS (2), pages 380–
390.

164 BIBLIOGRAPHY

[34] Camarinha-Matos, L. M., Juan-Verdejo, A., Alexakis, S., Bär, H., and Sura-
jbali, B. (2015a). Cloud-based collaboration spaces for enterprise networks. In
Computing and Communications Technologies (ICCCT), 2015 International
Conference on, pages 185–190. IEEE.

[35] Camarinha-Matos, L. M., Macedo, P., Sargolzaei, M., and Afsarmanesh, H.
(2013b). D2.4 mechanisms for defining composed services to support collabo-
ration.

[36] Camarinha-Matos, L. M., Oliveira, A. I., and Ferrada, F. (2015b). Support-
ing collaborative networks for complex service-enhanced products. In Working
Conference on Virtual Enterprises, pages 181–192. Springer.

[37] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M.-C. (2000).
Adaptive and dynamic service composition in eflow. In International Confer-
ence on Advanced Information Systems Engineering, pages 13–31. Springer.

[38] Cesari, L., Pugliese, R., and Tiezzi, F. (2010). A tool for rapid development
of ws-bpel applications. ACM SIGAPP Applied Computing Review, 11(1):27–
40.

[39] Changizi, B., Kokash, N., and Arbab, F. (2010). A Unified Toolset for
Business Process Model Formalization. In Proceedings of FESCA 2010.

[40] Cheatham, M. and Hitzler, P. (2013). String similarity metrics for ontology
alignment. In The Semantic Web - ISWC 2013 - 12th International Semantic
Web Conference, volume 8219 of Lecture Notes in Computer Science, pages
294–309. Springer.

[41] Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S. (2007). Web
services description language (wsdl) version 2.0 part 1: Core language. W3C
recommendation, 26:19.

[42] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weer-
awarana, S. (2002). Unraveling the web services web: an introduction to soap,
wsdl, and uddi. IEEE Internet computing, 6(2):86–93.

[43] D’Ambrogio, A. (2006). A model-driven wsdl extension for describing the
qos ofweb services. In Web Services, 2006. ICWS’06. International Conference
on, pages 789–796. IEEE.

[44] Decker, G., Kopp, O., Leymann, F., Pfitzner, K., and Weske, M. (2008).
Modeling service choreographies using bpmn and bpel4chor. In Interna-
tional conference on Advanced Information Systems Engineering, pages 79–93.
Springer.

BIBLIOGRAPHY 165

[45] Dekkers, R. (2010). A co-evolutionary perspective on distributed manufac-
turing. In Distributed Manufacturing, pages 29–50. Springer.

[46] Dezani-Ciancaglini, M. and DeLiguoro, U. (2010). Sessions and session types:
an overview. In Web Services and Formal Methods, pages 1–28. Springer.

[47] Dezani-Ciancaglini, M., Padovani, L., and Pantovic, J. (2014). Session type
isomorphisms. In PLACES, pages 61–71.

[48] Dhara, K. M., Dharmala, M., and Sharma, C. K. (2015). A survey paper on
service oriented architecture approach and modern web services. All Capstone
Projects, (157).

[49] Di Modica, G., Tomarchio, O., and Vita, L. (2011). Resource and service
discovery in soas: A p2p oriented semantic approach. International Journal of
Applied Mathematics and Computer Science, 21(2):285–294.

[50] Doedt, M. and Steffen, B. (2012). An evaluation of service integration ap-
proaches of business process management systems. In Software Engineering
Workshop (SEW), 2012 35th Annual IEEE, pages 158–167. IEEE.

[51] Dong, X., Halevy, A., Madhavan, J., Nemes, E., and Zhang, J. (2004). Sim-
ilarity search for web services. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 372–383. VLDB Endow-
ment.

[52] Droste, M., Kuich, W., and Vogler, H. (2009). Handbook of Weighted Au-
tomata. Springer Publishing Company, Incorporated, 1st edition.

[53] Du, X. (2009). Semantic service description framework for efficient service
discovery and composition. PhD thesis, Durham University.

[54] El Hadad, J., Manouvrier, M., and Rukoz, M. (2010). Tqos: Transactional
and qos-aware selection algorithm for automatic web service composition. IEEE
Transactions on Services Computing, 3(1):73–85.

[55] Engler, L. (2009). BPEL gold: Choreography on the Service Bus. PhD thesis,
Stuttgart, Universität Stuttgart, Diplomarbeit.

[56] Erl, T. (2005). Service-oriented architecture: concepts, technology, and de-
sign. Pearson Education India.

[57] Ermilova, E. and Afsarmanesh, H. (2007). Modeling and management of pro-
files and competencies in vbes. Journal of Intelligent Manufacturing, 18(5):561–
586.

166 BIBLIOGRAPHY

[58] Fensel, D. and Bussler, C. (2002). The web service modeling framework
wsmf. Electronic Commerce Research and Applications, 1(2):113–137.

[59] Florescu, D., Grünhagen, A., and Kossmann, D. (2003). Xl: An xml pro-
gramming language for web service specification and composition. Computer
Networks, 42(5):641–660.

[60] Fournet, C. and Gonthier, G. (2002). The join calculus: a language for dis-
tributed mobile programming. In Applied Semantics, pages 268–332. Springer.

[61] Fox, E. A. and Shaw, J. A. (1994). Combination of multiple searches. NIST
SPECIAL PUBLICATION SP, pages 243–243.

[62] Frankel, D. and Parodi, J. (2002). Using model-driven architecture to develop
web services. IONA Technologies white paper.

[63] Gadducci, F., Hölzl, M., Monreale, G. V., and Wirsing, M. (2013). Soft
constraints for lexicographic orders. In Mexican International Conference on
Artificial Intelligence, pages 68–79. Springer.

[64] Gadducci, F. and Santini, F. (2017). Residuation for bipolar preferences in
soft constraints. Inf. Process. Lett., 118:69–74.

[65] Gay, S., Soliman, S., and Fages, F. (2010). A graphical method for reducing
and relating models in systems biology. Bioinformatics, 26(18).

[66] Gelernter, D. and Carriero, N. (1992). Coordination languages and their
significance. Communications of the ACM, 35(2):96.

[67] Grigori, D., Corrales, J. C., and Bouzeghoub, M. (2006). Behavioral match-
making for service retrieval. In IEEE International Conference on Web Services
(ICWS), pages 145–152. IEEE Computer Society.

[68] Group, W. S. C. W. et al. (2002). Web services choreography description
language.

[69] Gu, X., Wichadakul, D., and Narhstedt, K. (2001). Visual qos programming
environment for ubiquitous multimedia services. In Multimedia and Expo, 2001.
ICME 2001. IEEE International Conference on, pages 575–578. IEEE.

[70] Guidara, I., Chaari, T., Fakhfakh, K., and Jmaiel, M. (2012). A comprehen-
sive survey on intra and inter organizational agreements. In Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE), 2012 IEEE
21st International Workshop on, pages 411–416. IEEE.

[71] Hao, Y., Zhang, Y., and Cao, J. (2007). Wsxplorer: Searching for desired
web services. In International Conference on Advanced Information Systems
Engineering, pages 173–187. Springer.

BIBLIOGRAPHY 167

[72] Hau, J., Lee, W., and Darlington, J. (2005). A semantic similarity measure
for semantic web services. In Web Service Semantics Workshop at WWW.

[73] Hausmann, J. H., Heckel, R., and Lohmann, M. (2005). Model-based de-
velopment of web service descriptions enabling a precise matching concept.
International Journal of Web Services Research, 2(2):67.

[74] Huhns, M. N. and Singh, M. P. (2005). Service-oriented computing: Key
concepts and principles. IEEE Internet Computing, 9(1):75–81.

[75] Hull, R., Benedikt, M., Christophides, V., and Su, J. (2003). E-services: a
look behind the curtain. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 1–14.
ACM.

[76] Huma, Z., Gerth, C., Engels, G., and Juwig, O. (2013). Automated service
discovery and composition for on-the-fly soas. Technical report, Tech. Rep.
TR-RI-13-333, University of Paderborn, Germany. http://is. uni-paderborn.
de/uploads/tx sibibtex/tr-ri-13-333. pdf.

[77] Iordache, R. and Moldoveanu, F. (2012). A conditional lexicographic ap-
proach for the elicitation of qos preferences. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pages 182–193.
Springer.

[78] Iosup, A., Sonmez, O., Anoep, S., and Epema, D. (2008). The performance
of bags-of-tasks in large-scale distributed systems. In Proceedings of the 17th
international symposium on High performance distributed computing, pages 97–
108. ACM.

[79] Järvelin, K. and Kekäläinen, J. (2000). Ir evaluation methods for retrieving
highly relevant documents. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 41–48. ACM.

[80] Jayasinghe, D. and Azeez, A. (2011). Apache Axis2 Web Services. Packt
Publishing.

[81] Jerstad, I., Dustdar, S., and Thanh, D. V. (2005). A service oriented archi-
tecture framework for collaborative services. In Enabling Technologies: Infras-
tructure for Collaborative Enterprise, 2005. 14th IEEE International Work-
shops on, pages 121–125. IEEE.

[82] Jongmans, S.-S. T. and Arbab, F. (2012). Overview of thirty semantic for-
malisms for reo. Sci. Ann. Comp. Sci., 22(1):201–251.

168 BIBLIOGRAPHY

[83] Jongmans, S.-S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsarmanesh,
H. (2012). Automatic code generation for the orchestration of web services with
reo. In European Conference on Service-Oriented and Cloud Computing, pages
1–16. Springer.

[84] Jongmans, S.-S. T., Santini, F., Sargolzaei, M., Arbab, F., and Afsarmanesh,
H. (2014). Orchestrating web services using reo: from circuits and behaviors to
automatically generated code. Service Oriented Computing and Applications,
8(4):277–297.

[85] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C.,
Bloch, B., Curbera, F., Ford, M., Goland, Y., et al. (2007). Web services
business process execution language version 2.0. OASIS standard, 11(120):5.

[86] Juric, M. B. (2006). A hands-on introduction to bpel. Oracle (white paper),
page 21.

[87] Koehler, C., Costa, D., Proença, J., and Arbab, F. (2008). Reconfiguration
of reo connectors triggered by dataflow. Electronic Communications of the
EASST, 10.

[88] Koehler, C. and Maraikar, Z. (2008). Eclipse coordination tools user manual.

[89] Kokash, N. and Arbab, F. (2008). Formal behavioral modeling and com-
pliance analysis for service-oriented systems. In Frank S.de Boer, Bonsangue,
M. M., and Madelain, E., editors, FMCO, volume 5751 of Lecture Notes in
Computer Science, pages 21–41. Springer.

[90] Kokash, N. and Arbab, F. (2013). Formal design and verification of long-
running transactions with extensible coordination tools. IEEE T. Services
Computing, 6(2):186–200.

[91] Kokash, N., Arbab, F., Changizi, B., and Makhnist, L. (2011). Input-output
conformance testing for channel-based service connectors. In Aceto, L. and
Mousavi, M. R., editors, PACO, volume 60 of EPTCS, pages 19–35.

[92] Kokash, N., Krause, C., and de Vink, E. (2010). Data-aware design and
verification of service compositions with reo and mcrl2. In Proceedings of the
2010 ACM Symposium on Applied Computing, pages 2406–2413. ACM.

[93] Kokash, N., Krause, C., and de Vink, E. (2012). Reo+ mcrl2: A frame-
work for model-checking dataflow in service compositions. Formal Aspects of
Computing, 24(2):187–216.

[94] Kopecky, J., Gomadam, K., and Vitvar, T. (2008). hrests: An html micro-
format for describing restful web services. In Web Intelligence and Intelligent

BIBLIOGRAPHY 169

Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Confer-
ence on, volume 1, pages 619–625. IEEE.

[95] Kopeckỳ, J., Vitvar, T., Bournez, C., and Farrell, J. (2007). Sawsdl: Seman-
tic annotations for wsdl and xml schema. IEEE Internet Computing, 11(6).

[96] Kopp, O., Engler, L., and van Lessen, T. (2010). Interaction choreography
models in bpel. In S-BPM ONE 2010-the Subjectoriented BPM Conference
(CCIS), volume 138. Springer-Verlag.

[97] Kopp, O., Leymann, F., and Wagner, S. (2011). Modeling choreographies:
Bpmn 2.0 versus bpel-based approaches. In EMISA, pages 225–230.

[98] Krause, C. et al. (2011). Reconfigurable component connectors. PhD thesis,
Phd thesis, University of Leiden.

[99] Kubovy, J., Geist, V., and Kossak, F. (2012). A formal description of the itil
change management process using abstract state machines. In Database and
Expert Systems Applications (DEXA), 2012 23rd International Workshop on,
pages 65–69. IEEE.

[100] Lara, R., Roman, D., Polleres, A., and Fensel, D. (2004). A conceptual
comparison of wsmo and owl-s. In Web services, pages 254–269. Springer.

[101] Lemos, A. L., Daniel, F., and Benatallah, B. (2016). Web service compo-
sition: a survey of techniques and tools. ACM Computing Surveys (CSUR),
48(3):33.

[102] Li, G., Han, Y., Zhao, Z., Wang, J., and Wagner, R. M. (2006). Facilitating
dynamic service compositions by adaptable service connectors. International
Journal of Web Services Research, 3(1):67–83.

[103] Ligeza, A. and Potempa, T. (2014). A] approach to formal analysis of bpmn
models: Towards a logical model for bpmn diagrams. In Advances in Business
ICT, pages 69–88. Springer.

[104] Ludwig, H. (2003). Web services qos: external slas and internal policies or:
how do we deliver what we promise? In Web Information Systems Engineering
Workshops, 2003. Proceedings. Fourth International Conference on, pages 115–
120. IEEE.

[105] Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. (2003). Web
service level agreement (wsla) language specification. IBM Corporation, pages
815–824.

170 BIBLIOGRAPHY

[106] MacKenzie, M. C., Laskey, K., McCabe, F., Brown, P. F., Metz, R., and
Hamilton, B. A. (2006). Reference model for service oriented architecture 1.0.
OASIS standard, 12:18.

[107] Maedche, A., Staab, S., et al. (2003). Services on the move: towards P2P-
enabled Semantic Web services. na.

[108] Mallayya, D., Ramachandran, B., and Viswanathan, S. (2015). An auto-
matic web service composition framework using qos-based web service ranking
algorithm. The Scientific World Journal, 2015.

[109] Mariotti, M., Manzini, P., et al. (2012). Choice by lexicographic semiorders.
Theoretical Economics, 7(1).

[110] Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M.,
Sycara, K., Mcguinness, D. L., Sirin, E., and Srinivasan, N. (2007). Bring-
ing semantics to web services with owl-s. World Wide Web, 10(3):243–277.

[111] McCool, M., Du Toit, S., Popa, T., Chan, B., and Moule, K. (2004). Shader
algebra. ACM Transactions on Graphics (TOG), 23(3):787–795.

[112] Mellor, S. J. (2004). MDA distilled: principles of model-driven architecture.
Addison-Wesley Professional.

[113] Menasce, D. (2002). QoS issues in web services. Internet Computing, IEEE,
6(6):72–75.

[114] Menasce, D. A. (2004). Composing web services: A qos view. IEEE Internet
computing, 8(6):88–90.

[115] Meng, S. and Arbab, F. (2007). Web services choreography and orchestra-
tion in reo and constraint automata. In Proceedings of the 2007 ACM sympo-
sium on Applied computing, pages 346–353. Acm.

[116] Meng, S. and Arbab, F. (2009). Qos-driven service selection and com-
position using quantitative constraint automata. Fundamenta Informaticae,
95(1):103–128.

[117] Meng, S. and Arbab, F. (2010). A model for web service coordination in
long-running transactions. In SOSE, pages 121–128. IEEE.

[118] Montesi, F., Guidi, C., Lucchi, R., and Zavattaro, G. (2007). Jolie: a
java orchestration language interpreter engine. Electronic Notes in Theoretical
Computer Science, 181:19–33.

BIBLIOGRAPHY 171

[119] Motahari Nezhad, H. R., Benatallah, B., Martens, A., Curbera, F., and
Casati, F. (2007). Semi-automated adaptation of service interactions. In Pro-
ceedings of the 16th international conference on World Wide Web, pages 993–
1002. ACM.

[120] Mousavi, M. R., Sirjani, M., and Arbab, F. (2006). Formal semantics and
analysis of component connectors in reo. Electronic Notes in Theoretical Com-
puter Science, 154(1):83–99.

[121] Msanjila, S. and Afsarmanesh, H. (2008). Trust analysis and assessment in
virtual organization breeding environments. International Journal of Produc-
tion Research, 46(5):1253–1295.

[122] Nie, P., Seppälä, R., and Hafrén, M. (2007). Open source power on bpm-a
comparison of jboss jbpm and intalio bpms. Special Course in Information
Systems Integration (2007): Business Process Integration, pages 1–26.

[123] Ouyang, C., Verbeek, E., Van Der Aalst, W. M., Breutel, S., Dumas, M.,
and Ter Hofstede, A. H. (2007). Formal semantics and analysis of control flow
in ws-bpel. Science of computer programming, 67(2-3):162–198.

[124] Pan, J. Z., Stamou, G., Stoilos, G., Taylor, S., and Thomas, E. (2008).
Scalable querying services over fuzzy ontologies. In Proceedings of World Wide
Web, WWW ’08, pages 575–584. ACM.

[125] Papadopoulos, G. A. and Arbab, F. (1998). Coordination models and lan-
guages. Advances in computers, 46:329–400.

[126] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2008).
Service-oriented computing: A research roadmap. International Journal of
Cooperative Information Systems, 17(02):223–255.

[127] Pautasso, C. (2009). Restful web service composition with bpel for rest.
Data & Knowledge Engineering, 68(9):851–866.

[128] Pei, S. and Chen, D. (2011). Research on dynamic web services composi-
tion framework based on quality of service. Information Technology Journal,
10(8):1645–1649.

[129] Peltz, C. (2003). Web services orchestration and choreography. Computer,
36(10):46–52.

[130] Petritsch, H. (2006). Service-oriented architecture (soa) vs. component
based architecture. Vienna University of Technology, Vienna.

[131] Pfleeger, S. L. and Atlee, J. M. (1998). Software engineering: theory and
practice. Pearson Education India.

172 BIBLIOGRAPHY

[132] Pistore, M., Traverso, P., Bertoli, P., and Marconi, A. (2005). Automated
synthesis of composite bpel4ws web services. In Web Services, 2005. ICWS
2005. Proceedings. 2005 IEEE International Conference on, pages 293–301.
IEEE.

[133] Plebani, P. and Pernici, B. (2009). Urbe: Web service retrieval based on
similarity evaluation. IEEE Trans. on Knowl. and Data Eng., 21(11):1629–
1642.

[134] Ponnekanti, S. R. and Fox, A. (2002). Sword: A developer toolkit for web
service composition. In Proc. of the Eleventh International World Wide Web
Conference, Honolulu, HI, volume 45.

[135] Prakash, J., Rohini, M., Ganesh, B., and Maheswari, V. (2013). Hybrid re-
liability model to enhance the efficiency of composite web services. In Emerging
Trends in Computing, Communication and Nanotechnology (ICE-CCN), 2013
International Conference on, pages 79–83. IEEE.

[136] Rohallah, B., Ramdane, M., and Zaidi, S. (2013). Agents and owl-s based
semantic web service discovery with user preference support. arXiv preprint
arXiv:1306.1478.

[137] Rossi, F., P. van Beek, and Walsh, T. (2006a). Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
New York, NY, USA.

[138] Rossi, F., Van Beek, P., and Walsh, T. (2006b). Handbook of constraint
programming. Elsevier.

[139] Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. In Middleware
2001, pages 329–350. Springer.

[140] Saint-Marcq, V., Deville, Y., and Solnon, C. (2009). Constraint-based graph
matching. In CP, pages 274–288.

[141] Sargolzaei, M. and Afsarmanesh, H. (2017a). C3q: A specification model
for web services within virtual organizations. In Working Conference on Col-
laboration in a Data-Rich World. Springer.

[142] Sargolzaei, M. and Afsarmanesh, H. (2017b). Service oriented collaborative
network architecture. In Working Conference on Collaboration in a Data-Rich
World. Springer.

[143] Sargolzaei, M., Afsarmanesh, H., and Shafahi, M. (2014a). D4.4 prototype
of the system for enhanced services recommendation.

BIBLIOGRAPHY 173

[144] Sargolzaei, M., Santini, F., Arbab, F., and Afsarmanesh, H. (2013). A
tool for behaviour-based discovery of approximately matching web services. In
International Conference on Software Engineering and Formal Methods, pages
152–166. Springer.

[145] Sargolzaei, M., Shafahi, M., Afsarmanesh, H., Camarinha-Matos, L., and
Thamburaj, V. (2014b). Glonet wp4: Customized service-enhanced product
specification.

[146] Saxe, J. G. and Schwartzott, C. (1994). The blind men and the elephant.

[147] Scholten, G. (2007). Mobile channels for exogenous coordination of dis-
tributed systems: semantics, implementation and composition. PhD thesis,
Phd thesis, University of Leiden.

[148] Shadi, M. and Afsarmanesh, H. (2013). Behavior modeling in virtual orga-
nizations. In Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, pages 50–55. IEEE.

[149] Shadi, M. and Afsarmanesh, H. (2014). Behavioral norms in virtual organi-
zations. In Working Conference on Virtual Enterprises, pages 48–59. Springer.

[150] Shadi, M., Afsarmanesh, H., and Dastani, M. (2013a). Agent behaviour
monitoring in virtual organizations. In Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE), 2013 IEEE 22nd International
Workshop on, pages 9–14. IEEE.

[151] Shadi, M., Afsarmanesh, H., and Dastani, M. (2013b). Agent behaviour
monitoring in virtual organizations. In Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE), 2013 IEEE 22nd International
Workshop on, pages 9–14. IEEE.

[152] Shafahi, M., Afsarmanesh, H., and Sargolzaei, M. (2014). A coopetition
space for complex product specification. In Working Conference on Virtual
Enterprises, pages 83–97. Springer.

[153] Shen, Z. and Su, J. (2005). Web service discovery based on behavior signa-
tures. In Proceedings of the 2005 IEEE International Conference on Services
Computing - Volume 01, SCC ’05, pages 279–286, Washington, DC, USA. IEEE
Computer Society.

[154] Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., and Xu, X.
(2014). Web services composition: A decades overview. Information Sciences,
280:218–238.

174 BIBLIOGRAPHY

[155] Tabatabaei, S. G. H., Kadir, W. M. N. W., Ibrahim, S., Dastjerdi, A. V.,
et al. (2009). Integrating discovery and composition of semantic web services
based on description logic.

[156] Talcott, C., Sirjani, M., and Ren, S. (2011). Comparing three coordination
models: Reo, arc, and pbrd. Science of Computer Programming, 76(1):3–22.

[157] Tasharofi, S., Vakilian, M., Moghaddam, R. Z., and Sirjani, M. (2007).
Modeling web service interactions using the coordination language reo. In
International Workshop on Web Services and Formal Methods, pages 108–123.
Springer.

[158] Terlouw, L. I. and Albani, A. (2013). An enterprise ontology-based approach
to service specification. IEEE Transactions on Services Computing, 6(1):89–
101.

[159] Thißen, D. and Wesnarat, P. (2006). Considering qos aspects in web service
composition. In Computers and Communications, 2006. ISCC’06. Proceedings.
11th IEEE Symposium on, pages 371–377. IEEE.

[160] Toch, E., Gal, A., Reinhartz-Berger, I., and Dori, D. (2007). A semantic
approach to approximate service retrieval. ACM Trans. Internet Technol., 8(1).

[161] Ullman, J. D. (1982). A first course in database systems. Pearson Education
India.

[162] Van Der Aalst, W. and Ter Hofstede, A. (2005). Yawl: yet another workflow
language. Information systems, 30(4):245–275.

[163] Van Der Aalst, W. M., Aldred, L., Dumas, M., and ter Hofstede, A. H.
(2004). Design and implementation of the yawl system. In International
Conference on Advanced Information Systems Engineering, pages 142–159.
Springer.

[164] van der Aalst, W. M., Dumas, M., ter Hofstede, A., and Wohed, P. (2002).
Pattern-based analysis of bpml (and wsci). Technical report, Citeseer.

[165] Vu, L.-H., Hauswirth, M., Porto, F., and Aberer, K. (2006). A search engine
for qos-enabled discovery of semantic web services. International Journal of
Business Process Integration and Management, 1(4):244–255.

[166] Wei, D., Wang, T., Wang, J., and Bernstein, A. (2011). Sawsdl-imatcher: A
customizable and effective semantic web service matchmaker. Web Semantics:
Science, Services and Agents on the World Wide Web, 9(4):402–417.

BIBLIOGRAPHY 175

[167] Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., and Russell,
N. (2006). On the suitability of bpmn for business process modelling. In Inter-
national conference on business process management, pages 161–176. Springer.

[168] Yu, T. and Lin, K.-J. (2005). Service selection algorithms for composing
complex services with multiple qos constraints. In International Conference on
Service-Oriented Computing, pages 130–143. Springer.

[169] Zemni, M. A., Benbernou, S., and Carro, M. (2010). A soft constraint-based
approach to QoS-aware service selection. In Service-Oriented Computing - 8th
International Conference, ICSOC 2010, volume 6470 of LNCS, pages 596–602.

[170] Zhang, J., Chang, C. K., Chung, J.-Y., and Kim, S. W. (2004). Ws-net:
A petri-net based specification model for web services. In Web Services, 2004.
Proceedings. IEEE International Conference on, pages 420–427. IEEE.

[171] Zimmer, P., Zimmer, M., and Zimmer, B. (2014). Fizzim an open-source
fsm design environment. Enterprise Information Systems, 9(5-6):528–555.

[172] Zisman, A., Dooley, J., and Spanoudakis, G. (2008). Proactive runtime
service discovery. In Proceedings of the 2008 IEEE International Conference
on Services Computing - Volume 1, SCC ’08, pages 237–245, Washington, DC,
USA. IEEE Computer Society.

[173] Zoeteweij, P. and Arbab, F. (2004). A component-based parallel constraint
solver. In International Conference on Coordination Languages and Models,
pages 307–322. Springer.

Samenvatting

In de hedendaagse economie zijn de samenwerking tussen, en de gemeenschap-
pelijk ontwikkeling van, organisaties gevolueerd van traditionele, statische supply
chains naar dynamische vorming van organisatienetwerken. Netwerkactiviteiten
tussen business partners leiden aantoonbaar tot lagere kosten, hogere kwaliteit,
grotere service- en/of productportfolios, snellere oplevering, en sterkere wend-
baarheid. Echter, door het tempo waarin deze trendveranderingen plaats dienen
te vinden, is er vraag ontstaan naar ICT-ondersteuning voor samenwerking tussen
organisaties. Dit leidde tot het vakgebied van “collaborative networks” (CN). In
ons onderzoek kijken we in het bijzonder naar twee vormen van CN, namelijk
“virtual organizations” (VO) en “VO breeding environments” (VBE).

Een uitdagend deelgebied van onderzoek naar CN richt zicht op nieuwe aan-
pakken voor het specificeren, het delen, en het integreren van bedrijfsprocessen
van organisaties, om samenwerking tussen partners, die mogelijk gedistribueerd
zijn, te verbeteren. Binnen dit uitdagende deelgebied, bestuderen we in ons on-
derzoek het veelbelovende paradigma van “service oriented architecture” (SOA);
we gebruiken SOA als een basis om de samenwerking tussen organisaties te ver-
beteren. We beargumenteren dat de huidige implementaties van de SOA-aanpak
de eisen die gesteld worden binnen CN onvoldoende ondersteunen, en niet de
verwachte voordelen opleveren voor organisaties die services delen en integreren.
We introduceren daarom een nieuw referentiekader voor “service oriented collabo-
rative networks” (SOCN). Dit referentiekader is een verfijning van het traditionele
SOA en het algemene SOA-model, om SOCNs op een efficinte manier te onders-
teunen.

We bespreken een implementatie-architectuur, die de door ons gedentificeerde
eisen aan het referentiekader vervult. Significante onderdelen van het referen-
tiekader en hun onderlinge relaties worden gentroduceerd door middel van een
uitgebreid SOA-model. De architectuur poogt een gemeenschappelijke servicese-
mantiek en een vernieuwend servicegedragsmodel te introduceren, die eenduidig
met, en tussen, verschillende implementatiemogelijkheden gebruikt kan worden.

177

178 Samenvatting

In dit PhD-project hebben we een proof-of-concept voor onze aanpak ontwikkeld,
die specifieke architecturen, standaarden, en technologien gebruikt. We bespreken
de implementatiedetails die onze SOCN-architectuur realiseren. De ontwikkelde
SOA-architectuur bestaat conceptueel uit drie hoofdsoftwaremodules: de Specifi-
cation Module, de Discovery Module, en de Composition Module. Deze modules
worden hieronder beschreven.

De SOCN Specification Module behandelt de specificatie van software-
services die worden aangeboden door verschillende leden/stakeholders binnen een
VO, acterend in de rol van serviceaanbieder. Dergelijke gedeelde services in de
VO worden gepubliceerd in een serviceregister binnen een VO; ze voldoen aan
bepaalde afspraken, zoals de SLA en OLA, die gedefinieerd zijn op het VBE-
niveau. Deze module is gebaseerd op een uitbreiding van, en verbetering aan,
de huidige web-service-beschrijvingsaanpakken en -standaarden, om efficintere
serviceontdekking en -compositie in VO te ondersteunen. Eerst tonen we een
datamodel, namelijk C3Q (Capability, Costs, Conspicuities, en Quality-criteria
van services), om de verschillende soorten informatie te representeren die nodig
zijn om services te beschrijven. C3Q wordt beschouwd als het competentiemodel
voor services binnen de VO. Vervolgens introduceren we een kleine uitbreiding
van WSDL, die we XWSDL noemen, om web-services te specificeren volgens het
C3Q-model. XWSDL ondersteunt het geven van een alomvattende beschrijving
van de mogelijkheden van web-services, en belicht in het bijzonder de belangrijke
rol van servicegedrag in het realiseren van het semi-geautomatiseerde “service-
oriented computing” (SOC). We hebben ook een gebruiksvriendelijke GUI on-
twikkeld, die serviceontwikkelaars helpt bij het correct beschrijven en visualiseren
van gedragsspecificaties van hun services.

De SOCN Discovery Module van het referentiekader biedt mechanismen
voor de efficinte en nauwkeurige “discovery” (ontdekking) en selectie van de meest
geschikte service tussen de bestaande gedeelde services in een VO. Om de services
die gevonden worden door deze module succesvol op geautomatiseerde wijze in te
passen, zijn beschrijvingen uit de Specification Module nodig. We hebben een tool
ontwikkeld voor “similarity-based discovery” van web-services, die in staat is om
service-beschrijvingen in een serviceregister te rangschikken, in overeenstemming
met een “similarity score” waarin elke service in het register wordt vergeleken
met een beschrijving van de service waarnaar de gebruiker op zoek is. De tool
is gebaseerd op een implementatie van “approximate operational-similarity eval-
uation with constraints”, die het mogelijk maakt om op kwantitatieve wijze het
verschil tussen twee gedragingen te benaderen. Door het probleem te definiren
als een “soft constraint satisfaction problem” (SCCP), wordt het parametrisch in
de gekozen “similarity metric” (i.e., een semiring). Dit maakt het mogelijk om
efficinte AI-technieken te gebruiken om tot een oplossing te komen.

De SOCN Composition Module van het abstracte referentiekader bevat
functies die servicecompositie ondersteunen. Efficinte servicecompositie, voor de
creatie van nieuwe services die waarde toevoegen in de VO, vereist dat niet alleen

Samenvatting 179

de rijke meta-data uit de Specification Module dient te worden beschouwd, maar
ook een model van de beoogde cordinatie tussen de “component services” die de
“composite service” vormen. “Orchestration” en “choreography” zijn twee alter-
natieve manieren om invulling te geven aan dergelijke cordinatieaspecten van een
servicecompositie. Wij verdedigen orchestration voor VO-servicecompositie met
de cordinatietaal Reo. We hebben een tool ontwikkeld die automatisch “orches-
trators” (i.e., “Reo connectors”) vertaalt naar Javacode, en een “proxy” creert
voor elke betrokken component service. Deze proxy is verantwoordelijk voor het
managen van de communicatie tussen de technologie achter de web-service en de
Reo-omgeving.

Acknowledgments

I would like to extend my sincere gratitude and special appreciation to my pro-
moter Prof. Dr. Hamideh Afsarmanesh for her great support and guidance during
my PhD study, and being a friend for me. Her patience, and immense knowledge
make me confident for doing my research and writing of this thesis.

I would also like to express my special thanks to my second promoter Prof. Dr.
Farhad Arbab for all his insightful advices and stimulating discussions during my
study. His scientific mindset and influential personality have been always inspiring
to me.

An special thanks goes to Dr. Francesco Santini, you have been supporting
me throughout my research technically and scientifically. You have been always
open to my questions and enthusiastic to share your ideas and insights with me.

I would like to convey my great appreciation to my committee members, Prof.
Worring, Prof. Meijer, Prof. Grefen, Prof. Groen, Dr. Dastani, Dr. Xu, and Dr
Belloum, for agreeing to be on my committee and critically reading my thesis.

I am thankful to Sung-Shik Jongmans for the stimulating discussions, for the
days we were working together, and for his invaluable help to write the Samenvat-
ting section. My special thanks also goes to my colleagues and friends, Amirhos-
sein, Fahimeh, Gerben, Hamidreza, Hodjat, Jafar, Marzieh, Masoud, Mirriam,
Mohammad, Naser, and Sijali for all the fun we have had and for their help to
shape and develop ideas in my research.

Words are powerless to express my heartfelt gratitude to my lovely parents
Fatemeh, and Gholamreza. I am grateful to them for their unconditional love
and support.

Lastly, I wish to thank my family. My beloved wife for believing in me and for
giving endless support in whatever I did. My angel, Sarina, for the joyful sense
of life that she gives me. To them I dedicate this thesis.

181

Abbreviations

AI Artificial Intelligence
ARC Actors-Roles-Coordinators
BehSearch Behavior-based Search
BP Business Process
BPEL4WS BPEL for Web Services
BPMN Business Process Model and Notation
BS Business Service
C3Q Capability, Cost, Conspicuity, and Quality criteria
CA Constraint Automata
CircCG Circuit Code Generator
CN Collaborative Network
CNO Collaborative Network Organization
COP Constraint Optimization Problem
CSP Constraint Satisfaction Problems
ECT Extensible Coordination Tools
EPC Engineering, Procurement, and Construction
ER Entity-Relationship
FSM Finite State Machine
GUI Graphical User Interface
I/O Input/Output
ICT Internet and Communication Technology
IT Internet Technology
JaCoP Java Constraint Programming solver
LTS Labeled Transition System
MDA Model Driven Architecture
MOF Meta Object Facility
OLA Operational Level Agreement
OMG Object Management Group
OOP Object-Oriented Programming

183

184 Abbreviations

OrchCG Orchestration Code Generator
OWL-S Web Ontology Language for Web Services
PBRD Policy-based Russian Dolls
ProxCG Proxy Code Generator
QWSDL QoS-enabled WSDL
R-P Recall/Precision
PLC Product Life Cycle
RRD Reflective Russian Dolls
RQ Research Question
PSDR Product/Service Discovery & Recommendation
PSS Product Service Specification
PST Product Specification Tool
SCA Soft Constraint Automata
SCSP Soft Constraint Satisfaction Problems
SCU Service Communication Unit
SDC Soft Data-Constraints
SLA Service Level Agreements
SLC Service Life Cycle
SME Small and Medium-sized Enterprise
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOC Service Oriented Computing
SOCN Service Oriented Collaborative Network
SST Service Specification Tool
TDS Timed Data Streams
TWDS Timed Weighted Data Streams
UML Unified Modeling Language
URBE UDDI Registry By Example
URI Uniform Resource Identifier
VBE Virtual Organizations Breeding Environment
VO Virtual Organization
VOSAT VO Supervisory Assisting Tool
W3C World Wide Web Consortium
WF Workflow Foundation
WS Web Service
WS-CDL Web Service Choreography Description Languages
WSBS Web Service Behaviour Specification
WSCI Web Service Choreography Interface
WSDL Web Service Description Language
WSDL-S WSDL Semantics
WSXplorer Web Service Explorer
XWSDL Extended WSDL
YAWL Yet Another Workflow Language

SIKS Dissertation Series

2018-01 Han van der Aa (VUA), Comparing and
Aligning Process Representations .

2018-02 Felix Mannhardt (TUE), Multi-perspective
Process Mining .

2018-03 Steven Bosems (UT), Causal Models For
Well-Being: Knowledge Modeling, Model-Driven
Development of Context-Aware Applications, and
Behavior Prediction.

2018-04 Jordan Janeiro (TUD), Flexible
Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks .

2018-05 Hugo Huurdeman (UVA), Supporting the
Complex Dynamics of the Information Seeking
Process .

2018-06 Dan Ionita (UT), Model-Driven
Information Security Risk Assessment of
Socio-Technical Systems .

2018-07 Jieting Luo (UU), A formal account of
opportunism in multi-agent systems .

2018-08 Rick Smetsers (RUN), Advances in Model
Learning for Software Systems .

2018-09 Xu Xie (TUD), Data Assimilation in
Discrete Event Simulations .

2017-01 Jan-Jaap Oerlemans (UL), Investigating
Cybercrime.

2017-02 Sjoerd Timmer (UU), Designing and
Understanding Forensic Bayesian Networks using
Argumentation.

2017-03 Daniël Harold Telgen (UU), Grid
Manufacturing; A Cyber-Physical Approach with
Autonomous Products and Reconfigurable
Manufacturing Machines.

2017-04 Mrunal Gawade (CWI), Multi-core
Parallelism in a Column-store.

2017-05 Mahdieh Shadi (UVA), Collaboration
Behavior.

2017-06 Damir Vandic (EUR), Intelligent
Information Systems for Web Product Search.

2017-07 Roel Bertens (UU), Insight in Information:
from Abstract to Anomaly.

2017-08 Rob Konijn (VU) , Detecting Interesting
Differences:Data Mining in Health Insurance Data
using Outlier Detection and Subgroup Discovery.

2017-09 Dong Nguyen (UT), Text as Social and
Cultural Data: A Computational Perspective on
Variation in Text.

2017-10 Robby van Delden (UT), (Steering)
Interactive Play Behavior.

2017-11 Florian Kunneman (RUN), Modelling
patterns of time and emotion in Twitter
#anticipointment.

2017-12 Sander Leemans (TUE), Robust Process
Mining with Guarantees.

2017-13 Gijs Huisman (UT), Social Touch
Technology - Extending the reach of social touch
through haptic technology.

2017-14 Shoshannah Tekofsky (UvT), You Are
Who You Play You Are: Modelling Player Traits
from Video Game Behavior.

2017-15 Peter Berck (RUN), Memory-Based Text
Correction.

2017-16 Aleksandr Chuklin (UVA), Understanding
and Modeling Users of Modern Search Engines.

2017-17 Daniel Dimov (UL), Crowdsourced Online
Dispute Resolution.

2017-18 Ridho Reinanda (UVA), Entity
Associations for Search.

2017-19 Jeroen Vuurens (UT), Proximity of Terms,
Texts and Semantic Vectors in Information
Retrieval.

2017-20 Mohammadbashir Sedighi (TUD),
Fostering Engagement in Knowledge Sharing: The
Role of Perceived Benefits, Costs and Visibility.

2017-21 Jeroen Linssen (UT), Meta Matters in
Interactive Storytelling and Serious Gaming (A

185

Play on Worlds).

2017-22 Sara Magliacane (VU), Logics for causal
inference under uncertainty.

2017-23 David Graus (UVA), Entities of Interest —
Discovery in Digital Traces.

2017-24 Chang Wang (TUD), Use of Affordances
for Efficient Robot Learning.

2017-25 Veruska Zamborlini (VU), Knowledge
Representation for Clinical Guidelines, with
applications to Multimorbidity Analysis and
Literature Search.

2017-26 Merel Jung (UT), Socially intelligent
robots that understand and respond to human
touch.

2017-27 Michiel Joosse (UT), Investigating
Positioning and Gaze Behaviors of Social Robots:
People’s Preferences, Perceptions and Behaviors.

2017-28 John Klein (VU), Architecture Practices
for Complex Contexts.

2017-29 Adel Alhuraibi (UvT), From
IT-BusinessStrategic Alignment to Performance: A
Moderated Mediation Model of Social Innovation,
and Enterprise Governance of IT”.

2017-30 Wilma Latuny (UvT), The Power of Facial
Expressions.

2017-31 Ben Ruijl (UL), Advances in
computational methods for QFT calculations.

2017-32 Thaer Samar (RUN), Access to and
Retrievability of Content in Web Archives.

2017-33 Brigit van Loggem (OU), Towards a
Design Rationale for Software Documentation: A
Model of Computer-Mediated Activity.

2017-34 Maren Scheffel (OU), The Evaluation
Framework for Learning Analytics .

2017-35 Martine de Vos (VU), Interpreting natural
science spreadsheets .

2017-36 Yuanhao Guo (UL), Shape Analysis for
Phenotype Characterisation from High-throughput
Imaging .

2017-37 Alejandro Montes Garcia (TUE), WiBAF:
A Within Browser Adaptation Framework that
Enables Control over Privacy .

2017-38 Alex Kayal (TUD), Normative Social
Applications .

2017-39 Sara Ahmadi (RUN), Exploiting
properties of the human auditory system and
compressive sensing methods to increase noise
robustness in ASR .

2017-40 Altaf Hussain Abro (VUA), Steer your
Mind: Computational Exploration of Human
Control in Relation to Emotions, Desires and
Social Support For applications in human-aware
support systems .

2017-41 Adnan Manzoor (VUA), Minding a
Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide
Support for a Healthy Lifestyle.

2017-42 Elena Sokolova (RUN), Causal discovery
from mixed and missing data with applications on
ADHD datasets.

2017-43 Maaike de Boer (RUN), Semantic
Mapping in Video Retrieval.

2017-44 Garm Lucassen (UU), Understanding User
Stories - Computational Linguistics in Agile
Requirements Engineering.

2017-45 Bas Testerink (UU), Decentralized
Runtime Norm Enforcement.

2017-46 Jan Schneider (OU), Sensor-based
Learning Support.

2017-47 Jie Yang (TUD), Crowd Knowledge
Creation Acceleration.

2017-48 Angel Suarez (OU), Collaborative
inquiry-based learning.

2016-01 Syed Saiden Abbas (RUN) , Recognition of
Shapes by Humans and Machines.

2016-02 Michiel Christiaan Meulendijk (UU),
Optimizing medication reviews through decision
support: prescribing a better pill to swallow.

2016-03 Maya Sappelli (RUN), Knowledge Work in
Context: User Centered Knowledge Worker
Support.

2016-04 Laurens Rietveld (VU), Publishing and
Consuming Linked Data.

2016-05 Evgeny Sherkhonov (UVA), Expanded
Acyclic Queries: Containment and an Application
in Explaining Missing Answers.

2016-06 Michel Wilson (TUD), Robust scheduling
in an uncertain environment.

2016-07 Jeroen de Man (VU), Measuring and
modeling negative emotions for virtual training.

2016-08 Matje van de Camp (TiU), A Link to the
Past: Constructing Historical Social Networks from
Unstructured Data.

2016-09 Archana Nottamkandath (VU), Trusting
Crowdsourced Information on Cultural Artefacts.

2016-10 George Karafotias (VUA), Parameter
Control for Evolutionary Algorithms.

2016-11 Anne Schuth (UVA), Search Engines that
Learn from Their Users.

2016-12 Max Knobbout (UU), Logics for Modelling
and Verifying Normative Multi-Agent Systems.

2016-13 Nana Baah Gyan (VU), The Web, Speech
Technologies and Rural Development in West
Africa - An ICT4D Approach.

2016-14 Ravi Khadka (UU), Revisiting Legacy
Software System Modernization.

2016-15 Steffen Michels (RUN), Hybrid
Probabilistic Logics - Theoretical Aspects,
Algorithms and Experiments.

2016-16 Guangliang Li (UVA), Socially Intelligent
Autonomous Agents that Learn from Human
Reward.

2016-17 Berend Weel (VU), Towards Embodied
Evolution of Robot Organisms.

2016-18 Albert Meroño Peñuela (VU), Refining
Statistical Data on the Web.

2016-19 Julia Efremova (Tu/e), Mining Social
Structures from Genealogical Data.

2016-20 Daan Odijk (UVA), Context & Semantics
in News & Web Search.

2016-21 Alejandro Moreno Célleri (UT), From
Traditional to Interactive Playspaces: Automatic
Analysis of Player Behavior in the Interactive Tag
Playground.

2016-22 Grace Lewis (VU), Software Architecture
Strategies for Cyber-Foraging Systems.

2016-23 Fei Cai (UVA), Query Auto Completion in
Information Retrieval.

2016-24 Brend Wanders (UT), Repurposing and
Probabilistic Integration of Data; An Iterative and
data model independent approach.

2016-25 Julia Kiseleva (TU/e), Using Contextual
Information to Understand Searching and
Browsing Behavior.

2016-26 Dilhan Thilakarathne (VU), In or Out of
Control: Exploring Computational Models to
Study the Role of Human Awareness and Control
in Behavioural Choices, with Applications in
Aviation and Energy Management Domains.

2016-27 Wen Li (TUD), Understanding Geo-spatial
Information on Social Media.

2016-28 Mingxin Zhang (TUD), Large-scale
Agent-based Social Simulation - A study on
epidemic prediction and control.

2016-29 Nicolas Höning (TUD), Peak reduction in
decentralised electricity systems - Markets and
prices for flexible planning.

2016-30 Ruud Mattheij (UvT), The Eyes Have It.

2016-31 Mohammad Khelghati (UT), Deep web
content monitoring.

2016-32 Eelco Vriezekolk (UT), Assessing
Telecommunication Service Availability Risks for
Crisis Organisations.

2016-33 Peter Bloem (UVA), Single Sample
Statistics, exercises in learning from just one
example.

2016-34 Dennis Schunselaar (TUE), Configurable
Process Trees: Elicitation, Analysis, and
Enactment.

2016-35 Zhaochun Ren (UVA), Monitoring Social
Media: Summarization, Classification and
Recommendation.

2016-36 Daphne Karreman (UT), Beyond R2D2:
The design of nonverbal interaction behavior
optimized for robot-specific morphologies.

2016-37 Giovanni Sileno (UvA), Aligning Law and
Action - a conceptual and computational inquiry.

2016-38 Andrea Minuto (UT), Materials that
Matter - Smart Materials meet Art & Interaction
Design.

2016-39 Merijn Bruijnes (UT), Believable Suspect
Agents; Response and Interpersonal Style Selection
for an Artificial Suspect.

2016-40 Christian Detweiler (TUD), Accounting
for Values in Design.

2016-41 Thomas King (TUD), Governing
Governance: A Formal Framework for Analysing
Institutional Design and Enactment Governance.

2016-42 Spyros Martzoukos (UVA), Combinatorial
and Compositional Aspects of Bilingual Aligned
Corpora.

2016-43 Saskia Koldijk (RUN), Context-Aware
Support for Stress Self-Management: From Theory
to Practice.

2016-44 Thibault Sellam (UVA), Automatic
Assistants for Database Exploration.

2016-45 Bram van de Laar (UT), Experiencing
Brain-Computer Interface Control.

2016-46 Jorge Gallego Perez (UT), Robots to Make
you Happy.

2016-47 Christina Weber (UL), Real-time foresight
- Preparedness for dynamic innovation networks.

2016-48 Tanja Buttler (TUD), Collecting Lessons
Learned.

2016-49 Gleb Polevoy (TUD), Participation and
Interaction in Projects. A Game-Theoretic
Analysis.

2016-50 Yan Wang (UVT), The Bridge of Dreams:
Towards a Method for Operational Performance
Alignment in IT-enabled Service Supply Chains.

2015-01 Niels Netten (UVA), Machine Learning for
Relevance of Information in Crisis Response.

2015-02 Faiza Bukhsh (UVT), Smart auditing:
Innovative Compliance Checking in Customs
Controls.

2015-03 Twan van Laarhoven (RUN), Machine
learning for network data.

2015-04 Howard Spoelstra (OUN), Collaborations in
Open Learning Environments.

2015-05 Christoph Bsch (UT), Cryptographically
Enforced Search Pattern Hiding.

2015-06 Farideh Heidari (TUD), Business Process
Quality Computation - Computing Non-Functional
Requirements to Improve Business Processes.

2015-07 Maria-Hendrike Peetz (UVA), Time-Aware
Online Reputation Analysis.

2015-08 Jie Jiang (TUD), Organizational
Compliance: An agent-based model for designing
and evaluating organizational interactions.

2015-09 Randy Klaassen (UT), HCI Perspectives on
Behavior Change Support Systems.

2015-10 Henry Hermans (OUN), OpenU: design of
an integrated system to support lifelong learning.

2015-11 Yongming Luo (TUE), Designing algorithms
for big graph datasets: A study of computing
bisimulation and joins.

2015-12 Julie M. Birkholz (VU), Modi Operandi of
Social Network Dynamics: The Effect of Context
on Scientific Collaboration Networks.

2015-13 Giuseppe Procaccianti (VU),
Energy-Efficient Software.

2015-14 Bart van Straalen (UT), A cognitive
approach to modeling bad news conversations.

2015-15 Klaas Andries de Graaf (VU),
Ontology-based Software Architecture
Documentation.

2015-16 Changyun Wei (UT), Cognitive
Coordination for Cooperative Multi-Robot
Teamwork.

2015-17 Andr van Cleeff (UT), Physical and Digital
Security Mechanisms: Properties, Combinations
and Trade-offs.

2015-18 Holger Pirk (CWI), Waste Not, Want Not! -
Managing Relational Data in Asymmetric
Memories.

2015-19 Bernardo Tabuenca (OUN), Waste Not,
Want Not! - Managing Relational Data in
Asymmetric MemoriesUbiquitous Technology for
Lifelong Learners.

2015-20 Los Vanhe (UU), Using Culture and Values
to Support Flexible Coordination Using Culture
and Values to Support Flexible Coordination.

2015-21 Sibren Fetter (OUN), Using Culture and
Values to Support Flexible CoordinationUsing
Peer-Support to Expand and Stabilize Online
Learning.

2015-22 Zhemin Zhu (UT), Co-occurrence Rate
Networks - Towards separate training for
undirected graphical models.

2015-23 Luit Gazendam (VU), Using Culture and
Values to Support Flexible CoordinationCataloguer
Support in Cultural Heritage.

2015-24 Richard Berendsen (UVA), Finding People,
Papers, and Posts: Vertical Search Algorithms and
Evaluation.

2015-25 Steven Woudenberg (UU), Bayesian Tools
for Early Disease Detection.

2015-26 Alexander Hogenboom (EUR), Sentiment
Analysis of Text Guided by Semantics and
Structure.

2015-27 Sndor Hman (CWI), Updating compressed
colomn stores.

2015-28 Janet Bagorogoza (EUR), Knowledge
Management and High Performance; The Uganda
Financial Institutions Model for HPO.

2015-29 Hendrik Baier (UM), Monte-Carlo Tree
Search Enhancements for One-Player and
Two-Player Domains.

2015-30 Kiavash Bahreini (OU), Real-time
Multimodal Emotion Recognition in E-Learning.

2015-31 Yakup Ko (TUD), On the robustness of
Power Grids.

2015-32 Jerome Gard (UL), Corporate Venture
Management in SMEs.

2015-33 Frederik Schadd (UM), Ontology Mapping
with Auxiliary Resources.

2015-34 Victor de Graaff (UT), Gesocial
Recommender Systems.

2015-35 Jungxao Xu (TUD), Affective Body
Language of Humanoid Robots: Perception and
Effects in Human Robot Interaction.

2014-01 Nicola Barile (UU), Studies in Learning
Monotone Models from Data.

2014-02 Fiona Tuliyano (RUN), Combining System
Dynamics with a Domain Modeling Method.

2014-03 Sergio Raul Duarte Torres (UT),
Information Retrieval for Children: Search
Behavior and Solutions.

2014-04 Hanna Jochmann-Mannak (UT), Websites
for children: search strategies and interface design -
Three studies on children’s search performance and
evaluation.

2014-05 Jurriaan van Reijsen (UU), Knowledge
Perspectives on Advancing Dynamic Capability.

2014-06 Damian Tamburri (VU), Supporting
Networked Software Development.

2014-07 Arya Adriansyah (TUE), Aligning Observed
and Modeled Behavior.

2014-08 Samur Araujo (TUD), Data Integration over
Distributed and Heterogeneous Data Endpoints.

2014-09 Philip Jackson (UVT), Toward
Human-Level Artificial Intelligence: Representation
and Computation of Meaning in Natural Language.

2014-10 Ivan Salvador Razo Zapata (VU), Service
Value Networks.

2014-11 Janneke van der Zwaan (TUD), An
Empathic Virtual Buddy for Social Support.

2014-12 Willem van Willigen (VU), Look Ma, No
Hands: Aspects of Autonomous Vehicle Control.

2014-13 Arlette van Wissen (VU), Agent-Based
Support for Behavior Change: Models and
Applications in Health and Safety Domains.

2014-14 Yangyang Shi (TUD), Language Models
With Meta-information.

2014-15 Natalya Mogles (VU), Agent-Based
Analysis and Support of Human Functioning in
Complex Socio-Technical Systems: Applications in
Safety and Healthcare.

2014-16 Krystyna Milian (VU), Supporting trial
recruitment and design by automatically
interpreting eligibility criteria.

2014-17 Kathrin Dentler (VU), Computing
healthcare quality indicators automatically:

Secondary Use of Patient Data and Semantic
Interoperability.

2014-18 Mattijs Ghijsen (UVA), Methods and
Models for the Design and Study of Dynamic
Agent Organizations.

2014-19 Vinicius Ramos (TUE), Adaptive
Hypermedia Courses: Qualitative and Quantitative
Evaluation and Tool Support.

2014-20 Mena Habib (UT), Named Entity
Extraction and Disambiguation for Informal Text:
The Missing Link.

2014-21 Kassidy Clark (TUD), Negotiation and
Monitoring in Open Environments.

2014-22 Marieke Peeters (UU), Personalized
Educational Games - Developing agent-supported
scenario-based training.

2014-23 Eleftherios Sidirourgos (UVA/CWI), Space
Efficient Indexes for the Big Data Era.

2014-24 Davide Ceolin (VU), Trusting
Semi-structured Web Data.

2014-25 Martijn Lappenschaar (RUN), New network
models for the analysis of disease interaction.

2014-26 Tim Baarslag (TUD), What to Bid and
When to Stop.

2014-27 Rui Jorge Almeida (EUR), Conditional
Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty.

2014-28 Anna Chmielowiec (VU), Decentralized
k-Clique Matching.

2014-29 Jaap Kabbedijk (UU), Variability in
Multi-Tenant Enterprise Software.

2014-30 Peter de Cock (UVT), Anticipating
Criminal Behaviour.

2014-31 Leo van Moergestel (UU), Agent
Technology in Agile Multiparallel Manufacturing
and Product Support.

2014-32 Naser Ayat (UVA), On Entity Resolution in
Probabilistic Data.

2014-33 Tesfa Tegegne (RUN), Service Discovery in
eHealth.

2014-34 Christina Manteli(VU), The Effect of
Governance in Global Software Development:
Analyzing Transactive Memory Systems..

2014-35 Joost van Oijen (UU), Cognitive Agents in
Virtual Worlds: A Middleware Design Approach.

2014-36 Joos Buijs (TUE), Flexible Evolutionary
Algorithms for Mining Structured Process Models..

2014-37 Maral Dadvar (UT), Experts and Machines
United Against Cyberbullying.

2014-38 Danny Plass-Oude Bos (UT), Making
brain-computer interfaces better: improving
usability through post-processing..

2014-39 Jasmina Maric (UVT), Web Communities,
Immigration, and Social Capital.

2014-40 Walter Omona (RUN), A Framework for
Knowledge Management Using ICT in Higher

Education..

2014-41 Frederic Hogenboom (EUR), Automated
Detection of Financial Events in News Text.

2014-42 Carsten Eijckhof (CWI/TUD), Contextual
Multidimensional Relevance Models.

2014-43 Kevin Vlaanderen (UU), Supporting
Process Improvement using Method Increments .

2014-44 Paulien Meesters (UVT), Intelligent Blauw.
Met als ondertitel: Intelligence-gestuurde
politiezorg in gebiedsgebonden eenheden..

2014-45 Birgit Schmitz (OUN), Mobile Games for
Learning: A Pattern-Based Approach.

2014-46 Ke Tao (TUD), Social Web Data Analytics:
Relevance, Redundancy, Diversity.

2014-47 Shangsong Liang (UVA), Fusion and
Diversification in Information Retrieval.

2013-01 Viorel Milea (EUR), News Analytics for
Financial Decision Support.

2013-02 Erietta Liarou (CWI), MonetDB/DataCell:
Leveraging the Column-store Database Technology
for Efficient and Scalable Stream Processing.

2013-03 Szymon Klarman (VU), Reasoning with
Contexts in Description Logics.

2013-04 Chetan Yadati(TUD), Coordinating
autonomous planning and scheduling.

2013-05 Dulce Pumareja (UT), Groupware
Requirements Evolutions Patterns.

2013-06 Romulo Goncalves(CWI), The Data
Cyclotron: Juggling Data and Queries for a Data
Warehouse Audience.

2013-07 Giel van Lankveld (UVT), Quantifying
Individual Player Differences.

2013-08 Robbert-Jan Merk(VU), Making enemies:
cognitive modeling for opponent agents in fighter
pilot simulators.

2013-09 Fabio Gori (RUN), Metagenomic Data
Analysis: Computational Methods and
Applications.

2013-10 Jeewanie Jayasinghe Arachchige(UVT), A
Unified Modeling Framework for Service Design..

2013-11 Evangelos Pournaras(TUD), Multi-level
Reconfigurable Self-organization in Overlay
Services.

2013-12 Marian Razavian(VU), Knowledge-driven
Migration to Services.

2013-13 Mohammad Safiri(UT), Service Tailoring:
User-centric creation of integrated IT-based
homecare services to support independent living of
elderly.

2013-14 Jafar Tanha (UVA), Ensemble Approaches
to Semi-Supervised Learning Learning.

2013-15 Daniel Hennes (UM), Multiagent Learning -
Dynamic Games and Applications.

2013-16 Eric Kok (UU), Exploring the practical
benefits of argumentation in multi-agent
deliberation.

2013-17 Koen Kok (VU), The PowerMatcher: Smart
Coordination for the Smart Electricity Grid.

2013-18 Jeroen Janssens (UVT), Outlier Selection
and One-Class Classification.

2013-19 Renze Steenhuizen (TUD), Coordinated
Multi-Agent Planning and Scheduling.

2013-20 Katja Hofmann (UVA), Fast and Reliable
Online Learning to Rank for Information Retrieval.

2013-21 Sander Wubben (UVT), Text-to-text
generation by monolingual machine translation.

2013-22 Tom Claassen (RUN), Causal Discovery and
Logic.

2013-23 Patricio de Alencar Silva(UVT), Value
Activity Monitoring.

2013-24 Haitham Bou Ammar (UM), Automated
Transfer in Reinforcement Learning.

2013-25 Agnieszka Anna Latoszek-Berendsen (UM),
Intention-based Decision Support. A new way of
representing and implementing clinical guidelines
in a Decision Support System.

2013-26 Alireza Zarghami (UT), Architectural
Support for Dynamic Homecare Service
Provisioning.

2013-27 Mohammad Huq (UT), Inference-based
Framework Managing Data Provenance.

2013-28 Frans van der Sluis (UT), When Complexity
becomes Interesting: An Inquiry into the
Information eXperience.

2013-29 Iwan de Kok (UT), Listening Heads.

2013-30 Joyce Nakatumba (TUE), Resource-Aware
Business Process Management: Analysis and
Support.

2013-31 Dinh Khoa Nguyen (UVT), Blueprint Model
and Language for Engineering Cloud Applications.

2013-32 Kamakshi Rajagopal (OUN), Networking
For Learning; The role of Networking in a Lifelong
Learner’s Professional Development.

2013-33 Qi Gao (TUD), User Modeling and
Personalization in the Microblogging Sphere.

2013-34 Kien Tjin-Kam-Jet (UT), Distributed Deep
Web Search.

2013-35 Abdallah El Ali (UVA), Minimal Mobile
Human Computer Interaction.

2013-36 Than Lam Hoang (TUe), Pattern Mining in
Data Streams.

2013-37 Dirk Brner (OUN), Ambient Learning
Displays.

2013-38 Eelco den Heijer (VU), Autonomous
Evolutionary Art.

2013-39 Joop de Jong (TUD), A Method for
Enterprise Ontology based Design of Enterprise
Information Systems.

2013-40 Pim Nijssen (UM), Monte-Carlo Tree
Search for Multi-Player Games.

2013-41 Jochem Liem (UVA), Supporting the
Conceptual Modelling of Dynamic Systems: A
Knowledge Engineering Perspective on Qualitative
Reasoning.

2013-42 Lon Planken (TUD), Algorithms for Simple
Temporal Reasoning.

2013-43 Marc Bron (UVA), Exploration and
Contextualization through Interaction and
Concepts.

2012-01 Terry Kakeeto (UVT), Relationship
Marketing for SMEs in Uganda.

2012-02 Muhammad Umair(VU), Adaptivity,
emotion, and Rationality in Human and Ambient
Agent Models.

2012-03 Adam Vanya (VU), Supporting Architecture
Evolution by Mining Software Repositories.

2012-04 Jurriaan Souer (UU), Development of
Content Management System-based Web
Applications.

2012-05 Marijn Plomp (UU), Maturing
Interorganisational Information Systems.

2012-06 Wolfgang Reinhardt (OU), Awareness
Support for Knowledge Workers in Research
Networks.

2012-07 Rianne van Lambalgen (VU), When the
Going Gets Tough: Exploring Agent-based Models
of Human Performance under Demanding
Conditions.

2012-08 Gerben de Vries (UVA), Kernel Methods for
Vessel Trajectories.

2012-09 Ricardo Neisse (UT), Trust and Privacy
Management Support for Context-Aware Service
Platforms.

2012-10 David Smits (TUE), Towards a Generic
Distributed Adaptive Hypermedia Environment.

2012-11 J.C.B. Rantham Prabhakara (TUE),
Process Mining in the Large: Preprocessing,
Discovery, and Diagnostics.

2012-12 Kees van der Sluijs (TUE), Model Driven
Design and Data Integration in Semantic Web
Information Systems.

2012-13 Suleman Shahid (UVT), Fun and Face:
Exploring non-verbal expressions of emotion during
playful interactions.

2012-14 Evgeny Knutov(TUE), Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems.

2012-15 Natalie van der Wal (VU), Social Agents.
Agent-Based Modelling of Integrated Internal and
Social Dynamics of Cognitive and Affective
Processes..

2012-16 Fiemke Both (VU), Helping people by
understanding them - Ambient Agents supporting
task execution and depression treatment.

2012-17 Amal Elgammal (UVT), Towards a
Comprehensive Framework for Business Process
Compliance.

2012-18 Eltjo Poort (VU), Improving Solution
Architecting Practices.

2012-19 Helen Schonenberg (TUE), What’s Next?
Operational Support for Business Process
Execution.

2012-20 Ali Bahramisharif (RUN), Covert Visual
Spatial Attention, a Robust Paradigm for
Brain-Computer Interfacing.

2012-21 Roberto Cornacchia (TUD), Querying
Sparse Matrices for Information Retrieval.

2012-22 Thijs Vis (UVT), Intelligence, politie en
veiligheidsdienst: verenigbare grootheden?.

2012-23 Christian Muehl (UT), Toward Affective
Brain-Computer Interfaces: Exploring the
Neurophysiology of Affect during Human Media
Interaction.

2012-24 Laurens van der Werff (UT), Evaluation of
Noisy Transcripts for Spoken Document Retrieval.

2012-25 Silja Eckartz (UT), Managing the Business
Case Development in Inter-Organizational IT
Projects: A Methodology and its Application.

2012-26 Emile de Maat (UVA), Making Sense of
Legal Text.

2012-27 Hayrettin Grkk(UT), Mind the Sheep! User
Experience Evaluation & Brain-Computer
Interface Games.

2012-28 Nancy Pascall (UVT), Engendering
Technology Empowering Women.

2012-29 Almer Tigelaar (UT), Peer-to-Peer
Information Retrieval.

2012-30 Alina Pommeranz (TUD), Designing
Human-Centered Systems for Reflective Decision
Making.

2012-31 Emily Bagarukayo (RUN) , A Learning by
Construction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and
Infrastructure.

2012-32 Wietske Visser (TUD), Qualitative
multi-criteria preference representation and
reasoning.

2012-33 Rory Sie (OUN), Coalitions in Cooperation
Networks (COCOON) .

2012-34 Pavol Jancura (RUN), Evolutionary
analysis in PPI networks and applications.

2012-35 Evert Haasdijk (VU), Never Too Old To
Learn – On-line Evolution of Controllers in Swarm-
and Modular Robotics .

2012-36 Denis Ssebugwawo (RUN) , Analysis and
Evaluation of Collaborative Modeling Processes .

2012-37 Agnes Nakakawa (RUN), A Collaboration
Process for Enterprise Architecture Creation.

2012-38 Selmar Smit (VU), Parameter Tuning and
Scientific Testing in Evolutionary Algorithms.

2012-39 Hassan Fatemi (UT), Risk-aware design of
value and coordination networks.

2012-40 Agus Gunawan (UVT) , Information Access
for SMEs in Indonesia .

2012-41 Sebastian Kelle (OU), Game Design
Patterns for Learning.

2012-42 Dominique Verpoorten (OU), Reflection
Amplifiers in self-regulated Learning.

2012-44 Anna Tordai (VU) , On Combining
Alignment Techniques.

2012-45 Benedikt Kratz (UVT), A Model and
Language for Business-aware Transactions.

2012-46 Simon Carter (UVA), Exploration and
Exploitation of Multilingual Data for Statistical
Machine Translation.

2012-47 Manos Tsagkias (UVA), Mining Social
Media: Tracking Content and Predicting Behavior.

2012-48 Jorn Bakker (TUE), Handling Abrupt
Changes in Evolving Time-series Data.

2012-49 Michael Kaisers (UM), Learning against
Learning - Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions.

2012-50 Steven van Kervel (TUD) , Ontologogy
driven Enterprise Information Systems Engineering
.

2012-51 Jeroen de Jong (TUD) , Heuristics in
Dynamic Sceduling; a practical framework with a
case study in elevator dispatching.

2011-01 Botond Cseke (RUN), Variational
Algorithms for Bayesian Inference in Latent
Gaussian Models.

2011-02 Nick Tinnemeier(UU), Organizing Agent
Organizations. Syntax and Operational Semantics
of an Organization-Oriented Programming
Language.

2011-03 Jan Martijn van der Werf (TUE),
Compositional Design and Verification of
Component-Based Information Systems.

2011-04 Hado Philip van Hasselt (UU), Insights in
Reinforcement Learning; Formal analysis and
empirical evaluation of temporal-difference learning
algorithms.

2011-05 Bas van de Raadt (VU), Enterprise
Architecture Coming of Age - Increasing the
Performance of an Emerging Discipline.

2011-06 Yiwen Wang(TUE), Semantically-Enhanced
Recommendations in Cultural Heritage.

2011-07 Yujia Cao (UT), Multimodal Information
Presentation for High Load Human Computer
Interaction.

2011-08 Nieske Vergunst (UU), BDI-based
Generation of Robust Task-Oriented Dialogues.

2011-09 Tim de Jong (OU), Contextualised Mobile
Media for Learning.

2011-10 Bart Bogaert (UVT), Cloud Content
Contention.

2011-11 Dhaval Vyas (UT), Designing for
Awareness: An Experience-focused HCI

Perspective.

2011-12 Carmen Bratosin (TUE), Grid Architecture
for Distributed Process Mining.

2011-13 Xiaoyu Mao (UVT), Airport under Control;
Multiagent Scheduling for Airport Ground
Handling .

2011-14 Milan Lovric(EUR), Behavioral Finance and
Agent-Based Artificial Markets.

2011-15 Marijn Koolen (UVA), The Meaning of
Structure: the Value of Link Evidence for
Information Retrieval.

2011-16 Maarten Schadd (UM), Selective Search in
Games of Different Complexity.

2011-17 Jiyin He (UVA), Exploring Topic Structure:
Coherence, Diversity and Relatedness.

2011-18 Mark Ponsen (UM), Strategic
Decision-Making in complex games.

2011-19 Ellen Rusman (OU), The Mind ’ s Eye on
Personal Profiles.

2011-20 Qing Gu (VU), Guiding service-oriented
software engineering - A view-based approach.

2011-21 Linda Terlouw (TUD), Modularization and
Specification of Service-Oriented Systems.

2011-22 Junte Zhang (UVA), System Evaluation of
Archival Description and Access.

2011-23 Wouter Weerkamp (UVA), Finding People
and their Utterances in Social Media.

2011-24 Herwin van Welbergen (UT), Behavior
Generation for Interpersonal Coordination with
Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior.

2011-25 Syed Waqar ul Qounain Jaffry (VU),
Analysis and Validation of Models for Trust
Dynamics.

2011-26 Matthijs Aart Pontier (VU), Virtual Agents
for Human Communication - Emotion Regulation
and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots.

2011-27 Aniel Bhulai (VU), Dynamic website
optimization through autonomous management of
design patterns.

2011-28 Rianne Kaptein (UVA), Effective Focused
Retrieval by Exploiting Query Context and
Document Structure.

2011-29 Faisal Kamiran (TUE),
Discrimination-aware Classification.

2011-30 Egon van den Broek (UT), Affective Signal
Processing (ASP): Unraveling the mystery of

emotions.

2011-31 Ludo Waltman (EUR), Computational and
Game-Theoretic Approaches for Modeling
Bounded Rationality.

2011-32 Nees-Jan van Eck (EUR), Methodological
Advances in Bibliometric Mapping of Science.

2011-33 Tom van der Weide (UU), Arguing to
Motivate Decisions.

2011-34 Paolo Turrini (UU), Strategic Reasoning in
Interdependence: Logical and Game-theoretical
Investigations .

2011-35 Maaike Harbers (UU), Explaining Agent
Behavior in Virtual Training .

2011-36 Erik van der Spek (UU), Experiments in
serious game design: a cognitive approach.

2011-37 Adriana Burlutiu (RUN), Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference.

2011-38 Nyree Lemmens (UM), Bee-inspired
Distributed Optimization.

2011-39 Joost Westra (UU), Organizing Adaptation
using Agents in Serious Games .

2011-40 Viktor Clerc (VU), Architectural Knowledge
Management in Global Software Development.

2011-41 Luan Ibraimi (UT), Cryptographically
Enforced Distributed Data Access Control.

2011-42 Michal Sindlar (UU), Explaining Behavior
through Mental State Attribution .

2011-43 Henk van der Schuur (UU), Process
Improvement through Software Operation
Knowledge .

2011-44 Boris Reuderink (UT), Robust
Brain-Computer Interfaces.

2011-45 Herman Stehouwer (UVT), Statistical
Language Models for Alternative Sequence
Selection.

2011-46 Beibei Hu (TUD), Towards Contextualized
Information Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work.

2011-47 Azizi Bin Ab Aziz(VU), Exploring
Computational Models for Intelligent Support of
Persons with Depression.

2011-48 Mark Ter Maat (UT), Response Selection
and Turn-taking for a Sensitive Artificial Listening
Agent .

2011-49 Andreea Niculescu (UT), Conversational
interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality.

