
Characterisation Theorems for

Weighted Tree Automaton Models

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht am

15. Februar 2022

von

Frederic Dörband

geboren am 25. April 1995

in Neustrelitz

Betreuer:

• Prof. Dr.-Ing. habil. Dr. h.c./Univ. Szeged Heiko Vogler,

Technische Universität Dresden

https://tu-dresden.de/
https://www.orchid.inf.tu-dresden.de/
mailto:frederic.doerband@tu-dresden.de

Acknowledgements

My academic journey has given me the opportunity to connect with many

extraordinarily talented and generally delightful people. I wish to thank

everyone who contributed their wisdom, time, energy, love, and care to my

path. Your kindness has been the strong support upon which I was able to

pursue my goals.

Firstly, I wish to thank my supervisor Heiko Vogler for his fruitful guidance

while letting me explore my own scientific path. Your influence has given

me the structure I needed to turn ideas into results. Secondly, I wish to

thank Ulrike Baumann, who has mentored me for many years and who

always has my back when I want to do things my own way. I also wish to

thank Laure Daviaud, who sparked my interest in the determinisation of

weighted automata and who generously agreed to review this thesis.

Much of my research was done collaboratively and I wish to thank all my

supremely capable colleagues and co-authors, in particular Richard Mörbitz,

Heiko Vogler, Kevin Stier, Zoltán Fülöp, and Thomas Feller. Thank you for

countless hours of brilliant discussions and for not going mad while working

with me. I also wish to thank Kerstin Achtruth, who always has an open

ear for other people’s problems and who makes work a happier place.

I am extremely grateful to my professors, who made me fall in love with

science. Stefan Siegmund, Andreas Thom, and Ulrich Krähmer, thank you

for revealing the beauty and radiance of mathematics to me.

Moreover, I wish to thank my friends Robin, Chris, and Marleen who gave

valuable comments on the thesis. I also wish to thank Paula for her con-

tinued encouragement and care. Lastly, I wish to thank my family who has

given me unconditional love, even in times when I was not able to appre-

ciate it.

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Languages . 9

2.2 Weighted Languages . 18

2.3 Weighted Tree Automata . 26

3 A Unifying Framework for the Determinisation of

Weighted Tree Automata 33

3.1 Introduction . 33

3.2 Preliminaries . 39

3.3 Factorisation in Monoids . 41

3.3.1 Ordering Multisets over Monoids 42

3.3.2 Cayley Graph and Cayley Distance 43

3.3.3 Divisors and Rests . 46

3.3.4 Factorisation Properties . 50

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property . . . 55

3.4.1 Weighted Tree Automata over Mfin(M) 56

3.4.2 The Twinning Property . 65

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M) 69

3.5.1 The Sequentialisation Construction 69

3.5.2 The Finitely R-Ambiguous Case 77

3.6 Relating WTA over Mfin(M) and WTA over S 79

iii

CONTENTS

3.7 M-Sequentialisation of Weighted Tree Automata 90

3.7.1 Accumulation of DB . 91

3.7.2 M-Sequentialisation Results . 100

3.8 Comparison of our Results to the Literature 105

3.8.1 Determinisation of Unweighted Tree Automata 105

3.8.2 The Free Monoid Case . 106

3.8.3 The Group Case . 110

3.8.4 The Extremal Case . 115

3.9 Conclusion . 123

4 Approximated Determinisation of Weighted Tree Automata 125

4.1 Introduction . 125

4.2 Preliminaries . 127

4.3 Approximated Determinisation . 128

4.3.1 The Approximated Determinisation Construction 129

4.3.2 Correctness of the Construction 136

4.4 The Approximated Twinning Property 141

4.4.1 Implications for Approximated Determinisability 142

4.4.2 Decidability of the Twinning Property 147

4.5 Conclusion . 149

5 Kleene and Büchi Theorems for Weighted Forest Languages over M-

Monoids 151

5.1 Introduction . 151

5.2 Preliminaries . 155

5.3 Weighted Forest Automata . 162

5.3.1 Forests . 162

5.3.2 Weighted Forest Automata . 163

5.3.3 Rectangularity . 169

5.3.4 I-recognisable is R-recognisable 173

5.4 Kleene’s Theorem . 177

5.4.1 Kleene’s Theorem for Trees . 177

iv

CONTENTS

5.4.2 Kleene’s Theorem for Forests . 180

5.4.3 An Inductive Approach . 183

5.5 Büchi’s Theorem . 184

5.5.1 Büchi’s Theorem for Trees . 185

5.5.2 Büchi’s Theorem for Forests . 187

5.6 Conclusion . 188

6 Rational Weighted Tree Languages with Storage 189

6.1 Introduction . 189

6.2 Preliminaries . 195

6.3 Rational Weighted Tree Languages with Storage 197

6.4 The Kleene-Goldstine Theorem . 202

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations 206

6.5.1 Top-Concatenation, Scalar Multiplication, and Sum 206

6.5.2 α-Concatenation . 208

6.5.3 α-Kleene Star . 214

6.6 Conclusion . 222

7 Outlook 223

References 225

v

CONTENTS

vi

1

Introduction

Virtually every aspect of modern societies relies on computers – electronic machines

executing complex operations and programs in a step-by-step way. However, mathe-

matical models for computing devices had already been studied before the invention of

the digital computer. The first such model was the Turing machine [110], proposed by

Alan Turing in the 1930s to study the boundaries of what is “computable”. The high

complexity of Turing machines quickly gave rise to manifold simpler and less expres-

sive models of abstract machines. A very simple model, the finite automaton (short:

FA) [93], became very prominent due to its wide range of applications, such as pattern

matching on words [89, 108], lexical analysis of compilers [76, Chapter 3.3.2], and as

a way of modelling nervous activity [81, 88] (cf. [72, 76] for further applications and

the history of finite automata). Besides their applications in theoretical disciplines,

finite automata can also be used to model the state behaviour of real-life processes and

systems in an intuitive way. Some examples are vending machines, ticket reservation

processes, and plant lifecycles.

A finite automaton is (up to some technicalities) a directed graph, where the vertices

are called states and the edges are called transitions. Additionally, the edges are labelled

with symbols from an input alphabet. When describing real-life systems, the states of

an FA represent the possible configurations of the described system. The transitions

are then regarded as changes of the system’s configuration, which are triggered by an

input signal. An input word – that is, a finite sequence of input symbols – is recognised

1

1. INTRODUCTION

idle

wait paid

c

p

r

Figure 1.1: A simple vending machine FA with the three states idle, wait, and paid. Upon

the input symbol c (“choose”) in the idle state, the state changes to wait. A subsequent

p (“pay”) trigges the state to change to paid. Finally, the input symbol r (“retrieve”)

changes the state paid to idle. The state idle is moreover marked as the initial state.

by an FA if there exists a corresponding sequence of transitions of the FA such that the

i-th transition in the sequence is labelled by the i-th symbol from the input word (for

every position i of the input word). The formal language recognised by an FA is the set

of all input words recognised by the FA and two FAs are equivalent if they recognise

the same formal language. In Figure 1.1, we give an example for an FA that describes

a simple vending machine. The input word cpr is recognised by the FA, but the input

word crcr is not recognised (because all items need to be paid for before they can be

retrieved).

The theory of finite automata has proven to be very fruitful and research has un-

veiled many desirable properties of this automata model. For example, the mem-

bership, emptiness, and equivalence problems have polynomial time complexity for

finite automata [76, Chapters 4.3 and 4.4], one can minimise every finite automaton

[76, Chapter 4.4], and one can determinise every finite automaton [93] (cf. also [76,

Chapter 2.5.3]). Moreover, different characterisations of the class of formal languages

recognised by FA (short: class of recognisable languages) exist. For example, the class

of recognisable languages can be defined in formally different ways by the models of

regular grammars [18], regular expressions [81] (“Kleene’s Theorem”), monadic second-

order logic formulas [13, 42, 109] (“Büchi’s Theorem”), and Myhill-Nerode equivalence

relations [91] (“Myhill-Nerode Theorem”).

2

a

b

c

a

abca

σ

σ γ

α β β

Figure 1.2: A word (left) and a tree (right). One can consider words as special cases of

trees, where the last symbol of the word is the root of the tree (middle).

In attempts to model quantitative properties of processes, rather than mere qual-

itative properties, different weighted word automata (short: WA) models have been

studied. Often, a WA consists of a finite automaton describing the state behaviour

of the process together with a list of weight assignments mapping parts of the state

behaviour to elements of a weight structure S. This can be used to model, for example,

probabilities, costs of executions, and outputs of processes. Prominent cases of weight

structures S are lattices [77, 95, 114], groups [21], the free monoid [5, 17], and the

min-plus semiring [102, 103]. All of these weighted automata models are special cases

of the general class of weighted automata over semirings [7, 36, 84, 98, 99]. In the class

of weighted automata over semirings, some classical theorems from (unweighted) finite

automata still hold. This includes Kleene’s Theorem [99], the Myhill-Nerode Theorem

[7], and Büchi’s Theorem [32]. Other classical results, however, cannot be generalised

to the weighted case. For example, a positive determinisation result for weighted au-

tomata is much harder to obtain [85]. In fact, there are weighted automata that cannot

be determinised [12, Lemma 6.3].

Word automata models have been extended to handle more complex input struc-

tures like pictures, trees, and forests, both in the unweighted (cf. [96, 97]) and the

weighted case (cf. [36, Chapters 9 and 10] and [87]). Trees in particular have a wide

array of applications, especially in the field of natural language processing. A tree is

a term represented by a finite, directed, acyclic graph with a designated unique root

position, which can reach all other positions, see Figure 1.2. Trees can represent hier-

archical data, for example, sentences in a natural language including their contextual

3

1. INTRODUCTION

information and dependencies within the sentence, which makes them appealing for

different disciplines [82, 100] (cf. also [19, 24, 25, 44] and [97, Chapter 1]).

This thesis evolves around models of weighted tree automata (short: WTA), which

combine weighted automata models with trees as the input structure. As a weight struc-

ture, we primarily consider semirings but make an excursion to so-called M-monoids

in Chapter 5. Some of the theorems that can be proven for weighted word automata

can be lifted to the case of weighted tree automata, like Kleene’s Theorem [38, 51],

the Myhill-Nerode Theorem [11], and Büchi’s Theorem [40, 52]. Similarly to the word

case, positive determinisation results for weighted tree automata have only been found

for restricted cases and oftentimes, these cases vary strongly between the literature

[14, 29, 57]. Determinisation of weighted automata remains an important open re-

search field, as non-deterministic behaviour cannot be simulated on computers and the

state of research is theoretically unsatisfying.

A finite automaton is determinisitic if for every state q and every input symbol a

there exists at most one transition starting in q and labelled by a. That is, a state

change always results in a uniquely determined successor state. It already belongs to

folklore that every finite automaton is determinisable, that is, there exists an equiva-

lent deterministic finite automaton [76, Chapter 2.5.3]. This equivalent deterministic

automaton is constructed from the original automaton using the well-known power set

construction. For weighted (word or tree) automata, the notions of determinism and

determinisability can be defined similarly, however, the determinisation construction

in the weighted case is much more involved than in the unweighted case. Generally, a

weighted alternative of the power set construction can be employed [90], which by it-

self yields infinite automata in many cases where the underlying semiring is not finite.

Therefore, an additional step in the determinisation construction is required, called

factorisation, where a lot of care is put into the choice of transition weights [14, 80].

We will provide a more detailed and formal investigation of the existing determinisa-

tion constructions in Chapter 3. One significant detail that spans the most influential

determinisation approaches [5, 14, 21, 29, 57, 80] is that even the weighted power set

construction with factorisation cannot be applied to every weighted automaton. An

additional property of weighted automata called the twinning property is defined in

4

each approach, which is then proven as a sufficient condition for determinisability.

Even though significant research has been done and every individual approach is

very much a valid theory, it is not optimal that the approaches have so much in common,

yet each one applies to an “isolated” case. The first major focus of this thesis is to

find a mathematical framework for the determinisation of weighted tree automata,

which provides common ground for the existing determinisation approaches and yields

determinisation results that cover as many of the existing results as possible.

The fact that some weighted automata cannot be determinised and some deter-

minisable weighted automata do not satisfy the twinning property poses the question

of what to do when our determinisation framework cannot be applied. One option is

to turn away from this “exact” determinisation towards approximated determinisation.

The task of approximated determinisation is still to find a deterministic alternative for

a given weighted automaton. However, unlike in exact determinisation, the weighted

languages recognised by the two weighted automata do not need to coincide – they only

need to be approximately the same. Different approaches to this paradigm have been

proposed [4, 8, 9] and our main focus lies on [4], which has applications in formal ver-

ification of quantitative properties [15, 16] and considers semiring-weighted automata

(over the so-called tropical semiring). In [4], a modified weighted power set construc-

tion with factorisation is employed as an approximate determinisation construction.

An approximate twinning property is then defined which is a sufficient condition for

approximated determinisability and which is, maybe more importantly, less restrictive

than the twinning property from exact determinisation.

Since [4] only considers weighted word automata, the question arises whether a

similar theory can be employed for weighted tree automata. The second major focus

of this thesis is to answer this question by generalising the ideas presented in [4] from

the word case to the tree case.

Unfortunately, there exist weighted automata which are not approximately deter-

minisable within this framework. A last resort in trying to understand recognisable

weighted languages is to characterise recognisability itself. Two particularly interest-

ing characterisations are Kleene’s Theorem and Büchi’s Theorem. Kleene’s Theorem

characterises the class of recognisable weighted languages by its algebraic closure prop-

5

1. INTRODUCTION

erties using a formalism called rational expressions. Büchi’s Theorem states that the

class of recognisable weighted languages coincides with the class of languages defined

by monadic second-order logic formulas (short: MSO-formulas). Since formal proper-

ties of processes are conveniently represented by rational expressions or formulas, both

Kleene’s Theorem and Büchi’s Theorem are of special interest in applied disciplines like

pattern matching or model checking (cf. [42, 81]). Both, Kleene- and Büchi-like theo-

rems have been proven for many different weighted automata models, see for example

[26, 33, 34, 38, 40, 51, 52, 70, 87, 104, 107] for the case of automata with tree-like input

structures.

As a third major focus of this thesis, we investigate two more exotic models of

recognisability and ways to characterise them with Kleene- or Büchi-like results. The

first model is that of weighted forest automata over M-monoids, which considers tuples

of trees as input and operations on monoids as weights (rather than semiring elements).

Our goal is to characterise this weighted automaton model by both, rational expres-

sions and MSO-formulas. For our second model, we consider the rational weighted tree

languages with storage from [55], which are defined as rational weighted tree languages

(without storage) composed with a storage map. Our goal is to show that this composi-

tion with a storage map preserves the algebraic closure properties of rational weighted

tree languages and thereby equip rational weighted tree languages with storage with

their own set of algebraic closure properties.

This theoretical voyage through determinisation, approximated determinisation,

and characterisation theorems is reflected in the structure of this thesis. We begin

by collecting the necessary mathematical basics and notational conventions in Chap-

ter 2. In particular, we gather some notations for relations, hypergraphs, and multisets,

recall the basics on monoids and semirings, and finally present the model of weighted

tree automata over semirings. In Chapter 3, we develop our general determinisation

framework that aims to capture and unify the determinisation approaches [5, 14, 29, 57].

We define our factorisation theory for monoids, provide a multi-step determinisation

construction, prove results that allow us to apply our construction to general classes

of weighted tree automata, and ultimately compare our approach to the existing liter-

ature. In Chapter 4, we provide a formal approximated determinisation construction

6

for weighted tree automata over the tropical semiring. The structure of this chapter

follows [4], in that we consider approximation factors t ≥ 1 and define a t-approximate

determinisation construction based on a notion of t-approximation of weighted lan-

guages. Our construction is given in a formal mathematical way in contrast to the

algorithmic description provided in [4]. In Chapter 5, we first recall the notions of

forests and M-monoids and then introduce our model of weighted forest automata over

M-monoids. We finally prove a Kleene- and a Büchi-like theorem for this weighted

automaton model. Moreover, we make brief excursions to other potentially interesting

weighted forest automata models and argue why our model yields the most robust the-

ory. In Chapter 6, we recall storage types and rational weighted tree languages with

storage (short: Rat) as introduced in [55]. We then recall the Kleene-Goldstine theorem

from [55], which can be used to prove the closure of Rat under the rational operations

(top concatenation, scalar multiplication, sum, α-concatenation, and α-Kleene star).

Ultimately, we provide simpler proofs of these closure properties using only the defi-

nition of Rat, avoiding the detour through weighted tree grammars with storage. In

Chapter 7, we conclude this thesis by summarising its main contributions.

This thesis is based on our research, which includes four publications and one

manuscript.

• Chapter 3 is a generalisation of Dörband and Mörbitz [31] from the word case to

the tree case and covers the results from Dörband, Feller, and Stier [29].

• Chapter 4 is an alternative presentation of Dörband, Feller, and Stier [28]. Here,

we have replaced the algorithm provided in [28] by formal mathematical methods.

• Chapter 5 is based on Dörband [27].

• Chapter 6 is based on Dörband, Fülöp, and Vogler [30].

The scope of this thesis lies within the field of theoretical computer science and all

of our research is motivated by very theoretical questions. This perspective poses the

difficult task to illustrate our theories without defaulting to purely academic examples.

Undeniably, our presentation takes this into account only sparsely and we consider

practical applicability as a weak side of this thesis. Even though this is certainly

7

1. INTRODUCTION

a limitation of our scientific research, it also gives us space to define very technical

mathematical machinery, which allows us to distil precise assumptions in our theories

and identify ingredients that leave room for improvement. We also want to note that

significant parts of this thesis evolve around the standard model for weighted tree

automata over semirings, which has already been studied extensively. This requires us

to introduce highly non-trivial mathematical tools in order to see beyond the scope of

the already existing literature. In return, Chapter 3 turns out to be quite lengthy. We

provide detailed proofs for almost all claims made in the thesis and illustrate our new

tools with examples, but still leave several open questions. This is partly due to the

fact that we do not yet have a full understanding of the newly introduced machinery

and how it compares to the previous approaches. We also provide no decidability or

complexity results for most of our new properties and constructions.

8

2

Preliminaries

2.1 Languages

Sets, Relations, and Maps We denote the empty set by ∅ and call a set A non-

empty if A ̸= ∅. Moreover, we denote the size of a set A by #A. We call A finite if

#A < ∞ and we call A a singleton set if #A = 1. We denote the set of subsets of A,

the set of finite subsets of A, and the set of singleton subsets of A by P(A), Pfin(A),

and S(A), respectively.

We denote the set of non-negative integers by N and the set of positive integers

by N+. Moreover, we denote the set of real numbers by R and the set of rational

numbers by Q. For every k, ℓ ∈ N, we denote the set {i ∈ N | k ≤ i ≤ ℓ} by [k, ℓ] and

abbreviate [1, k] by [k]. We note that [0] = ∅.

The Cartesian product of two sets A and B is the set A×B given by

A×B = {(a, b) | a ∈ A, b ∈ B}

and for every k ∈ N+ we denote the k-fold Cartesian product

k times︷ ︸︸ ︷
A× · · · × A by Ak.

Let k ∈ N and A1, . . . , Ak be sets. A relation on A1 × · · · × Ak is a subset

R ⊆ A1 × · · · × Ak. Let A and B be sets. We say that a relation on A × B is a

relation between A and B. A binary relation on A is a relation R ⊆ A× A. The iden-

tity relation on A is the binary relation idA ⊆ A × A given by idA = {(a, a) | a ∈ A}.

Given a relation R ⊆ A × B, the inverse relation of R is the relation R−1 ⊆ B × A

9

2. PRELIMINARIES

given by

R−1 = {(b, a) | (a, b) ∈ R}.

Given two relations R ⊆ A×B and S ⊆ B ×C, the composition of R and S is the

relation R;S ⊆ A× C given by

R;S = {(a, c) | (a, b) ∈ R, (b, c) ∈ S}.

We sometimes denote R;S by S ◦R.

A binary relation R ⊆ A×A is called

• reflexive if idA ⊆ R,

• irreflexive if idA ∩R = ∅,

• symmetric if R−1 = R,

• anti-symmetric if R−1 ∩R ⊆ idA,

• linear if R−1 ∪R = A×A,

• transitive if R ◦R ⊆ R,

• a (partial) order if R is reflexive, anti-symmetric, and transitive,

• a strict order if R is irreflexive, anti-symmetric, and transitive, and

• an equivalence relation if R−1 is reflexive, symmetric, and transitive.

We sometimes write aRb rather than (a, b) ∈ R, especially if R is a partial order, strict

order, or equivalence relation. Moreover, we use symbols like ≤,⊴,⊆, and ⊑ for partial

orders, symbols like <,⊂, and < for strict orders, and symbols like ∼,∼=,≡, and ≜ for

equivalence relations.

Given a linear order ≤ on A, a set A′ ⊆ A, and a ∈ A such that a ≤ b for every

b ∈ A, we denote a by min≤(A
′).

Given an equivalence relation ∼ on A and an element a ∈ A, the equivalence class

of a under ∼ is the set [a]∼ ⊆ A given by [a]∼ = {a′ ∈ A | a ∼ a′}. The quotient set of

A by ∼ is the set A/∼ given by A/∼ = {[a]∼ | a ∈ A}.

10

2.1 Languages

Given a relation R ⊆ A×B, the domain of R is the set dom(R) ⊆ A given by

dom(R) = {a ∈ A | ∃b ∈ B : (a, b) ∈ R}.

Moreover, R is called

• left-total if dom(R) = A,

• left-unique (or injective) if a = a′ for every a, a′ ∈ A and b ∈ B such that

(a, b), (a′, b) ∈ R,

• right-total (or surjective) if R−1 is left-total,

• right-unique (or partial map) if R−1 is left-unique, and

• a map if R is a left-total partial map.

We use symbols like f, g, h to denote relations that are partial maps. A partial map

f ⊆ A × B is also denoted by f : A 99K B and a map f ⊆ A × B is also denoted by

f : A→ B. For a partial map f : A 99K B and an element a ∈ A we denote the unique

element b ∈ B such that (a, b) ∈ f by f(a). Given a set A′ ⊆ A, we define the set

f(A′) = {f(a) | a ∈ A′}. Moreover, the restriction of f to A′ is the map f |A′ : A′ → B

given by f |A′(a) = f(a) for every a ∈ A′. The image of f is the set im(f) ⊆ B given

by im(f) = f(A).

A map f ⊆ A×B is called bijective if f is injective and surjective. In this case, we

also say that A and B are bijective and denote this fact by A ∼= B.

Let k ∈ N and A1, . . . , Ak be sets. For every i ∈ [k] we define the map

proji : A1 × · · · × Ak → Ai,

where proji(a1, . . . , ak) = ai for every (a1, . . . , ak) ∈ A1 × · · · ×Ak. We call every proji

a projection map.

Let A be a set and f : A→ N. We define the argument minimum of f , denoted by

argmina∈A f(a), as

argmin
a∈A

f(a) = {a ∈ A | f(a) = min f(A)}.

We note that if A = ∅, then argmina∈A f(a) = ∅.

11

2. PRELIMINARIES

Let I be a set. An (I-)family over A is a map f : I → A and we denote such a

family f by (f(i) | i ∈ I). An (infinite) sequence of elements in A is an N-family

(f(k) | k ∈ N). A finite sequence over A is an [n]-family (f(k) | k ∈ [n]) which we also

denote by f(1) . . . f(n).

Let f : N → N. We call f strongly monotone if f(n1) < f(n2) for every n1, n2 ∈ N

such that n1 < n2. We note that if f is strongly monotone, then f(n) ≥ n for every

n ∈ N.

Graphs and Hypergraphs A (directed) graph is a pair G = (V,E), where V is a

set and E ⊆ V × V is a binary relation on V . The elements of V are called vertices of

G and the elements of E are called edges of G.

Let A be a set. A hypergraph with labels in A is a pair H = (V,E), where V is a

set and E ⊆ V ∗ ×A× V . The elements of V are called vertices of H and the elements

of E are called hyperedges of H.

Let H = (V,E) be a hypergraph with labels in A. We depict H graphically in

the following way. Each vertex of H is represented by a circle labeled by the name

of the vertex. An edge (v1 . . . vn, a, v) ∈ E is represented by a box which is labeled

by a, has n incoming lines, and has a single outgoing line. The outgoing line ends

in v. The incoming lines originate from v1, . . . , vn, respectively, by counter-clockwise

traversal starting to the left of the outgoing line. An exemplary graphical depiction of

a hypergraph can be found in Figure 2.1.

Multisets Let A be a set. A multiset over A is a mapM : A→ N. A multiset N over

A is called submultiset ofM , denoted by N ≤M , if N(a) ≤M(a) for every a ∈ A. The

support of M is the set supp(M) ⊆ A given by supp(M) = {a ∈ A | M(a) ≥ 1}. The

size of M is the cardinal number #M ∈ N ∪ {∞} given by #M =
∑

a∈supp(M)M(a)

if supp(M) is finite and by #M = ∞ otherwise. We call M finite if #M < ∞. The

set of multisets over A and the set of finite multisets over A are denoted by M(A)

and Mfin(A), respectively. For every M,N ∈ M(A) we define the union of M and N ,

denoted M ∪N , by (M ∪N)(a) =M(a) +N(a) for every a ∈ A.

We make the following convention when working with multisets. If supp(M) has the

12

2.1 Languages

v1 v2

v3

a b a

c

c

Figure 2.1: A hypergraph with labels in A = {a, b, c}. Circles represent vertices and

boxes represent hyperedges. One hyperedge of this hypergraph is (v1v2, c, v3).

form {a1, . . . , an} for some pairwise distinct a1, . . . , an ∈ A, then we also denote M by

(a1 7→M(a1), . . . , an 7→M(an)) or {{
M(a1) times︷ ︸︸ ︷
a1, . . . , a1 , . . . ,

M(an) times︷ ︸︸ ︷
an, . . . , an}}.

Given a set B, k ≥ 1,M1, . . . ,Mk ∈Mfin(A), a relation Φ on Ak and a map f : Ak → B,

we define the term

{{f(m1, . . . ,mk) | m1 ∈M1, . . . ,mk ∈Mk, Φ(m1, . . . ,mk)}} (2.1)

as the multiset M : B → N such that for every b ∈ B we have

M(b) =
∑

(m1,...,mk)∈f−1(b)
s.th. (m1,...,mk)∈Φ

M1(m1) · . . . ·Mk(mk).

Moreover, if Φ = Ak, then we drop Φ(m1, . . . ,mk) from (2.1).

The Cartesian product of two finite multisets M1 over A and M2 over B (where B

is an arbitrary set) is the multiset M1 ×M2 over A×B which is defined as follows:

M1 ×M2 =
{{
(m1,m2) | m1 ∈M1,m2 ∈M2

}}
.

We use the standard conventions for the Cartesian product. In particular, for every

multiset M , we denote the k-fold Cartesian product M × · · · ×M︸ ︷︷ ︸
k times

by Mk.

13

2. PRELIMINARIES

Example 2.1. The multisets M1 = (1 7→ 1, 2 7→ 3) and M2 = (2 7→ 1, 4 7→ 2) over N

can also be written as

M1 = {{1, 2, 2, 2}} and M2 = {{2, 4, 4}}.

Neither M1 ≤ M2 nor M2 ≤ M1 holds. Moreover, it holds that #M1 = 4, #M2 = 3,

and hence, both M1 and M2 are finite. The Cartesian product of M1 and M2 is

M1 ×M2 =
(
(1, 2) 7→ 1, (1, 4) 7→ 2, (2, 2) 7→ 3, (2, 4) 7→ 6

)
and supp(M1 ×M2) = {(1, 2), (1, 4), (2, 2), (2, 4)} = supp(M1)× supp(M2).

Next, we illustrate the notation introduced in (2.1). For this, we let f : N2 → N such

that f(m1,m2) = m1·m2 for everym1,m2 ∈ N and Φ = {(m1,m2) ∈ N2 | m1+m2 > 3}.

We define the multiset M as

M = {{m1 ·m2 | m1 ∈M1,m2 ∈M2,m1 +m2 > 3}}

and obtain that M = {{4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8}}. Note that two 4s in M are generated

as 1 · 4 and the remaining three 4s in M are generated as 2 · 2. ◀

Word Languages An alphabet is a finite and non-empty set. Let A be an alphabet.

We let A∗ =
⋃

k∈NA
k be the set of all (finite) words over A. Let w ∈ A∗ such that

w = (w1, . . . , wk) for some k ∈ N and w1, . . . , wk ∈ A. We also denote w by w1 . . . wk.

In particular, we denote () by ε and call ε the empty word. The length of w, denoted

|w|, is k. Moreover, for every a ∈ A we denote by |w|a the number of occurrences of a

in w. Now, let v ∈ A∗ such that v = v1 . . . vℓ for some ℓ ∈ N and v1, . . . , vℓ ∈ A. The

concatenation of w and v, denoted w ◦ v or wv, is the word w1 . . . wkv1 . . . vℓ. We note

that ε ◦ w = w = w ◦ ε.

Let w ∈ A∗ such that w = w1 . . . wk for some k ∈ N and w1, . . . , wk ∈ A. Moreover,

let i, j ∈ [k] be indices such that i ≤ j. We define w[i : j] = wi . . . wj and w[i] = w[i : i].

A word v ∈ A∗ is called prefix (or suffix) of w if there exists an i ∈ [k] such that

v = w[1 : i] (or v = w[i : k], respectively).

If A is linearly ordered by some strict order <A, we define the relations <l and ≤lex

on A∗ as follows. Let w, v ∈ A∗. It holds that v <l w if there exists u, v1, w1 ∈ A∗ and

14

2.1 Languages

a, b ∈ A such that a <A b, v = uav1, and w = ubw1. Moreover, it holds that v ≤lex w

if v <l w or v is a prefix of w. In fact, the relation <l is a linear strict order and ≤lex

is a linear partial order, called lexicographic order. We note that we can define <l and

≤lex analogously if A is an infinite linearly ordered set.

A (word) language over A is a set L ⊆ A∗. Given languages L,L′ ⊆ A∗ over A, the

concatenation of L and L′ is the language L ◦ L′ over A given by

L ◦ L′ = {wv | w ∈ L, v ∈ L′}.

We note that {ε} ◦ L = L = L ◦ {ε} and ∅ ◦ L = ∅ = L ◦ ∅. Let n ∈ N. The n-th power

of L is the language Ln on A given recursively by L0 = {ε} and Ln+1 = L ◦ Ln. The

Kleene-star of L is the language L∗ on A given by L∗ =
⋃

n∈N L
n.

Tree Languages A ranked set is a pair (Σ, rk), where Σ is a set and rk: Σ → N

is a map. Given σ ∈ Σ, we call rk(σ) the rank of σ. For every s ∈ N we define the

set Σ(s) = {σ ∈ Σ | rk(σ) = s} and write σ(s) to denote that σ ∈ Σ(s) for every

σ ∈ Σ. A ranked alphabet is a ranked set (Σ, rk) such that Σ is finite. Given a

ranked alphabet (Σ, rk), the maximal rank of Σ is the number maxrk(Σ) ∈ N given by

maxrk(Σ) = max{s ∈ N | Σ(s) ̸= ∅}. We will denote a ranked set (Σ, rk) only by its

first component Σ. The map rk will be clear from the context or referred to as rkΣ .

Let Σ be a ranked set and H be a set such that Σ ∩ H = ∅. The set of all

trees over Σ indexed by H, denoted by TΣ(H), is the smallest set T ⊆ (Σ ∪H ∪ Υ)∗

(with Υ containing the comma, the opening parenthesis, and the closing parenthesis)

such that (i) H ⊆ T and (ii) for every s ∈ N, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ T also

σ(ξ1, . . . , ξs) ∈ T . We abbreviate TΣ(∅) by TΣ . Also, for σ ∈ Σ(1) and ξ ∈ TΣ we

abbreviate σ(. . . σ(ξ) . . .) with n occurrences of σ by σn(ξ). Finally, for each α ∈ Σ(0),

we abbreviate α() by α.

Throughout this thesis, whenever we quantify a ranked alphabet Σ, we as-

sume that Σ(0) ̸= ∅.

Moreover, given a tree ξ ∈ TΣ(H), we write “Assume that ξ = σ(ξ1, . . . , ξs)”

to abbreviate “Assume that ξ = σ(ξ1, . . . , ξs) for some s ∈ N, σ ∈ Σ(s), and

ξ1, . . . , ξs ∈ TΣ(H)”.

15

2. PRELIMINARIES

We fix the set X = {xi | i ∈ N+} of variables and denote the set Xn = {xi | i ∈ [n]}

for every n ∈ N. These sets are assumed to be disjoint from any other occuring set.

We define the maps

pos : TΣ(H)→ P(N∗
+),

size : TΣ(H)→ N, and

height : TΣ(H)→ N,

respectively, as follows. Let ξ ∈ TΣ(H). If ξ ∈ H, then we define

pos(ξ) = {ε}, size(ξ) = 0, and height(ξ) = 0.

Otherwise, we assume that ξ = σ(ξ1, . . . , ξs) and define

pos(ξ) = {ε} ∪
⋃
i∈[s]

(
{i} ◦ pos(ξi)

)
,

size(ξ) = 1 +
∑
i∈[s]

size(ξi), and

height(ξ) = 1 +max
i∈[s]

(
height(ξi)

)
.

We call pos(ξ), size(ξ), and height(ξ) the set of positions of ξ, size of ξ, and height of

ξ, respectively. For every ∆ ⊆ Σ ∪H, we denote the set {w ∈ pos(ξ) | ξ(w) ∈ ∆} by

pos∆(ξ) and abbreviate #pos∆(ξ) by |ξ|∆. If ∆ = {δ} for some δ ∈ Σ∪H, then we also

write posδ(ξ) and |ξ|δ for pos∆(ξ) and |ξ|∆, respectively. Moreover, we define the set

of leaves of ξ as the set leaf(ξ) = posΣ(0)(ξ). We note that, in this thesis, the elements

of H are not considered to be leaves in trees and they do not add to the height and

size of trees. This distinguishes TΣ(H) from TΣ∪H .

Now, let ξ, ζ ∈ TΣ(H) and w ∈ pos(ξ). The label of ξ at w, denoted by ξ(w), the

subtree of ξ at w, denoted by ξ|w, and the replacement of the subtree of ξ at w by ζ,

denoted by ξ[ζ]w, are defined as follows. If ξ ∈ H, then w = ε and we define

ξ(w) = ξ, ξ|w = ξ, and ξ[ζ]w = ζ.

Otherwise, assume that ξ = σ(ξ1, . . . , ξs). Then, either w = ε and we define

ξ(w) = σ, ξ|w = ξ, and ξ[ζ]w = ζ,

16

2.1 Languages

or w = iv for some i ∈ [s] and v ∈ pos(ξi) and we define

ξ(w) = ξi(v), ξ|w = ξi|v, and ξ[ζ]w = σ(ξ1, . . . , ξi−1, ξi[ζ]v, ξi+1, . . . , ξs).

Let n ∈ N. For every (w1, . . . , wn) ∈ pos(ξ)n with w1 <l . . . <l wn, and ζ1, . . . , ζn ∈ TΣ ,

we abbreviate ξ[ζ1]w1 . . . [ζn]wn by ξ[ζ1, . . . , ζn](w1,...,wn). If ζ1 = . . . = ζn = ζ, then we

abbreviate ξ[ζ, . . . , ζ](w1,...,wn) by ξ[ζ](w1,...,wn). Moreover, for every i ∈ [n], k = |ξ|xi ,

ξ1, . . . , ξk ∈ TΣ(Xn), and w1, . . . , wk ∈ pos(ξ) such that posxi
(ξ) = {w1, . . . , wk} and

w1 <l · · · <l wk, we denote ξ[ξ1, . . . , ξk](w1,...,wk) by ξ[xi ← ξ1, . . . , ξk]. Furthermore,

for every ξ ∈ TΣ(Xn) and ξ1, . . . , ξn ∈ TΣ , we define the tree ξ[ξ1, . . . , ξn] ∈ TΣ as the

tree obtained from ξ by replacing every occurrence of xi by ξi for every i ∈ [n].

Let ξ ∈ TΣ(X1). We call ξ a context (tree) over Σ if there exists a unique position

w ∈ pos(ξ) such that ξ(w) = x1. In this case, we define posvar(ξ) = w. The set of

contexts over Σ is denoted by CΣ .

Given a context ζ ∈ CΣ and a tree ξ ∈ TΣ(H), the substitution of ξ into ζ, denoted

by ζ[ξ], is the tree ζ[ξ]posvar(ζ). Note that, given ζ, ζ ′ ∈ CΣ , also ζ[ζ
′] ∈ CΣ . We write

ζk for ζ[ζ[· · · [ζ] · · ·]] containing the context ζ a total of k times.

Example 2.2. We consider the ranked alphabet Σ = {α(0), β(0), γ(1), σ(2)}. Two trees

in TΣ(X1) are ξ = σ(α, β) and ζ = γ(x1), which can be visualised as follows

ξ :

σ

α β

ζ :

γ

x1

It holds that pos(ξ) = {ε, 1, 2}, pos(ζ) = {ε, 1}, size(ξ) = 3, size(ζ) = 1, height(ξ) = 2,

and height(ζ) = 1. Furthermore, ζ is a context over Σ such that posvar(ζ) = 1 and

posΣ(ζ) = {ε}. Moreover, ζ[ξ] = γ(σ(α, β)) and ζn = γn(x1). ◀

A tree language over Σ and H is a set L ⊆ TΣ(H).

Let A be an alphabet. We define the ranked alphabet ΣA, where Σ
(0)
A = {#}

contains solely the hashtag symbol, Σ(1) = A, and Σ(s) = ∅ for every s ≥ 2. It holds

that A∗ ∼= TΣA
, which shows that word languages are special cases of tree languages.

In order to see this, consider the map φ : A∗ → TΣA
given for every w ∈ A∗ by

φ(w) = w[k](. . . w[1](#) . . .).

17

2. PRELIMINARIES

It can easily be shown that φ is indeed a bijection and hence it holds that A∗ ∼= TΣA
.

2.2 Weighted Languages

Operations and Monoids Let A be a non-empty set. For k ∈ N, a k-ary operation

on A is a map ω : Ak → A and we denote the set of all k-ary operations on A by

Opsk(A). Moreover, we denote the set
⋃

k∈NOpsk(A) by Ops(A). We write binary,

unary, and nonary rather than 2-ary, 1-ary, and 0-ary, respectively.

We note that every set of operations Ω ⊆ Ops(A) is naturally a ranked set, where

the rank of an operator is its arity. Formally, Ω(k) = Ω ∩Opsk(A) for every k ∈ N.

Let ⊙ : A×A→ A be a binary operation on A. ⊙ is called

• associative if (a⊙ b)⊙ c = a⊙ (b⊙ c) for every a, b, c ∈ A,

• commutative if a⊙ b = b⊙ a for every a, b ∈ A, and

• cancellative if a⊙ b = a⊙ c implies b = c for every a, b, c ∈ A.

An element 1 ∈ A is called neutral with respect to ⊙ if 1 ⊙ a = a = a ⊙ 1 for every

a ∈ A.

A semigroup is a tuple (A,⊙), where A is a set and ⊙ : A×A→ A is an associative

binary operation on A. A semigroup (A,⊙) is called commutative (or cancellative) if

⊙ is commutative (or cancellative, respectively). A monoid is a tuple (M,⊙, 1), where

(M,⊙) is a semigroup and 1 ∈M is neutral with respect to ⊙.

Let (M,⊙, 1) be a monoid and m,n ∈ M. We call n the left inverse (or right

inverse) of m if n ⊙m = 1 (or m ⊙ n = 1, respectively) and we call n the inverse of

m if n is both the left inverse and right inverse of m. If n is the inverse of m, then

we denote n by m−1. A group is a monoid (M,⊙, 1) such that every m ∈ M has an

inverse.

We refer to a monoid (M,⊙, 1) by the set M, whenever the operation ⊙ and the

element 1 are clear from the context.

Let M be a monoid. A set U ⊆M is called a submonoid of M, in symbols U ≤M, if

(U,⊙|U×U, 1) is a monoid. Given a set Γ ⊆M, we define the submonoid of M generated

by Γ , denoted by ⟨Γ ⟩⊙, as the smallest submonoid U of M such that Γ ⊆ U. We note

18

2.2 Weighted Languages

that 1 ∈ ⟨Γ ⟩⊙ even if 1 ̸∈ Γ . If ⟨Γ ⟩⊙ = M, then we call Γ a generating set of M and if

Γ is moreover finite, then we say that M is finitely generated (by Γ).

Let (M,⊙M, 1M) and (L,⊙L, 1L) be monoids and f : M → L. We say that f is a

(monoid) homomorphism if (a) f(1M) = 1L and (b) f(m1 ⊙M m2) = f(m1) ⊙L f(m2)

for every m1,m2 ∈ M. Furthermore, we say that f is a (monoid) isomorphism if f

is a bijective homomorphism. In this case, we say that M and L are isomorphic (as

monoids) and denote this fact by M ∼= L.

Example 2.3. We list some monoids that are either well-known or will become relevant

throughout the thesis.

• We consider the monoid (N,+, 0) which is finitely generated by Γ = {1}.

• We let k ∈ N and consider the monoid N≤k = ({n ∈ N | n ≤ k},+k, 0) where

+k : N× N→ N is given by

n1 +k n2 = min(n1 + n2, k)

for every n1, n2 ∈ N. We note that N≤k is finitely generated by Γ = {1}.

• We consider the monoid BF =
(
N2, ◦BF, (0, 0)

)
where ◦BF : N2×N2 → N2 is given

by

(na, nb) ◦BF (ma,mb) = (na +ma, 2
ma · nb +mb)

for every (na, nb), (ma,mb) ∈ N2. We call BF the bifunctional monoid. One can

show that BF is finitely generated by ΓBF =
{
(1, 0), (0, 1)

}
.

Next we show that BF is cancellative. Let (na, nb), (ma,mb), (m
′
a,m

′
b) ∈ BF such

that (na, nb) ◦BF (ma,mb) = (na, nb) ◦BF (m′
a,m

′
b). By the definition of ◦BF we

obtain

na +ma = na +m′
a and 2ma · nb +mb = 2m

′
a · nb +m′

b. (2.2)

The first equation in (2.2) implies ma = m′
a and hence the second equation in

(2.2) degenerates into 2ma · nb + mb = 2ma · nb + m′
b, which yields mb = m′

b.

In total we have (ma,mb) = (m′
a,m

′
b), which concludes the proof that BF is

cancellative.

19

2. PRELIMINARIES

The word “bifunctional” in the name of BF is inspired by the following connection.

Let f, g : N → N such that f(n) = 2 · n and g(n) = n + 1 for every n ∈ N. We

consider the closure ⟨{f, g}⟩; of f and g under composition (recall that (f ; g)(n) =

g(f(n)) for every n ∈ N). One can show that (⟨{f, g}⟩;, ; , idN) is isomorphic to

BF. The isomorphism φ : ⟨{f, g}⟩; → BF maps f to (1, 0) and g to (0, 1).

• We let A be an alphabet and consider the monoid (A∗, ◦, ε) which is finitely

generated by Γ = A. This monoid is called the free monoid over A.

Let M be a finitely generated monoid with finite generating set Γ ̸= ∅. We

consider the monoid (Γ ∗, ◦, ε) and note that there exists a unique homomorphism

h : Γ ∗ →M such that h(γ) = γ for every γ ∈ Γ . This fact belongs to folklore and

can easily be proven using the fact that M is finitely generated by Γ . ◀

Let M be a monoid, m ∈M, and M ∈Mfin(M). We define

m⊙M = {{m⊙ n | n ∈M}}

and note that #(m⊙M) = #M .

Semirings Let ⊕,⊙ : A × A → A be two binary operations on A. We say that ⊙

distributes over ⊕ if (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c) for every a, b, c ∈ A.

A semiring (cf. [65] and [36, Chapter 1]) is a tuple (S,⊕,⊙, 0, 1) such that (S,⊕, 0) is

a commutative monoid, (S,⊙, 1) is a monoid, ⊙ distributes over ⊕, and a⊙0 = 0⊙a = 0

for every a ∈ S. The operations ⊕ and ⊙ are referred to as addition and multiplication,

respectively. A semiring (S,⊕,⊙, 0, 1) is called

• commutative if ⊙ is commutative,

• extremal if a⊕ b ∈ {a, b} for every a, b ∈ S,

• (additively) idempotent if a⊕ a = a for every a ∈ S,

• additively locally finite if ⟨Γ ⟩⊕ is finite for every Γ ∈ Pfin(S),

• multiplicatively locally finite if ⟨Γ ⟩⊙ is finite for every Γ ∈ Pfin(S), and

• locally finite if S is additively and multiplicatively locally finite.

20

2.2 Weighted Languages

Clearly, “extremal” implies “additively idempotent” and “commutative and additively

idempotent” implies “additively locally finite”.

Moreover, a semiring (S,⊕,⊙, 0, 1) is called complete if for every countable index

set I there exists an operation
⊕

I : S
I → S, called infinitary sum operation, such that

the following axioms hold ([41, p.124], see also [66]). For every I-family (ai | i ∈ I)

over S, countable set J , J-family (Ij | j ∈ J) over P(I), and a ∈ S, we have that⊕
i∈I

ai = ai1 ⊕ · · · ⊕ aik , if #I = k and I = {i1, . . . , ik},

⊕
i∈I

ai =
⊕
j∈J

(⊕
i∈Ij

ai

)
, if

⋃
j∈J

Ij = I and Ij ∩ Ij′ = ∅ for j ̸= j′, (2.3)

⊕
i∈I

(a⊙ ai) = a⊙ (
⊕
i∈I

ai) , and
⊕
i∈I

(ai ⊙ a) = (
⊕
i∈I

ai)⊙ a, (2.4)

where
⊕

i∈I ai is an abbreviation for
⊕

I(ai | i ∈ I).

We refer to a semiring (S,⊕,⊙, 0, 1) by the set S, whenever the operations ⊕ and

⊙ and the elements 0 and 1 are clear from the context. We call a ∈ S vanishing if

a = 0 and non-vanishing if a ̸= 0.

We refer the reader to [35, 65, 73] for the theory and more examples of semirings.

Example 2.4. We list some semirings that are either well-known or will become rele-

vant in upcoming examples of this thesis.

• We consider the semiring B = ({⊥,⊤},∨,∧,⊥,⊤), where ∨ and ∧ are the logical

operations “or” and “and”, respectively. B is called the Boolean semiring and is

commmutative, extremal, locally finite, and complete.

• We consider the semiring Arct = (N ∪ {−∞},max,+,−∞, 0), where for every

n1, n2 ∈ N ∪ {−∞} we define

max(n1, n2) =

n3−i if ni = −∞ for some i ∈ {1, 2}

max(n1, n2) otherwise

n1 + n2 =

−∞ if ni = −∞ for some i ∈ {1, 2}

n1 + n2 otherwise.

21

2. PRELIMINARIES

Arct is called the arctic semiring (over N). We note that Arct is commutative

and extremal. Similarly, one can introduce tropical semirings, which we will do

in Chapter 4.

• Let n ∈ N+ and define Zn = [0, n]. We consider the semiring (Zn,⊕n,⊙n, 0, 1),

where ⊕n and ⊙n denote addition and multiplication modulo n, respectively. We

note that Zn is commutative and locally finite.

• We consider the semiring X = (N ∪ {⊥,⊤},∨,+,⊥, 0), where ∨ and + are given

for every n1, n2 ∈ N ∪ {⊥,⊤} by

n1 ∨ n2 =

n3−i if ni = ⊥ for some i ∈ {1, 2}

⊤ otherwise

n1 + n2 =

⊥ if ni = ⊥ for some i ∈ {1, 2}

n1 + n2 if n1, n2 ∈ N

⊤ otherwise

We note that X is commutative but not additively idempotent, since n ∨ n = ⊤

for every n ∈ N. We have constructed X as a “simple” semiring that is not

additively idempotent in order to provide examples for upcoming theorems that

were classically only applicable in idempotent settings.

• Let (M,⊙, 1) be a monoid. We consider the semiring (Mfin(M),∪,⊙, ∅, {{1}}),

where ∪ is the multiset union and for every M,N ∈Mfin(M) we define

M ⊙N = {{m⊙ n | m ∈M,n ∈ N}}.

We call Mfin(M) the semiring of finite multisets over M. We note that Mfin(M)

is commutative if and only if M is commutative. Moreover, Mfin(M) is not idem-

potent, as {{1}} ∪ {{1}} = {{1, 1}}.

• Let (M,⊙, 1) be a monoid. Analogously to the semiring Mfin(M) we can consider

the semiring (Pfin(M),∪,⊙, ∅, {1}), called the semiring of finite sets over M. In

contrast to Mfin(M), the semiring Pfin(M) is idempotent. ◀

22

2.2 Weighted Languages

Let M be a finite multiset over a set A and f : supp(M)→ S. We define

⊕
m∈M

f(m) =
⊕

m∈supp(M)

(M(m)⊕
i=1

f(m)
)
.

If S = (M(M),∪,⊙, ∅, {{1}}), then we also write
⋃

m∈M f(m) for
⊕

m∈M f(m).

Weighted Word Languages Let S be a semiring and Σ be an alphabet. A map

φ : Σ∗ → S is called (Σ,S)-weighted (word) language. We drop the parameter (Σ,S)

whenever it is clear from the context. For every set A and map φ : A → S, we define

the support of φ as

supp(φ) = {a ∈ A | φ(a) ̸= 0}

and for every a ∈ S we denote the constant map to a of type A→ S by a as well. For

every w ∈ Σ∗ we define the weighted language 1.w : Σ∗ → S by

(1.w)(v) =

1 if v = w

0 otherwise

for every v ∈ Σ∗. Let φ : Σ∗ → S be a weighted language. We say that φ is proper if

φ(ε) = 0.

Let φ1, φ2 : Σ
∗ → S be weighted languages. We define the concatenation of φ1 and

φ2 (cf. [99, Chapter III.]) as the weighted language φ1 ◦ φ2 : Σ
∗ → S defined for every

w ∈ Σ∗ by

(φ1 ◦ φ2)(w) =
⊕

w1,w2∈Σ∗

s.th. w=w1w2

φ1(w1)⊙ φ2(w2).

We note that for every w ∈ Σ∗ the set {(w1, w2) ∈ (Σ∗)2 | w = w1w2} is finite and

hence, φ1 ◦ φ2 is well-defined.

Let φ : Σ∗ → S. For every n ∈ N, the n-th power of φ is the weighted language

φn : Σ∗ → S defined by induction on n as follows:

φ0 = 1.ε and

φn+1 = (φ ◦ φn) + 1.ε for every n ≥ 0.

Let us assume that φ is proper. It holds that, for every w ∈ Σ∗ and n ∈ N,

if n ≥ |w| + 1, then φn+1(w) = φn(w) (see e.g. [37, Chapter 4]). This justifies

23

2. PRELIMINARIES

the following definition (cf. [99, Chapter III]). The Kleene star of φ is the weighted

language φ∗ : Σ∗ → S given for every w ∈ Σ∗ by

φ∗(w) = φ|w|+1(w).

Weighted Tree Languages Let S be a semiring, Σ be a ranked alphabet, and H

be a set such that Σ ∩H = ∅. A map φ : TΣ(H)→ S is called (Σ,H, S)-weighted tree

language. We abbreviate the parameter (Σ, ∅, S) by (Σ,S) and drop the parameter

(Σ,H, S) whenever it is clear from the context. For every a ∈ S and ξ ∈ TΣ we define

the weighted tree language a.ξ : TΣ → S by

(a.ξ)(ζ) =

a if ζ = ξ

0 otherwise

for every ζ ∈ TΣ . We call a weighted tree language φ : TΣ → S α-proper if φ(α) = 0.

We now recall the usual rational operations on weighted tree languages [38, 53].

Let φ : TΣ → S and a ∈ S. The scalar multiplication of φ with a is the (Σ,S)-

weighted tree language a⊙ φ defined for every ξ ∈ TΣ by (a⊙ φ)(ξ) = a⊙ φ(ξ).

Let φ1, φ2 : TΣ → S. The sum of φ1 and φ2 is the (Σ,S)-weighted tree language

(φ1 ⊕ φ2) defined for every ξ ∈ TΣ by (φ1 ⊕ φ2)(ξ) = φ1(ξ)⊕ φ2(ξ).

Let s ∈ N, σ ∈ Σ(s), and φ1, . . . , φs : TΣ → S. The top-concatenation of φ1, . . . , φs

with σ is the (Σ,S)-weighted tree language topσ(φ1, . . . , φs) defined for every ξ ∈ TΣ by

topσ(φ1, . . . , φs)(ξ) = φ1(ξ1)⊙ . . .⊙φs(ξs) if ξ = σ(ξ1, . . . , ξs) for some ξ1, . . . , ξs ∈ TΣ ,

and 0 otherwise. In particular, for s = 0, we have topσ() = 1.σ.

For the definition of concatenation of weighted tree languages, we need the concept

of α-cuts. Let ξ ∈ TΣ and α ∈ Σ(0). Intuitively, an α-cut through ξ is a tuple

(w1, . . . , wn) of positions of ξ such that w1 <l . . . <l wn, and each α-labeled position

is covered by some wi. Formally, we define the set of α-cuts through ξ, denoted by

cutα(ξ), by

cutα(ξ) =
{
(w1, . . . , wn) | n ∈ N, w1, . . . , wn ∈ pos(ξ), such that

w1 <l . . . <l wn, and

∀w ∈ posα(ξ) : ∃i ∈ [n] : wi is a prefix of w
}
.

24

2.2 Weighted Languages

σ

γ γ

σ

α β

α

σ

α γ

α

ασ

βα

γ

φ1

φ2

cut

Figure 2.2: Left: The tree ξ = σ(γ(σ(α, β), γ(α))) with two lines representing the tuples

(1, 21) and (11), respectively. (1, 21) is an α-cut through ξ and (11) is not an α-cut through

ξ since the rightmost α in ξ is not covered by (11). Right: ξ divided by (1, 21) into ξ[α](1,21)

(top), ξ|1, and ξ|21 (both bottom). The α-concatenation of two weighted tree languages

φ1 and φ2 evaluates φ1 on the top part and φ2 on the bottom part for every α-cut.

Let φ1, φ2 : TΣ → S be weighted tree languages and let α ∈ Σ(0). We define

the α-concatenation of φ1 and φ2 (cf. [38, Section 3]) as the weighted tree language

φ1 ◦α φ2 : TΣ → S defined for every ξ ∈ TΣ by

(φ1 ◦α φ2)(ξ) =
⊕

(w1,...,wn)∈cutα(ξ)

φ1(ξ[α](w1,...,wn))⊙ φ2(ξ|w1)⊙ . . .⊙ φ2(ξ|wn).

We note that for every ξ ∈ TΣ the index set cutα(ξ) is finite. An illustration of α-cuts

and α-concatenation can be found in Figure 2.2.

Let φ : TΣ → S and α ∈ Σ(0). We define the n-th iteration of φ at α as the weighted

tree language φn
α : TΣ → S for every n ∈ N inductively as follows (cf. [38, Def. 3.9] and

[47]):

φ0
α = 0 and

φn+1
α = (φ ◦α φn

α) + 1.α for every n ≥ 0.

Let us assume that φ is α-proper. It holds that, for every ξ ∈ TΣ and n ∈ N,

if n ≥ height(ξ) + 1, then φn+1
α (ξ) = φn

α(ξ) (see [38, Lm. 3.10]). This justifies the

25

2. PRELIMINARIES

following definition (cf. [38, Def. 3.11] and [47]). We define the α-Kleene star of φ as

the weighted tree language φ∗
α : TΣ → S given for every ξ ∈ TΣ by

φ∗
α(ξ) = φheight(ξ)+1

α (ξ).

2.3 Weighted Tree Automata

We now present the prevalent automaton model for this thesis. Since we use the

standard weighted tree automaton model, we do not give individual examples for each

concept, but rather collect these into one big example at the end of Chapter 2.3.

Throughout the rest of Chapter 2.3, we let Σ be an arbitrary ranked alphabet

and S be an arbitrary semiring.

A weighted tree automaton (short: WTA) over Σ and S is a tuple A = (Q,T, final),

where

• Q is a non-empty set of states,

• T = (Tσ : Q
s × Q → S | s ∈ N, σ ∈ Σ(s)) is a family of transition weight maps,

and

• final : Q→ S is the final weight map.

If Q is finite, then we call A finite.

Let A = (Q,T, final) be a WTA over Σ and S and let ξ ∈ TΣ ∪ CΣ be a tree

or a context. A run of A on ξ is a map ρ : pos(ξ) → Q. The set of all runs of A

on ξ is denoted by RunsA (ξ). If ξ is a context and ρ ∈ RunsA (ξ), then we define

in(ρ) = ρ(posvar(ξ)). We define the maps

locwtA (ξ, ,) : RunsA (ξ)× pos(ξ)→ S and

wtA (ξ, ,) : RunsA (ξ)× pos(ξ)→ S

inductively as follows. Let ρ ∈ RunsA (ξ) and w ∈ pos(ξ). If ξ(w) = x1, then we define

locwtA (ξ, ρ, w) = 1 and wtA (ξ, ρ, w) = 1.

26

2.3 Weighted Tree Automata

Otherwise, there exists s ∈ N and σ ∈ Σ(s) such that ξ(w) = σ and we define

locwtA (ξ, ρ, w) = Tσ(ρ(w1), . . . , ρ(ws), ρ(w)) and

wtA (ξ, ρ, w) = wtA (ξ, ρ, w1)⊙ · · · ⊙ wtA (ξ, ρ, ws)⊙ Tσ(ρ(w1), . . . , ρ(ws), ρ(w)).

Whenever the automaton A is clear from the context, we will omit the subscript A

from locwtA and wtA and simply write locwt and wt, respectively.

Let ρ ∈ RunsA (ξ). We abbreviate wt(ξ, ρ) = wt(ξ, ρ, ε) and call wt(ξ, ρ) the weight

of ρ. Moreover, we call ρ valid if locwt(ξ, ρ, w) ̸= 0 for every w ∈ pos(ξ) and we call ρ

non-vanishing if wt(ξ, ρ) ̸= 0. We denote the set of valid runs of A on ξ by RunsvA (ξ)

and define the sets

RunsA (ξ, q) = {ρ′ ∈ RunsA (ξ) | ρ′(ε) = q} and

RunsvA (ξ, q) = {ρ′ ∈ RunsvA (ξ) | ρ′(ε) = q}

for every q ∈ Q. Moreover, if ξ is a context, then we define the sets

RunsA (p, ξ, q) = {ρ′ ∈ RunsA (ξ, q) | in(ρ′) = p} and

RunsvA (p, ξ, q) = {ρ′ ∈ RunsvA (ξ, q) | in(ρ′) = p}

for every p, q ∈ Q.

We define the image of A , denoted by im(A), by

im(A) =
(⋃

σ∈Σ
im(Tσ)

)
∪ im(final).

We call A finite-run if for every ξ ∈ TΣ the set RunsvA (ξ) is finite. Clearly, if A is

finite, then A is finite-run. We call a state q ∈ Q reachable if there exists a tree ξ ∈ TΣ

such that at least one run in RunsA (ξ, q) is valid. For ξ ∈ CΣ we say that ρ ∈ RunsA (ξ)

is a loop (on ξ) if there exists q ∈ Q such that ρ ∈ RunsvA (q, ξ, q). Moreover, for s ∈ N,

σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q we call t = (q1, . . . , qs, σ, q) a transition of A and say

that t is a transition in a loop of A if there exists a loop ρ on some ξ ∈ CΣ and a

position w ∈ pos(ξ) such that ρ(wi) = qi for every i ∈ [s], ξ(w) = σ, and ρ(w) = q. We

sometimes enrich a transition t by its transition weight x = Tσ(q1, . . . , qs, q) and say

that (q1, . . . , qs, σ, x, q) is a transition of A .

27

2. PRELIMINARIES

Let ξ ∈ TΣ∪CΣ , ζ ∈ CΣ , ρ ∈ RunsA (ξ), and ρ′ ∈ RunsA (ζ) such that in(ρ′) = ρ(ε).

We define the run ρ′[ρ] ∈ RunsA (ζ[ξ]) in a natural way for every w ∈ pos(ζ[ξ]) by

ρ′[ρ](w) =

ρ(v) if w = posvar(ζ)v

ρ′(w) otherwise.

We note that this also defines (ρ′)k for every k ∈ N+, if ρ
′ is a loop.

Let A be finite-run. The weighted tree language recognised by A is the weighted

tree language [[A]] : TΣ → S, where for every ξ ∈ TΣ we define

[[A]](ξ) =
⊕

ρ∈RunsvA (ξ)

wt(ξ, ρ)⊙ final(ρ(ε)).

Two WTA A and A ′ over Σ and S are equivalent if [[A]] = [[A ′]], that is, if A and

A ′ recognise the same weighted tree language. The class of weighted tree languages

recognised by finite WTA over Σ and S is denoted by Rec(Σ,S).

Let A = (Q,T, final) be a WTA over Σ and S. We call A deterministic if for

every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs ∈ Q there exists at most one q ∈ Q such that

Tσ(q1, . . . , qs, σ, q) ̸= 0. Clearly, every deterministic WTA is finite-run. We call A

determinisable if there exists a deterministic WTA A ′ such that A ′ is equivalent to

A . The class of weighted tree languages recognised by deterministic finite WTA over

Σ and S is denoted by dRec(Σ,S).

In order to depict WTA easily, we use the concept of hypergraphs. More precisely,

we associate to a WTA A a hypergraph HA which contains the state behaviour of A

in the natural way. We represent the final weights of A by using a fresh final vertex qf

and a fresh hyperedge label ⊤ and having a hyperedge into qf labeled by ⊤ for every

state in Q.

Formally, let ⊤ and qf be fresh symbols such that ⊤ ̸∈ Σ and qf ̸∈ Q. The

hypergraph of A is the hypergraph HA = (Q∪{qf}, E) with labels in (Σ ∪{⊤(1)})×S

such that a tuple (q1 . . . qs, (σ, x), q) is in E if and only if (a) q1, . . . , qs, q ∈ Q, rk(σ) = s,

and x = Tσ(q1, . . . , qs, q) or (b) s = 1, q1 ∈ Q, σ = ⊤, q = qf , and x = final(q1).

We make the following conventions for graphical depictions of hypergraphs of WTA.

First, instead of drawing the entire label (σ, x) of a hyperedge inside of the square of

the respective hyperedge, we draw the symbol σ inside of the square and the weight x

28

2.3 Weighted Tree Automata

q1 q2γ γ

σ

σ

α

1

3

3

2

1 2

Figure 2.3: The hypergraph HA for the WTA A from Example 2.5. We apply the

conventions explained above Example 2.5 to keep the depiction of HA simple and readable.

next to the outgoing arrow in counterclockwise direction. Second, to aid readability,

we do not draw hyperedges where x vanishes. Third, we abbreviate edges of the form

(q, (⊤, x), qf), that is, the final weights of A , by small outgoing arrows starting in q,

pointing up- and rightwards, and labeled by x.

Example 2.5. Let Σ = {α(0), γ(1), σ(2)}. We consider the WTA A = (Q,T, final) over

Σ and (N,+, ·, 0, 1), where Q = {q1, q2} and every transition weight and final weight of

A is 0 except final(q1) = 1 and

Tα(q1) = 1, Tγ(q1, q2) = Tγ(q2, q2) = 2, and Tσ(q1, q2, q2) = Tσ(q2, q1, q1) = 3.

The hypergraph of A is HA = (Q ∪ {qf}, E), where

E = {(q1, (⊤, 1), qf), (q2, (⊤, 0), qf),

((α, 1), q1), ((α, 0), q2),

(q1, (γ, 0), q1), (q2, (γ, 0), q1), (q1, (γ, 2), q2), (q2, (γ, 2), q2),

(q1, q1, (σ, 0), q1), (q1, q2, (σ, 0), q1), (q2, q1, (σ, 3), q1), (q2, q2, (σ, 0), q1),

(q1, q1, (σ, 0), q2), (q1, q2, (σ, 3), q2), (q2, q1, (σ, 0), q2), (q2, q2, (σ, 0), q2)}

We depict HA in Figure 2.3. ◀

29

2. PRELIMINARIES

q2 q1

q

σ

x

q1 q2

q

σ

x

q1 q2

q

σ

x

(i) : (ii) : (iii) :

Figure 2.4: Our three options to collect hyperedges. This aims to keep illustrations of

hypergraphs readable.

We make another convention to simplify illustrations of hypergraphs of WTA. Let

A = (Q,T, final) be a WTA and σ ∈ Σ(2). If Tσ maps many state combinations to

non-vanishing weights, it quickly becomes unreadable to draw every hyperedge of HA

separately. Therefore, we collect hyperedges in the following way.

Let q1, q2, q ∈ Q. If Tσ(q1, q1, q) = Tσ(q1, q2, q) = Tσ(q2, q1, q) = Tσ(q2, q2, q), then

instead of drawing all four corresponding hyperedges, we draw structure (iii) from

Figure 2.4. If Tσ(q1, q2, q) = Tσ(q2, q1, q) = Tσ(q2, q2, q), then we draw the structure (i)

or (ii) from Figure 2.4.

We now present some special cases of our automaton model. First note that our

automaton model is the “standard model” for weighted tree automata, where we addi-

tionally allow the set of states Q to be infinite. In fact, requiring that Q is finite results

in a syntactical variant of the weighted tree automaton models from [3, 6, 40, 53].

An (unweighted) tree automaton over Σ is a WTA over Σ and the Boolean semiring

B. Our model of finite (unweighted) tree automata is a syntactical variant of the tree

automaton models in [58, 59].

Let A be an alphabet and recall the ranked alphabet ΣA from Chapter 2.1. A

weighted (word) automaton (short: WA) over A and S is a WTA over ΣA and S. Let

A = (Q,T, final) be a WA over A and S. Since T = (T#, Ta | a ∈ A), one can also

represent A by the tuple (Q, init, TA, final), where

• init : Q→ S is given by init(q) = T#(q) and

• TA : Q×A×Q→ S is given by TA(p, a, q) = Ta(p, q)

30

2.3 Weighted Tree Automata

for every p, q ∈ Q and a ∈ A. In this sense, our model of weighted automata coincides

with the automaton model from [31] and is a syntactical variant of the automaton

model from [36, Chapter 3] without ε-transitions.

An (unweighted) (word) automaton over A is a WA over A and the Boolean semiring

B. Our model of finite automata is the classical finite automaton model (cf. [76,

Chapter 2.2]).

Since weighted word automata and unweighted (tree or word) automata do not play

a major role in this thesis, we waive examples and refer the interested reader to [36,

Chapter 3], [58, 59], and [76, Chapter 2.2], respectively.

31

2. PRELIMINARIES

32

3

A Unifying Framework for the

Determinisation of

Weighted Tree Automata

This chapter is a canonical generalisation of Dörband and Mörbitz [31] from weighted

(word) automata to weighted tree automata. Besides a higher notational complexity,

this chapter closely follows [31]. We note that [31] and Chapter 3 are unpublished. The

results from this chapter also cover the results from Dörband, Feller, and Stier [29].

Throughout Chapter 3, we assume Σ to be a ranked alphabet.

3.1 Introduction

In the world of unweighted automata, one classical result states that every finite au-

tomaton A can be determinised ([93], cf. also [76, Chapter 2.5.3]). That is, there

exists a deterministic finite automaton DA such that DA is equivalent to A . This can

be shown using the well-known power set construction, where each state of DA is a

subset of the state set Q of A . While a generalisation of the power set construction

to the weighted setting can be attempted in a straightforward way, a positive deter-

minisation result is much harder to obtain [85] and not every weighted automaton A

is determinisable [12, Lemma 6.3]. As a result, the research on determinisation has

33

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

shifted towards finding conditions under which determinisation is possible. Different

approaches have emerged to find weighted determinisation constructions, both, in the

word case [5, 17, 21, 39, 80, 90] and the tree case [14, 29, 57]. These approaches have

in common that they adapt the classical power set construction to the weighted setting

and show that the respective construction returns a finite deterministic weighted (word

or tree) automaton DA whenever A satisfies a so-called twinning property. However,

the notions of the twinning property and determinism vary between the approaches.

Moreover, the respective determinisation results can only be applied to very restricted

classes of semirings (sometimes only individual semirings), which demonstrates the fact

that the research on weighted determinisation is scattered and misses a unified theory.

In [90], a weighted power set construction for determinisation was introduced for

the min-plus semiring. This weighted power set construction is a natural extension of

the unweighted power set construction, where the states of DA are now maps of the

type Q → S. This approach was later generalised by [80] (cf. [14] for the tree case)

who introduced a general notion of factorisations, which allowed for a determinisation

result over extremal, commutative semirings. In a weighted power set construction

with factorisation, each state of DA is still a map X : Q → S. However, whenever

the weighted power set construction calculates a transition X
σ|1−→ Y , the factorisation

chooses a decomposition Y = y⊙ Y ′ such that y is a common factor of the elements in

Y and replaces the transition X
σ|1−→ Y by X

σ|y−→ Y ′. By using factorisations, one tries

to counterweigh the fact that the state set of DA is potentially infinite.

Another approach to weighted determinisation is called sequentialisation1 [5, 21,

29] (cf. also [17]). Sequentialisation considers just one operation given by a monoid

(M,⊙, 1) and covers only semirings of the form (Pfin(M),∪,⊙, ∅, {1}). A WTA A is

called sequential if (1) A is deterministic and (2) all transition weights occurring in

A are either ∅ or singleton sets over M. Now, a sequentialisation construction takes

as input a WTA A over Pfin(M) and returns a sequential WTA DA over Pfin(M) such

that DA is equivalent to A . That is, a sequentialisation construction needs to be more

1We note that the term “sequentiality” is used ambiguously in the literature. In some papers

[85, 92], sequentiality and determinism are used interchangeably, whereas in other papers [5, 17, 21, 29],

sequentiality is strictly more restrictive than determinism. We use the term “sequentiality” as given in

[29].

34

3.1 Introduction

elaborate than a classical weighted determinisation construction, as it needs to make an

additional effort to keep the transition weights simple in order to satisfy condition (2)

from the definition of sequentiality. The sequentialisation constructions in [5, 21, 29] are

weighted power set constructions with factorisations. The additional requirement that

DA may only use singleton sets over M is met by considering special factorisations,

which, given a state Y : Q → Pfin(M), choose common factors in M, rather than in

Pfin(M). Moreover, [5, 21, 29] implicitly use a distance function d : M ×M → N and

ensure that factorisations keep the states of DA “close to 1” with respect to d. This

aims to make DA finite. However, the actual class of semirings covered by these sequen-

tialisation results is quite restricted. In [5], it is assumed that M is the free monoid Γ ∗

for an alphabet Γ and in [21, 29], it is assumed that M is a finitely generated group.

A third kind of determinisation is called crisp-determinisation [39, 57]. An au-

tomaton A is called crisp-deterministic if (1) A is deterministic and (2) all transition

weights occurring in A are either 0 or 1. Now, a crisp-determinisation construction

takes as input a WTA A over S and returns a crisp-deterministic WTA DA such that

DA is equivalent to A . Hence, a crisp-determinisation construction needs to be even

more elaborate than a sequentialisation construction, as the neutral elements in Pfin(M)

are ∅ and {1}. In [39, 57], it is required that S is an (additively and multiplicatively)

locally finite semiring. Under this condition, the authors prove that every WTA over S

can be crisp-determinised. The crisp-determinisation construction in [57, Algorithm 1]

is a weighted power set construction without factorisations.

In the present chapter, we unify these three determinisation approaches as follows.

First, we let M be a submonoid of the multiplicative monoid (S,⊙, 1) of the semiring.

Next, we say that an automaton A over S is M-sequential if (1) A is deterministic

and (2) all transition weights occurring in A are either 0 or in M. Now, an M-

sequentialisation construction takes as input a finite WTA A over S and returns an

M-sequential WTA DA such that DA is equivalent to A .

In this general framework, M is a parameter for our determinisation approach that

determines how “regular” the resulting automata should be. This “regularity” ranges

between the case M = S, which yields classical determinisation, and the case that M

is the trivial monoid ({1},⊙, 1), which yields crisp-determinisation.

35

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

The goal of Chapter 3 is to (1) introduce the mathematical tools necessary for our

M-sequentialisation framework and (2) provide an M-sequentialisation construction

for a large class of semirings. In the following paragraphs, we will explain our M-

sequentialisation construction in a slightly more technical way.

Let S be a semiring, M ≤ (S,⊙, 1), and A = (Q,T, final) be a finite WTA over

Σ and S. Our M-sequentialisation construction works in three steps, which can be

outlined as follows.

Step (I): We decompose every weight occurring in A into finite sums over M and

rewrite these finite sums as finite multisets over M. This yields a finite WTA B over Σ

and (Mfin(M),∪,⊙, ∅, {1}) (cf. Lemma 3.55). This step can only be done if all weights

occurring in A can be written as finite sums over M, which is why we require that A

is a WTA over Σ and ⟨M⟩⊕, the additive closure of M, in Lemma 3.55. We consider

multisets over M rather than sets over M since we want to cover the cases where S is

not idempotent. Moreover, we note that this step is trivial for classical determinisation,

where M = S.

Step (II): Recall that S(M) is the set of singleton sets over M. We give an infi-

nite S(M)-sequentialisation construction that takes B as input and returns an S(M)-

sequential WTA DB over Mfin(M) that is not necessarily finite (cf. Definition 3.39).

This infinite S(M)-sequentialisation construction is similar to [29] where our weighted

power set construction deals with multisets rather than sets. Formally, a state X of

DB is a map X : Q→Mfin(M).

Moreover, our approach to factorisations is more elaborate than the one in [5, 21, 29]

since we deal with a general class of monoids rather than only groups [21, 29] or only

free monoids [5]. In fact, our factorisations are based on a theory of minimising divisors

in monoids. We assume that M is finitely generated by a set Γ and obtain the so-called

Cayley-distance dΓ : M × M → N on M. Given a map X : Q → Mfin(M), we can

determine all factorisations y ⊙ Y = X such that |Y |Γ = maxq∈Q,y′∈Y (q) dΓ (y
′, 1) is

minimal. Let (y, Y) be such a factorisation of X. We say that y is a minimising divisor

of X and Y is a minimal quotient of X divided by y. Furthermore, we say that (y, Y)

is a centering factorisation of X if |Y |Γ can be bounded by a function f depending

only on the diameter of Y . That is, all values occurring in Y are close to 1 (up to f).

36

3.1 Introduction

Our factorisation approach is to take a transition (X1, . . . , Xs)
σ|1−→ X generated by

the weighted power set construction, choose a centering factorisation (y, Y) of X and

replace the transition (X1, . . . , Xs)
σ|1−→ X by (X1, . . . , Xs)

σ|y−→ Y .

In order for the factorisation to be well-defined and to have desirable properties, we

require M to satisfy two properties. The first property is that M divides Γ -monotone,

which provides that the diameter of states does not increase during our factorisation.

The second property is that M admits centering factorisations, which yields that center-

ing factorisations always exist. We combine these two properties to obtain the following

result for DB: if B satisfies our extended twinning property (short: B ⊨ ETP), then

all values occurring in reachable states of DB are “close to 1” (cf. Lemma 3.45). The

ETP is our analogon to the twinning properties from the literature and essentially

states that loops of the WTA B can be neglected during the calculation of distances

of run weights. We discuss how the ETP compares to other twinning properties later

in Chapter 3.1.

Step (III): We introduce a class of equivalence relations ∼ on the set of reachable

states of DB that preserve the transition weights and final weights. We call such an

equivalence relation ∼ an accumulator of DB (cf. Definition 3.63). Next, we define the

accumulation of DB via ∼, denoted acc∼(DB), as the WTA over Σ and S obtained from

DB by (1) identifying all equivalent states under ∼ and (2) evaluating every multiset

weight via ⊕ in S (cf. Definition 3.64). The WTA acc∼(DB) inherits M-sequentiality

from the S(M)-sequentiality of DB and is equivalent to A (cf. Lemmas 3.66 and 3.67).

Ultimately, we show that we can find an accumulator ∼ of DB such that acc∼(DB)

is finite, whenever S is additively idempotent or B is finitely ambiguous. In the case

that S is additively idempotent, the accumulator ∼ simply identifies all states with the

same support. In the case that B is finitely ambiguous, DB is already finite (cf. Corol-

lary 3.47) and hence ∼ is the identity relation. This yields a positive M-sequentialisation

result for the case that S is additively idempotent or B is finitely ambiguous (cf.

Theorem 3.78). In fact, we obtain a positive M-sequentialisation result, whenever an

accumulator ∼ of DB exists such that acc∼(DB) is finite (cf. Theorem 3.77). This

provides a blueprint result which can be used to find M-sequentialisation results for

further classes of semirings and weighted tree automata.

37

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

We summarize the three steps of our M-sequentialisation construction. In Step (I)

we shift the focus from S to M by decomposing all values occurring in A into finite

multisets over M. In Step (II) we obtain S(M)-sequentiality without the finiteness

condition by employing an infinite S(M)-sequentialisation construction. In Step (III)

we evaluate the multiset weights back into S and obtain finiteness by factoring out

states with identical behaviours. An example of this three step process is given in

Example 3.73 and illustrated in Figure 3.12.

A

WTA

over Σ and ⟨M⟩⊕

B

WTA

over Σ and Mfin(M)

DB

S(M)-seq. WTA

over Σ and Mfin(M)

acc∼(DB)

M-seq. WTA

over Σ and S

(I) (II) (III)

Our main contribution is the following theorem.

Theorem 3.78. Let S be a semiring andM ≤ (S,⊙, 1) such thatM is finitely generated

by some Γ , divides Γ -monotone, and admits centering factorisations. Let Σ = Σ(0) ∪

Σ(1) or M be commutative and let A be a finite WTA over Σ and ⟨M⟩⊕. Moreover,

let one of the following conditions hold.

1. A is finitely M-ambiguous

2. ⟨M⟩⊕ is additively idempotent

If A ⊨ ETP, then A is M-sequentialisable.

Next, we briefly compare our Theorem 3.78 to the determinisation results from the

literature. We note that the entire Chapter 3.8 is dedicated to an in-depth and formal

literature comparison.

In [5, 21, 29], only the semiring of finite sets Pfin(M) is considered, where M is a free

monoid Γ ∗ or a finitely generated group. One can show that free monoids and finitely

generated groups divide Γ -monotone and admit centering factorisations. Moreover,

Pfin(M) is additively idempotent. Furthermore, the twinning properties from [5, 21, 29]

imply our ETP. Therefore, Theorem 3.78 covers the sequentialisation results from

[5, 21]. However, both [5, 21] prove that A is sequentialisable if and only if A satisfies

the twinning property, whereas we only prove the “if” direction of the equivalence.

38

3.2 Preliminaries

In [14, Theorem 5.2], only extremal, commutative semirings with so-called maximal

factorisations are considered (besides some trivial cases). There exist semirings covered

by Theorem 3.78 that are not covered by [14]. At the time of writing, it remains an

open problem whether there exist semirings covered by [14] that are not covered by

Theorem 3.78. We conjecture that such semirings do not exist. However, the twinning

property from [14] is incomparable to our ETP, which (unfortunately) implies that [14]

is incomparable to Theorem 3.78.

The rest of this chapter is structured as follows. In Chapter 3.3, we introduce

our theory of minimising divisors in monoids. In Chapters 3.4 and 3.5, we investigate

weighted tree automata overMfin(M) and provide Step (II) from ourM-sequentialisation

construction. In Chapters 3.6 and 3.7, we provide Steps (I) and (III) from our M-

sequentialisation construction, respectively. In Chapter 3.8, we compare Theorem 3.78

to the determinisation results from the literature. We conclude Chapter 3 in Chapter 3.9

by presenting some open questions and research directions. We provide Step (II) be-

fore Step (I) because Step (II) is deeply connected to Chapters 3.3 and 3.4 and this

order avoids jumping back and forth between the semiring perspective and the monoid

perspective.

3.2 Preliminaries

Let M be a monoid and S be a semiring. We call S an M-semiring if M ≤ (S,⊙, 1).

In this case, we use the operation symbol ⊙ for multiplication in M (as well as in S).

We note that the monoid ⟨M⟩⊕ is also a semiring.

Let M be a monoid, S be an M-semiring, and A = (Q,T, final) be a WTA over Σ

and S. We call A M-sequential if A is deterministic and all non-vanishing transition

weights are elements of M. We call A M-sequentialisable if there exists an M-sequential

finite WTA A ′ such that A ′ is equivalent to A . The class of weighted languages

recognised by M-sequential finite WTA over Σ and S is denoted by sRec(Σ,S,M).

We note that if A is M-sequentialisable, then A is determinisable. Moreover,

A is (S,⊙, 1)-sequentialisable if and only if A is determinisable. This follows di-

rectly from the definition of M-sequentiality where M = (S,⊙, 1). Similarly, A is

39

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

({1},⊙, 1)-sequentialisable if and only if A is a crisp-determinisable1 weighted tree

automaton over the semiring ⟨1⟩⊕.

Hence, our concept of M-sequentialisability introduces a spectrum of sequentialis-

ability ranging between the extreme cases of crisp-determinisability and classical de-

terminisability.

Example 3.1. Let Σ = {α(0), γ(1), σ(2)}. We consider the WTA A = (QA , TA , finalA)

over Σ and X (see Example 2.4), where QA = {q1, q2, q3} and every transition weight

and final weight of A is ⊥ except

finalA (q1) = finalA (q2) = finalA (q3) = 0,

(TA)α(q1) = 1, (TA)γ(q2, q1) = ⊤,

(TA)γ(q1, q1) = (TA)γ(q2, q3) = (TA)γ(q3, q3) = 1, and

(TA)σ(qi, qj , q2) = 1 for every i, j ∈ {1, 2}.

A graphical representation of A is given in Figure 3.1.

We consider the tree ξ = γ(σ(α, α)) ∈ TΣ . There exist exactly two valid runs of A

on ξ, namely ρ1 and ρ2 given as follows.

ρ1 :

γ

σ

α α

q1

q2

q1 q1

ρ2 :

γ

σ

α α

q3

q2

q1 q1

We obtain wt(ξ, ρ1) = ⊤ and wt(ξ, ρ2) = 4 and hence [[A]](ξ) = ⊤ ∨ 4 = ⊤.

It is easy to see (and we will prove in Example 3.54) that [[A]] maps every input

tree that contains a γ directly above a σ to ⊤; all other trees are mapped to their size.

Formally, we conjecture that the weighted tree language recognised by A is given by

[[A]](ξ) =

⊤ if ∃w ∈ pos(ξ) : ξ(w) = γ ∧ ξ(w1) = σ

size(ξ) otherwise.

1We call A crisp-deterministic if A is deterministic and all transition weights are elements of

{0, 1}. We refer the interested reader to [57].

40

3.3 Factorisation in Monoids

q1 q2
γ

⊤

α

0

1

σ

1
0

q3γ

0

γ1

1

γ1

Figure 3.1: Illustration of the WTA A over {α(0), γ(1), σ(2)} and X from Example 3.1.

In order to save space, we use the conventions introduced on page 30.

The WTA A shall serve as our running example for investigating determinisability and

M-sequentialisability. For the latter, we consider the submonoid (N,+, 0) of (X,+, 0)

which is finitely generated by {1}. The desire to N-sequentialise A (rather than just

determinise it) may be motivated by the fact that automata over N are well-studied

and can be modeled in standard programming languages (like C or python) without

the need to introduce a custom data type.

Since both (TA)γ(q2, q1) and (TA)γ(q2, q3) are not equal to ⊥, A is not deterministic

and thus not N-sequential either. We observe that removing the state q3 from A does

not change [[A]] and, moreover, results in a deterministic automaton which is not N-

sequential. On the other hand, letting (TA)γ(q2, q1) = 1 does not change [[A]] and

ensures that all non-vanishing transition weights are elements of N, but the resulting

automaton is not deterministic.

Throughout the course of Chapter 3, we will uncover that A is N-sequentialisable

nevertheless and that this N-sequentialisation involves moving the weight ⊤ from the

transitions to the final weights. ◀

3.3 Factorisation in Monoids

As we have discussed in the introduction to Chapter 3, our M-sequentialisation con-

struction applies a factorisation technique for multisets over M. In this chapter, we set

up the necessary theory for multisets over M and introduce two properties of monoids

that will be used in Chapter 3.5 to make our factorisation approach successful.

41

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

3.3.1 Ordering Multisets over Monoids

We start by presenting a way to linearly order multisets over monoids. This will come in

handy whenever our factorisation approach admits multiple equally good factorisations

of a single multiset.

Throughout the rest of Chapter 3.3, we assume (M,⊙, 1) to be a finitely

generated monoid with finite generating set Γ . Moreover, we assume that

Γ is linearly ordered.

Remark 3.2. Since Γ is linearly ordered, Γ ∗ is linearly ordered by the lexicographic

order ≤lex. This induces a linear order on M as follows. Let h : Γ ∗ →M be the unique

monoid homomorphism such that h(γ) = γ for every γ ∈ Γ . For every m ∈ M there

exists a unique min≤lex
h−1(m) which we denote by Γ−1(m). We define the order ≤Γ

on M by m1 ≤Γ m2 if and only if Γ−1(m1) ≤lex Γ
−1(m2) for every m1,m2 ∈ M. It is

easy to see that ≤Γ is a linear order on M.

Moreover, the order ≤Γ induces a linear order on Mfin(M) as follows. First, we

note that ≤Γ induces the lexicographic order on M∗, which we denote by ≤M
lex. Second,

there exists a unique map sort : Mfin(M) → M∗ such that for every M ∈ Mfin(M) it

holds that |sort(M)| = #M , |sort(M)|m =M(m) for every m ∈M, and sort(M)[i] ≤Γ

sort(M)[i+1] for every i ∈ [#M − 1]. We define the order ⊑ on Mfin(M) by M1 ⊑M2

if and only if sort(M1) ≤M
lex sort(M2). It is easy to see that ⊑ is a linear order on

Mfin(M). We write M1 < M2 if M1 ⊑ M2 and M1 ̸= M2. We will use ⊑ in order to

have a consistent way to choose unique successor states for transitions in our S(M)-

sequentialisation construction. ◀

Example 3.3. We have seen in Example 2.3 that the monoid (N,+, 0) is finitely

generated by Γ = {1}.

Let hN : Γ
∗ → N be the unique homomorphism such that hN(1) = 1. For every

n ∈ N it holds that h−1
N (n) = {1n} and hence also Γ−1(n) = 1n. Therefore, for every

n1, n2 ∈ N it holds that n1 ≤Γ n2 if and only if n1 ≤ n2.

We consider the multisets M1 = {{15, 3, 7, 10}} and M2 = {{4, 12, 4, 8}}. An easy cal-

culation shows that sort(M1) = 3 7 10 15 and sort(M2) = 4 4 8 12. It surely holds that

42

3.3 Factorisation in Monoids

sort(M1) is lexicographically smaller than sort(M2) (that is, sort(M1) ≤N
lex sort(M2))

and hence M1 ⊑M2. ◀

3.3.2 Cayley Graph and Cayley Distance

Since our M-sequentialisation construction is heavily inspired by the sequentialisation

construction from [5, 21, 29], we also use the concepts of a Cayley graph and Cayley

distance. However, we note that Cayley graphs for monoids are directed graphs (rather

than undirected graphs as in the group case) and the Cayley distance is not necessarily

a metric.

Definition 3.4. The (directed) Cayley graph for M and Γ is the directed graph

CayM,Γ = (M, E), where E = {(m,mγ) | m ∈M, γ ∈ Γ}.

Let m1,m2 ∈ M and w ∈ E∗. We call w a path from m1 to m2 if either w = ε and

m1 = m2 or the following conditions are satisfied:

• w[1] = (m1,m
′) for some m′ ∈M,

• w[|w|] = (m′,m2) for some m′ ∈M, and

• for every i ∈ [|w| − 1], there are n,m′, n′ ∈ M such that w[i] = (n,m′) and

w[i+ 1] = (m′, n′).

We will sometimes denote a non-empty path only by the sequence of vertices it traverses.

That is, we will abbreviate w by proj1(w[1]) . . . proj1(w[|w|])proj2(w[|w|]) if w ̸= ε.

If w is a path from m1 to m2, then we abbreviate this fact by m1
w

∼∼∼▷ m2. The set

of paths from m1 to m2 is denoted by Paths(m1,m2). A fork-path connecting m1 and

m2 is a pair (w, v) of paths such that n
w

∼∼∼▷ m1 and n
v

∼∼∼▷ m2 for some n ∈ M. The

set of fork-paths connecting m1 and m2 is denoted by FPaths(m1,m2). The length of

a fork-path (w, v) ∈ FPaths(m1,m2), denoted by |(w, v)|, is |w|+ |v|.

The Cayley-distance between m1 and m2, denoted by dΓ (m1,m2), is defined as

dΓ (m1,m2) = min
ω∈FPaths(m1,m2)

|ω|

and the Γ -length of m1, denoted by |m1|Γ , is defined as

|m1|Γ = min
w∈Paths(1,m1)

|w|.

43

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

ForM ∈Mfin(M) we define the Γ -length ofM , denoted by |M |Γ , as maxm∈supp(M) |m|Γ .

Let m ∈ M and r ∈ N. The ball of radius r around m, denoted by Br(m), is

defined as {m′ ∈ M | ∃w ∈ Paths(m,m′) : |w| ≤ r}, which is a finite set. Note that

Br(1) = {m ∈M | |m|Γ ≤ r}. ◀

Example 3.5. We continue Example 2.3 and illustrate the Cayley graphs and Cayley-

distances of some monoids. For the sake of clarity, we label every edge in each Cayley

graph with the corresponding element γ of the generating set.

• The Cayley graph for (N,+, 0) and Γ = {1} is an infinite chain starting in 0.

0 1 2 3 . . .1 1 1 1

For every n1, n2 ∈ N it holds that dΓ (n1, n2) = |n1 − n2| and in particular

|n1|Γ = n1.

• Let k ∈ N. The Cayley graph for (N≤k,+k, 0) and Γ = {1} is a finite chain

starting in 0 and ending in k. For k = 3, this can be visualised as

0 1 2 3
1 1 1 1

For every n1, n2 ∈ N≤k it holds that dΓ (n1, n2) = |n1 − n2| and in particular

|n1|Γ = n1.

• The Cayley graph for BF and ΓBF is a two-dimensional grid which is depicted in

Figure 3.2. We note that every edge in CayBF,ΓBF points either to the right or

upwards. Using this fact, we obtain that the set Paths
(
(0, 0), (2, 7)

)
contains the

six elements w1, . . . , w6, where

w1 = (0, 0)(0, 1)(1, 2)(1, 3)(2, 6)(2, 7),

w2 = (0, 0)(0, 1)(1, 2)(2, 4)(2, 5)(2, 6)(2, 7),

w3 = (0, 0)(1, 0)(1, 1)(1, 2)(1, 3)(2, 6)(2, 7),

w4 = (0, 0)(1, 0)(1, 1)(1, 2)(2, 4)(2, 5)(2, 6)(2, 7),

w5 = (0, 0)(1, 0)(1, 1)(2, 2)(2, 3)(2, 4)(2, 5)(2, 6)(2, 7), and

w6 = (0, 0)(1, 0)(2, 0)(2, 1)(2, 2)(2, 3)(2, 4)(2, 5)(2, 6)(2, 7).

44

3.3 Factorisation in Monoids

(0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0) . . .

(1, 0) (0, 0) (1, 1) (0, 0) (1, 2) (0, 0) (1, 3) (0, 0) . . .

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) . . .

. .

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

(0, 1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Figure 3.2: The Cayley graph for BF and ΓBF. The shortest path from (0, 0) to (2, 7) is

illustrated by orange edges.

The shortest path from (0, 0) to (2, 7) is w1 and it holds that |w1| = 5. In

particular, |(2, 7)|ΓBF = 5. We illustrate w1 in Figure 3.2. ◀

Lemma 3.6. Let m1,m2 ∈M. It holds that

(i) dΓ (m1,m2) ≤ |m1|Γ + |m2|Γ and

(ii) |m1 ⊙m2|Γ ≤ |m1|Γ + |m2|Γ .

Proof. Let w ∈ Paths(1,m1) and v ∈ Paths(1,m2) such that |w| = |m1|Γ and |v| =

|m2|Γ . It holds that (w, v) ∈ FPaths(m1,m2) and by the definition of dΓ we obtain

dΓ (m1,m2) ≤ |(w, v)| = |m1|Γ + |m2|Γ . This proves Inequality (i).

If v = ε, then Inequality (ii) holds trivially. Otherwise, assume that v = v1 . . . vn for

some n ∈ N and v1, . . . , vn ∈M. Surely, v′ = (m1 ⊙ v1) . . . (m1 ⊙ vn) is a path from m1

to m1 ⊙m2. In particular, wv′ ∈ Paths(1,m1 ⊙m2) and |wv′| = |w|+ |v′| = |w|+ |v|.

Therefore, by the definition of the Γ -length we obtain |m1⊙m2|Γ ≤ |wv′| = |w|+ |v| =

|m1|Γ + |m2|Γ . This proves Inequality (ii).

Lemma 3.7. Let m1,m2,m ∈M. It holds that dΓ (m1,m2) ≥ dΓ (m⊙m1,m⊙m2).

Proof. Let (w, v) ∈ FPaths(m1,m2) such that |(w, v)| = dΓ (m1,m2). Moreover, we

assume that w and v have the form

w = w1 . . . wk and v = v1 . . . vℓ,

45

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

where k ∈ {|w| + 1, 0}, ℓ ∈ {|v| + 1, 0}, and w1, . . . , wk, v1, . . . , vℓ ∈ M. We define the

tuple (w′, v′), where

w′ = (m⊙ w1) . . . (m⊙ wk) and

v′ = (m⊙ v1) . . . (m⊙ vℓ).

It is obvious that (w′, v′) ∈ FPaths(m⊙m1,m⊙m2) and moreover, |(w′, v′)| = |(w, v)|.

It follows from the definition of dΓ that |(w′, v′)| ≥ dΓ (m ⊙ m1,m ⊙ m2). Thus, we

have seen that dΓ (m1,m2) = |(w, v)| = |(w′, v′)| ≥ dΓ (m⊙m1,m⊙m2), which proves

the lemma.

3.3.3 Divisors and Rests

We will now develop our theory of minimising divisors and minimal quotients for mul-

tisets over M. Minimality of divisors and quotients is used in Chapter 3.5 to keep

factorised states as close to the neutral element 1 ∈M as possible (with respect to dΓ).

Definition 3.8. LetM be a finite multiset over M. We define the set of common (left)

divisors of M by

div(M) = {n ∈M | ∃N ∈Mfin(M) : n⊙N =M}.

Moreover, for every n ∈ div(M) we define the set of quotients of M divided by n as the

set

quotn(M) = {N ∈Mfin(M) | n⊙N =M}

and the set of (Γ -)minimal quotients of M divided by n as

minquotn(M) = argmin
N∈quotn(M)

|N |Γ .

Lastly, we define the set of (Γ -)minimising divisors of M as

mindiv(M) = argmin
n∈div(M)

min
N∈quotn(M)

|N |Γ .

IfM = {{m1,m2}} for somem1,m2 ∈M, then we write div(m1,m2), quotn(m1,m2),

minquotn(m1,m2), and mindiv(m1,m2) rather than div(M), quotn(M), minquotn(M),

and mindiv(M), respectively. ◀

46

3.3 Factorisation in Monoids

Remark 3.9. We note that for every finite multisetM over M and n ∈ div(M), the set

quotn(M) is non-empty. Moreover, for every N ∈ quotn(M) it holds that #N = #M .

Surely, there need not be a unique argmin in the definition of minquotn(M). There-

fore, minquotn(M) is a set of all “equally minimal” quotients. Moreover, there need

not be a unique argmin in the definition of mindiv(M). Therefore, mindiv(M) is the

set of all “equally minimising” divisors of M .

We note that a minimising divisor n of M is “minimising” in the sense that |N |Γ
is minimal for each N ∈ minquotn(M). ◀

Lemma 3.10. Let M be a finite multiset over M. It holds that

div(M) =
⋂

m∈supp(M)

div({m}).

Proof. Let n ∈ div(M). By definition, there exists N ∈Mfin(M) such that n⊙N =M .

In particular, for every m ∈ supp(M) there exists nm ∈ supp(N) such that n⊙nm = m.

This shows that n ∈
⋂

m∈supp(M) div({m}).

Now, let n ∈
⋂

m∈supp(M) div({m}). In particular, for every m ∈ supp(M) there

exists nm ∈ M such that n ⊙ nm = m. We define the multiset N = {{nm | m ∈ M}}

and observe that n⊙N =M . Thus, n ∈ div(M).

Example 3.11. We continue Example 3.5 and calculate some minimal quotients and

minimising divisors.

• We consider the monoid (N,+, 0) and let M ∈Mfin(N) such that M ̸= ∅. Surely,

a natural number n ∈ N is a common left divisor of all elements in supp(M) if

and only if n ≤ min(supp(M)). That is,

div(M) = {0, . . . ,min(supp(M))}.

Moreover, for every n ∈ div(M) it holds that N = {{m − n | m ∈ M}} is the

unique element in quotn(M) and hence also in minquotn(M). We recall that N

is finitely generated by Γ = {1} and obtain

|N |Γ = max
m∈supp(N)

|m|Γ = max
m∈supp(N)

m = max
m∈supp(M)

(m− n) = max(supp(M))− n

which shows that |N |Γ is smallest if n is largest. Therefore, we have that

mindiv(M) = {min(supp(M))}.

47

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

• We consider the monoid (N≤k,+k, 0) for some k ∈ N and let M ∈ Mfin(N≤k)

such that M ̸= ∅. Analogously to the monoid (N,+, 0), an element n ∈ N≤k is a

common left divisor of all elements in supp(M) if and only if n ≤ min(supp(M)).

That is,

div(M) = {0, . . . ,min(supp(M))}.

Let n ∈ div(M) and N ∈Mfin(N≤k). It holds that N ∈ quotn(M) if and only if

(a) N(m) =M(m+ n) for every m ∈ {0, . . . , k − n− 1} and

(b)
∑n

i=0N(k − n+ i) =M(k).

We recall that N≤k
is finitely generated by Γ = {1} and obtain that |N |Γ is

minimal if n = min(supp(M)) and N(k − n) = M(k). Therefore, we have that

mindiv(M) = {min(supp(M))} and N = {{m −min(supp(M)) | m ∈ M}} is the

unique element in minquotmin(supp(M))(M).

• We consider the monoid BF and note that div({{m}}) = {n ∈ BF | ∃n w
∼∼∼▷ m}

for every m ∈ BF. Hence, in order to determine div({{m}}), we need to determine

the starting vertices of paths ending in m.

We recall that all edges in CayBF,ΓBF point either to the right or upwards (see

Figure 3.2). This illustrates the following fact. For every m,n ∈ BF, there exists

a path n
w

∼∼∼▷ m if and only if n “lies to the bottom left” of m. Formally, it holds

that

div({{(ma,mb)}}) =
{
(na, nb) ∈ BF

∣∣∣ na ≤ ma ∧ nb ≤
⌊ mb

2ma−na

⌋}
(3.1)

for every (ma,mb) ∈ BF. We prove Equation (3.1). Let (ma,mb), (na, nb) ∈ BF.

It holds that

(na, nb) ∈ div({{(ma,mb)}}) ⇐⇒ ∃m′ ∈ BF : (na, nb) ◦BF m′ = (ma,mb)

⋆1⇐⇒ ∃m′ ∈ BF : m′ = (ma − na,mb − 2ma−na · nb)
⋆2⇐⇒ na ≤ ma ∧ nb ≤

⌊ mb

2ma−na

⌋
.

48

3.3 Factorisation in Monoids

Equivalence ⋆1 follows from the fact that

(na, nb) ◦BF (m′
a,m

′
b) = (ma,mb) ⇐⇒ (na +m′

a, 2
m′

a · nb +m′
b) = (ma,mb)

⇐⇒ (m′
a,m

′
b) = (ma − na,mb − 2ma−na · nb)

for every (m′
a,m

′
b) ∈ BF and Equivalence ⋆2 follows from the fact that

(ma − na,mb − 2ma−na · nb) ∈ N2 ⇐⇒ ma − na ≥ 0 ∧mb − 2ma−na · nb ≥ 0.

This concludes the proof of Equation (3.1).

We consider the multiset M = {{(3, 1), (2, 8)}} over N2. From Equation (3.1) it

follows that

div({{(3, 1)}}) = {(3, 1), (3, 0), (2, 0), (1, 0), (0, 0)}

and

div({{(2, 8)}}) = {(2,m2), (1,m1), (0,m0) | m2 ≤ 8,m1 ≤ 4,m0 ≤ 2}

which shows that div(M) = div({{(3, 1)}}) ∩ div({{(2, 8)}}) = {(2, 0), (1, 0), (0, 0)}.

We have seen in Example 2.3 that BF is cancellative and hence quotients in BF

are unique. We can verify the following equations by easy calculations:

quot(2,0)(M) = minquot(2,0)(M) =
{
{{(1, 1), (0, 8)}}

}
quot(1,0)(M) = minquot(1,0)(M) =

{
{{(2, 1), (1, 8)}}

}
quot(0,0)(M) = minquot(0,0)(M) =

{
{{(3, 1), (2, 8)}}

}
.

In order to determine which divisor is a minimising divisor, we have to calculate

the ΓBF-length of all quotients.

Similar to the calculation of |(2, 7)|ΓBF in Example 3.5, we find that |(1, 1)|ΓBF = 2,

|(0, 8)|ΓBF = 8, |(2, 1)|ΓBF = 3, |(1, 8)|ΓBF = 5, |(3, 1)|ΓBF = 4, and |(2, 8)|ΓBF = 4.

Therefore, mindiv(M) = (0, 0). ◀

Lemma 3.12. Let M be a finite multiset over M. Moreover, let m,n ∈ M such that

m⊙ n ∈ div(M). It holds that

{N ∈ quotn(K) | K ∈ quotm(M)} = quotm⊙n(M).

49

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Proof. Let N ∈Mfin(M). It holds that

N ∈ {N ′ ∈ quotn(K) | K ∈ quotm(M)}

⇐⇒ ∃K ∈ quotm(M) : n⊙N = K

⇐⇒ ∃K ∈Mfin(M) : n⊙N = K ∧m⊙K =M

⇐⇒ (m⊙ n)⊙N =M ⇐⇒ N ∈ quotm⊙n(M).

This proves the claim.

3.3.4 Factorisation Properties

In order for our factorisation approach to work, we require M to fulfil two properties.

The first property is that M divides Γ -monotone, which ensures that dividing two

elements of M by a common divisor does not increase their Cayley-distance. The second

property is that M admits centering factorisations, which ensures that factorised states

stay close to 1. We will see the specific application of these properties in Chapter 3.5

(more precisely, in Lemma 3.45).

Definition 3.13. We say that M divides Γ -monotone if for every m1,m2 ∈ M,

n ∈ div(m1,m2), and {{n1, n2}} ∈ minquotn(m1,m2) it holds that

dΓ (n1, n2) ≤ dΓ (m1,m2).

LetM ∈Mfin(M), n ∈ mindiv(M), N ∈ minquotn(M), and f : N→ N be a strongly

monotone map. We call the pair (n,N) an f -centering factorisation of M if for every

n1 ∈ supp(N) there exists n2 ∈ supp(N) such that

|n1|Γ ≤ f(dΓ (n1, n2)).

The set of f -centering factorisations of M is denoted by CenterFact(M, f). We define

the strict order <̃ on CenterFact(M,f) by (n1, N1) ⊑̃ (n2, N2) iff (1) N1 < N2 or (2)

N1 = N2 and n1 ≤Γ n2. Moreover, we let <̃ = (⊑̃ \ idCenterFact(M,f)). Furthermore, the

minimal f -centering factorisation of M is defined as

minCenterFact(M, f) = min⊑̃
(
CenterFact(M,f)

)
,

50

3.3 Factorisation in Monoids

whenever CenterFact(M,f) ̸= ∅.

Let f : N → N be a strongly monotone map. We say that M admits f -centering

factorisations if for every M ∈Mfin(M) there exists an f -centering factorisation (n,N)

ofM . We say thatM admits centering factorisations if there exists a strongly monotone

map f : N→ N such that M admits f -centering factorisations. ◀

Remark 3.14. First, let M divide Γ -monotone and let m1,m2 ∈M, n ∈ div(m1,m2),

and {{n1, n2}} ∈ minquotn(m1,m2). By Lemma 3.7 it holds that

dΓ (n1, n2) ≥ dΓ (n⊙ n1, n⊙ n2) = dΓ (m1,m2)

and hence by the fact that M divides Γ -monotone, it holds that

dΓ (n1, n2) = dΓ (m1,m2).

Second, let f : N → N be a strongly monotone map, M = ∅, n ∈ mindiv(M), and

N ∈ minquotn(M). The fact that n ⊙ N = M implies that N = ∅. This shows that

(n,N) is an f -centering factorisation. In particular, in order to show that M admits

f -centering factorisations, it suffices to show that for every M ∈Mfin(M) with M ̸= ∅

there exists an f -centering factorisation (n,N) of M . ◀

Remark 3.15. We note that we use the adjective “centering” in centering factori-

sations for the following reason. Let M ∈ Mfin(M) and (n,N) be an f -centering

factorisation of M . For every n1 ∈ N and every r > 0 such that N ⊆ Br(n1), it holds

that 1 ∈ Bf(r)(n1). Hence, 1 is always close to N (up to f) and therefore, N is in a

sense “centered” around 1. ◀

Example 3.16. We continue Example 3.11 and determine whether our monoids divide

Γ -monotone and admit centering factorisations.

• We consider (N,+, 0) with the generating set Γ = {1} and let m1,m2 ∈ N,

n ∈ div(m1,m2), and {{n1, n2}} ∈ quotn(m1,m2) such that n + n1 = m1 and

n+ n2 = m2. This shows

dΓ (n1, n2)
Ex.3.5
= |n1 − n2| = |n1 + n− (n2 + n)| = |m1 −m2|

Ex.3.5
= dΓ (m1,m2)

and hence, (N,+, 0) divides Γ -monotone.

51

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

We prove that N admits centering factorisations. Let M ∈ Mfin(M) such that

M ̸= ∅, n ∈ mindiv(M), and N ∈ minquotn(M). We know from Example 3.11

that n = min(supp(M)) and N = {{m − n | m ∈ M}}. Therefore, 0 ∈ supp(N).

Let n1 ∈ supp(N). If n1 ̸= 0, then we let n2 = 0, whence |n1|Γ = dΓ (n1, n2). If

n1 = 0, then we let n2 ∈ supp(N) and obtain |n1|Γ = 0 ≤ dΓ (n1, n2). This shows

that (n,N) ∈ CenterFact(M, idN). The case that M = ∅ is covered by Remark

3.14. This concludes the proof that (N,+, 0) admits centering factorisations.

• We consider (N≤k,+k, 0) for some k ∈ N and recall that Γ = {1} is a finite

generating set of N≤k. Let m1 = m2 = n = n1 = k, and n2 = 0. It surely holds

that n ∈ div(m1,m2) and {{n1, n2}} ∈ quotn(m1,m2). We have that

dΓ (n1, n2)
Ex.3.5
= |n1 − n2| = k ̸= 0 = |m1 −m2|

Ex.3.5
= dΓ (m1,m2)

and hence, (N≤k,+k, 0) does not divide Γ -monotone.

The fact that N≤k admits centering factorisations can be seen as follows. Let

M ∈ Mfin(N≤k) such that M ̸= ∅, n ∈ mindiv(M), N ∈ minquotn(M), and

n1 ∈ supp(N). If supp(N) ∈ S(M), then also supp(M) ∈ S(M). In this case,

supp(M) = {n} by the minimality of N , which implies that n1 = 0 = |n1|Γ .

Otherwise, let n2 ∈ supp(N) such that n1 ̸= n2. Since N≤k
is finite, it holds

that |n1|Γ ≤ #N≤k ≤ #N≤k · dΓ (n1, n2). This proves the fact that (n,N) is a

(#N≤k · idN)-centering factorisation of M . The case that M = ∅ is covered by

Remark 3.14. This shows that (N≤k,+k, 0) admits centering factorisations. In

fact, this proof can easily be generalised to show that all finite monoids admit

centering factorisations for every finite generating set.

• We consider the monoid BF and the multiset M = {{(3, 1), (2, 8)}} from Example

3.11. We have seen that (2, 0) ∈ div(M) and quot(2,0)(M) = {{{(1, 1), (0, 8)}}}.

We will now show that

dΓBF((1, 1), (0, 8)) > dΓBF((3, 1), (2, 8)),

which proves that BF does not divide ΓBF-monotone.

52

3.3 Factorisation in Monoids

We can easily verify that there exists only one fork-path between (1, 1) and (0, 8),

namely (
(0, 0)(1, 0)(1, 1) , (0, 0)(0, 1) . . . (0, 8)

)
and hence dΓBF((1, 1), (0, 8)) = 10. Moreover, the pair(

(0, 0)(1, 0)(2, 0)(3, 0)(3, 1) , (0, 0)(0, 1)(0, 2)(1, 4)(2, 8)
)

is a fork-path between (3, 1) and (2, 8) with length 8. Hence,

dΓBF((1, 1), (0, 8)) = 10 > 8 ≥ dΓBF((3, 1), (2, 8)),

which concludes our proof.

Next, we show that BF admits centering factorisations. We define the map

f : N → N for every r ∈ N by f(r) = 2 · r + 2r · (r + 1) and see that f is

strongly monotone. Let M ∈ Mfin(BF) such that M ̸= ∅, n ∈ mindiv(M),

N ∈ minquotn(M), n1 ∈ supp(N), and define r = maxn2∈supp(N) dΓBF(n1, n2). In

order to show that (n,N) is an f -centering factorisation of M , we need to show

|n1|ΓBF ≤ f(r).

We do the proof by contraposition and therefore assume that |n1|ΓBF > f(r). We

will now show that there exists n′ ∈ div(N) and N ′ ∈ minquotn′(N) such that

|N ′|ΓBF ≤ f(r). This concludes the proof, as

|N |ΓBF ≥ |n1|ΓBF > f(r) ≥ |N ′|ΓBF

and hence n′ ◦ n is a “more minimising” divisor of M than n, which contradicts

the fact that n ∈ mindiv(M).

We denote the components of n1 as n1 = (n1,a, n1,b) and define

n′ =
(
n1,a − r,

⌊n1,b
2r

⌋
− r

)
.

To show that n′ ∈ div(N), we have to show that n′ divides every n2 ∈ supp(N).

Since dΓBF(n1, n2) ≤ r, there exists m ∈ BF and (w, v) ∈ FPaths(n1, n2) such that

m
w

∼∼∼▷ n1, m
v

∼∼∼▷ n2, and |w| + |v| ≤ r. In particular, if n′ divides m, then n′

divides n2. Hence, it suffices to show that n′ ∈ div(K), where

K = {m ∈ BF | ∃m w
∼∼∼▷ n1 : |w| ≤ r}.

53

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Let m ∈ K with components m = (ma,mb). There exist i, j0, . . . , ji ∈ N such

that i ∈ {0, . . . , r},
∑i

k=0 jk ≤ r, and m ◦BF w = n1 where

w = (0, 1)j0(1, 0)(0, 1)j1(1, 0) . . . (1, 0)(0, 1)ji ∈ BF.

We obtain

ma + i = n1,a and (. . . ((mb + j0) · 2 + j1) · 2 . . .) · 2 + ji = n1,b,

which yields ⌊n1,b
2i

⌋
= mb +

⌊ i∑
k=0

jk
2k

⌋
.

In particular, we obtain that m = (n1,a − i,
⌊n1,b

2i

⌋
− j) for some i, j ∈ {0, . . . , r}.

By Equation (3.1) it holds that n′ divides m if and only if

n1,a − r ≤ n1,a − i and
⌊n1,b

2r

⌋
− r ≤

⌊ ⌊n1,b

2i

⌋
− j

2(n1,a−i)−(n1,a−r)

⌋
. (3.2)

The first inequality in (3.2) holds since i ≤ r and the second inequality in (3.2)

can be proven as follows.⌊n1,b
2r

⌋
− r =

⌊⌊n1,b

2i

⌋
2r−i

⌋
− r ≤

⌊⌊n1,b

2i

⌋
2r−i

⌋
− j ≤

⌊⌊n1,b

2i

⌋
− j

2r−i

⌋
=

⌊ ⌊n1,b

2i

⌋
− j

2(n1,a−i)−(n1,a−r)

⌋
This concludes our proof that n′ ∈ div(N).

We let ℓ = 2r−i · r − j and note that there exists k ∈ {0, . . . , 2r} such that

n′ =
(
n1,a − r,

⌊n1,b
2r

⌋
− r

) (1,0)r−i

∼∼∼∼∼▷
(
n1,a − i, 2r−i ·

⌊n1,b
2r

⌋
− 2r−i · r

)
(0,1)k

∼∼∼∼∼▷
(
n1,a − i,

⌊
2r−i ·

n1,b
2r

⌋
− 2r−i · r

)
=

(
n1,a − i,

⌊n1,b
2i

⌋
− 2r−i · r

)
(0,1)ℓ

∼∼∼∼∼▷
(
n1,a − i,

⌊n1,b
2i

⌋
− j

)
= m

is a path from n′ to m. This proves that dΓBF(n
′,m) ≤ r− i+k+ℓ ≤ r+2r+2r ·r

and hence dΓBF(n
′, n2) ≤ dΓBF(n

′,m) + r ≤ 2 · r + 2r · (r + 1) = f(r) for every

n2 ∈ supp(N). In particular, for the unique N ′ ∈ minquotn′(N) it holds that

|N ′|ΓBF ≤ f(r). This concludes our proof. ◀

54

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

Lemma 3.17. If M divides Γ -monotone, then M is cancellative.

Proof. We prove the statement by contradiction. Assume that M is not cancellative.

There exist a, b, c ∈M such that a⊙b = a⊙c and b ̸= c. We note that a ∈ div(a⊙b, a⊙c)

and {{b, c}} ∈ quota(a⊙ b, a⊙ c). By the fact that M divides Γ -monotone, it holds that

dΓ (b, c) ≤ dΓ (a ⊙ b, a ⊙ c). However, dΓ (b, c) ≥ 1 > 0 = dΓ (a ⊙ b, a ⊙ c), which is a

contradiction.

Remark 3.18. Lemma 3.17 states that cancellativity is a necessary condition for M

to divide Γ -monotone. Moreover, in Example 3.16 we have seen that cancellativity is

not a sufficient condition for M to divide Γ -monotone (see the monoid BF).

Whenever we requireM to divide Γ -monotone, we will still use the formalism of quo-

tients and minimal quotients, even though quotients are unique in cancellative monoids.

This has one major reason. At the time of writing, we strongly believe that the defini-

tion of “divides Γ -monotone” can be weakened such that all our theorems still work,

but cancellativity is not implied. In order to make our proofs easily generalisable to

the non-cancellative setting, we decided to write them without using unique quotients.

We also note that all monoids in Example 3.16 admit centering factorisations. At the

time of writing, we are unaware of a result proving whether there exist finitely generated

monoids that do not admit centering factorisations. We conjecture that every finitely

generated monoid that divides Γ -monotone also admits centering factorisations. ◀

3.4 Weighted Tree Automata over Mfin(M) and the Twin-

ning Property

In this chapter, we collect some useful definitions and facts about weighted tree au-

tomata over the semiring of finite multisets over M. These will be used to implement

Steps (I) and (II) from our M-sequentialisation construction (see Chapter 3.1). More-

over, we introduce our notion of the twinning property and illustrate everything with

running examples.

Throughout the rest of Chapter 3.4, we let Σ be a ranked alphabet, (M,⊙, 1)

be a monoid, and B = (Q,T, final) be a WTA over Σ and Mfin(M).

55

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

3.4.1 Weighted Tree Automata over Mfin(M)

In order to have a structured notational system for the weights occurring in calcula-

tions, we make the following convention. All values denoted by a (possibly decorated)

lowercase symbol y (or z) represent elements of transition weights (or final weights,

respectively) of weighted tree automata over Mfin(M). All remaining weights have no

fixed notational convention. We adhere to this convention as strictly as possible.

Definition 3.19. For every s ∈ N and σ ∈ Σ(s) we define the multiset TR
σ over

Qs ×Q×M by

TR
σ = {{(q1, . . . , qs, q, y) | q1, . . . , qs, q ∈ Q, y ∈ Tσ(q1, . . . , qs, q)}}

and define the family TR = (TR
σ | σ ∈ Σ). Moreover, we denote TR

∪ =
⋃

σ∈Σ T
R
σ . For

every t = (q1, . . . , qs, q, y) ∈ supp(TR
σ) we define in(t) = q1 . . . qs in Q∗, out(t) = q, and

wt(t) = y. ◀

Remark 3.20. We note that TR is merely a syntactical variant of T and contains the

same information as T . Analogously, one can introduce a relational variant finalR of

final. Then, finalR is a multiset over Q×M. This yields a relational automaton model,

where each automaton is of the form (Q,TR, finalR).

In this sense, our WTA model can be compared to the automaton model from [29,

Definition 2] (cf. [31] for the word case). In fact, [29, Definition 2] is a restriction of

our relational automaton model where all weights are sets (rather than multisets). In

this thesis, we are interested in determinising automata over non-idempotent semirings.

Therefore, we need the extension from sets to multisets. ◀

Example 3.21. Let Σ = {α(0), γ(1), σ(2)}. We consider the WTA B = (Q,T, final)

over Σ and Mfin(N), where Mfin(N) = Mfin((N,+, 0)), Q = {q1, q2, q3} and every tran-

sition weight and final weight of A is ∅ except

final(q1) = final(q2) = final(q3) = {{0}},

Tα(q1) = {{1}}, Tγ(q2, q1) = {{1, 1}},

Tγ(q1, q1) = Tγ(q2, q3) = Tγ(q3, q3) = {{1}}, and

Tσ(qi, qj , q2) = {{1}} for every i, j ∈ {1, 2}.

56

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

q1 q2

γ

α

0

1

σ

1
0

q3γ

0

γ1

1

q1 q2
γ

{{1, 1}}

α

{{0}}

{{1}}
σ

{{1}}
{{0}}

q3γ

{{0}}

γ{{1}}

{{1}}

γ

1

1

γ1

γ{{1}}

Figure 3.3: Bottom: illustration of the WTA B over Σ and Mfin(N) from Example 3.21.

Top: illustration of the relational variant of B. We again use the convention from page 30

to make the hypergraphs better readable.

Thus, TR is given by

TR
α = {{(q1, 1)}},

TR
γ = {{(q1, q1, 1), (q2, q1, 1), (q2, q1, 1), (q2, q3, 1), (q3, q3, 1)}}, and

TR
σ = {{(q1, q1, q2, 1), (q1, q2, q2, 1), (q2, q1, q2, 1), (q2, q2, q2, 1)}}.

We observe that the tuple (q2, q1, 1) is contained twice in TR
γ . This directly corresponds

to the fact that Tγ(q2, q1) = {{1, 1}}, which is a multiset with size 2.

We give a graphical representation of B in Figure 3.3. ◀

Definition 3.22. We define the M-image of B, denoted by M-im(B), as the set

M-im(B) =
(⋃

s∈N,σ∈Σ(s),
q1,...,qs,q∈Q

supp(Tσ(q1, . . . , qs, q))
)
∪
(⋃

q∈Q
supp(final(q))

)
. ◀

Besides the usual runs of WTA over Σ andMfin(M), we also consider another notion

of runs, called R-runs. In essence, an R-run of B is a usual run of B where additionally,

57

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

each local state behaviour (q1, . . . , qs, q) described by the run is enriched by a single

element from the multiset Tσ(q1, . . . , qs, q). Intuitively, the R-runs of B correspond

combinatorically to the paths of the hypergraph of the relational variant of B.

Definition 3.23. Let ξ ∈ TΣ ∪ CΣ be a tree or a context. An R-run of B on ξ is a

map ρ : pos(ξ)→ (supp(TR
∪) ∪Q) such that

• for every w ∈ posX(ξ) it holds that ρ(w) ∈ Q and

• for every w ∈ posΣ(ξ) it holds that (a) ρ(w) ∈ supp(TR
σ) where σ = ξ(w) and (b)

in(ρ(w)) = out(ρ(w1)) . . . out(ρ(ws)) where s = rk(ξ(w)).

We denote out(ρ) = out(ρ(ε)) and if ξ ∈ CΣ , then we denote in(ρ) = ρ(posvar(ξ)).

The multiset of all R-runs of B on ξ, denoted by R-RunsB(ξ), is a multiset over

(supp(TR
∪)∪Q)pos(ξ) given for every ρ : pos(ξ)→ (supp(TR

∪)∪Q) as follows. If ρ is not

an R-run, then R-RunsB(ξ)(ρ) = 0 and if ρ is an R-run, then

R-RunsB(ξ)(ρ) =
∏

w∈posΣ(ξ)

TR
ξ(w)(ρ(w)).

That is, the multiplicity of ρ in R-RunsB(ξ) equals the product of the multiplicities of

all transitions occurring in ρ.

We define the map wtRB(ξ, ,) : supp(R-RunsB(ξ)) × pos(ξ) → M inductively as

follows. Let ρ ∈ supp(R-RunsB(ξ)) and w ∈ pos(ξ). If ξ(w) = x1, then we define

wtRB(ξ, ρ, w) = 1. Otherwise, there exists s ∈ N such that ξ(w) ∈ Σ(s) and we define

wtRB(ξ, ρ, w) = wtRB(ξ, ρ, w1)⊙ · · · ⊙ wtRB(ξ, ρ, ws)⊙ wt(ρ(w)).

Whenever the automaton B is clear from the context, we will omit the subscript B

from wtRB and simply write wtR. Moreover, we will always drop the superscript R from

wtR and simply write wt.

Let ρ ∈ supp(R-RunsB(ξ)). We abbreviate wt(ξ, ρ, ε) by wt(ξ, ρ) and call wt(ξ, ρ)

the weight of ρ. Moreover, we call ρ non-vanishing if wt(ξ, ρ) ̸= 0.

We define the multiset

R-RunsB(ξ, q) = {{ρ | ρ ∈ R-RunsB(ξ), out(ρ) = q}}

58

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

for every q ∈ Q. Moreover, if ξ ∈ CΣ , then we define the multiset

R-RunsB(p, ξ, q) = {{ρ | ρ ∈ R-RunsB(ξ, q), in(ρ) = p}}

for every p, q ∈ Q. We say that ρ ∈ supp(R-RunsB(ξ)) is a loop (on ξ) if ξ ∈ CΣ and

there exists q ∈ Q such that ρ ∈ supp(R-RunsB(q, ξ, q)). ◀

Example 3.24. We continue Example 3.21 and consider the tree ξ = γ(σ(α, α)) in

TΣ . We can easily see that there exist exactly two valid runs of B on w. In fact,

RunsB(w) = {ρ′1, ρ′2}, where

ρ′1 :

γ

σ

α α

q1

q2

q1 q1

ρ′2 :

γ

σ

α α

q3

q2

q1 q1

The weights of ρ′1 and ρ′2 are given by

wt(ξ, ρ′1) = {{1}}+ {{1}}+ {{1}}+ {{1, 1}} = {{4, 4}} and

wt(ξ, ρ′2) = {{1}}+ {{1}}+ {{1}}+ {{1}} = {{4}}.

We can also see that for every i ∈ [2], ρ′i can be associated to a multiset of R-runs that

have the same state behaviour as ρ′i. We will make this connection precise in Remark

3.25. We consider the three R-Runs of B on ξ given as follows.

ρ1 :

γ

σ

α α

(q2, q1, 1)

(q1, q1, q2, 1)

(q1, 1) (q1, 1)

ρ2 :

γ

σ

α α

(q2, q1, 1)

(q1, q1, q2, 1)

(q1, 1) (q1, 1)

ρ3 :

γ

σ

α α

(q2, q3, 1)

(q1, q1, q2, 1)

(q1, 1) (q1, 1)

In our case, ρ′1 can be associated to the two (equal) R-runs ρ1 and ρ2. One can think

of ρ1 and ρ2 as taking the “upper” (respectively “lower”) relational γ-edge from q2 to

q1 depicted in the top part of Figure 3.3. The run ρ′1, on the other hand, can take both

59

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

of these relational γ-edges from q2 to q1 in a single accumulated step with transition

weight {{1, 1}}. This shows how a single valid run of B can be associated to multiple

R-runs of B. Moreover, it holds that ρ1 = ρ2 and hence, we can see that R-RunsB(w)

is indeed a proper multiset (that is, not a set).

The only R-run that can be associated to ρ′2 is ρ3. In fact, we have determined all

R-runs of B on w and obtain R-RunsB(w) = {{ρ1, ρ2, ρ3}}. ◀

Remark 3.25. Let ξ ∈ TΣ ∪ CΣ be a tree or a context and ρ′ : pos(ξ) → Q be a run

of B on ξ. For every R-run ρ : pos(ξ)→ (supp(TR
∪) ∪Q) of B on ξ we say that ρ′ and

ρ are associated if

ρ′(w) = out(ρ(w)) for every w ∈ pos(ξ).

We define the multiset of R-runs of B on w associated with ρ′, denoted by R(ρ′), by

R(ρ′) = {{ρ | ρ ∈ R-RunsB(ξ), ρ′ and ρ are associated}}.

If ρ′ is not valid, then there is no R-run associated with ρ′. On the other hand, if ρ′ is

valid and there is a position w ∈ pos(ξ) such that #locwt(ξ, ρ′, w) > 1, then there are

multiple R-runs associated with ρ′.

Moreover, a straightforward proof shows that wt(ξ, ρ′) = {{wt(ξ, ρ) | ρ ∈ R(ρ′)}} for

every ρ′ ∈ RunsB(ξ). ◀

Remark 3.26. In the rest of this chapter, we use the following notation for R-runs.

Let q ∈ Q, ξ ∈ TΣ , ρ ∈ supp(R-RunsB(ξ, q)), and denote y = wt(ξ, ρ). We say that

ρ is of the form
ξ|y−→ q. Analogously, let p, q ∈ Q, ξ ∈ CΣ , ρ ∈ supp(R-RunsB(p, ξ, q)),

and denote y = wt(ξ, ρ). We say that ρ is of the form p
ξ|y−→ q. Moreover, we denote the

fact that z ∈ final(q) by q
z→. We freely compose these notations in order to express

more conditions on an R-run, for example “
ξ|y1−→ q

ζ|y2−→ q
z→”. Moreover, if such an ex-

pression contains free variables, they shall be quantified according to the quantification

before the expression. For example, given ξ ∈ TΣ and ζ ∈ CΣ , the expression “for every

R-run of the form
ξ|y1−→ q

ζ|y2−→ q” universally quantifies q ∈ Q, y1, y2 ∈ M, and (name-

less) R-runs ρ1 ∈ R-RunsB(ξ, q) and ρ2 ∈ R-RunsB(q, ζ, q) such that wt(ξ, ρ1) = y1

and wt(ζ, ρ2) = y2. Whenever we deal with multiple automata simultaneously, we

disambiguate such expressions by writing, e.g., p
ζ|y−→ q ∈ B for an R-run of B.

60

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

If we use such expressions in multiset constructors or summation indices, then

we drop the words ”R-run of the form”. We note that R-runs quantified in multiset

constructors or summation indices like this are considered with their multiplicity. ◀

Lemma 3.27. Let B = (Q,T, final) be a finite-run WTA over Σ and Mfin(M). For

every ξ ∈ TΣ it holds that

[[B]](ξ) =
{{
y ⊙ z | ξ|y−→ q

z→
}}
.

Proof. Recall that R(ρ′) is the multiset of R-runs of B on ξ associated with a run

ρ′ ∈ RunsB(ξ). It is easy to see that⋃
ρ′∈RunsB(ξ,q)

R(ρ′) = R-RunsB(ξ, q) (3.3)

for every q ∈ Q.

By the definition of [[B]] it holds that

[[B]](ξ) =
⋃

ρ′∈RunsB(ξ)

wt(ξ, ρ′)⊙ final(out(ρ′))

=
⋃
q∈Q

⋃
ρ′∈RunsB(ξ,q)

wt(ξ, ρ′)⊙ final(q)

=
⋃
q∈Q

⋃
z∈final(q)

⋃
ρ′∈RunsB(ξ,q)

wt(ξ, ρ′)⊙ {{z}}

⋆1=
⋃
q∈Q

⋃
z∈final(q)

⋃
ρ′∈RunsB(ξ,q)

{{wt(ξ, ρ) | ρ ∈ R(ρ′)}} ⊙ {{z}}

⋆2=
⋃
q∈Q

⋃
z∈final(q)

{{wt(ξ, ρ) | ρ ∈ R-RunsB(ξ, q)}} ⊙ {{z}}

=
⋃
q∈Q

⋃
z∈final(q)

{{y ⊙ z | ξ|y−→ q}} = {{y ⊙ z | ξ|y−→ q
z→}},

where Equation ⋆1 follows from Remark 3.25 and Equation ⋆2 follows from Equa-

tion (3.3).

Example 3.28. We continue Example 3.24 and denote for every tree ξ ∈ TΣ the

number of times a γ occurs directly above a σ in ξ by nξ.

We claim that the [[B]] is given for every ξ ∈ TΣ by

[[B]](ξ) = {{
r(ξ) times︷ ︸︸ ︷

size(ξ), . . . , size(ξ)}}, where (3.4)

61

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

r(ξ) = 2nξ +

2nξ−1 if ξ = γn(σ(ξ′, ξ′′)) for some n ≥ 1 and ξ′, ξ′′ ∈ TΣ

0 otherwise.

It is clear from the definition of B that for every ρ ∈ supp(R-RunsB(ξ)) it holds that

wt(ξ, ρ) = size(ξ). Therefore, by Lemma 3.27, if we can show that

#R-RunsB(ξ) = r(ξ) and #R-RunsB(ξ, q1) + #R-RunsB(ξ, q2) = 2nξ , (3.5)

then this proves Equation (3.4). We prove Equation (3.5) by induction on ξ.

We assume that ξ = τ(ξ1, . . . , ξs) and that Equation (3.5) holds for ξ1, . . . , ξs. If

τ = α, then nξ = 0 and verifiably, #R-RunsB(ξ) = 1 and #R-RunsB(ξ, q3) = 0. Next,

we assume that τ = σ. It holds that

#R-RunsB(ξ) =
∑
p∈Q

#R-RunsB(ξ, p)

⋆1=
∑
p∈Q

∑
p1,p2∈Q

#Tσ(p1, p2, p) ·#R-RunsB(ξ1, p1) ·#R-RunsB(ξ2, p2)

⋆2=
∑

p1,p2∈{q1,q2}

#R-RunsB(ξ1, p1) ·#R-RunsB(ξ2, p2)

⋆3=
(∑

p1∈{q1,q2}

#R-RunsB(ξ1, p1)
)
·
(∑

p2∈{q1,q2}

#R-RunsB(ξ2, p2)
)

⋆4= 2nξ1 · 2nξ2 = 2nξ1
+nξ2 = 2nξ = r(ξ),

where Equations ⋆1, . . . , ⋆4 are justified as follows. Equation ⋆1 can be shown with

a straightforward structural induction on ξ. Equation ⋆2 follows from the fact that

#Tσ(p1, p2, p) = 1 if p1, p2 ∈ {q1, q2} and p = q2 and #Tσ(p1, p2, p) = 0 otherwise.

Equations ⋆3, and ⋆4 follow from the distributivity of N, and the induction assumption,

respectively. It follows directly from the definition of Tσ that #R-RunsB(ξ, q3) = 0.

Next, we assume that τ = γ. We know that

#R-RunsB(ξ) =
∑

p1,p∈Q
#Tγ(p1, p) ·#R-RunsB(ξ1, p1)

= #R-RunsB(ξ1, q1) + 3 ·#R-RunsB(ξ1, q2) + #R-RunsB(ξ1, q3).

We distinguish two cases for ξ1(ε). First, let ξ1(ε) ̸= σ and observe that nξ = nξ1 .

Moreover, it follows directly from the definition of T that #R-RunsB(ξ1, q2) = 0 and

62

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

hence we can use the induction assumption to obtain

#R-RunsB(ξ) = #R-RunsB(ξ1, q1) + #R-RunsB(ξ1, q2) + #R-RunsB(ξ1, q3)

= #R-RunsB(ξ1) = r(ξ1).

Since ξ is of the form γn(σ(ξ′, ξ′′)) if and only if ξ1 is of that form, we obtain r(ξ) = r(ξ1),

which concludes the case ξ1(ε) ̸= σ. Next, let ξ1(ε) = σ and observe that nξ = nξ1 +1.

Moreover, it follows directly from the definition of Tσ that #R-RunsB(ξ1, q) = 0 for

q = q1 and q = q3 and hence we can use the induction assumption to obtain

#R-RunsB(ξ) = 3 · (#R-RunsB(ξ1, q1) + #R-RunsB(ξ1, q2) + #R-RunsB(ξ1, q3))

= 3 ·#R-RunsB(ξ1) = 3 · 2nξ1 = 2 · 2nξ1 + 2nξ1 = 2nξ + 2nξ−1.

Considering the fact that R-RunsB(ξ1) = R-RunsB(ξ1, q2), we obtain

#R-RunsB(ξ, q3) =
1

3
·#R-RunsB(ξ) = 2nξ−1

from the definition of Tγ . This concludes the proof of Equations (3.5) and (3.4). ◀

Definition 3.29. Let B = (Q,T, final) be a WTA over Σ and Mfin(M).

We call B sequential if B is S(M)-sequential.

We call B sequentialisable if there exists a sequential WTA B′ over Σ and Mfin(M)

such that B′ is equivalent to B. We note that the class of weighted tree languages

recognised by sequential finite WTA over Σ and Mfin(M) is sRec(Σ,Mfin(M), S(M)).

We call B finitely R-ambiguous if there exists k ∈ N such that for every ξ ∈ TΣ it

holds that #R-RunsB(ξ) ≤ k. ◀

Example 3.30. We continue Example 3.28. It holds that #Tγ(q2, q1) = 2 and hence

Tγ(q2, q1) ̸∈ S(M). This shows that B is not sequential.

Let ζ = γ(σ(α, x1)) ∈ CΣ . Equation (3.5) implies that #R-RunsB(ζn[α]) ≥ 2n

for every n ∈ N. Since the sequence (2n | n ∈ N) is unbounded, B is not finitely

R-ambiguous.

Next, we give a finitely R-ambiguous WTA. For this, we let Γ = {2, 3} and consider

the submonoid ⟨Γ ⟩· of (N, ·, 1). We outline the proof that ⟨Γ ⟩· divides Γ -monotone and

admits centering factorisations. First, we note that every m ∈ ⟨Γ ⟩· can be written

63

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

p1

p2

p3

α

α

σγ

γ

γ{{3}}

{{4, 6}}

{{3}}

{{2}}

{{1}}

{{2}}

{{3}}

Figure 3.4: Illustration of the WTA B1 over {a, b} andMfin(⟨{2, 3}⟩·) from Example 3.30.

as m = 2k · 3ℓ for some uniquely determined k, ℓ ∈ N. One can easily show that

|2k ·3ℓ|Γ = k+ ℓ and dΓ (2
k ·3ℓ, 2k′ ·3ℓ′) = |k − k′|+ |ℓ− ℓ′| for every 2k ·3ℓ, 2k′ ·3ℓ′ ∈M.

Moreover, for every M ∈Mfin(⟨Γ ⟩·) and 2k · 3ℓ ∈ div(M) it holds that quot2k·3ℓ(M) is

a singleton set consisting only of {{2k′−k · 3ℓ′−ℓ | 2k′ · 3ℓ′ ∈M}}. Furthermore,

mindiv(M) = {2k · 3ℓ | k = min
2k′ ·3ℓ′∈M

k′ ∧ ℓ = min
2k′ ·3ℓ′∈M

ℓ′}.

From here, one can easily show that ⟨Γ ⟩· divides Γ -monotone.

Let f : N → N be given by f(n) = 2 · n for every n ∈ N. Next, we show that

⟨Γ ⟩· admits f -centering factorisations. Let M ∈ Mfin(⟨Γ ⟩·), 2k · 3ℓ ∈ mindiv(M),

N ∈ minquot2k·3ℓ(M), and 2k1 · 3ℓ1 ∈ supp(N). We assume that k1 ≥ ℓ1. We

have already seen that k = min2k′ ·3ℓ′∈M k′ and hence there exists ℓ2 ∈ N such that

3ℓ2 ∈ supp(N). We obtain

|2k1 · 3ℓ1 |Γ = k1 + ℓ1 ≤ 2 · k1 ≤ 2 · dΓ (2k1 · 3ℓ1 , 3ℓ2).

The case ℓ1 ≥ k1 works analogously by replacing 3ℓ2 by an element 2k2 ∈ supp(N).

This concludes the proof that ⟨Γ ⟩· admits f -centering factorisations.

We define the WTA C = (QC , TC , finalC) over Σ and Mfin(⟨Γ ⟩·) as follows. The

state set of C is QC = {p1, p2, p3} and every transition weight and final weight of A is

64

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

∅ except

finalC (p3) = {{3}},

(TC)α(p1) = {{1}}, (TC)α(p2) = {{2}},

(TC)γ(p1, p2) = {{2}}, (TC)γ(p2, p2) = (TC)γ(p3, p3) = {{3}}, and

(TC)σ(p1, p2, p3) = {{4, 6}}.

An illustration of C can be found in Figure 3.4.

Next, we prove that C is finitely R-ambiguous. Let ξ ∈ TΣ and assume that there

exists a valid run ρ of C on ξ. Since C is deterministic, ρ is the unique valid run of

C on ξ. Hence, from Equation (3.3) we obtain R-RunsC (ξ) = R(ρ). It holds that

#R(ρ) =
∏

w∈pos(ξ)#locwtC (ξ, ρ, w). Every transition weight of C is a singleton set

except (TC)σ(p1, p2, p3) and the transition (p1, p2, σ, p3) occurs at most once in a valid

run of C . This shows #R(ρ) ≤ 2 and hence C is finitely R-ambiguous. ◀

3.4.2 The Twinning Property

Throughout the rest of Chapter 3.4, we assume M to be finitely generated

by a finite generating set Γ .

Definition 3.31. We say that B has the twinning property (in symbols: B ⊨ TP), if

for every ξ ∈ TΣ , ζ ∈ CΣ , and R-runs of the respective form

ξ|y1−→ q
ζ|y2−→ q and

ξ|y′1−→ q′
ζ|y′2−→ q′

of B it holds that dΓ (y1, y
′
1) = dΓ (y1 ⊙ y2, y′1 ⊙ y′2). ◀

Definition 3.32. We say that B has the extended twinning property (in symbols:

B ⊨ ETP), if for every ξ ∈ TΣ , ζ, η ∈ CΣ , and R-runs of the respective form

ξ|y1−→ q
ζ|y2−→ q

η|y3−→ p and
ξ|y′1−→ q′

ζ|y′2−→ q′
η|y′3−→ p′

of B it holds that dΓ (y1 ⊙ y3, y′1 ⊙ y′3) = dΓ (y1 ⊙ y2 ⊙ y3, y′1 ⊙ y′2 ⊙ y′3). ◀

Example 3.33. We consider the WTA B = (Q,T, final) from Example 3.21. We claim

that B ⊨ ETP, which can be seen as follows. First, we note that every non-vanishing

65

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

transition weight of B is {{1}} or {{1, 1}}. Hence for every ξ ∈ TΣ , ζ, η ∈ CΣ , and R-runs

of the respective form

ξ|y1−→ q
ζ|y2−→ q

η|y3−→ p and
ξ|y′1−→ q′

ζ|y′2−→ q′
η|y′3−→ r′

of B it holds that y1 = y′1 = size(ξ), y2 = y′2 = size(ζ), and y3 = y′3 = size(η). Thus

dΓ (y1 + y3, y
′
1 + y′3) = dΓ (size(ξ) + size(η), size(ξ) + size(η)) = 0

= dΓ (size(ξ) + size(ζ) + size(η), size(ξ) + size(ζ) + size(η))

= dΓ (y1 + y2 + y3, y
′
1 + y′2 + y′3).

We conclude that B ⊨ ETP. ◀

Remark 3.34. We note that B ⊨ ETP implies B ⊨ TP. This follows immediately

from the definitions of the twinning properties. On the other hand, B ⊨ TP does not

imply B ⊨ ETP in general, which we will see in the upcoming Example 3.35. ◀

Example 3.35. We recall the family of monoids N≤k from Example 3.5. For this

example, we let k = 5 and consider the WTA D = (Q,T, final) over Σ = {α(0), γ(1)}

and Mfin(N≤5) which is defined follows. The set of states of D is Q = {q1, q2} and every

transition weight and final weight of D is ∅ except

final(q2) = {{0}},

Tα(q1) = {{0}},

Tγ(q1, q1) = {{4}}, and Tγ(q1, q2) = {{1, 2}}.

A graphical representation of the relational variant of D is given in Figure 3.5.

We observe that D ⊨ TP for the following reason. Let ξ ∈ TΣ , ζ ∈ CΣ , and consider

two R-runs of the respective form

ξ|y1−→ q
ζ|y2−→ q and

ξ|y′1−→ q′
ζ|y′2−→ q′

of B on ζ[ξ]. We note that ξ = γk(α) and ζ = γℓ(x1) for some k, ℓ ∈ N. We distinguish

two cases.

66

3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property

q1 q2α

γ

γ4

0

1
0

γ 2

Figure 3.5: The WTA D over Σ and Mfin(N≤5) from Example 3.35. D has the TP, but

not the ETP. We have chosen the relational depiction of D for an easier identification of

the R-runs.

1. If ζ = x1, then y2 = y′2 = 0 and hence dΓ (y1 + y2, y
′
1 + y′2) = dΓ (y1, y

′
1).

2. If ζ ̸= x1, then q = q′ = q1, y1 = y′1 = 4 · k, and y2 = y′2 = 4 · ℓ. In particular,

dΓ (y1 + y2, y
′
1 + y′2) = 0 = dΓ (y1, y

′
1).

However, D does not have the ETP, which can be seen as follows. Let ξ = α and

ζ = η = γ(x1). We consider the R-runs ρ1 and ρ2 of D on η[ζ[ξ]] given by

ρ1(ε) = (q1, q2, 1), ρ2(ε) = (q1, q2, 2),

ρ1(1) = ρ2(1) = (q1, q1, 4), and ρ1(11) = ρ2(11) = (q1, 0).

Using the notation from Definition 3.32 we obtain y1 = y′1 = 0, y2 = y′2 = 4, y′3 = 1,

and y′3 = 2. We compute

y1 + y3 = 0 +5 1 = 1 y1 + y2 + y3 = 0 +5 4 +5 1 = 5

y′1 + y′3 = 0 +5 2 = 2 y′1 + y′2 + y′3 = 0 +5 4 +5 2 = 5

and

dΓ (0 +5 1, 0 +5 2) = 1 ̸= 0 = dΓ (0 +5 4 +5 1, 0 +5 4 +5 2).

This shows that D does not have ETP.

We note that maxrk(Σ) = 1 and N≤k is finite. Hence, TP and ETP are generally

not equivalent, not even for weighted word automata and finite monoids. ◀

We conclude this chapter by showing that weighted tree automata having the ETP

also have the property that the weights of any two R-runs on the same input are close

with respect to dΓ .

67

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Definition 3.36. We define the two constants

MB = max{|m|Γ | m ∈M-im(B)} and NB = 2 ·MB ·maxrk(Σ)(#Q2+2). ◀

Lemma 3.37. Let B ⊨ ETP. For every ξ ∈ TΣ and every two R-runs of the respective

form
ξ|y−→ q and

ξ|y′−→ q′ of B on ξ it holds that

dΓ (y, y
′) < NB.

Proof. Let ξ ∈ TΣ , ρ be an R-run of the form
ξ|y−→ q, ρ′ be an R-run of the form

ξ|y′−→ q′, and denote n = size(ξ). First, we assume that n ≤ maxrk(Σ)(#Q2+1). There

exist two families (yi ∈ M-im(B) | i ∈ [n]) and (y′i ∈ M-im(B) | i ∈ [n]) such that

y = y1 ⊙ · · · ⊙ yn and y′ = y′1 ⊙ · · · ⊙ y′n. Since all yi and y
′
i are in M-im(B), it holds

that |yi|Γ ≤MB and |y′i|Γ ≤MB for every i ∈ [n]. We obtain

dΓ (y, y
′)

⋆1
≤ |y|Γ + |y′|Γ

⋆2
≤

n∑
i=1

(
|yi|Γ + |y′i|Γ

) ⋆3
≤ 2 ·MB · n < NB.

Equations ⋆1 and ⋆2 follow from Inequalities (i) and (ii) from Lemma 3.6, respectively.

For Equation ⋆3, we use that |yi|Γ ≤MB and |y′i|Γ ≤MB for every i ∈ [n].

We prove the lemma by induction on n. The induction base n = 1 follows from

our above argument. Let n ∈ N and assume that the claim holds for every n′ < n.

If n ≤ maxrk(Σ)(#Q2+1), then our above argument yields the claim for n. Now, let

n > maxrk(Σ)(#Q2+1), which implies height(ξ) > #Q2.

We note that ρ and ρ′ contain a loop on the same part of ξ. This follows from the

pigeonhole principle since height(ξ) > #Q2. Formally, there exists ξ′ ∈ TΣ , ζ, ζ
′ ∈ CΣ ,

weights ya, yb, yc, y
′
a, y

′
b, y

′
c ∈M, and states p, p′ ∈ Q such that ξ = ζ ′[ζ[ξ′]], ζ ̸= x1, and

ρ and ρ′ be of the form
ξ′|ya−→ p

ζ|yb−→ p
ζ′|yc−→ q and

ξ′|y′a−→ p′
ζ|y′b−→ p′

ζ′|y′c−→ q′, respectively.

We obtain

dΓ (y, y
′) = dΓ (ya ⊙ yb ⊙ yc, y′a ⊙ y′b ⊙ y′c)

⋆1= dΓ (ya ⊙ yc, y′a ⊙ y′c)
⋆2
< NB,

where Equation ⋆1 holds since B ⊨ ETP and Equation ⋆2 holds by the induction

hypothesis (applied to n′ = size(ζ ′[ξ′]) < n).

68

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)

3.5 Sequentialisation of Weighted Tree Automata over

Mfin(M)

We have now collected the algebraic formalisms to do factorisations in monoids and

deepened our understanding of multiset-weighted tree automata. This provides all the

necessary tools to dive into our M-sequentialisation construction. In this chapter, we

carry out Step (II) of our M-sequentialisation construction (see Chapter 3.1).

In particular, given a WTA B over Σ and Mfin(M), we define an equivalent se-

quential WTA DB over Σ and Mfin(M) that is not necessarily finite. The automaton

DB = (Q′, T ′, final′) is given by a weighted power set construction with factorisation

(cf. Definition 3.39). The states of DB are maps of the form X : Q → Mfin(M). If X

is reached in DB by reading an input tree ξ ∈ TΣ , then X is a “record” of the R-run

weights of B on ξ (cf. Lemma 3.43). The transition weights of DB are generated as

follows. Given a symbol σ ∈ Σ with rank s = rk(σ) and states X1, . . . , Xs of DB, we

define the unfactorised successor state Tσ(X1, . . . , Xs) by applying the transition weight

map Tσ to X1, . . . , Xs. Next, we let (y, Y) be the minimal f -centering factorisation of

Tσ(X1, . . . , Xs) and obtain the transition weight T ′
σ(X1, . . . , Xs, Y) = y. This step uses

the fact that M admits centering factorisations.

Throughout the rest of Chapter 3.5, we assume (M,⊙, 1) to be an arbitrary

finitely generated monoid with finite generating set Γ such that M divides Γ -

monotone and admits f -centering factorisations (for some strongly mono-

tone map f : N → N). Moreover, we assume B = (Q,T, final) to be an

arbitrary finite WTA over Σ and Mfin(M).

3.5.1 The Sequentialisation Construction

First, we lift the definitions of divisors, quotients, minimal quotients, minimising divi-

sors, and centering factorisations from Mfin(M) to maps of type Q→Mfin(M).

Definition 3.38. Let X : Q→Mfin(M) be a map. We define |X|Γ = maxq∈Q |X(q)|Γ
and

div(X) = div(
⋃
q∈Q

X(q)).

69

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Moreover, for every y ∈ div(X) we define

quoty(X) = {Y : Q→Mfin(M) | ∀q ∈ Q : Y (q) ∈ quoty(X(q))},

minquoty(X) = {Y : Q→Mfin(M) | ∀q ∈ Q : Y (q) ∈ minquoty(X(q))}, and

mindiv(X) = argmin
y∈div(X)

min
Y ∈minquoty(X)

|Y |Γ .

Finally, we define minCenterFact(X, f) as the pair (y, Y) such that y ∈ mindiv(X),

Y ∈ minquoty(X), and (y,
⋃

q∈Q Y (q)) = minCenterFact(
⋃

q∈QX(q), f). ◀

Definition 3.39. We define the WTA DB = (Q′, T ′, final′) over Σ and Mfin(M) as

follows. The set of states of DB is Q′ = Mfin(M)Q, the final weight map is given for

every X ∈ Q′ by

final′(X) = {{m⊙ z | q ∈ Q,m ∈ X(q), z ∈ final(q)}},

and the transition weights are constructed as follows. For every s ∈ N, σ ∈ Σ(s),

and states X1, . . . , Xs ∈ Q′, we define the unfactorised successor state

Tσ(X1, . . . , Xs) : Q→Mfin(M) for every q ∈ Q by

Tσ(X1, . . . , Xs)(q) = {{m1 ⊙ · · · ⊙ms ⊙ y | q1, . . . , qs ∈ Q,

m1 ∈ X1(qs), . . . ,ms ∈ Xs(qs), y ∈ Tσ(q1, . . . , qs, q)}}.

Moreover, we define (yX1,...,Xs
σ , Y X1,...,Xs

σ) = minCenterFact(Tσ(X1, . . . , Xs), f), which

exists since M admits f -centering factorisations.

Now, T ′ is given for every s ∈ N, σ ∈ Σ, and X1, . . . , Xs, X ∈ Q′ by

T ′
σ(X1, . . . , Xs, X) =

{{
yX1,...,Xs
σ

}}
if X = Y X1,...,Xs

σ

∅ otherwise.
◀

Remark 3.40. We note that DB is indeed sequential and thus finite-run. In fact, for

every ξ ∈ TΣ there exists a unique R-run of DB on ξ. This follows directly from the

construction.

We consider the case where Tσ(X1, . . . , Xs)(q) = ∅ for every q ∈ Q and note what

happens during the factorisation of this empty unfactorized state. It clearly holds that

|Tσ(X1, . . . , Xs)|Γ = 0, div(Tσ(X1, . . . , Xs)) = M, and

quoty(Tσ(X1, . . . , Xs)) = minquoty(Tσ(X1, . . . , Xs)) = {Tσ(X1, . . . , Xs)}

70

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)

for every y ∈ M. Therefore, mindiv(Tσ(X1, . . . , Xs)) = M. Since 1 = min≤Γ M,

it holds that (1,Tσ(X1, . . . , Xs)) = minCenterFact(Tσ(X1, . . . , Xs), f). That is, our

factorisation keeps the empty state unchanged with the minimising divisor 1. ◀

Example 3.41. We continue Example 3.33 by constructing the sequential WTA

DB = (Q′, T ′, final′). More precisely, we construct the reachable part of DB in a

procedural manner by exploring the state space and the transitions of DB using the

definition of T ′. We recall from Example 3.11 that (N,+, 0) admits idN-centering fac-

torisations.

Moreover, we denote X0 = (q1 7→ {{0}}, q2 7→ ∅, q3 7→ ∅).

We begin by exploring transitions with input symbol α. Surely, we have that

Tα() = (q1 7→ {{1}}, q2 7→ ∅, q3 7→ ∅). In order to obtain the non-vanishing transition

weight of the form T ′
α(X), we calculate minCenterFact(Tα(), idN). It is clear that

div(Tα()) = {0, 1},

as 0+Tα() = Tα() and 1+X0 = Tα(). Moreover, these are the only respective quotients,

which implies

minquot0(Tα()) = {Tα()} and minquot1(Tα()) = {X0}.

In order to find minimising divisors, we calculate the Γ -length of these quotients. It

holds that |Tα()|Γ = 1 and |X0|Γ = 0 and hence

mindiv(Tα()) = {1}.

We obtain (1, X0) = minCenterFact(Tα(), idN) since M admits idN-centering factorisa-

tions. Therefore, we have determined the transition weight

T ′
α(X0) = {{1}}.

Next, we explore all transitions starting in X0 and note that final′(X0) = {{0}}.

We begin with the tranisition starting in X0 with input symbol γ. We have

Tγ(X0) = (q1 7→ {{1}}, q2 7→ ∅, q3 7→ ∅). From our previous calculations for Tα() we

obtain T ′
γ(X0, X0) = {{1}}.

71

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

We continue with the transition starting in (X0, X0) with input symbol σ. We have

Tσ(X0, X0) = (q1 7→ ∅, q2 7→ {{1}}, q3 7→ ∅). In order to obtain the non-vanishing tran-

sition weight of the form T ′
σ(X0, X0, X), we calculate minCenterFact(Tσ(X0, X0), idN).

It is clear that

div(Tσ(X0, X0)) = {0, 1},

as 0 + Tσ(X0, X0) = Tσ(X0, X0) and 1 +X ′
0 = Tσ(X0, X0), where

X ′
0 = (q1 7→ ∅, q2 7→ {{0}}, q3 7→ ∅).

Moreover, these are the only respective quotients, that is,

minquot0(Tσ(X0, X0)) = {Tσ(X0, X0)} and minquot1(Tσ(X0, X0)) = {X ′
0}.

In order to find minimising divisors, we calculate the Γ -length of these quotients. It

holds that |Tσ(X0, X0)|Γ = 1 and |X ′
0|Γ = 0 and hence

mindiv(Tσ(X0, X0)) = {1}

Hence minCenterFact(Tσ(X0, X0), idN) = (1, X ′
0). Therefore, we have determined the

transition weight

T ′(X0, X0, σ,X
′
0) = {{1}}.

Next, we explore all unexplored transitions starting in X0 and X ′
0 and note that

final′(X ′
0) = {{0}}. We easily calculate

Tγ(X
′
0) = (q1 7→ {{1, 1}}, q2 7→ ∅, q3 7→ {{1}}), and

Tσ(X0, X
′
0) = Tσ(X

′
0, X0) = Tσ(X

′
0, X

′
0) = (q1 7→ ∅, q2 7→ {{1}}, q3 7→ ∅).

Using similar calculations as in our explorations starting in X0, we obtain

T ′
γ(X

′
0, X1) = T ′

σ(X0, X
′
0, X

′
0) = T ′

σ(X
′
0, X0, X

′
0) = T ′

σ(X
′
0, X

′
0, X

′
0) = {{1}},

where

X1 = (q1 7→ {{0, 0}}, q2 7→ ∅, q3 7→ {{0}}).

72

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)

∅
0
∅

0
∅
∅

0, 0
∅
0

∅
0, 0
∅

X ′
k

α

γ

σ

σ

γ

Xk

γ

γ

γ

γ

σ

γ

σ

σ

1

1 1

1

1

1

1

1

1

1

1

1

1

0 0 0, 0, 0 0, 0

2k times︷ ︸︸ ︷
0, . . . , 0

3 · 2k−1 times︷ ︸︸ ︷
0, . . . , 0

Figure 3.6: Illustration of the sequential WTA DB over Σ and Mfin(M).

By continuing in this fashion, we explore the reachable state space and arrive at

the following states and transition weights. For every k ∈ N+ we define

Xk = (q1 7→ {{
2k times︷ ︸︸ ︷
0, . . . , 0}}, q2 7→ ∅, q3 7→ {{

2k−1 times︷ ︸︸ ︷
0, . . . , 0 }}) and

X ′
k = (q1 7→ ∅, q2 7→ {{

2k times︷ ︸︸ ︷
0, . . . , 0}}, q3 7→ ∅)

and have final′(Xk) = {{
3 · 2k−1 times︷ ︸︸ ︷
0, . . . , 0 }} and final′(X ′

k) = {{
2k times︷ ︸︸ ︷
0, . . . , 0}}. Moreover, we obtain

the following transition weights.

T ′
γ(Xk, Xk) = T ′

γ(X
′
k, Xk+1) = {{1}} for every k ∈ N

T ′
σ(Yi, Yj , X

′
i+j) = {{1}} for every i, j ∈ N, Yi ∈ {Xi, X

′
i}, Yj ∈ {Xj , X

′
j}

A graphical illustration of the reachable part of DB can be found in Figure 3.6. Since

DB has many non-vanishing transition weights even within the first few states, we have

depicted only some σ-transitions and many of those only partially using dotted lines.

73

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

We have also removed the curly braces from all multisets to aid readability. Surely, DB

is sequential. ◀

Definition 3.42. Let ξ ∈ TΣ and q ∈ Q. We define the multiset

WB
ξ (q) =

{{
y
∣∣ ξ|y−→ q ∈ B

}}
. ◀

Lemma 3.43. Let Σ = Σ(0) ∪Σ(1) or M be commutative. Moreover, let ξ ∈ TΣ and

let the form of the unique R-run of DB on ξ be
ξ|y−→ X. For every q ∈ Q it holds that

X(q) ∈ quoty(W
B
ξ (q)).

Proof. We prove the claim by structural induction on ξ. Assume that ξ = σ(ξ1, . . . , ξs)

such that the claim is proven for ξi for every i ∈ [s]. Let the form of the unique R-run

of DB on ξi be
ξi|yi−→ Xi for every i ∈ [s]. By the induction assumption it holds that

Xi(q) ∈ quotyi(W
B
ξi
(q))

for every q ∈ Q and i ∈ [s]. Moreover, let {{y′}} = T ′
σ(X1, . . . , Xs, X) and note that

y = y1 ⊙ · · · ⊙ ys ⊙ y′. Furthermore, by the definition of T ′ it holds that

(y′, X) = minCenterFact(Tσ(X1, . . . , Xs), f).

We obtain X(q) ∈ quoty′(Tσ(X1, . . . , Xs)(q)) for every q ∈ Q. Thus, if we show that

Tσ(X1, . . . , Xs)(q) ∈ quoty1⊙···⊙ys(W
B
ξ (q)), (3.6)

for every q ∈ Q, then we have X(q) ∈ {Y ∈ quoty′(Y
′) | Y ′ ∈ quoty1⊙···⊙ys(W

B
ξ (q))}.

This lets us conclude X(q) ∈ quoty(W
B
ξ (q)) by Lemma 3.12. An illustration of this

proof idea can be found in Figure 3.7.

In order to prove Equation (3.6), we note that, by definition of Tσ(X
′),

Tσ(X1, . . . , Xs)(q) =
⋃

q1,...,qs∈Q

(
X1(q1)⊙ · · · ⊙Xs(qs)⊙ Tσ(q1, . . . , qs, q)

)
. (3.7)

Moreover, it holds that

WB
ξ (q) = {{y′′ | ξ|y′′−→ q ∈ B}}

=
⋃

q1,...,qs∈Q
{{y′1 ⊙ · · · ⊙ y′s ⊙ ŷ |

ξ1|y′1−→ q1, . . . ,
ξs|y′s−→ qs ∈ B, ŷ ∈ Tσ(q1, . . . , qs, q)}}

=
⋃

q1,...,qs∈Q

(
WB

ξ1(q1)⊙ · · · ⊙WB
ξs(qs)⊙ Tσ(q1, . . . , qs, q)

)
.

74

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)

Therefore, Equation (3.6) holds if and only if(⋃
q1,...,qs∈Q

(
X1(q1)⊙ · · · ⊙Xs(qs)⊙ Tσ(q1, . . . , qs, q)

))

∈ quoty1⊙···⊙ys

(⋃
q1,...,qs∈Q

(
WB

ξ1(q1)⊙ · · · ⊙WB
ξs(qs)⊙ Tσ(q1, . . . , qs, q)

))
,

which holds if for every q1, . . . , qs ∈ Q we have that(
X1(q1)⊙ · · · ⊙Xs(qs)⊙ Tσ(q1, . . . , qs, q)

)
∈ quoty1⊙···⊙ys

(
WB

ξ1(q1)⊙ · · · ⊙WB
ξs(qs)⊙ Tσ(q1, . . . , qs, q)

)
. (3.8)

Equation (3.8) holds if
(
X1(q1)⊙· · ·⊙Xs(qs)

)
∈ quoty1⊙···⊙ys

(
WB

ξ1
(q1)⊙· · ·⊙WB

ξs
(qs)

)
and since yi ⊙Xi(qi) = WB

ξi
(qi) for every i ∈ [s] by the induction assumption, we have

ultimately determined that Equation (3.6) holds if(
X1(q1)⊙ · · · ⊙Xs(qs)

)
∈ quoty1⊙···⊙ys

(
y1 ⊙X1(q1)⊙ · · · ⊙ ys ⊙Xs(qs)

)
. (3.9)

If Σ = Σ(0) ∪Σ(1), then s ≤ 1 and hence Equation (3.9) is true. If M is commutative,

then y1 ⊙X1(q1)⊙ · · · ⊙ ys ⊙Xs(qs) = y1 ⊙ · · · ⊙ ys ⊙X1(q1)⊙ · · · ⊙Xs(qs) and hence

Equation (3.9) is true.

Lemma 3.44. If Σ = Σ(0) ∪Σ(1) or M is commutative, then DB is equivalent to B.

Proof. Let ξ ∈ TΣ and let the form of the unique R-run of DB on ξ be
ξ|y−→ X. It holds

that

[[DB]](ξ)
⋆1= {{y ⊙ z | X z→ ∈ DB}}
⋆2= {{y ⊙m⊙ z′ | q ∈ Q,m ∈ X(q), z′ ∈ final(q)}}

= {{m⊙ z′ | q ∈ Q,m ∈ (y ⊙X(q)), z′ ∈ final(q)}}
⋆3= {{m⊙ z′ | q ∈ Q,m ∈WB

ξ (q), z′ ∈ final(q)}}
⋆4= {{y′ ⊙ z′ | q ∈ Q, ξ|y′−→ q ∈ B, z′ ∈ final(q)}}
⋆5= {{y′ ⊙ z′ | ξ|y

′
−→ q

z′→ ∈ B}} ⋆6= [[B]](ξ),

where Equations ⋆1 – ⋆5 can be seen as follows. Equation ⋆1 follows from Lemma

3.27 and the uniqueness of the R-run of DB on ξ. Equation ⋆2 follows from the

75

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

q1

. .
.

qs

in B : q

WB
ξ1

. .
.

WB
ξs

WB
ξ

X1

. .
.

Xs

X

Tσ(X1, . . . , Xs)in DB :

σ

σ

ξ1|y′1

ξs|y′s

ŷ

ξ1|y1

ξs|ys

y′

In
d
.
H
y
p
.

q
u
o
t y

′
◦
q
u
o
t y

1
⊙
···
⊙
y
s

L
.3
.1
2

=
q
u
o
t y

1
⊙
···
⊙
y
s
⊙
y
′

quot
y ′

Tσ(
X1,

. . .
, Xs)(

q)
∈

quo
t y1⊙

···⊙
ys
(W

B
ξ
(q)

)

Figure 3.7: Illustration of the proof idea from Lemma 3.43.

definition of final′. Equation ⋆3 follows from Lemma 3.43. More precisely, the fact

that X(q) ∈ quoty(W
B
ξ (q)) implies that y ⊙ X(q) = WB

ξ (q). We note that this uses

the assumption that Σ = Σ(0) ∪ Σ(1) or M is commutative. Equation ⋆4 follows from

the definition of WB
ξ (q). Equation ⋆5 is an application of our notation for R-runs and

final weights (cf. Remark 3.26). Equation ⋆6 follows from Lemma 3.27.

Lemma 3.45. Let Σ = Σ(0) ∪ Σ(1) or M be commutative. Moreover, let B ⊨ ETP.

For every reachable state X ∈ Q′ of DB and every m1 ∈ X(q) for some q ∈ Q it holds

that

|m1|Γ < f(NB).

Proof. Let X ∈ Q′ be a reachable state of DB and m1 ∈ X(q) for some q ∈ Q. The

fact that X is reachable implies the existence of ξ ∈ TΣ and y ∈M such that the form

of the unique R-run of DB on ξ is
ξ|y−→ X.

Assume that ξ = σ(ξ1, . . . , ξs) and let X1, . . . , Xs ∈ Q′ and y1, . . . , ys ∈M such that

the unique R-run of DB on ξi is of the form
ξi|yi−→ Xi for every i ∈ [s]. Furthermore, let

76

3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)

{{y′}} = T ′
σ(X1, . . . , Xs, X) and recall from Definition 3.39 that

(y′, X) = minCenterFact(Tσ(X1, . . . , Xs), f).

Thus, by the definition of an f -centering factorisation, there exists q′ ∈ Q and

m2 ∈ supp(X(q′)) such that |m1|Γ ≤ f(dΓ (m1,m2)).

By Lemma 3.43 it holds that X(q) ∈ quoty
(
WB

ξ (q)
)
and X(q′) ∈ quoty

(
WB

ξ (q′)
)
.

Thus there exists y′1 ∈ supp(WB
ξ (q)) and y′2 ∈ supp(WB

ξ (q′)) such that y′1 = y ⊙m1

and y′2 = y ⊙m2. We note that this uses the assumption that Σ = Σ(0) ∪Σ(1) or M is

commutative. We obtain

|m1|Γ ≤ f(dΓ (m1,m2))
⋆1
≤ f(dΓ (y ⊙m1, y ⊙m2)) = f(dΓ (y

′
1, y

′
2))

⋆2
< f(NB),

where Equation ⋆1 holds since M divides Γ -monotone and f is strongly monotone and

Equation ⋆2 follows from Lemma 3.37 and the fact that f is strongly monotone. This

concludes the proof.

Corollary 3.46. Let Σ = Σ(0) ∪Σ(1) or M be commutative. Moreover, let B ⊨ ETP.

For every reachable state X ∈ Q′ of DB and every q ∈ Q it holds that

supp(X(q)) ⊆ Bf(NB)(1).

In particular, it holds that #supp(X(q)) <∞.

Proof. This follows directly from Lemma 3.45.

3.5.2 The Finitely R-Ambiguous Case

We have seen that all values occurring in states of DB are close to 1 if B satisfies

the ETP. However, each occurring value can have arbitrarily large multiplicity, which

allows the set of reachable states of DB to be infinite nonetheless. Fortunately, if B

is finitely R-ambiguous, then the size of all reachable states of DB is bounded (recall

from Lemma 3.43 that the size of a reachable state of DB equals the number of R-runs

of DB on some tree ξ ∈ TΣ) and hence, the reachable part of DB is finite.

Nonetheless, even if the reachable part of DB is infinite, then there are still cases

for which our M-sequentialisation construction works, as we will see in Chapter 3.7.

77

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Corollary 3.47. Let Σ = Σ(0) ∪Σ(1) or M be commutative. Moreover, let B ⊨ ETP.

If B is finitely R-ambiguous, then the set of reachable states of DB is finite.

In particular, if B is finitely R-ambiguous, then B is sequentialisable.

Proof. We recall that since B is finitely R-ambiguous, there exists k ∈ N such that

#R-RunsB(ξ) ≤ k

for every ξ ∈ TΣ . Moreover, we define the set

K = {M ∈M(Bf(NB)(1)) | #M ≤ k}.

It is clear that K, and thus also KQ, is finite. Let X ∈ Q′ be reachable state of DB.

We will show that X ∈ KQ, which proves the claim.

By the reachability of X, there exists ξ ∈ TΣ , y ∈ M, and an R-run of the form
ξ|y−→ X of DB. Moreover, let q ∈ Q. By the finite R-ambiguity of B it holds that

#WB
ξ (q) ≤ k. By Lemma 3.43, we have X(q) ∈ quoty(W

B
ξ (q)) and thus also #X(q) ≤

k. Moreover, by Corollary 3.46, we obtain that X(q) ∈ M(Bf(NB)(1)). This proves

that X ∈ KQ.

Example 3.48. We illustrate Corollary 3.47 by sequentialising the finitely R-ambiguous

WTA C from Example 3.30. More precisely, we construct the reachable part of

DC = (Q′, T ′, final′) in a procedural manner by exploring the state space and the

transitions of DC using the definition of T ′. We recall that C is a WTA over Mfin(M),

where M = (⟨Γ ⟩·, ·, 1) and Γ = {2, 3}. Moreover, we have seen in Example 3.30 that

M admits f -centering factorisations, where f(n) = 2 · n for every n ∈ N.

We begin by exploring transitions with input symbol α. Surely, we have that

Tα() = (q1 7→ {{1}}, q2 7→ {{2}}, q3 7→ ∅). Using similar calculations as in Example 3.41,

we obtain the transition weight

T ′
α(X0) = {{1}},

where X0 = (q1 7→ {{1}}, q2 7→ {{2}}, q3 7→ ∅).

78

3.6 Relating WTA over Mfin(M) and WTA over S

Next, we explore all transitions starting in X0 and note that final′(X0) = ∅. We

have

Tγ(X0) = (q1 7→ ∅, q2 7→ {{2, 6}}, q3 7→ ∅) and

Tσ(X0, X0) = (q1 7→ ∅, q2 7→ ∅, q3 7→ {{8, 12}}).

Again, using similar calculations as in Example 3.41, we obtain the transition weights

T ′
γ(X0, X1) = {{2}} and T′

σ(X0, X0, X2) = {{4}}, where

X1 = (q1 7→ ∅, q2 7→ {{1, 3}}, q3 7→ ∅) and

X2 = (q1 7→ ∅, q2 7→ ∅, q3 7→ {{2, 3}}).

By continuing in this fashion, we explore only two more states, namely

X3 = (q1 7→ ∅, q2 7→ ∅, q3 7→ {{2, 3, 6, 9}}) and

X4 = (q1 7→ ∅, q2 7→ ∅, q3 7→ ∅),

the final weights final′(X1) = ∅, final′(X2) = {{6, 9}}, final′(X3) = {{6, 9, 18, 27}},

final′(X4) = ∅, and the following further transition weights.

T ′
γ(X1, X1) = T ′

γ(X2, X2) = T ′
γ(X3, X3) = {{3}}, T ′

γ(X4, X4) = {{1}},

T ′
σ(X0, X1, X3) = {{2}}, T ′

σ(X1, X0, X4) = {{1}}, and

T ′
σ(Xi, Xj , X4) = {{1}} ∀i, j ∈ {0, 1, 2, 3} s.th. i+ j ≥ 2.

In particular, the reachable state space of DC equals {X0, X1, X2, X3, X4}, which is a

finite set, as predicted by Corollary 3.47. We note that X4 acts as a “sink” state with

an empty final weight and no outgoing non-vanishing transition. An illustration of the

reachable part of DC can be found in Figure 3.8. To aid readability, we omitted the

sink state X4 and the curly braces of all multiset weights. ◀

3.6 Relating WTA over Mfin(M) and WTA over S

We will now execute Step (I) of our M-sequentialisation construction (see Chapter 3.1)

using a concept of relatedness of weighted tree automata. This allows us to translate

79

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

X0

X1

X2

X3

α

γ σ

σ

γ

γ

γ

γ3

1

2

2

4

6, 9

6, 9, 18, 27

3

3

3

Figure 3.8: Illustration of the sequential finite WTA DB1 over {a, b} and Mfin(⟨{2, 3}⟩·)
from Example 3.48. We have omitted the sink state X4 to aid readability.

our S(M)-sequentialisation results for WTA over Mfin(M) (see Chapter 3.5) to WTA

over an arbitrary M-semiring S.

More precisely, given a WTA A over Σ and S and a WTA B over Σ and Mfin(M),

we say that A and B are related if A and B have the same sets of states and every

transition weight and final weight of A equals the evaluation of the respective multiset

weight of B via ⊕ in S (cf. Definition 3.51). Moreover, we will introduce the notion

of strong relatedness which expresses that, in addition to relatedness, the sets of runs

of A and B have certain combinatorial similarities. We will use these combinatorial

similarities in Chapter 3.7.

Throughout the rest of Chapter 3.6, we assume (S,⊕,⊙, 0, 1) to be an arbi-

trary M-semiring for some finitely generated monoid M with finite generat-

ing set Γ .

Definition 3.49. We define the operator [[]]S : Mfin(M)→ S where for every multiset

80

3.6 Relating WTA over Mfin(M) and WTA over S

M ∈Mfin(M) we let

[[M]]S =
⊕
m∈M

m.

For every set A, we can naturally extend [[]]S to a map [[]]S : (Mfin(M))A → SA where

for every L : A→Mfin(M) and a ∈ A we let

[[L]]S(a) = [[L(a)]]S

Furthermore, [[]]S naturally extends to subsets of (Mfin(M))A by elementwise applica-

tion. ◀

Lemma 3.50. Let B = (Q,T, final) be a finite-run WTA over Σ and Mfin(M). For

every ξ ∈ TΣ it holds that

[[[[B]]]]S(ξ) =
⊕
ξ|y−→q

z→

y ⊙ z.

Proof. This follows immediately from Lemma 3.27 and the definition of [[·]]S .

Definition 3.51. Let A = (Q,T, final) and B = (Q′, T ′, final′) be a WTA over Σ and

S and a WTA over Σ and Mfin(M), respectively. We say that A and B are related if

Q = Q′ and for every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q it holds that

Tσ(q1, . . . , qs, q) = [[T ′
σ(q1, . . . , qs, q)]]S and final(q) = [[final′(q)]]S .

Moreover, we say that A and B are strongly related if A and B are related and for

every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q it holds that

(a) if Tσ(q1, . . . , qs, q) = 0, then T ′
σ(q1, . . . , qs, q) = ∅ and

(b) if Tσ(q1, . . . , qs, q) ∈M \ {0}, then T ′
σ(q1, . . . , qs, q) = {{Tσ(q1, . . . , qs, q)}}.

Given a WTA A over Σ and S, we denote the set of WTAs over Σ and Mfin(M)

that are related (or strongly related) to A by Rel(A) (or StrongRel(A), respectively).

Analogously, given a WTA B over Σ and Mfin(M), we denote the set of WTAs over

Σ and S that are related (or strongly related) to B by Rel(B) (or StrongRel(B),

respectively). ◀

81

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Remark 3.52. Let A and B be as in Definition 3.51 and moreover, let A and B

be strongly related. Let s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q. We note that

(q1, . . . , qs, σ, q) is a transition in a loop of A if and only if (q1, . . . , qs, σ, q) is a tran-

sition in a loop of B. This follows from the fact that A and B have the same graph

structure.

We note that this is not true if A and B are only related. More precisely, if A and

B are only related, then B can have non-vanishing transition weights that correspond

to vanishing transition weights in A . In particular, B can have valid runs that are

non-valid runs of A . We illustrate this fact using the WTA Â = (Q,T, final) over

{#(0), a(1)} and (Z4,⊕4,⊙4, 0, 1) and the WTA B̂ = (Q,T ′, final′) over {#(0), a(1)} and

Mfin((Z4,⊙4, 1)). We define the automata by their graphical representation as follows.

q1 q2a
1

#Â :

1

1

q1 q2

a
{{1}}

#B̂ :

{{1}}

{{1}}
a
{{2, 2}}

Clearly, Â and B̂ are related, since Ta(q1, q2) = 0 = 2 ⊕4 2 = [[T ′
a(q1, q2)]]Z4 (and

similarly for all other occurring weights). However, they are not strongly related, since

condition (a) of strong relatedness is violated (see Definition 3.51). In fact, B̂ has a

valid run on ξ = a(#) while Â has none. Moreover, (q1, σ, q2) is a transition in a loop

of B̂ while it is not a transition in a loop of Â . ◀

Lemma 3.53. Let A be a WTA over Σ and S and let B be a WTA over Σ and

Mfin(M). If A and B are related, then [[A]] = [[[[B]]]]S .

Proof. We denote A = (Q,T, final) and B = (Q,T ′, final′). Let ξ ∈ TΣ . It holds that

∀q ∈ Q : RunsvA (ξ, q) ⊆ RunsvB(ξ, q), (3.10)

82

3.6 Relating WTA over Mfin(M) and WTA over S

which can be proven as follows. Let q ∈ Q and ρ ∈ (Qpos(ξ) \ RunsvB(ξ, q)). That is, ρ

is a run of B on ξ that is not valid. In particular, there exists w ∈ pos(ξ) such that

T ′
ξ(w)(ρ(w1), . . . , ρ(ws), ρ(w)) = ∅, where s = rk(ξ(w)). Since A and B are related we

obtain Tξ(w)(ρ(w1), . . . , ρ(ws), ρ(w)) = 0 and hence, ρ is also not a valid run of A on ξ.

Therefore, ρ ∈ (Qpos(ξ) \ RunsvA (ξ, q)), which concludes the proof of Equation (3.10).

Let ρ ∈
(
RunsvB(ξ, q)\RunsvA (ξ, q)

)
for some q ∈ Q. Since ρ is not a valid run of A ,

there exists w ∈ pos(ξ) such that Tξ(w)(ρ(w1), . . . , ρ(ws), ρ(w)) = 0 where s = rk(ξ(w)).

Therefore, [[T ′
ξ(w)(ρ(w1), . . . , ρ(ws), ρ(w))]]S = 0 by the definition of relatedness and

hence [[wtB(ξ, ρ)]]S = 0. This proves the following Equation (3.11).

∀q ∈ Q : ∀ρ ∈
(
RunsvB(ξ, q) \ RunsvA (ξ, q)

)
: [[wtB(ξ, ρ)]]S = 0 (3.11)

Next we show the following Equation (3.12) by structural induction on ξ.

∀q ∈ Q : ∀ρ ∈ RunsA (ξ, q) : wtA (ξ, ρ) = [[wtB(ξ, ρ)]]S . (3.12)

Assume that ξ = σ(ξ1, . . . , ξs) and that Equation (3.12) holds for ξ1, . . . , ξs. Let q ∈ Q

and ρ ∈ RunsvA (ξ, q) and denote qi = ρ(i) for every i ∈ [s]. Moreover, for every i ∈ [s]

let ρi be the restriction of ρ to ξi, that is, ρi ∈ RunsvA (ξi, qi) such that ρi(w) = ρ(iw)

for every w ∈ pos(ξi). We obtain

wtA (ξ, ρ)
⋆1= wtA (ξ1, ρ1)⊙ · · · ⊙ wtA (ξs, ρs)⊙ Tσ(q1, . . . , qs, q)
⋆2= [[wtA (ξ1, ρ1)]]S ⊙ · · · ⊙ [[wtA (ξs, ρs)]]S ⊙ Tσ(q1, . . . , qs, q)
⋆3= [[wtA (ξ1, ρ1)]]S ⊙ · · · ⊙ [[wtA (ξs, ρs)]]S ⊙ [[T ′

σ(q1, . . . , qs, q)]]S

⋆4= [[wtA (ξ1, ρ1)⊙ · · · ⊙ wtA (ξs, ρs)⊙ T ′
σ(q1, . . . , qs, q)]]S

⋆5= [[wtB(ξ, ρ)]]S ,

where Equations ⋆1 and ⋆5 follow from the definition of the weight of a run, Equa-

tion ⋆2 follows from the induction assumption, Equation ⋆3 follows from the definition

of relatedness, and Equation ⋆4 follows from the distributivity law. This proves the

induction step and therefore concludes the proof of Equation (3.12).

83

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

We obtain that for every ξ ∈ TΣ it holds that

[[A]](ξ) =
⊕
q∈Q

⊕
ρ∈RunsvA (ξ,q)

wtA (ξ, ρ)⊙ final(q)

⋆1=
⊕
q∈Q

⊕
ρ∈RunsvA (ξ,q)

wtA (ξ, ρ)⊙ [[final′(q)]]S

⋆2=
⊕
q∈Q

⊕
ρ∈RunsvB(ξ,q)

[[wtB(ξ, ρ)]]S ⊙ [[final′(q)]]S

⋆3=
⊕

ρ∈RunsvB(ξ)

[[wtB(ξ, ρ)⊙ final′(ρ(ε))]]S
⋆4= [[[[B]]]]S(w),

where Equation ⋆1 follows from relatedness of A and B, Equation ⋆2 follows from

Equations (3.11) and (3.12), Equation ⋆3 follows from the distributivity of S, and

Equation ⋆4 follows from the definition of [[]]S and [[B]]. This concludes the proof of

the lemma.

Example 3.54. The concept of relatedness links the WTA A from Example 3.1 (also

cf. Figure 3.1) and the WTA B from Example 3.21 (also cf. Figure 3.3). In fact, A

and B are strongly related. This can easily be seen as follows.

For every q ∈ Q it holds that final(q) = {{finalA (q)}}. Furthermore, for every

s ≥ 0, τ ∈ Σ(s), and q1, . . . , qs, q ∈ Q such that (TA)τ (q1, . . . , qs, q) ∈ N it holds that

(TA)τ (q1, . . . , qs, q) = 1 and Tτ (q1, . . . , qs, q) = {{1}}. The only other transition with a

non-vanishing transition weight in B or A is (q2, γ, q1), where (TA)γ(q2, q1) = ⊤ and

Tγ(q2, q1) = {{1, 1}}. The fact that [[{{1, 1}}]]X = 1 ∨ 1 = ⊤ concludes the proof that A

and B are strongly related.

It folllows from Lemma 3.53 that [[A]] = [[[[B]]]]S . We recall from Example 3.28 that

for every ξ ∈ TΣ it holds that

[[B]](ξ) = {{
r(ξ) times︷ ︸︸ ︷

size(ξ), . . . , size(ξ)}}, where

r(ξ) = 2nξ +

2nξ−1 if ξ(ε) = γ and ξ(1) = σ

0 otherwise.

and nξ is the number of times a γ occurs directly above a σ in ξ. Thus, by the definition

84

3.6 Relating WTA over Mfin(M) and WTA over S

of [[]]S ,

[[[[B]]]]S(ξ) =

size(ξ) if nξ = 0

⊤ otherwise.

By Lemma 3.53, [[A]] = [[[[B]]]]S . This proves our conjecture about the weighted tree

language [[A]] from Example 3.1. ◀

We will now show that for every WTA A over Σ and ⟨M⟩⊕ there exists a strongly

related WTA B over Σ and Mfin(M) and for every WTA B over Σ and Mfin(M) there

exists a related WTA A over Σ and S.

Lemma 3.55. Let A = (Q,T, final) be a WTA over Σ and ⟨M⟩⊕. It holds that

StrongRel(A) ̸= ∅.

Moreover, if A is M-sequential, then there exists a B ∈ StrongRel(A) which is se-

quential.

Proof. Let B = (Q′, T ′, final′) be the WTA over Σ and Mfin(M) where Q′ = Q and T ′

and final′ are defined as follows.

For every q ∈ Q, the fact that final(q) ∈ ⟨M⟩⊕ implies the existence of nq ∈ N

and zq1, . . . , z
q
nq ∈ M such that final(q) =

⊕nq

i=1 z
q
i . We fix an arbitrary instance of

nq, z
q
1, . . . , z

q
nq and define the final weight map of B by final′(q) = {{zqi | i ∈ [nq]}} for

every q ∈ Q.

Analogously, for every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q, the fact that

Tσ(q1, . . . , qs, q) ∈ ⟨M⟩⊕ implies the existence of nt ∈ N and yt1, . . . , y
t
nt
∈ M where

t = (q1, . . . , qs, σ, q) such that Tσ(q1, . . . , qs, q) =
⊕nt

i=1 y
t
i . If Tσ(q1, . . . , qs, q) = 0, then

we let nt = 0. If Tσ(q1, . . . , qs, q) ∈M\{0}, then we let nt = 1 and yt1 = Tσ(q1, . . . , qs, q).

Otherwise, we fix an arbitrary instance of nt, y
t
1, . . . , y

t
nt
. We define the transition

weight map of B by T ′
σ(q1, . . . , qs, q) = {{yti | i ∈ [nt]}} for every s ∈ N, σ ∈ Σ(s), and

q1, . . . , qs, q ∈ Q.

By the construction it is clear that A and B are strongly related. This proves that

StrongRel(A) ̸= ∅.

The second claim can be seen as follows. Let every non-vanishing weight occurring

in T be in M. It holds that for every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q either

85

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Tσ(q1, . . . , qs, q) = 0 (in this case T ′
σ(q1, . . . , qs, q) = ∅) or Tσ(q1, . . . , qs, q) ∈ M (in this

case T ′
σ(q1, . . . , qs, q) = {{Tσ(q1, . . . , qs, q)}}). Hence, every transition weight of B is

either ∅ or in S(M). Moreover, if A is deterministic, then B is also deterministic1. In

total, if A is M-sequential, then B is deterministic and every non-vanishing transition

weight of B is in S(M). This proves the claim.

Lemma 3.56. Let B = (Q,T, final) be a WTA over Σ and Mfin(M). It holds that

Rel(B) ̸= ∅.

Moreover, if B is sequential, then every A ∈ Rel(B) is M-sequential.

Proof. Let A = (Q′, T ′, final′) be the WTA over Σ and S defined by Q′ = Q and for

every s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q by

T ′
σ(q1, . . . , qs, q) = [[Tσ(q1, . . . , qs, q)]]S and final′(q) = [[final(q)]]S .

By definition, A and B are related, which proves the first claim. We note that A is

indeed the only WTA over Σ and S that is related to B.

The second claim can be seen as follows. Let B be sequential. Since B is deter-

ministic, also A is deterministic. Let s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q. Since B is

sequential, it holds that either Tσ(q1, . . . , qs, q) = ∅ (in which case T ′
σ(q1, . . . , qs, q) = 0)

or Tσ(q1, . . . , qs, q) = {{x}} for some x ∈ M (in which case T ′
σ(q1, . . . , qs, q) = x) by

construction. Hence, all non-vanishing weights occurring in T ′ are in M, which yields

the claim.

Corollary 3.57. It holds that

[[Rec(Σ,Mfin(M))]]S = Rec(Σ, ⟨M⟩⊕).

In particular, it holds that [[Rec(Σ,Mfin((S,⊙, 1)))]]S = Rec(Σ,S).

Proof. We show the equality [[Rec(Σ,Mfin(M))]]S = Rec(Σ, ⟨M⟩⊕) by proving the two

set inclusions “⊆” and “⊇” using relatedness of automata.

For “⊆”: Let B = (Q,T, final) be a finite WTA over Σ and Mfin(M). By Lem-

ma 3.56 there exists A ∈ Rel(B) and by Lemma 3.53 it holds that [[[[B]]]]S = [[A]].

1We note that this is not true if A and B are only related, see Remark 3.52

86

3.6 Relating WTA over Mfin(M) and WTA over S

Moreover, A is finite and every weight occurring in A is in ⟨M⟩⊕ by definition of

relatedness. Thus, [[A]] ∈ Rec(Σ, ⟨M⟩⊕) and hence also [[[[B]]]]S ∈ Rec(Σ, ⟨M⟩⊕). This

proves the inclusion [[Rec(Σ,Mfin(M))]]S ⊆ Rec(Σ, ⟨M⟩⊕).

For “⊇”: Let A = (Q,T, final) be a finite WTA over Σ and ⟨M⟩⊕. By Lemma 3.55

there exists B ∈ StrongRel(A) and by Lemma 3.53 it holds that [[A]] = [[[[B]]]]S .

Together with the fact that B is finite, we obtain [[A]] ∈ [[Rec(Σ,Mfin(M))]]S . This

proves the inclusion [[Rec(Σ,Mfin(M))]]S ⊇ Rec(Σ, ⟨M⟩⊕).

Corollary 3.58. It holds that

[[sRec(Σ,Mfin(M), S(M))]]S ⊆ dRec(Σ, ⟨M⟩⊕).

Moreover, it holds that [[sRec(Σ,Mfin(S), S(S))]]S = dRec(Σ,S).

Proof. Let B be a sequential finite WTA over Σ and Mfin(M). Since B is sequen-

tial, Lemma 3.56 implies the existence of a deterministic A ∈ Rel(B). Similarly to

Corollary 3.57 one can prove the first claim and the inclusion “⊆” of the second claim.

It remains to show the inclusion [[sRec(Σ,Mfin(S), S(S))]]S ⊇ dRec(Σ,S). Let A

be a deterministic WTA over Σ and S. We note that in this case, the weights of A are

already in the monoid (S,⊙, 1). Hence, by Lemma 3.55 there exists a S(S)-sequential

B ∈ StrongRel(A). This concludes the proof.

Definition 3.59. Let A = (Q,T, final) be a finite WTA over Σ and S.

We say that A has the extended twinning property (in symbols: A ⊨ ETP) if there

exists B ∈ StrongRel(A) such that B ⊨ ETP. ◀

Example 3.60. We recall the WTA B from Example 3.21 and the WTA A from

Example 3.1. In Example 3.33 we have seen that B ⊨ ETP and from Example 3.54 we

know that B ∈ StrongRel(A). Thus, by Definition 3.59, A ⊨ ETP.

We note that the fact “A ⊨ ETP” does not imply that every WTA which is strongly

related to A has the ETP. For illustration, we consider the WTA B′, which is equal to

B except that we replace the transition weight Tγ(q2, q1) (which equals {{1, 1}} in B) by

{{1, 2}}. It is easy to see that B′ is still strongly related to A (since 1∨ 2 = ⊤ = 1∨ 1).

However, B′ does not have the ETP.

87

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

In order to see this, we let ξ = γ(σ(α, α)). Similar to Example 3.24 we fix the

following two R-runs of B′ on ξ.

ρ1 :

γ

σ

α α

(q2, q1, 1)

(q1, q1, q2, 1)

(q1, 1) (q1, 1)

ρ2 :

γ

σ

α α

(q2, q1, 2)

(q1, q1, q2, 1)

(q1, 1) (q1, 1)

We let ξ′ = α, ζ = γ(σ(x1, α)) and note that ρ1 and ρ2 are of the respective form

ξ|y1−→ q1
ζ|y2−→ q1 and

ξ|y′1−→ q1
ζ|y′2−→ q1,

where y1 = y′1 = 1, y2 = 1 + 1 + 1 = 3, and y′2 = 1 + 1 + 2 = 4. It holds that

dΓ (y1, y
′
1) = 0 ̸= 1 = dΓ (y1 + y2, y

′
1 + y′2),

which directly proves that B′ does not have the TP and hence, B′ does not have the

ETP either. ◀

Definition 3.61. Let A = (Q,T, final) be a finite WTA over Σ and S.

We call A finitely M-ambiguous if (a) there exists k ∈ N such that for every ξ ∈ TΣ

it holds that #RunsvA (ξ) ≤ k and (b) for every transition (q1, . . . , qs, σ, q) in a loop of

A such that q1, . . . , qs are reachable, it holds that Tσ(q1, . . . , qs, q) ∈M. ◀

Lemma 3.62. Let A = (Q,T, final) be a finite WTA over Σ and S. It holds that

A is finitely M-ambiguous ⇐⇒ ∀B ∈ StrongRel(A) : B is finitely R-ambiguous.

Proof. For “ ⇐= ”: We note that StrongRel(A) ̸= ∅ by Lemma 3.55. We let

B ∈ StrongRel(A) and denote B = (Q,T ′, final′). By assumption, B is finitely

R-ambiguous and hence, there exists k ∈ N such that for every ξ ∈ TΣ it holds that

#R-RunsB(ξ) ≤ k. The fact that

#RunsvA (ξ) ≤ #RunsvB(ξ) ≤ #R-RunsB(ξ)

yields condition (a) from the definition of finite M-ambiguity for A .

88

3.6 Relating WTA over Mfin(M) and WTA over S

It remains to show that condition (b) holds. First, let s ∈ N, σ ∈ Σ(s), and

q1, . . . , qs, q ∈ Q be reachable such that (q1, . . . , qs, σ, q) is a transition in a loop of B.

The finite R-ambiguity of B implies that #T ′
σ(q1, . . . , qs, q) = 1. This can be shown

by a pumping argument as follows. There exists ξ ∈ TΣ , ζ ∈ CΣ , ρ ∈ RunsA (ξ),

ρ′ ∈ RunsA (ζ), and w ∈ pos(ζ) such that ρ′ is a loop, ρ′(wi) = qi for every i ∈ [s],

ξ(w) = σ, and ρ′(w) = q. It holds that (ρ′)ℓ[ρ] ∈ RunsB(ζℓ[ξ]) for every ℓ ∈ N. If

#T ′
σ(q1, . . . , qs, q) ≥ 2, then (ρ′)ℓ[ρ] is associated to at least 2ℓ pairwise different R-

runs of B on ζℓ[ξ]. In particular, #R-RunsB(ζℓ[ξ]) ≥ 2ℓ and hence, B is not finitely

R-ambiguous.

Now, let s ∈ N, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q be reachable such that (q1, . . . , qs, σ, q)

is a transition in a loop of A . By Remark 3.52, (q1, . . . , qs, σ, q) is a transition in a

loop of B and from our above argument we obtain #T ′
σ(q1, . . . , qs, q) = 1. Therefore,

by the relatedness of A and B, it holds that T ′
σ(q1, . . . , qs, q) = {{Tσ(q1, . . . , qs, q)}}

and hence Tσ(q1, . . . , qs, q) ∈ M. This yields condition (b) from the definition of finite

M-ambiguity for A .

For “ =⇒ ”: Let B ∈ StrongRel(A) and denote B = (Q,T ′, final′). Moreover, we

define the constant

cB = max
s∈N,σ∈Σ(s),
q1,...,qs,q∈Q

#T ′
σ(q1, . . . , qs, q).

Now let ξ ∈ TΣ . It holds that #RunsvB(ξ) = #RunsvA (ξ) by the definition of strong

relatedness and hence #RunsvB(ξ) ≤ k by the finite M-ambiguity of A . Furthermore,

from Equation (3.3) we obtain that
⋃

ρ∈RunsB(ξ)R(ρ) = R-RunsB(ξ). Hence, if we show

∀ρ ∈ RunsvB(ξ) : #R(ρ) ≤ (cB)maxrk(Σ)#Q
, (3.13)

then we obtain #R-RunsB(ξ) ≤ k · (cB)maxrk(Σ)#Q
, which implies the claim.

Let ρ ∈ RunsvB(ξ). Since the R-runs in R(ρ) must have the same “state behavior”

as ρ, it surely holds that

#R(ρ) =
∏

w∈pos(ξ)

#T ′
ξ(w)(ρ(w1) . . . ρ(ws), ρ(w)) ≤ (cB)size(ξ).

In particular, if size(ξ) ≤ maxrk(Σ)#Q, then Equation (3.13) holds.

Now let size(ξ) > maxrk(Σ)#Q and note that this implies height(ξ) > #Q. Thus, by

the pigeonhole principle, ρ contains a loop. Formally, there exists ξ′ ∈ TΣ , ζ, ζ
′ ∈ CΣ ,

89

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

ρ1 ∈ RunsB(ξ′), ρ2 ∈ RunsB(ζ), and ρ3 ∈ RunsB(ζ ′) such that ζ ̸= x1, ρ2 is a loop,

ζ ′[ζ[ξ′]] = ξ, and ρ3[ρ2[ρ1]] = ρ. Since every transition occurring in ρ2 occurs in a loop

(namely ρ2), every transition weight occurring in ρ2 (considered over A) is in M and

hence, every transition weight occurring in ρ2 (considered over B) is a singleton set.

In particular,

#R(ρ) =
∏

w∈pos(ξ)

#T ′
ξ(w)(ρ(w1) . . . ρ(ws), ρ(w))

=
∏

w∈pos(ζ′[ξ′])

#T ′
ξ(w)(ρ(w1) . . . ρ(ws), ρ(w)) = #R(ρ3[ρ1]).

Moreover, size(ζ ′[ξ′]) < size(ξ). By iteratively removing loops from ξ in this way, we

arrive at a tree ξ̂ ∈ TΣ and a run ρ̂ of B on ξ̂ such that size(ξ̂) ≤ maxrk(Σ)#Q

and #R(ρ̂) = #R(ρ). It holds that #R(ρ̂) ≤ (cB)maxrk(Σ)#Q
by our above argument

and hence, we obtain that #R(ρ) ≤ (cB)maxrk(Σ)#Q
, which concludes the proof of

Equation (3.13) and therefore the proof of the lemma.

3.7 M-Sequentialisation of Weighted Tree Automata

In this chapter, we execute Step (III) from our M-sequentialisation construction (see

Chapter 3.1). First, given the sequentialisation DB of some WTA B over Σ and

Mfin(M) (cf. Definition 3.39), we define the concept of an accumulator ∼ of DB and the

accumulation acc∼(DB) of DB via ∼ (cf. Definitions 3.63 and 3.64). This accumulation

process combines states with the same local state behaviour and

S-evaluates all multiset weights. In particular, acc∼(DB) is a WTA over Σ and S.

Second, we show that acc∼(DB) is indeed M-sequential cf. Lemma 3.66) and equiva-

lent to B up to S-evaluation (cf. Lemma 3.67). Next, we provide classes of weighted

tree automata B over Mfin(M) and accumulators ∼ such that acc∼(DB) is finite (cf.

Definition 3.69 and Lemmas 3.70 and 3.72).

We ultimately combine the concept of accumulators with the concept of strong

relatedness from Chapter 3.6 to obtain M-sequentialisation results for weighted tree

automata over Σ and ⟨M⟩⊕. This chapter also concludes the main contribution of

Chapter 3. We restate our M-sequentialisation results in a closed form in Theorems 3.77

and 3.78.

90

3.7 M-Sequentialisation of Weighted Tree Automata

Throughout the rest of Chapter 3.7, we assume (S,⊕,⊙, 0, 1) to be an ar-

bitrary M-semiring for some finitely generated monoid M with finite gener-

ating set Γ . Moreover, we assume that M divides Γ -monotone and admits

f -centering factorisations (for some strongly monotone map f : N→ N).

3.7.1 Accumulation of DB

Throughout the rest of Chapter 3.7.1, we assume B = (Q,T, final) to be

an arbitrary finite WTA over Σ and Mfin(M). Moreover, we consider the

sequential WTA DB = (Q′, T ′, final′) as defined in Definition 3.39 and let

Q′′ ⊆ Q′ be the set of reachable states of DB.

Definition 3.63. An equivalence relation ∼ ⊆ Q′′×Q′′ is called accumulator of DB if

• for every X,X ′ ∈ Q′′ such that X ∼ X ′ it holds that [[final′(X)]]S = [[final′(X ′)]]S

and

• for every s ∈ N, σ ∈ Σ(s), and X1, . . . , Xs, X
′
1, . . . , X

′
s, X,X

′ ∈ Q′′ such that

X1 ∼ X ′
1, . . . , Xs ∼ X ′

s, T
′
σ(X1, . . . , Xs, X) ̸= ∅, and T ′

σ(X
′
1, . . . , X

′
s, X

′) ̸= ∅ it

holds that X ∼ X ′ and T ′
σ(X1, . . . , Xs, X) = T ′

σ(X
′
1, . . . , X

′
s, X

′).

We visualise the second condition in Figure 3.9.

We call an accumulator ∼ of DB finite if Q′′/∼ is finite. ◀

Definition 3.64. Let ∼ ⊆ Q′′ × Q′′ be an accumulator of DB. The accumulation of

DB via ∼ is the tuple

acc∼(DB) = (Q̃, T̃ , final)

defined as follows.

• Q̃ = Q′′/∼

• final : Q̃→ S is given for every X̃ ∈ Q̃ by

final(X̃) = [[final′(X)]]S ,

where X ∈ Q′′ such that X̃ = [X]∼.

91

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

X1 X ′
1

Xs X ′
s

X X ′

X1 X ′
1

Xs X ′
s

X X ′

σ σ σ σ

...
...

...
...

∼

∼

∼

∼

∼

y y′ y = y′

∼

Figure 3.9: An illustration of the second property of Definition 3.63. Two transitions in

DB where Xi ∼ X ′
i for every i ∈ [s] also satisfy X ∼ X ′ and y = y′.

• For every s ∈ N, σ ∈ Σ(s), and X̃1, . . . , X̃s, X̃ ∈ Q̃, the transition weight

T̃σ(X̃1, . . . , X̃s, X̃) is given by

T̃σ(X̃1, . . . , X̃s, X̃) =

y if y ∈M ∧ ∃X1, . . . , Xs, X ∈ Q′′ :

(
X̃ = [X]∼ ∧

(∀i ∈ [s] : X̃i = [Xi]∼) ∧ T ′
σ(X1, . . . , Xs, X) = {{y}}

)
0 otherwise.

Since ∼ is an accumulator of DB, it follows from Definition 3.63 that acc∼(DB) is

well-defined. ◀

Example 3.65. We continue Example 3.54 by defining an accumulator ∼X of DB and

the accumulation of DB with ∼X. In Example 3.41, we have constructed the set of

reachable states Q′′ of DB, which is Q′′ = {Xi, X
′
i | i ∈ N}. Let ∼X ⊆ Q′′ ×Q′′ be the

equivalence relation defined by

[X0]∼X = {X0}, [X ′
0]∼X = {X ′

0}, and [X1]∼X = {Xi, X
′
i | i ∈ N+}.

An illustration of the relation ∼X can be found in Figure 3.10. Next we prove that ∼X

is an accumulator of DB.

We prove the first condition from Definition 3.63. Let Y, Y ′ ∈ Q′′ such that Y ∼X Y
′.

Hence, Y = Y ′ or Y, Y ′ ∈ [X1]∼X . If Y = Y ′, then trivially [[final′(Y)]]S = [[final′(Y ′)]]S .

92

3.7 M-Sequentialisation of Weighted Tree Automata

X ′
0X0 X1 X ′

1

X ′
k

α

γ

σ

σ

γ

Xk

γ

γ

γ

γ

σ

γ

σ

σ

1

1 1

1

1

1

1

1

1

1

1

1

1

0 0 0, 0, 0 0, 0

2k times︷ ︸︸ ︷
0, . . . , 0

3 · 2k−1 times︷ ︸︸ ︷
0, . . . , 0

Figure 3.10: An illustration of DB (cf. Example 3.41), where the state coloring illustrates

the equivalence relation ∼X. The statesX0, X
′
0, andX1 are in pairwise different equivalence

classes under ∼X, whereas all states of the form Xi and X ′
i with i ≥ 1 are in the same

equivalence class.

93

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

If Y, Y ′ ∈ [X1]∼X , then from the definition of final′ we obtain #final′(Y) ≥ 2 and

#final′(Y ′) ≥ 2, which proves [[final′(Y)]]S = ⊤ = [[final′(Y ′)]]S . This concludes the

proof of the first condition from Definition 3.63.

Next, we prove the second condition from Definition 3.63. Let s ∈ N, τ ∈ Σ(s),

and Y1, . . . , Ys, Y
′
1 , . . . , Y

′
s , Y, Y

′ ∈ Q′′ such that T ′
τ (Y1, . . . , Ys, Y) and T ′

τ (Y
′
1 , . . . , Y

′
s , Y

′)

are non-empty and Yi ∼X Y ′
i for every i ∈ [s]. The definition of T ′ shows that

T ′
τ (Y1, . . . , Ys, Y) = {{1}} = T ′

τ (Y
′
1 , . . . , Y

′
s , Y

′). It remains to show that Y ∼X Y ′.

If τ = α, then Y ∼X Y
′ holds trivially. Let τ = γ. We know that Y1, Y

′
1 ∈ {Xi | i ∈ N}.

Since Y1 ∼X Y
′
1 , we obtain that either Y1 = Y ′

1 = X0 (in which case Y = Y ′ = X0) or

Y1, Y
′
1 ∈ [X1]∼X (in which case Y, Y ′ ∈ [X1]∼X). In any case, Y ∼X Y

′. Now let τ = σ.

We note that Y ̸= X0 and Y ′ ̸= X0 by the definition of T ′. In fact, the only two cases

where Y ̸∼X Y
′ are (i) Y = X ′

0 and Y ′ ∈ [X1]∼X and (ii) Y ∈ [X1]∼X and Y ′ = X ′
0. We

prove Y ∼X Y
′ by contradiction and assume without loss of generality that Y = X ′

0 and

Y ′ ∈ [X1]∼X . From the definition of T ′ we obtain that Y1, Y2 ∈ {X0, X
′
0}. Therefore,

since Y1 ∼X Y
′
1 and Y2 ∼X Y

′
2 , we have that Y ′

1 , Y
′
2 ∈ {X0, X

′
0}. For every such Y ′

1 , Y
′
2 ,

and Y ′ it holds that T ′
σ(Y

′
1 , Y

′
2 , Y

′) = ∅, which is a contradiction to the quantification of

Y ′
1 , Y

′
2 , and Y

′. This concludes the proof of the second condition from Definition 3.63.

To keep the example readable, we abbreviate the equivalence classes of ∼X by

Q1 = [X0]∼X , Q2 = [X ′
0]∼X , and Q3 = [X1]∼X .

From Definition 3.64 we obtain that acc∼X(DB) is well-defined and denote its com-

ponents by acc∼X(DB) = (Q̃, ĩnit, T̃ , final). We know that Q̃ = {Q1, Q2, Q3}. Moreover,

we can easily calculate the values of [[final′(X)]]S for X ∈ Q′′ and obtain

final = (Q1 7→ 0, Q2 7→ 0, Q3 7→ ⊤).

In order to obtain the values of T̃ , we simply need to find the corresponding transition

weights from DB. Every value of T̃ is ⊥ except

T̃α(Q1) = 1,

T̃γ(Q1, Q1) = T̃γ(Q2, Q3) = T̃γ(Q3, Q3) = 1,

T̃σ(Qi, Qj , Q2) = 1 for every i, j ∈ {1, 2}, and

T̃σ(Qi, Qj , Q3) = 1 for every i, j ∈ {1, 2, 3} such that i = 3 or j = 3.

94

3.7 M-Sequentialisation of Weighted Tree Automata

Q2Q1 Q3α

γ
σ

γγ1

1

1

1

1

0 0 ⊤

σ

σ

1

1

Figure 3.11: The deterministic WTA acc∼X(DB) from Example 3.65.

An illustration of acc∼X(DB) can be found in Figure 3.11. Clearly, acc∼X(DB) is a

deterministic WTA over Σ and X and every non-vanishing weight occuring in T̃ is in

N. Moreover, one can show that [[[[B]]]]S = [[acc∼X(DB)]]. ◀

We have seen in Example 3.65 how the accumulation of DB via an accumulator

results in an M-sequential WTA that is equivalent to B up to S-evaluation. In the

upcoming Lemmas 3.66 and 3.67, we show that this holds in general, that is, for every

WTA B over Σ and Mfin(M) and every accumulator ∼ of DB.

Lemma 3.66. Let ∼ ⊆ Q′′×Q′′ be an accumulator of DB. It holds that acc∼(DB) is

an M-sequential WTA over Σ and ⟨M⟩⊕.

Proof. Surely, acc∼(DB) is a WTA over Σ and S. Using Definition 3.64 and the

fact that DB is sequential, one easily sees that acc∼(DB) is deterministic. Moreover,

the non-vanishing transition weights of acc∼(DB) are by construction in M and thus,

acc∼(DB) is M-sequential. Additionally, the final weights of acc∼(DB) are by con-

struction in ⟨M⟩⊕, which proves that acc∼(DB) is a WTA over Σ and ⟨M⟩⊕.

Lemma 3.67. Let ∼ ⊆ Q′′ ×Q′′ be an accumulator of DB. It holds that

[[[[DB]]]]S = [[acc∼(DB)]] .

Proof. Let ξ ∈ TΣ and let the form of the unique R-run ρ of DB on ξ be
ξ|y−→ X. One

can easily show (using structural induction on ξ) that there exists a run ρ′ of acc∼(DB)

95

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

on ξ such that out(ρ′) = [X]∼ and wtacc∼(DB)(ξ, ρ
′) = y. By Lemma 3.66, acc∼(DB)

is deterministic and hence, ρ′ is the unique valid run of acc∼(DB) on ξ. It holds that

[[[[DB]]]]S(ξ)
⋆1=

⊕
ξ|y′−→X′ z′→ ∈DB

y′ ⊙ z′ ⋆2=
⊕

X
z′→ ∈DB

y ⊙ z′

⋆3= y ⊙
(⊕

X
z′→ ∈DB

z′
)
= y ⊙ [[final′(X)]]S

⋆4= y ⊙ final([X]∼)

⋆5= wtacc∼(DB)(ξ, ρ
′)⊙ final(out(ρ′))

⋆6= [[acc∼(DB)]](ξ)

where ⋆1 follows from Lemma 3.50, ⋆2 follows from the fact that ρ is the unique R-run

of DB on ξ, ⋆3 follows from the distributivity law, ⋆4 follows from the definition of final,

⋆5 follows from the definition of ρ′, and ⋆6 follows from the fact that ρ′ is the unique

run of acc∼(DB) on ξ.

Lemma 3.68. Let Σ = Σ(0) ∪Σ(1) or M be commutative and let ∼ ⊆ Q′′ ×Q′′ be an

accumulator of DB. It holds that [[[[B]]]]S = [[acc∼(DB)]] .

Proof. By Lemma 3.44 it holds that [[B]] = [[DB]] and by Lemma 3.67 it holds that

[[[[DB]]]]S = [[acc∼(DB)]], which proves the claim.

We will now define accumulators for entire classes of weighted tree automata B.

First, the identity relation on Q′ is always an accumulator of DB. This will be useful

in the case that B is finitely R-ambiguous. Second, if S is additively idempotent, then

“equality under taking support” is an accumulator of DB.

Definition 3.69. We define the equivalence relations ∼fa,∼idp ⊆ Q′ × Q′ where for

every X1, X2 ∈ Q′ it holds that

• X1 ∼fa X2 iff X1 = X2,

• X1 ∼idp X2 iff supp(X1) = supp(X2),

where for every X ∈ Q′ we define supp(X) : Q→ Pfin(M) by supp(X)(q) = supp(X(q))

for every q ∈ Q. Moreover, we also denote the restrictions of ∼fa and ∼idp to Q′′ by

∼fa and ∼idp, respectively. ◀

96

3.7 M-Sequentialisation of Weighted Tree Automata

Lemma 3.70. ∼fa is an accumulator of DB.

Proof. The claim holds trivially.

Lemma 3.71. Let s ∈ N, σ ∈ Σ(s), and X1, . . . , Xs, X
′
1, . . . , X

′
s ∈ Q′′ such that

Xi ∼idp X
′
i for every i ∈ [s]. The following holds.

1. Tσ(X1, . . . , Xs) ∼idp Tσ(X
′
1, . . . , X

′
s)

2. mindiv(Tσ(X1, . . . , Xs)) = mindiv(Tσ(X
′
1, . . . , X

′
s))

3. For every y ∈ mindiv(Tσ(X1, . . . , Xs)) it holds that

{supp(X) | X ∈ minquoty(Tσ(X1, . . . , Xs))}

= {supp(X ′) | X ′ ∈ minquoty(Tσ(X
′
1, . . . , X

′
s))}.

4. Let (y,X) and (y′, X ′) be the minimal f -centering factorisations of Tσ(X1, . . . , Xs)

and Tσ(X
′
1, . . . , X

′
s), respectively. It holds that y = y′ and X ∼idp X

′.

Proof. We abbreviate Tσ(X[s]) = Tσ(X1, . . . , Xs) and Tσ(X
′
[s]) = Tσ(X

′
1, . . . , X

′
s). For

every q ∈ Q it holds that

supp(Tσ(X[s]))(q)

⋆1= supp
(⋃

q1,...,qs∈Q

(
X1(q1)⊙ · · · ⊙Xs(qs)⊙ Tσ(q1, . . . , qs, q)

))
= supp

(⋃
q1,...,qs∈Q

(
supp(X1(q1))⊙ · · · ⊙ supp(Xs(qs))⊙ Tσ(q1, . . . , qs, q)

))
⋆2= supp

(⋃
q1,...,qs∈Q

(
supp(X ′

1(q1))⊙ · · · ⊙ supp(X ′
s(qs))⊙ Tσ(q1, . . . , qs, q)

))
= supp

(⋃
q1,...,qs∈Q

(
X ′

1(q1)⊙ · · · ⊙X ′
s(qs)⊙ Tσ(q1, . . . , qs, q)

))
⋆3= supp(Tσ(X

′
[s]))(q),

where Equations ⋆1 and ⋆3 follow from Equation (3.7) (proof of Lemma 3.43) and

Equation ⋆2 follows from the fact that X1 ∼idp X2. This proves Claim 1.

97

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Claim 2 follows from the definition of mindiv. In fact, for every multiset M over M

it holds that mindiv(M) = mindiv(supp(M)). Together with Claim 1 we obtain

mindiv(Tσ(X[s])) = mindiv(supp(Tσ(X[s])))

= mindiv(supp(Tσ(X
′
[s]))) = mindiv(Tσ(X[s])).

Claim 3 follows from the definition of minquot. First, note that for every multiset

M over M and y ∈ mindiv(M) it holds that

{supp(N) | N ∈ minquoty(M)} = {supp(N) | N ∈ minquoty(supp(M))}. (3.14)

Now let y ∈ mindiv(Tσ(X[s])). We recall that Tσ(X[s]) is a map of type Q→Mfin(M).

By applying Equation (3.14) pointwise we obtain

{supp(X) | X ∈ minquoty(Tσ(X[s]))}

= {supp(X) | X ∈ minquoty(supp(Tσ(X[s])))}
⋆
= {supp(X ′) | X ′ ∈ minquoty(supp(Tσ(X

′
[s])))}

= {supp(X ′) | X ′ ∈ minquoty(Tσ(X
′
[s]))},

where Equation ⋆ follows from Claim 1. This proves Claim 3.

Claim 4 can be seen as follows. First, we note that

{(y, supp(X)) | (y,X) ∈ CenterFact(Tσ(X[s]), f)}

= {(y, supp(X)) | y ∈ mindiv(Tσ(X[s]), X ∈ minquoty(Tσ(X[s]))

, (y,X) is an f -centering factorisation of Tσ(X[s])}
⋆1= {(y′, supp(X)) | y′ ∈ mindiv(Tσ(X

′
[s])), X ∈ minquoty′(Tσ(X[s]))

, (y′, X) is an f -centering factorisation of Tσ(X[s])}
⋆2= {(y′, supp(X)) | y′ ∈ mindiv(Tσ(X

′
[s])), X ∈ minquoty′(supp(Tσ(X[s])))

, (y′, X) is an f -centering factorisation of supp(Tσ(X[s]))}
⋆3= {(y′, supp(X)) | y′ ∈ mindiv(Tσ(X

′
[s])), X

′ ∈ minquoty′(supp(Tσ(X
′
[s])))

, (y′, X ′) is an f -centering factorisation of supp(Tσ(X
′
[s]))}

⋆4= {(y′, supp(X ′)) | y′ ∈ mindiv(Tσ(X
′
[s])), X

′ ∈ minquoty′(Tσ(X
′
[s]))

, (y′, X ′) is an f -centering factorisation of Tσ(X
′
[s])}

= {(y′, supp(X ′)) | (y′, X ′) ∈ CenterFact(Tσ(X
′
[s]), f)}, (3.15)

98

3.7 M-Sequentialisation of Weighted Tree Automata

where Equation ⋆1 follows from Claim 2, Equations ⋆2 and ⋆4 follow from pointwise

application of Equation (3.14), and Equation ⋆3 follows from Claim 3.

Let (y,X) = minCenterFact(Tσ(X[s]), f) and (y′, X ′) = minCenterFact(Tσ(X
′
[s]), f).

It holds that

(y, supp(X))
⋆1= min⊑̃

{
(ŷ, supp(X̂))

∣∣ (ŷ, X̂) ∈ CenterFact(Tσ(X[s]), f)
}

⋆2= min⊑̃
{
(ŷ′, supp(X̂ ′))

∣∣ (ŷ′, X̂ ′) ∈ CenterFact(Tσ(X
′
[s]), f)

}
⋆3= (y′, supp(X ′)),

where Equation ⋆2 follows from Equation (3.15) and Equations ⋆1 and ⋆3 can be

seen as follows. We only prove Equation ⋆1 by showing both “⊑̃” and “ ⊑̃”. Clearly,

“ ⊑̃” holds, as (y, supp(X)) is an element of the set on the right hand side of Equa-

tion ⋆1. Let (ỹ, X̃) = min⊑̃
{
(ŷ, supp(X̂))

∣∣ (ŷ, X̂) ∈ CenterFact(Tσ(X[s]), f)
}

and

assume that (y, supp(X)) ⊑̃ (ỹ, X̃) does not hold. Therefore, it must hold that (1)

X̃ < supp(X) or (2) X̃ = supp(X) and ỹ ≤Γ y and ỹ ̸= y. In both cases, there exists

(ŷ, X̂) ∈ CenterFact(Tσ(X[s]), f) such that (ŷ, X̂) <̃ (y,X), which is not possible since

(y,X) = minCenterFact(Tσ(X[s]), f). This concludes the proof of Claim 4.

Lemma 3.72. If S is additively idempotent, then ∼idp is an accumulator of DB.

Proof. Let s ∈ N, σ ∈ Σ(s), and X1, . . . , Xs, X
′
1, . . . , X

′
s, X,X

′ ∈ Q′′ such that Xi ∼ X ′
i

for every i ∈ [s], T ′
σ(X1, . . . , Xs, X) ̸= ∅, and T ′

σ(X
′
1, . . . , X

′
s, X

′) ̸= ∅. Since DB is

sequential, all non-empty transition weights of DB are singleton sets and hence, there

exist y, y′ ∈ M such that T ′
σ(X1, . . . , Xs, X) = {{y}} and T ′

σ(X
′
1, . . . , X

′
s, X

′) = {{y′}}.

By the Definition of T ′, it holds that (y,X ′) = minCenterFact(Tσ(X1, . . . , Xs), f) and

(y′, X ′) = minCenterFact(Tσ(X
′
1, . . . , X

′
s), f).

By Lemma 3.71, it holds that y = y′ and X ∼idp X
′. Thus, we have shown the

second property of Definition 3.63. It remains to show the first property of Definition

3.63. However, one can easily verify (using the idempotency of S) that

[[final′(X)]]S = [[final′(supp(X))]]S = [[final′(supp(X ′))]]S = [[final′(X ′)]]S ,

which concludes the proof.

99

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

3.7.2 M-Sequentialisation Results

In this chapter, we turn to the original problem of M-sequentialisabilty. We combine

all of our previous results to obtain a general M-sequentialisation result. Given a WTA

A over Σ and ⟨M⟩⊕, we first use Lemma 3.55 to obtain a strongly related WTA B

over Σ and Mfin(M). Next, we use Definition 3.39 to construct the S(M)-sequential but

not necessarily finite WTA DB over Σ and Mfin(M). Finally, we apply Definition 3.64

to accumulate DB if an appropriate accumulator ∼ exists. This yields a finite M-

sequential WTA acc∼(DB) over Σ and S that is equivalent to A and concludes the

M-sequentialisation. This entire process is illustrated by our running example in the

upcoming Example 3.73.

Example 3.73. We continue Example 3.65 by recalling the entire N-sequentialisation

process of A and depicting it in Figure 3.12.

In Example 2.5 we were given a weighted tree automaton A over the ranked al-

phabet Σ = {α(0), γ(1), σ(2)} and the semiring X = (N ∪ {⊥,⊤},∨,+,⊥, 0) from Ex-

ample 2.4. Since the monoid (N,+, 0) is well-studied and computational methods can

easily be applied to it, we wanted to N-sequentialise the automaton A , rather than

simply determinise it. That is, we wanted to find a deterministic automaton A ′ such

that A and A ′ are equivalent and all non-vanishing transition weights of A ′ are in N.

First, via Examples 3.21 and 3.54, we fixed a WTA B over Σ and Mfin(N) such

that B and A are strongly related. This step “reduces” the weight space from the

semiring X to the monoid N.

Next, in Example 3.41, we sequentialised B by constructing the WTA DB over Σ

andMfin(N). DB is sequential (which is a shorthand for S(N)-sequential) and equivalent

to B. However, the reachable part of DB is not finite, which we tackled in the following

step.

In Example 3.65, we defined the accumulator ∼X of DB and constructed the fi-

nite WTA acc∼X(DB) over Σ and X. This step removes the infinity of DB while

keeping all transition weights in N. Hence, the automaton acc∼X(DB) is the desired

N-sequential WTA over Σ and X that is equivalent to A . This successfully concludes

our N-sequentialisation process. ◀

100

3.7 M-Sequentialisation of Weighted Tree Automata

q1 q2
γ

⊤

α

0

1

σ

1
0

q3γ

0

γ1

1

γ1

strong related,

Examples 3.21 and 3.54

q1 q2

γ

α

0

1

σ

1
0

q3γ

0

γ1

1
γ

1

1

γ1

sequentialisation,

Example 3.41

Figure 3.12: (Continues on next page) Illustration of the N-sequentialisation process for

A from Example 2.5. We omit the double curly braces from all multiset weights and use

our notation for doubly stroked hyperedge lines from page 30.

101

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

X ′
0X0 X1 X ′

1

X ′
k

α

γ

σ

σ

γ

Xk

γ

γ

γ

γ

σ

γ

σ

σ

1

1 1

1

1

1

1

1

1

1

1

1

1

0 0 0, 0, 0 0, 0

2k times︷ ︸︸ ︷
0, . . . , 0

3 · 2k−1 times︷ ︸︸ ︷
0, . . . , 0

accumulation,

Example 3.65

Q2Q1 Q3α

γ
σ

γγ1

1

1

1

1

0 0 ⊤

σ

σ

1

1

102

3.7 M-Sequentialisation of Weighted Tree Automata

Lemma 3.74. Let Σ = Σ(0) ∪Σ(1) or M be commutative and let A = (Q,T, final) be

a finite WTA over Σ and ⟨M⟩⊕ such that A ⊨ ETP. Moreover, let B ∈ StrongRel(A)

such that B ⊨ ETP.

If there exists a finite accumulator ∼ of DB, then A is M-sequentialisable.

Proof. Let ∼ be an accumulator of DB such that Q′′/∼ is finite. Let Q′′ and Q̃ be the

set of reachable states of DB and the set of states of acc∼fa
(DB), respectively.

By assumption, Q̃ is finite. Hence, using Lemma 3.66, we obtain that acc∼(DB) is

an M-sequential finite WTA over Σ and ⟨M⟩⊕.

By Lemma 3.53 it holds that [[A]] = [[[[B]]]]S and by Lemma 3.68 it holds that

[[[[B]]]]S = [[acc∼(DB)]] (note that this uses the assumption that Σ = Σ(0) ∪Σ(1) or M

is commutative). This yields the fact that A is equivalent to acc∼(DB). Hence, A is

M-sequentialisable. An equivalent finite M-sequential WTA is acc∼(DB).

Lemma 3.75. Let Σ = Σ(0) ∪Σ(1) or M be commutative and let A = (Q,T, final) be

a finitely M-ambiguous finite WTA over Σ and ⟨M⟩⊕.

If A ⊨ ETP, then A is M-sequentialisable.

Proof. Let A ⊨ ETP. By Definition 3.59 there exists a WTA B over Σ and Mfin(M)

such that B is strongly related to A and B ⊨ ETP. By Lemma 3.62, B is finitely

R-ambiguous. Let Q′′ and Q̃ be the set of reachable states of DB and the set of states

of acc∼fa
(DB), respectively.

By Lemma 3.70, ∼fa is an accumulator of DB. Thus, by Lemma 3.74, it suffices to

show that Q̃ is finite.

By Lemma 3.47, Q′′ is finite (note that this uses the assumption that B ⊨ ETP).

By the definition of ∼fa and Q̃, it holds that Q̃ and Q′′ are bijective. Hence, Q̃ is

finite.

Lemma 3.76. Let Σ = Σ(0) ∪Σ(1) or M be commutative and let ⟨M⟩⊕ be additively

idempotent. Moreover, let A = (Q,T, final) be a finite WTA over Σ and ⟨M⟩⊕.

If A ⊨ ETP, then A is M-sequentialisable.

Proof. Let A ⊨ ETP. By Definition 3.59 there exists a WTA B over Σ and Mfin(M)

such that B is strongly related to A and B ⊨ ETP. Let Q′′ and Q̃ be the set of

reachable states of DB and the set of states of acc∼idp
(DB), respectively.

103

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

By Lemma 3.72, ∼idp is an accumulator of DB. Thus, by Lemma 3.74, it suffices

to show that Q̃ is finite. We define the set

K = Pfin(Bf(NB)(1))

and note that K is finite.

Let X ∈ Q′′ and q ∈ Q. By Corollary 3.46, we have supp(X(q)) ∈ K and hence

supp(X) ∈ KQ. We have obtained that the set P = {supp(X) | X ∈ Q′′} is a subset of

KQ and thus P is finite. We define the map h : Q̃ → P by h([X]∼idp
) = supp(X). By

the definition of ∼idp, h is well-defined and bijective. This shows that #Q̃ = #P and

since P is finite, also Q̃ is finite.

We will now state our main results in a closed form. In particular, we collect all pre-

vious assumptions and repeat them in Theorems 3.77 and 3.78. An important difference

to the word case [31, Theorems 77 and 78] is that we require M to be commutative if

Σ ̸= Σ(0)∪Σ(1). This is due to Lemma 3.43, where we move around factors in weights.

Theorem 3.77. Let S be an M-semiring such that M is finitely generated by Γ ,

divides Γ -monotone, and admits centering factorisations. Let Σ = Σ(0) ∪Σ(1) or M be

commutative and let A be a finite WTA over Σ and ⟨M⟩⊕ such that A ⊨ ETP. Let

B ∈ StrongRel(A) such that B ⊨ ETP.

If there exists a finite accumulator ∼ of DB, then A is M-sequentialisable.

Proof. This is an alternative formulation of Lemma 3.74 in a closed form.

Theorem 3.78. Let S be an M-semiring such that M is finitely generated by Γ ,

divides Γ -monotone, and admits centering factorisations. Let Σ = Σ(0) ∪Σ(1) or M be

commutative and let A be a finite WTA over Σ and ⟨M⟩⊕. Moreover, let one of the

following conditions hold.

1. A is finitely M-ambiguous

2. ⟨M⟩⊕ is additively idempotent

If A ⊨ ETP, then A is M-sequentialisable.

Proof. Lemmas 3.75 and 3.76 yield the result for Cases 1 and 2, respectively.

104

3.8 Comparison of our Results to the Literature

Corollary 3.79. Let S be a semiring such that (S,⊙, 1) is finitely generated by Γ ,

divides Γ -monotone, and admits centering factorisations. Let Σ = Σ(0) ∪ Σ(1) or S

be commutative and let A be a finite WTA over Σ and S. Moreover, let one of the

following conditions hold.

1. A is finitely S-ambiguous

2. S is additively idempotent

If A ⊨ ETP, then A is determinisable.

3.8 Comparison of our Results to the Literature

This chapter is dedicated to an in-depth comparison of some determinisation results

from the literature to our main M-sequentialisation results (Theorems 3.77 and 3.78).

We cover the publications [5, 14, 29], which in turn cover [21, 80].

Each of these publications is considered in a separate subchapter and all of these

subchapters follow the same overall structure. First, we compare the notations and

terminology from the respective literature to ours, followed by a restated version of

the respective determinisation result in our terminology. Finally, we either prove that

our result covers the result from the literature or we provide examples showing the

incomparability of the results.

3.8.1 Determinisation of Unweighted Tree Automata

Before we compare our results to other weighted determinisation results, we briefly

show that we cover the unweighted case.

Remark 3.80. We show that every WTA over Σ and B is determinisable in our

framework. For this, we note that B is a ({⊤},∧,⊤)-semiring.

In the following, we will show that (i) ({⊤},∧,⊤) has all properties necessary for our

sequentialisation procedure and (ii) we can apply Corollary 3.79 to every unweighted

tree automaton.

First, we note that ({⊤},∧,⊤) is finitely generated by Γ = {⊤}. We proceed to

show that B divides Γ -monotone and admits centering factorisations.

105

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Let m1,m2 ∈ {⊤}, n ∈ div(m1,m2), and {{n1, n2}} ∈ quotn(m1,m2). The fact that

m1 = m2 = n = n1 = n2 = ⊤ proves dΓ (m1,m2) = 0 = dΓ (n1, n2) and hence, B

divides Γ -monotone.

Now let M ∈Mfin({⊤}). It holds that |n1|Γ = 0 = dΓ (n1, n2) for every n1, n2 ∈ B.

Thus, every factorisation of M is an idN-centering factorisation of M . We conclude

that B admits centering factorisations.

Next we prove our claim (ii). Let A be a WTA over Σ and B. It is obvious that

every WTA over Σ and Mfin({⊤}) has the ETP, since the only transition weight that

may occur in an R-run is ⊤. Hence also A ⊨ ETP. Moreover, B is commutative and

additively idempotent. Thus, by Theorem 3.78, A is determinisable. ◀

3.8.2 The Free Monoid Case

We now proceed to show how our M-sequentialisation result (Theorem 3.78) can be

applied to obtain the sequentialisation result from [5]. First, we dedicate some remarks

to a comparison of the notations and terminology from [5] with the notations and

terminology from Chapter 3. After that, we state the implication “third bullet =⇒ first

bullet” from [5, Proposition 7] as a corollary of Theorem 3.78 (cf. Corollary 3.84) and

prove it using our terminology.

We note that [5] considers only weighted word automata. Therefore we only deal

with the case that Σ = ΣA for some alphabet A in this chapter. We recall that the

components of a WA A over Σ and A are A = (Q, init, T, final).

Throughout Chapter 3.8.2 we assume Γ to be a finite set and consider the

monoid (Γ ∗, ◦, ε), which is finitely generated by Γ . Moreover, we assume A

to be an alphabet.

Remark 3.81. We have seen in Remark 3.20 that a WA A over A and Pfin(Γ
∗) can

be written equivalently in a relational way. In this sense, our model “WA over A and

Pfin(Γ
∗)” can be compared to the model “transducer over A∗ × Γ ∗” from [5]. In fact,

besides the fact that [5] only allows for initial and final states (rather than weights),

the only difference between the two automaton models is that the transducer model

from [5] allows transitions to be in Q×A∗ ×Q× Γ ∗, whereas our WA model requires

106

3.8 Comparison of our Results to the Literature

transitions to be in Q × A × Q × Γ ∗. That is, the transducers introduced in [5] read

entire words as inputs of transitions (word-transitions), where a WA reads only single

symbols from A (symbol-transitions).

In the sequentialisation result [5, Proposition 7] it is required that every language

accepted by a transducer has the type A∗ → (S(Γ ∗) ∪ {∅}) (there: “partial function”).

It has been shown in [113, Proposition 1.1] that transducers recognizing such partial

functions can be transformed into equivalent transducers using only symbol-transitions.

In total, we have seen that the transducer model from [5] is covered by our model

of WA over A and Pfin(Γ
∗) for the purpose of stating [5, Proposition 7].

Since Pfin(Γ
∗) ⊆Mfin(Γ

∗), every WA B over A and Pfin(Γ
∗) can be considered as a

WA over A and Mfin(Γ
∗). Hence, with the term “B ⊨ ETP” we refer to Definition 3.32

(rather than Definition 3.59). ◀

Remark 3.82. We now define a property of WA over A and Pfin(Γ
∗) which resembles

the twinning property from [5]. Let B be a WA over A and Pfin(Γ
∗). We say that B

has the BC–twinning property (short: B ⊨ BCTP) if for every u, v ∈ A∗ and R-runs of

the respective form

#|x−→ p
u|y1−→ q

v|y2−→ q and
#|x′
−→ p′

u|y′1−→ q′
v|y′2−→ q′

of B it holds that either y2 = y′2 = ε or there exists w ∈ A∗ such that either (a)

x ◦ y1 = x′ ◦ y′1 ◦ w and w ◦ y2 = y′2 ◦ w or (b) x′ ◦ y′1 = x ◦ y1 ◦ w and w ◦ y′2 = y2 ◦ w.

An easy comparison of the “twinning property” from [5] with the BCTP shows that

the BCTP is a natural extension of the twinning property from [5] to the case of initial

weights (rather than initial states). ◀

Remark 3.83. The definition of “sequential” from [5] can be adapted to allow initial

weights, which reads in our terminology as follows. Let B be a WA over A and Pfin(Γ
∗).

We say that B is BC-sequential if (a) there exist at most one q ∈ Q and x ∈ Γ ∗ such

that x ∈ init(q) and (b) for every p ∈ Q and a ∈ A there exists at most one q ∈ Q such

that T (p, a, q) ̸= ∅.

This yields that B is BC-sequential if and only if B is deterministic and all weights

occurring in init are singleton sets over Γ ∗. Hence, our S(Γ ∗)-sequentiality (see Chap-

107

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

ter 3.2) implies BC-sequentiality. This motivates why we state Corollary 3.84 using

S(Γ ∗)-sequentialisability. ◀

We can now state the sequentialisation result from [5] in our notation.

Corollary 3.84 (Proposition 7 from [5], “third bullet =⇒ first bullet”). Let B be a

WA over A and Pfin(Γ
∗). If B ⊨ BCTP, then B is S(Γ ∗)-sequentialisable.

The rest of this chapter is dedicated to a formal proof of Corollary 3.84 using our

sequentialisation results.

Lemma 3.85. (Γ ∗, ◦, ε) divides Γ -monotone and admits centering factorisations.

Proof. For every m ∈ Γ ∗ we denote the set of prefixes of m by Prefix(m). For every

n ∈ Prefix(m) we denote by n\m the unique element n′ ∈ Γ ∗ such that n ◦ n′ = m. For

every M ⊆ Γ ∗ we denote the longest common prefix of all elements in M by lcp(M)

and abbreviate lcp(m,m′) = lcp(M) if M = {m,m′} for some m,m′ ∈ Γ ∗. We recall

that |m| is the length of the word m ∈ Γ ∗. Since m is the unique path from ε to m in

CayΓ ∗,Γ for every m ∈ Γ ∗, one can easily see that

dΓ (m,m
′) = |m|+ |m′| − 2 · |lcp(m,m′)| and |m|Γ = |m|.

Let m,m′ ∈ Γ ∗. It is clear that div(m,m′) = Prefix(m)∩Prefix(m′) and moreover,

quotn(m,m
′) = minquotn(m,m

′) = {{{n\m,n\m
′}}} for every n ∈ div(m,m′). Now, let

n ∈ div(m,m′). In order to show that Γ ∗ divides Γ -monotone, we need to show that

dΓ (n\m,n\m
′
) ≤ dΓ (m,m′).

One can easily see that lcp(m,m′) = n ◦ lcp(n\m,n\m
′
) and hence

dΓ (n\m,n\m
′
) = |n\m|+ |n\m

′ | − 2 · |lcp(n\m,n\m
′
)|

= |m| − |n|+ |m′| − |n| − 2 · (|lcp(m,m′)| − |n|)

= |m|+ |m′| − 2 · |lcp(m,m′)| = dΓ (m,m
′).

Next, we show that Γ ∗ admits centering factorisations. Let M ∈ Mfin(Γ
∗). It is

clear that div(M) =
⋂

m∈supp(M) Prefix(m) and for every n ∈ div(M) we have

quotn(M) = minquotn(M) = {{{n\m | m ∈M}}}.

108

3.8 Comparison of our Results to the Literature

Therefore, the unique minimising divisor of M is n = lcp(supp(M)). Next, we let

N ∈ minquotn(M) and show that (n,N) is an idN-centering factorization of M . Let

n1 ∈ supp(N). We note that for every n2 ∈ supp(N) it holds that if lcp(n1, n2) = ε,

then the only fork-path connecting n1 and n2 is of the form (w, v) where 1
w

∼∼∼▷ n1 and

1
v

∼∼∼▷ n2 and hence, |n1|Γ ≤ |w| ≤ |(w, v)| = dΓ (n1, n2).

We assume that (n,N) is not an idN-centering factorization of M . In particular, for

every n2 ∈ supp(N) it holds that |n1|Γ > dΓ (n1, n2). Thus, by our previous argument,

it holds that lcp(n1, n2) ̸= ε for every n2 ∈ supp(N). Hence, n1[1] is a common prefix of

all elements in N and in particular, n◦n1[1] is a common prefix of M . This contradicts

the fact that n is the longest common prefix of M . Thus, the assumption that (n,N) is

not an idN-centering factorisation of M must be dropped, which yields that Γ ∗ admits

centering factorisations.

Lemma 3.86. For every WA B over A and Pfin(Γ
∗) the following holds: if B ⊨ BCTP,

then B ⊨ ETP.

Proof. Let B = (Q,T, final) be a WA over A and Pfin(Γ
∗) such that B ⊨ BCTP.

Moreover, let u, v, w ∈ Σ∗ and

#|x−→ p
u|y1−→ q

v|y2−→ q
w|y3−→ r and

#|x′
−→ p′

u|y′1−→ q′
v|y′2−→ q′

w|y′3−→ r′

be the respective forms of two R-runs of B. Since B ⊨ BCTP, it holds that either

y2 = y′2 = ε or there exists w ∈ Σ∗ such that either (a) x ◦ y1 = x′ ◦ y′1 ◦ w and

w ◦ y2 = y′2 ◦ w or (b) x′ ◦ y′1 = x ◦ y1 ◦ w and w ◦ y′2 = y2 ◦ w.

If y2 = y′2 = ε, then dΓ (x ◦ y1 ◦ y2 ◦ y3, x′ ◦ y′1 ◦ y′2 ◦ y′3) = dΓ (x ◦ y1 ◦ y3, x′ ◦ y′1 ◦ y′3).

Otherwise, since the conditions (a) and (b) from the BCTP are symmetrical, we

assume without loss of generality that (a) holds and hence x ◦ y1 = x′ ◦ y′1 ◦ w and

w ◦ y2 = y′2 ◦ w. Moreover, we obtain that

x ◦ y1 ◦ y2 = x′ ◦ y′1 ◦ w ◦ y2 = x′ ◦ y′1 ◦ y′2 ◦ w.

109

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

This shows that

dΓ (x ◦ y1 ◦ y3, x′ ◦ y′1 ◦ y′3) = dΓ (x
′ ◦ y′1 ◦ w ◦ y3, x′ ◦ y′1 ◦ y′3)

⋆
= dΓ (w ◦ y3, y′3)
⋆
= dΓ (x

′ ◦ y′1 ◦ y′2 ◦ w ◦ y3, x′ ◦ y′1 ◦ y′2 ◦ y′3)

= dΓ (x ◦ y1 ◦ y2 ◦ y3, x′ ◦ y′1 ◦ y′2 ◦ y′3),

where the equations marked with ⋆ follow from the fact that dΓ (y, y
′) = dΓ (y

′′◦y, y′′◦y′)

for every y, y′, y′′ ∈ Γ ∗. This shows that B ⊨ ETP.

Proof of Corollary 3.84. Let S = Pfin(Γ
∗) and M = (S(Γ ∗),⊙, {ε}). It surely holds

that S is an M-semiring and S = ⟨M⟩∪. It is clear that M is finitely generated by

S(Γ). By Lemma 3.85, it holds that Γ ∗ divides Γ -monotone and admits centering

factorisations. This clearly implies that M divides S(Γ)-monotone and admits centering

factorisations. Moreover, ΣA = Σ
(0)
A ∪Σ

(1)
A and S is additively idempotent. Finally, by

Lemma 3.86, it holds that B ⊨ ETP. Hence, we can apply Theorem 3.78 and obtain

that B is M-sequentialisable, which concludes the proof.

3.8.3 The Group Case

In this chapter, we show how our M-sequentialisation result (Theorem 3.78) can be

applied to obtain the sequentialisation result from [29]. First, we dedicate some remarks

to a comparison of the notations and terminology from [29] with the notations and

terminology from Chapter 3. After that, we state the implication [29, Theorem 18] as

a corollary of Theorem 3.78 (cf. Corollary 3.89) and prove it using our terminology.

We note that [29] generalises parts of [21] from the word case to the tree case.

Therefore, Chapter 3.8.3 also provides a proof that our sequentialisation results cover

the implication “ii) =⇒ iii)” from [21, Theorem 2, case k = 1].

Throughout Chapter 3.8.3 we assume (G,⊙, 1) to be a group.

Remark 3.87. We briefly explain the difference between finitely generated groups and

finitely generated monoids.

110

3.8 Comparison of our Results to the Literature

A set U ⊆ G is called a subgroup of G, in symbols U ≤ G, if (U,⊙|U×U, 1) is a

group. Given a set Γ ⊆ G, we define the subgroup of G generated by Γ , denoted by

⟨Γ ⟩G⊙, as the smallest subgroup U of G such that Γ ⊆ U. If ⟨Γ ⟩G⊙ = G, we say that

G is finitely generated as a group by Γ . Using some elementary algebra, one can show

that ⟨Γ ⟩G⊙ = ⟨Γ ∪ Γ̄ ⟩⊙, where Γ̄ = {γ−1 | γ ∈ Γ}. Hence, if G is finitely generated as

a group by Γ , then G is finitely generated (as a monoid) by Γ ∪ Γ̄ . ◀

Remark 3.88. We compare the terminology from [29] with our terminology.

• We have seen in Remark 3.20 that the automaton model from [29] is equivalent

to the model of WTA over the semiring Pfin(G).

• In [29, p. 270] it is required that the group G is “infinitary”. However, this

property of G is not used during the proof of [29, Theorem 2] and hence, we omit

it in Corollary 3.89.

• We now define a property of WTA over Σ and Pfin(G) which resembles the “twin-

ning property” from [29, Definition 14]. Let B be a WTA over Σ and Pfin(G).

We say that B has the DFS-twinning property (in symbols: B ⊨ DFSTP), if for

every ξ ∈ TΣ , ζ ∈ CΣ , and R-runs of the respective form

ξ|y1−→ q
ζ|y2−→ q and

ξ|y′1−→ q′
ζ|y′2−→ q′

of B it holds that y2 = y′2. An easy comparison of the twinning property from

[29] with DFSTP shows that the two properties are equivalent.

We note that in [29] it is assumed that G is commutative, which has the side

effect that the DFSTP has this seemingly very restrictive form. However, there

exists an equivalent definition of the DFSTP which represents our idea behind it

better. More precisely, one can replace the condition “y2 = y′2” by

(y1)
−1 ⊙ y′1 = (y1 ⊙ y2)−1 ⊙ y′1 ⊙ y′2.

These two conditions are equivalent if G is commutative and the latter one is

less restrictive if G is non-commutative, without affecting the implied sequential-

isability (cf. also [21]).

111

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

• Since Pfin(G) ⊆ Mfin(G), every WTA B over Σ and Pfin(G) can be considered

as a WTA over Σ and Mfin(G). Hence, with the term “B ⊨ ETP” we refer to

Definition 3.32.

• The definition of “sequential” from [29, Definition 9] reads in our terminology as

follows. Let B = (Q,T, final) be a WTA over Σ and Pfin(G). We call B DFS-

sequential if for every s ≥ 0, σ ∈ Σ(s), and q1, . . . , qs ∈ Q there exist at most one

(q, g) ∈ Q×G such that g ∈ Tσ(q1, . . . , qs, q).

This yields that B is DFS-sequential if and only if B is deterministic and all

weights occurring in T are singleton sets overG. We obtain that DFS-sequentiality

is equivalent to S(G)-sequentiality. ◀

We can now state the sequentialisation result from [21] in our notation.

Corollary 3.89 (Theorem 18 from [29]). Let G be commutative and finitely generated

as a group by some set Γ and let B be a WTA over Σ and Pfin(G). If B ⊨ DFSTP,

then B is S(G)-sequentialisable.

The rest of this chapter is dedicated to a formal proof of Corollary 3.89 in our

terminology.

Throughout the rest of Chapter 3.8.3 we assume G to be commutative and

finitely generated as a group by some set Γ .

Lemma 3.90. Let M ∈ Mfin(G). It holds that div(M) = G. Moreover, for every

g ∈ G it holds that quotg(M) = minquotg(M) = {g−1 ⊙M}.

Proof. In order to show that the first claim holds, we let g′ ∈ G and N = g′−1 ⊙M

and note that g′⊙N =M . The second claim holds since G being a group implies that

the equation g ⊙N =M has the unique solution N = g−1 ⊙M .

Lemma 3.91. It holds that (G,⊙, 1) divides (Γ ∪ Γ̄)-monotone and admits centering

factorisations.

Proof. We obtain from Remark 3.87 that G is finitely generated (as a monoid) by Γ ∪Γ̄ .

112

3.8 Comparison of our Results to the Literature

First we show that G divides (Γ ∪ Γ̄)-monotone. Let g1, g2, g ∈ G. It follows from

Lemma 3.7 that

d(Γ∪Γ̄)(g1, g2) ≥ d(Γ∪Γ̄)(g ⊙ g1, g ⊙ g2)

≥ d(Γ∪Γ̄)(g
−1 ⊙ g ⊙ g1, g−1 ⊙ g ⊙ g2) = d(Γ∪Γ̄)(g1, g2).

Therefore, we obtain

∀g1, g2, g ∈ G : d(Γ∪Γ̄)(g1, g2) = d(Γ∪Γ̄)(g ⊙ g1, g ⊙ g2). (3.16)

By Lemma 3.90, div(g1, g2) = G and quotg(g1, g2) =
{
{{g−1 ⊙ g1, g−1 ⊙ g2}}

}
for every

g ∈ G. Therefore, we can apply Equation (3.16) where g is replaced by g−1 and obtain

that G divides (Γ ∪ Γ̄)-monotone.

Next we show that G admits idN-centering factorisations. Let M ∈ Mfin(G),

g ∈ mindiv(M), and N ∈ minquotg(M). By Lemma 3.90, N = g−1 ⊙M . We will

show that (g,N) is an idN-centering factorisation of M by contraposition. Assume

that (g,N) is not an idN-centering factorisation of M . Then, there exists an element

n1 ∈ supp(N) such that |n1|(Γ∪Γ̄) > d(Γ∪Γ̄)(n1, n2) for every n2 ∈ supp(N). Let

r = maxn2∈supp(N) d(Γ∪Γ̄)(n1, n2) and observe that |N |(Γ∪Γ̄) ≥ |n1|(Γ∪Γ̄) > r.

It holds that g ⊙ n1 ∈ supp(M) and we consider N ′ = (g ⊙ n1)−1 ⊙M . Surely,

N ′ = n−1
1 ⊙N and hence it holds that supp(N ′) = supp(n−1

1 ⊙N) = n−1
1 ⊙ supp(N).

Moreover, since supp(N) ⊆ Br(n1), we obtain that supp(N ′) ⊆ n−1
1 ⊙Br(n1).

For every n2 ∈ G it holds that

n2 ∈ Br(n1) ⇐⇒ ∃w ∈ Paths(n1, n2) : |w| ≤ r

⇐⇒ ∃w ∈ Paths(n−1
1 ⊙ n1, n

−1
1 ⊙ n2) : |w| ≤ r

⇐⇒ ∃w ∈ Paths(1, n−1
1 ⊙ n2) : |w| ≤ r ⇐⇒ n−1

1 ⊙ n2 ∈ Br(1).

This shows that n−1
1 ⊙ Br(n1) = Br(1) and hence we obtain supp(N ′) ⊆ Br(1). This

proves that |N ′|(Γ∪Γ̄) ≤ r and hence |N ′|(Γ∪Γ̄) < |N |(Γ∪Γ̄), which contradicts the

fact that g ∈ mindiv(M). Hence, the assumption that (g,N) is not an idN-centering

factorisation is false.

Lemma 3.92. For every WTA B over Σ and Pfin(G) it holds that if B ⊨ DFSTP,

then B ⊨ ETP.

113

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

Proof. We note that for every g1, g2 ∈ S(G) it holds that

d(Γ∪Γ̄)(g1, g2) = |g−1
1 ⊙ g2|(Γ∪Γ̄), (3.17)

which can be seen as follows. We obtain d(Γ∪Γ̄)(g1, g2) = d(Γ∪Γ̄)(1, g
−1
1 ⊙ g2) from

Equation (3.16) by letting g = g−1
1 . Moreover, d(Γ∪Γ̄)(1, g

−1
1 ⊙ g2) = |g−1

1 ⊙ g2|(Γ∪Γ̄)

since (1) every (w, v) ∈ FPaths(1, g−1
1 ⊙ g2) yields the path u ∈ Paths(1, g−1

1 ⊙ g2)

given by u = w[|w|]−1 . . . w[1]−1v, which satisfies |(w, v)| = |u| and (2) every path

u ∈ Paths(1, g−1
1 ⊙ g2) satisfies (1, u) ∈ FPaths(1, g−1

1 ⊙ g2).

Let B = (Q,T, final) be a WTA over Σ and Pfin(G) such that B ⊨ DFSTP. Let

ξ ∈ TΣ , ζ, η ∈ CΣ , and

ξ|y1−→ q
ζ|y2−→ q

η|y3−→ p and
ξ|y′1−→ q′

ζ|y′2−→ q′
η|y′3−→ p′

be the respectife forms of two R-runs of B. We obtain that

d(Γ∪Γ̄)(x⊙ y1 ⊙ y3, x′ ⊙ y′1 ⊙ y′3)
⋆1= |(x⊙ y1 ⊙ y3)−1 ⊙ x′ ⊙ y′1 ⊙ y′3|(Γ∪Γ̄)

⋆2= |y−1
3 ⊙ y

−1
1 ⊙ x

−1 ⊙ x′ ⊙ y′1 ⊙ y′3|(Γ∪Γ̄)

⋆3= |y−1
3 ⊙ y

−1
2 ⊙ y2 ⊙ y

−1
1 ⊙ x

−1 ⊙ x′ ⊙ y′1 ⊙ y′3|(Γ∪Γ̄)

⋆4= |y−1
3 ⊙ y

−1
2 ⊙ y

−1
1 ⊙ x

−1 ⊙ x′ ⊙ y′1 ⊙ y′2 ⊙ y′3|(Γ∪Γ̄)

⋆5= |(x⊙ y1 ⊙ y2 ⊙ y3)−1 ⊙ x′ ⊙ y′1 ⊙ y′2 ⊙ y′3|(Γ∪Γ̄)

⋆6= d(Γ∪Γ̄)(x⊙ y1 ⊙ y2 ⊙ y3, x′ ⊙ y′1 ⊙ y′2 ⊙ y′3),

where Equations ⋆1 and ⋆6 follow from Equation (3.17), Equations ⋆2 and ⋆5 follow

from standard group arithmetics, Equation ⋆3 follows from the fact that y−1
2 ⊙ y2 = 1,

and Equation ⋆4 follows from the fact that B ⊨ DFSTP (whence y2 = y′2) and the

commutativity of G. Therefore, we have shown that B ⊨ ETP.

Proof of Corollary 3.89. Let S = Pfin(G) and M = (S(G),⊙, {1}). It surely holds

that S is an M-semiring and S = ⟨M⟩∪. By Remark 3.87, M is finitely generated

by S(Γ ∪ Γ̄) and by Lemma 3.91, G divides (Γ ∪ Γ̄)-monotone and admits centering

factorisations. This clearly yields that M divides S(Γ ∪ Γ̄)-monotone and admits cen-

tering factorisations. Moreover, S is additively idempotent and commutative. Finally,

by Lemma 3.92, it holds that B ⊨ ETP. Hence, we can apply Theorem 3.78 and obtain

that B is M-sequentialisable, which concludes the proof.

114

3.8 Comparison of our Results to the Literature

3.8.4 The Extremal Case

In this chapter, we compare our sequentialisation result (Theorems 3.77 and 3.78)

and the determinisation result from [14]. First, we recall some of the notations and

terminology from [14] and then state the determinisation result [14, Theorem 5.2] using

our terminology in Theorem 3.94. Next, we compare our ETP to the “twins property”

from [14] and show in Example 3.95 that these properties are incomparable. This shows

that Theorem 3.77 and Theorem 3.94 are incomparable.

To fully understand the applicability of the different approaches, we believe that it

is also necessary to analyse the algebraic assumptions of Theorem 3.77 and Theorem

3.94. In Example 3.96 we provide semirings where Theorem 3.77 can be applied but

not Theorem 3.94. In Lemma 3.98 we collect algebraic properties of S that are implied

by the existence of “maximal factorisations” from [14]. It remains an open problem

whether there exist semirings where Theorem 3.94 can be applied but not Theorem 3.77.

However, we believe that such semirings do not exist and formulate this in Conjecture

3.99.

Throughout Chapter 3.8.4 we assume S to be an extremal, commutative

semiring and A = (Q,T, final) to be a WTA over Σ and S.

Remark 3.93. We introduce some terminology from [14] and compare it to our ter-

minology. We note that scalar-vector multiplications are evaluated componentwise.

• An important assumption in [14] is that S admits the following factorisation

approach. Let n ∈ N. A pair of maps (f, g) where f : Sn → Sn and g : Sn → S

is called maximal factorisation of dimension n if for every u ∈ Sn \ {0n} we have

that g(u) ⊙ f(u) = u and f(c ⊙ u) = f(u) for every c ∈ S. We omit writing “of

dimension n” whenever n is clear from the context.

• We now define a property of WTA over Σ and S which resembles the “twins

property” from [14]. Let A be a WTA over Σ and S. We say that A has the

BMV-twinning property (in symbols: A ⊨ BMVTP), if for every ξ ∈ TΣ , ζ ∈ CΣ

and q, q′ ∈ Q such that RunsvA (ξ, q) ̸= ∅, RunsvA (ξ, q′) ̸= ∅, RunsvA (q, ζ, q) ̸= ∅,

115

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

and RunsvA (q′, ζ, q′) ̸= ∅ it holds that

⊕
ρ∈RunsA (q,ζ,q)

wt(ζ, ρ) =
⊕

ρ∈RunsA (q′,ζ,q′)

wt(ζ, ρ).

An easy comparison of the “twins property” from [14] with the BMVTP shows

that these properties are equivalent.

• In [14, Theorem 5.2], the claim is that, under certain conditions, the determin-

isation construction given in [14] is successful. We weaken this formulation and

rather claim the determinisability of A .

Moreover, [14, Theorem 5.2] gives four cases (separated by bullet points) in which

their determinisation construction is successful. We only consider the last case

in Theorem 3.94 and briefly recall the other three cases now. The first case is

that A is non-recursive, which implies that A does not contain any valid loops.

The second case is that S is locally finite. The third case is that A is already

deterministic. In any of these three cases, it is known (and can straightforwardly

be proven) that A is determinisable by a weighted power set construction without

factorisation. ◀

We can now state the determinisation result from [14] in our notation.

Theorem 3.94 (Theorem 5.2 from [14], last case). Assume that there exists a maximal

factorisation of dimension #Q. If A ⊨ BMVTP, then A is determinisable.

The following example shows that the twinning properties of Theorem 3.77 and

3.94 are incomparable in general. In fact, we provide weighted (word) automata that

already witness this incomparability.

Example 3.95. We consider the ranked alphabet ΣA for the alphabet A = {a} and

the semiring

S = (N≤k ∪ {−∞},max,+k,−∞, 0)

for k = 5. S is an N≤k-semiring and we consider the finite generating set Γ = {1} of

N≤k. We recall from Example 3.5 that dΓ (n1, n2) = |n1 − n2| for every n1, n2 ∈ N≤k.

116

3.8 Comparison of our Results to the Literature

q1 q2 q3 q4

a

a

a

aa

a

##

1

1

1

1 0

0

00

00

p1 p2 aa

##

3

2

00

33

Figure 3.13: Two WTA over Σ = {a} and S from Example 3.95. The one on the left has

the BMVTP but not the ETP. The one on the right has the ETP but not the BMVTP.

• We start by giving a WTA A1 over ΣA and S such that A1 ⊨ BMVTP and

A1 ⊭ ETP. Formally, let A1 = (Q1, init1, T1, final1), where Q1 = {q1, q2, q3, q4}

and every transition weight and final weight of A1 is −∞ except

final1(q2) = final1(q3) = 0,

(T1)#(q2) = (T1)#(q3) = 0,

(T1)a(q3, q2) = (T1)a(q2, q3) = 0, and

(T1)a(q1, q2) = (T1)a(q2, q1) = (T1)a(q4, q3) = (T1)a(q3, q4) = 1.

A graphical representation of A1 can be found in the left of Figure 3.13.

Since im(A1) ⊆ (N≤k ∪ {−∞}), that is, each weight occuring in A1 is either

in N≤k or the zero element of S, there exists a unique WTA B1 over ΣA and

Mfin(N≥k) that is strongly related to A1. Intuitively, B1 can be obtained from

A1 by replacing every weight n occuring in A1 with {{n}}. The fact that B1

does not have the ETP is witnessed by the unique R-runs of the respective form
#|0−→ q3

aa|0−→ q3 and
#|0−→ q3

aa|2−→ q3 of B1, as dΓ (0+0, 0+2) = 2 ̸= 0 = dΓ (0, 0). The

fact that A1 has the BMVTP can be seen as follows. Let ζ ∈ CΣA
and q ∈ Q1. If

ζ = an(x1) for an odd n ∈ N, then RunsA (q, ζ, q) = ∅. If ζ = an(x1) for an even

n ∈ N, then an easy calculation shows that

⊕
ρ∈RunsA (q,ζ,q)

wt(ζ, ρ) = min{n, 5},

where the right-hand side of the equation does not depend on q. Hence, A1 has

the BMVTP.

117

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

• We continue by giving a WTA A2 over ΣA and S such that A2 ⊭ BMVTP and

A2 ⊨ ETP. Formally, A2 = (Q2, init2, T2, final2), where Q2 = {p1, p2} and every

transition weight and final weight of A2 is −∞ except

final2(p1) = final2(p2) = 0,

(T2)#(p1) = (T2)#(p2) = 3,

(T2)a(p1, p1) = 2, and = (T2)a(p2, p2) = 3.

A graphical representation of A2 can be found in the right of Figure 3.13.

Surely, it holds that A2 ⊭ BMVTP. Since im(A1) ⊆ (N≤k ∪ {−∞}), there exists

a unique WTA B2 over ΣA and Mfin(M) that is strongly related to A2. Let

ξ ∈ TΣA
, ζ, η ∈ CΣA

and

ξ|y1−→ q
ζ|y2−→ q

η|y3−→ p and
ξ|y′1−→ q′

ζ|y′2−→ q′
η|y′3−→ p′

be the respective form of two R-runs of B2. We have to show

dΓ (y1 +k y2 +k y3, y
′
1 +k y

′
2 +k y

′
3) = dΓ (y1 +k y3, y

′
1 +k y

′
3). (3.18)

First, we note that if ξ = an(#) for some n ≥ 1, then y1 = y′1 = 5 and hence

Equation (3.18) holds. Moreover, if ζ = x1, then we have y2 = y′2 = 0, which

immediately yields Equation (3.18). Now assume that ξ = # and ζ ̸= x1. By the

definition of A2 it holds that y1 = y′1 = 3, y2 ≥ 2, and y′2 ≥ 2. Therefore

y1 +k y2 +k y3 = y′1 +k y
′
2 +k y

′
3 = 5

and hence the left hand side of Equation (3.18) is equal to 0. Now, if η = x1,

then y3 = y′3 = 0 and if η ̸= x1, then y3 ≥ 2 and y′3 ≥ 2. In both cases, the right

hand side of Equation (3.18) is equal to 0 as well. Therefore, A ⊨ ETP. ◀

We have seen that our sequentialisation result (Theorem 3.77) and the deteremini-

sation result from [14] (Theorem 3.94) are incomparable because of the different notions

of the twinning property. We will now turn towards the algebraic assumptions of the

respective theorems.

118

3.8 Comparison of our Results to the Literature

Example 3.96. We show that Theorem 3.77 covers semirings that are not covered by

Theorem 3.94. More precisely, we give both a non-extremal and an extremal semiring

where Theorem 3.77 can be applied but not Theorem 3.94.

• The semiring X is not idempotent and hence also not extremal. Thus, Theo-

rem 3.94 is not applicable.

However, X is an N-semiring and N divides Γ -monotone and admits centering

factorisations for Γ = {1}. Therefore, we can apply Theorem 3.77 to every finite

WTA A over Σ and X such that (a) A ⊨ ETP and (b) there exists a finite

accumulator ∼ of DB for some B ∈ StrongRel(A) satisfying B ⊨ ETP. One

such automaton A is given in Example 3.73.

• We consider the monoid (N2,+, (0, 0)) and the subset Γ =
{
(2, 0), (1, 1), (0, 2)

}
of

N2. It holds that ⟨Γ ⟩+ = {(i, j) ∈ N2 | i+ j is even}. Moreover, we consider the

order ≤ on N2 where (i, j) ≤ (i′, j′) if and only if 2i · 3j ≤ 2i
′ · 3j′ . The semiring

S =
(
⟨Γ ⟩+ ∪ {−∞},max≤,+,−∞, (0, 0)

)
is an extremal and commutative ⟨Γ ⟩+-semiring. Assume that there exists a max-

imal factorisation (f, g) of dimension 2. It holds that (2, 0) +
(
(1, 1), (0, 2)

)
=(

(3, 1), (2, 2)
)
= (1, 1) +

(
(2, 0), (1, 1)

)
and hence

f
(
(1, 1), (0, 2)

)
= f

(
(3, 1), (2, 2)

)
= f

(
(2, 0), (1, 1)

)
. (3.19)

The only common divisor of (1, 1) and (0, 2) is g
(
(1, 1), (0, 2)

)
= (0, 0) and hence

f
(
(1, 1), (0, 2)

)
=

(
(1, 1), (0, 2)

)
. Analogously, f

(
(2, 0), (1, 1)

)
=

(
(2, 0), (1, 1)

)
.

This is a contradiction to Equation (3.19). In fact, this example is a slightly

simplified version of the counterexample given in [80, pages 9–10].

Next, we outline the proof that ⟨Γ ⟩+ divides Γ -monotone and admits centering

factorisations. This shows that we can apply Theorem 3.78 to every finite WTA

A over Σ and S such that A ⊨ ETP. We denote M = ⟨Γ ⟩+.

Let M ∈Mfin(M). Surely, for (i, j), (i′, j′) ∈M we have (i, j) ∈ div((i′, j′)) if and

only if i ≤ i′ and j ≤ j′. Thus,

div(M) =
{
(i, j) ∈M

∣∣ i ≤ min
(i′,j′)∈M

i′ and j ≤ min
(i′,j′)∈M

j′
}

119

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

and since M is cancellative (as a submonoid of (N2,+, (0, 0))), we obtain

quot(i,j)(M) = minquot(i,j)(M) =
{
{{(i′ − i, j′ − j) | (i′, j′) ∈M}}

}
for every (i, j) ∈ div(M). We continue by determining dΓ . Let (i, j) ∈ M and

(i′, j′) ∈ div((i, j)). Every (iγ , jγ) ∈ Γ satisfies iγ + jγ = 2 and hence for every

path w ∈ Paths((i′, j′), (i, j)) it holds that |w| = i−i′+j−j′

2 . Therefore,

min
w∈Paths((i′,j′),(i,j))

|w| = i− i′ + j − j′

2
.

This also shows that

|(i, j)|Γ = min
w∈Paths((0,0),(i,j))

|w| = i+ j

2
. (3.20)

Let (i1, j1), (i2, j2) ∈M. From the definition of dΓ we obtain that

dΓ ((i1, j1), (i2, j2)) =
i1 − i′ + j1 − j′

2
+
i2 − i′ + j2 − j′

2
(3.21)

for some (i′, j′) ∈ M. It is an easy observation that the right hand side of Equa-

tion (3.21) is minimal if i′ and j′ are as close to min(i1, i2) and min(j1, j2) as

possible. Let i′′ = min(i1, i2) and j′′ = min(j1, j2). If (i′′, j′′) ∈ M, then

(i′, j′) = (i′′, j′′) is the solution to Equation (3.21). Otherwise, (i′, j′) = (i′′−1, j′′)

and (i′, j′) = (i′′, j′′−1) are the two possible solutions to Equation (3.21). There-

fore, a straightforward calculation shows

dΓ ((i1, j1), (i2, j2) = dΓ ((i, j) + (i1, j1), (i, j) + (i2, j2)) (3.22)

for every (i, j) ∈ M. Since M is cancellative, Equation (3.22) implies that

M divides Γ -monotone. We continue to prove that M admits f -centering fac-

torisations, where f is given by f(n) = 2 · (n + 1) for every n ∈ N. Let

M ∈Mfin(M), (i′, j′) ∈ mindiv(M), and N ∈ minquot(i′,j′)(M). Moreover, we de-

note iM = min(i,j)∈supp(M) i and jM = min(i,j)∈supp(M) j. Since (i′, j′) minimises

|N |Γ , Equation (3.20) implies that (i′, j′) is as close to (iM , jM) as possible. If

(iM , jM) ∈ M, then (i′, j′) = (iM , jM). Otherwise, both (i′, j′) = (iM − 1, jM)

and (i′, j′) = (iM , jM − 1) are minimising divisors of M . Since we only need to

find one f -centering factorisation of M , we assume that j′ = jM . In any case,

120

3.8 Comparison of our Results to the Literature

there exists jN ∈ N and δ ∈ {0, 1} such that (δ, jN) ∈ supp(N). Moreover, there

exists iN ∈ N such that (iN , 0) ∈ supp(N). Let (i1, j1) ∈ supp(N) and note that

dΓ ((i1, j1), (δ, jN)) ≥ i1
2 − 1 and dΓ ((i1, j1), (iN , 0)) ≥ j1

2 . If i1 ≤ j1, then

|(i1, j1)|Γ =
i1 + j1

2
≤ j1 ≤ 2 · dΓ ((i1, j1), (iN , 0)).

If i1 ≥ j1, then

|(i1, j1)|Γ =
i1 + j1

2
≤ i1 ≤ 2 ·

(
dΓ ((i1, j1), (δ, jN)) + 1

)
.

This concludes the proof that
(
(i′, j′), N

)
is an f -centering factorisation ofM and

hence shows that M admits centering factorisations. ◀

The question whether there exist semirings such that Theorem 3.94 can be applied

but not Theorem 3.77 is very involved and we do not know the answer at the time

of writing. In the rest of this chapter, we present an implication of the existence of

maximal factorisations and conjecture that if the algebraic assumptions of Theorem

3.94 are satisfied, then the algebraic assumptions of Theorem 3.77 are satisfied.

Definition 3.97. Let (M,⊙, 1) be a commutative monoid and let x, y, c ∈ M. We

call c a greatest common divisor of x and y (short: gcd of x and y) if c ∈ div(x, y)

and for every d ∈ div(x, y) it holds that d ∈ div({{c}}). The set of gcds of x and y is

denoted gcd(x, y). We say that M is a gcd-monoid if for every x, y ∈ M it holds that

gcd(x, y) ̸= ∅. ◀

Lemma 3.98. Let (f, g) be a maximal factorization of dimension n ≥ 2. It holds that

(S,⊙, 1) is a cancellative gcd-monoid.

Proof. Let proj1,2 : S
n → S2 be the projection map onto the first two components.

We define the maps f ′ : S2 → S2 and g′ : S2 → S where for every x, y ∈ S we let

f ′(x, y) = proj1,2f(x, y, . . . , y) and g
′(x, y) = g(x, y, . . . , y). It surely holds that (f ′, g′)

is a maximal factorisation of dimension 2. To aid readability, we denote (f ′, g′) by

(f, g) as well.

Let x, y, c ∈ S and assume that c⊙ x = c⊙ y = 1. We obtain

g(1, 1)⊙ f(1, 1) = (1, 1) = c⊙ (x, y) = c⊙ g(x, y)⊙ f(x, y) (3.23)

121

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

and moreover

(x, x) = x⊙ (1, 1) = x⊙ g(1, 1)⊙ f(1, 1) (3.23)
= x⊙ c⊙ g(x, y)⊙ f(x, y)

= y ⊙ c⊙ g(x, y)⊙ f(x, y) (3.23)
= y ⊙ g(1, 1)⊙ f(1, 1) = y ⊙ (1, 1) = (y, y),

which shows that x = y. In total, we have thus seen

∀x, y, c ∈ S : (c⊙ x = c⊙ y = 1) =⇒ x = y. (3.24)

Now, let x, y, c ∈ S such that c⊙ x = c⊙ y. It holds that

f(1, 1) = f(c⊙ x, c⊙ y) = f(x, y)

since (f, g) is a maximal factorisation and c ⊙ x = c ⊙ y. Therefore, we have that

(x, y) = g(x, y) ⊙ f(x, y) = g(x, y) ⊙ f(1, 1). Let z, z′, d ∈ S such that (z, z′) = f(1, 1)

and d = g(1, 1). We obtain from (1, 1) = g(1, 1) ⊙ f(1, 1) that d ⊙ z = d ⊙ z′ = 1 and

apply Equation (3.24) to obtain z = z′. In total, we obtain that (x, y) = g(x, y)⊙ (z, z)

and hence, x = y. Thus we have proven that (S,⊙, 1) is cancellative.

Next, let x, y ∈ S, c ∈ div(x, y), and x
c and y

c be the unique quotients of x and y

divided by c, respectively. We note that these quotients are unique because (S,⊙, 1) is

cancellative. It surely holds that g(x, y) ∈ div(x, y). Moreover, it holds that

g(x, y)⊙ f
(x
c
,
y

c

)
= g(x, y)⊙ f(x, y) = (x, y)

= c⊙
(x
c
,
y

c

)
= c⊙ g

(x
c
,
y

c

)
⊙ f

(x
c
,
y

c

)
.

Since S is cancellative, this yields g(x, y) = c⊙ g(xc ,
y
c). In particular, c divides g(x, y).

Therefore, g(x, y) is a gcd of x and y and hence, (S,⊙, 1) is a gcd-monoid.

Conjecture 3.99. Let (S,⊙, 1) be a commutative, cancellative gcd-monoid and let I be

a finite subset of S. There exists a finitely generated monoid M ≤ (S,⊙, 1) with finite

generating set Γ such that I ⊆ M and M divides Γ -monotone and admits centering

factorisations.

In particular, whenever Theorem 3.94 is applicable, then Theorem 3.77 is applicable.

122

3.9 Conclusion

3.9 Conclusion

In this chapter, we have introduced a framework for the determinisation of weighted

tree automata, called M-sequentialisation, which captures different approaches from

the literature. This framework emerged from our observation that the run-semantics

of a WTA A over S only needs the multiplicative monoid (S,⊙, 1) to describe every

possible “behaviour” (that is, run weight) of A . The additive monoid (S,⊕, 0) is then

only a way of accumulating these behaviours. Therefore, our approach separates the

two operations of S and deals with each of them individually.

We have given an M-sequentialisation construction that involves multiple steps and

requires many non-trivial mathematical tools (cf. also Chapter 3.1). First, we presented

a theory of factorisations in monoids, which we subsequently used to provide an S(M)-

sequentialisation construction for WTA B over Mfin(M), resulting in possibly infinite

S(M)-sequential WTA DB over Mfin(M). This acted as our core determinisation result

and our remaining focus was to translate this result from WTA over Mfin(M) to WTA

over S. For this, we first defined a notion of relatedness of WTA as a way to transform

a WTA A over ⟨M⟩⊕ into a WTA B over Mfin(M). Next, we introduced a way of accu-

mulating DB via an appropriate equivalence relation ∼, which returns an M-sequential

WTA acc∼(DB) over S. Then, we provided some cases in which acc∼(DB) is finite and

connected all our steps to obtain an M-sequentialisation result (cf. Theorems 3.77 and

3.78). Ultimately, we compared our approach to different determinisation approaches

from the literature.

Even though Chapter 3 is very involved and rather lengthy, we were not able to

answer all related questions and leave some opportunities for further research. We list

three open problems. Firstly, we did not characterise what it means for a monoid M

to divide Γ -monotone and admit centering factorisations. In future research, these

properties should be investigated more thoroughly. This also includes Conjecture 3.99.

Secondly, we believe that the case “additively idempotent” from Theorem 3.78 can

be weakened to “additively locally finite”. This generalisation should be attempted

in future research. Thirdly, one should study the decidability of our ETP and the

complexity of our constructions.

123

3. A UNIFYING FRAMEWORK FOR THE DETERMINISATION OF
WEIGHTED TREE AUTOMATA

124

4

Approximated Determinisation of

Weighted Tree Automata

This chapter is an alternative presentation of Dörband, Feller, and Stier [28]. While the

original paper gave an approximated determinisation construction via an algorithm in

pseudo-code, this chapter replaces the pseudo-code with formal mathematical construc-

tions. Besides this change, the present chapter closely follows [28], which is a canonical

generalisation of [4] from weighted (word) automata to weighted tree automata.

Throughout Chapter 4, we assume Σ to be a ranked alphabet.

4.1 Introduction

One endeavour to simplify weighted automata that cannot be determinised is to aim

for approximated determinisation. Different approaches to this paradigm have been

proposed, see e.g. [4, 8, 9]. The main idea of these papers is to take a weighted

automaton A and then construct a deterministic weighted automaton that recognizes

a “similar” language to the one of A . The notions of similarity differ in the literature.

As this chapter aims to generalise Aminof et al. [4] from the word case to the tree case,

we subsequently focus on [4].

The weight structure considered in [4] is the tropical semiring (R∞,min,+,∞, 0),

where R∞ = {x ∈ R | x ≥ 0}∪{∞} and the notion of approximation is given as follows.

125

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

Let t ≥ 1 be a real number, called the approximation factor. A weighted automaton

A ′ t-approximates A , if for every input word w ∈ Σ∗ it holds that

[[A]](w) ≤ [[A ′]](w) ≤ t · [[A]](w).

In [4], Aminof et al. provide an algorithm, called tDet, that takes as input a weighted

(word) automaton A and an approximation factor t ≥ 1 and (if the algorithm termi-

nates) outputs a deterministic weighted automaton A ′ such that A ′ t-approximates A .

The algorithm tDet executes a weighted power set construction (with a fixed factorisa-

tion) similar to the one given by Kirsten and Mäurer [80]. That is, the states of A ′ are

maps from the set of states of A to weights from the semiring, which are considered

as residual weights. These residual weights keep track of the difference between the

weights of runs of A ′ and runs of A . For approximated determinisation, however, tDet

keeps track of two bounds for every state of A rather than a single residual weight.

Namely, a lower bound and an upper bound. These bounds describe intervals of residual

weights, which need to be taken into account during the choice of final weights in order

to ensure t-approximation.

Next, Aminof et al. prove that tDet terminates if A satisfies the so-called t-twinning

property. The t-twinning property is a generalisation of the classical twinning property

from [80, 90] to the approximated setting. Ultimately, it is proven in [4], that the

t-twinning property is decidable.

We follow the approach by Aminof et al. [4], although we provide a formal construc-

tion for approximated determinisation instead of generalising the algorithm from [4].

In Chapter 4.2, we introduce some elementary technical machinery and our automaton

model. Next, in Chapter 4.3, we define t-approximation for weighted tree automata,

give a construction for t-approximate determinisation, and prove its correctness in the

cases where it returns a finite WTA (see Theorem 4.21). In Chapter 4.4, we introduce

the t-twinning property for weighted tree automata, show that it is a sufficient con-

dition for the finiteness of our construction (see Theorem 4.27), and prove that our

t-twinning property is decidable (see Theorem 4.31). We conclude Chapter 4 by posing

some open research questions in Chapter 4.5.

126

4.2 Preliminaries

4.2 Preliminaries

We define the sets R∞ = {x ∈ R | x ≥ 0} ∪ {∞} and Q∞ = {x ∈ Q | x ≥ 0} ∪ {∞}.

For every x, y ∈ R we define the interval [x, y] = {z ∈ R | x ≤ z ≤ y} and denote the

set [∞,∞] = {∞}.

Similarly to the arctic semiring (see Arct in Example 2.4), we consider the semiring

Trop = (R∞,min,+,∞, 0), where for every x1, x2 ∈ R∞ we define

min(x1, x2) =

x3−i if xi =∞ for some i ∈ {1, 2}

min(x1, x2) otherwise

x1 + x2 =

∞ if x1 =∞ or x2 =∞

x1 + x2 otherwise.

Trop is called the tropical semiring (over R). We note that Trop is commutative and

extremal. Analogously, one can introduce the tropical semiring over Q.

Throughout Chapter 4, if not stated differently, the term “weighted tree

automaton” stands for “weighted tree automaton over Σ and Trop”.

We use the following notation for a run ρ of A on a tree or context ξ ∈ TΣ ∪ CΣ .

Let q = ρ(ε) and x = wt(ξ, ρ). If ξ ∈ TΣ , then we write
ξ|ρ|x−→ q. If ξ ∈ CΣ , then we

write p
ξ|ρ|x−→ q, where p = ρ(posvar(ξ)). Whenever we do not care about the name of

the run, we simply write
ξ|x−→ q and p

ξ|x−→ q, respectively.

For every ξ ∈ TΣ , ζ ∈ CΣ , and p, q ∈ Q we define the values

θA (ξ, q) = min
{
wt(ξ, ρ) | ρ ∈ RunsA (ξ, q)

}
and

θA (p, ζ, q) = min
{
wt(ζ, ρ) | ρ ∈ RunsA (p, ζ, q)

}
.

Moreover, we define θA (ξ) = min{θA (ξ, q′) | q′ ∈ Q}. If A is deterministic and

RunsA (ξ) ̸= ∅, then θA (ξ) = wt(ξ, ρ), where ρ is the unique run in RunsA (ξ).

Remark 4.1. Let A = (Q,T, final) be a finite WTA. For every ξ ∈ TΣ it holds that

[[A]](ξ) = min
q∈Q

(
θA (ξ, q) + final(q)

)
.

This can easily be shown using the distributivity law in Trop. ◀

127

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

q1 q2σ σ

αα β

0 0
0 0

21 0

Figure 4.1: The non-deterministic finite WTA A from Example 4.2.

Example 4.2. LetΣ = {α(0), β(0), σ(2)} and consider the finite WTA A = (Q,T, final),

where Q = {q1, q2}, final = 0, and T is ∞ except in the cases

Tα(q1) = 1, Tα(q2) = 2, Tσ(q1, q1, q1) = 0,

Tβ(q1) = 0, Tσ(q2, q2, q2) = 0.

The hypergraph of A is depicted in Figure 4.1.

Let ξ ∈ TΣ . One easily verifies the following statements using the definition of A .

If ξ contains at least one β, then there exists a unique non-vanishing run ρ of A on ξ

(namely the constant map to q1) and it holds that wt(ξ, ρ) = #posα(ξ). If ξ contains

no β, then there exist exactly two non-vanishing runs ρ1 and ρ2 of A on ξ (namely the

constant maps to q1 and q2, respectively) and it holds that wt(ξ, ρ1) = #posα(ξ) and

wt(ξ, ρ2) = 2 ·#posα(ξ). In total, we obtain that [[A]](ξ) = #posα(ξ).

Clearly, A is not deterministic, as the two transition weights Tα(q1) and Tα(q2) are

both non-vanishing. ◀

4.3 Approximated Determinisation

In this chapter, we define t-approximation of weighted tree automata. Moreover, we

present an approximated determinisation construction that takes a finite WTA A and

an approximation factor t ≥ 1 as input and yields a potentially infinite WTA A ′ over

Σ and Trop. After applying the construction to the WTA from Example 4.2, we then

proceed to prove that if the tuple A ′ has finite components, then A ′ is a deterministic

finite WTA that t-approximates A .

128

4.3 Approximated Determinisation

Throughout the rest of Chapter 4.3 we assume A = (Q,T, final) to be an

arbitrary finite WTA.

4.3.1 The Approximated Determinisation Construction

Definition 4.3. Let t ∈ R be a real number such that t ≥ 1 and let B = (Q′, T ′, final′)

be a finite-run1 WTA.

We say that B t-approximates A if for every ξ ∈ TΣ it holds that

[[A]](ξ) ≤ [[B]](ξ) ≤ t · [[A]](ξ). (4.1)

Moreover, we call A t-approximate deterministic (or t-determinisable) if there exists a

deterministic WTA B such that B t-approximates A . ◀

Remark 4.4. Note that if B t-approximates A , then supp([[A]]) = supp([[B]]). More-

over, B 1-approximates A if and only if [[A]] = [[B]]. ◀

Throughout the rest of Chapter 4.3, we assume that t ∈ R with t ≥ 1.

Remark 4.5. Note that, in general, A is not t-determinisable. In fact, for every Σ

containing two distinct symbols σ(r) and τ (s) (where r, s > 0), there exists a finite

WTA B such that B is not t′-determinisable for any t′ ≥ 1.

This was already proven for words in [4, Theorem 1] and the constructions can

easily be adapted to the tree case by considering so-called comb trees over σ and τ ,

which behave similarly to words. ◀

Next we introduce our approximate determinisation construction. For a summary

of the conceptional details of our approach and how it fits into the existing literature, we

refer to Section 4.1. Recall that our construction is a weighted power set construction

with factorisation ([80], cf. also Chapter 3). We now present the intuitive idea behind

the steps of our construction.

Given the finite WTA A and an approximation factor t ≥ 1, we define an ascend-

ing sequence (An | n ∈ N) of weighted tree automata (“ascending” with respect to

component-wise set inclusion) and let A ′ be the limit (that is, component-wise union)

1We recall that this property is required in this thesis in order for [[B]] to be defined.

129

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

of this sequence. More precisely, we let A0 be a WTAlike tuple with an empty set of

states and then iteratively explore more states of the goal WTA A ′ using a weighted

power set construction. This exploration is done by a map called stepA ,t (see Defini-

tion 4.8), which takes as input any An and returns its (slightly larger) successor An+1.

To do this in a mathematically comfortable way, we introduce partial weighted tree au-

tomata, which are our standard WTA with the added liberty that all transition weight

maps are partial maps. This allows us to explore new states without having to define

all possible new transition weights at the same time.

We denote the components of An by (Qn, Tn, finaln) and the components of A ′ by

(Q′, T ′, final′). The state set Q′ is a subset of (R∞ × R∞)Q, which we think about as

follows. A state P ∈ Q′ maps every state q ∈ Q to a lower bound lPq and an upper

bound uPq . Thus, we denote (lPq , u
P
q) = P (q). These bounds represent an interval in

R∞ and will be determined by our construction such that the following holds.

Let ρ be the (unique) non-vanishing run of A ′ on a tree ξ and let ρ(ε) = P . For

every q ∈ Q it holds that

[lPq +wt(ξ, ρ), uPq +wt(ξ, ρ)] ⊆ [θA (ξ, q), t · θA (ξ, q)]

(see Lemma 4.20). We note that [θA (ξ, q), t · θA (ξ, q)] is the relevant interval we need

to consider in order to achieve t-approximation of A . Therefore, A ′ t-approximates

A as long as the final weight map of A ′ respects the lower and upper bounds stored

in the states of A ′.

Moreover, we use of the following concept. Given two maps P, P ′ : Q→ R∞ ×R∞,

we say that P ′ refines P if for every q ∈ Q it holds that [lP
′

q , uP
′

q] ⊆ [lPq , u
P
q]. That

is, P ′ describes tighter bounds than P . Refinement plays a major role in ensuring the

finiteness of A ′.

The overall structure of the definition of stepA ,t (Definition 4.8) is the following.

Given s ∈ N, σ ∈ Σ(s) and already explored states P1, . . . , Ps, we explore the unique suc-

cessor state P ′ and transition weight c resulting in a new transition (P1, . . . , Ps, σ, c, P
′)

as follows. First we accumulate the lower bounds and the upper bounds of P1, . . . , Ps

respectively with the transition weights given by T . This results in the accumulated

lower bounds (lq | q ∈ Q) and upper bounds (uq | q ∈ Q). Next we determine the

130

4.3 Approximated Determinisation

new transition weight c as minq∈Q uq. Then we define the intermediate successor state

P pointwise by P (q) = (lq − c, uq − c) (Equation (4.2)). If P is refined by some al-

ready existing state P ′′, then we let P ′ = P ′′. Otherwise, we let P ′ = P and call

(P1, . . . , Ps, σ, c, P
′) discovering.

A transition (P1, . . . , Ps, σ, c, P
′) is discovering if and only if it was the first non-

vanishing transition with successor state P ′ that was generated by our approximate

determinisation construction. Runs that correspond at each position to a discovering

transition have certain combinatorial properties that we will use later on in our proofs.

We will now give formal definitions for these ideas.

Definition 4.6. A partial weighted tree automaton (short: partial WTA) is a tuple

Â = (Q̂, T̂ , final), where

• Q̂ is a set,

• T̂ = (T̂σ : Q̂
s × Q̂ 99K Trop | s ∈ N, σ ∈ Σ(s)) is a family of partial maps, and

• final : Q̂→ Trop is a map.

If Q̂ is finite, then we call Â finite. ◀

Definition 4.7. Let P : Q→ R∞×R∞ and q ∈ Q. We denote the components of P (q)

by (lPq , u
P
q) = P (q).

Let P, P ′ : Q→ R∞×R∞. We say that P ′ refines P if for every q ∈ Q it holds that

[lP
′

q , uP
′

q] ⊆ [lPq , u
P
q]. ◀

Definition 4.8. Let Â = (Q̂, T̂ , final) be a finite partial WTA over Σ and (R ∪

{∞},min,+,∞, 0) with Q̂ ⊆ (R∞ × R∞)Q.

First, let s ∈ N, σ ∈ Σ(s), and P1, . . . , Ps ∈ Q̂. For every q ∈ Q we define

lq = min{lP1
q1 + · · ·+ lPs

qs + Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} and

uq = min{uP1
q1 + · · ·+ uPs

qs + t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q}.

Moreover, we define the constant c = minq∈Q uq and the map P : Q→ (R∞ × R∞) by

P (q) = (lq − c, uq − c) for every q ∈ Q, (4.2)

131

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

where ∞ − ∞ = ∞. If P is refined by a state in Q̂, then we fix an arbitrary such

refining state P ′. Otherwise we let P ′ = P . We define

Tσ(P1, . . . , Ps) = (c, P ′).

We note that this defines a map T () : (
⋃

s∈NΣ
(s) × Q̂s)→ Trop× (R∞ × R∞)Q.

Next, we define the finite partial WTA

stepA ,t(Â) = (Q̂′, T̂ ′, final′)

over Σ and (R ∪ {∞},min,+,∞, 0) as follows. The set of states is

Q̂′ = Q̂ ∪
{
P | (c, P) ∈ im

(
T ()

)}
,

the transition weight maps are T̂ ′ = (T̂ ′
σ : (Q̂

′)s × Q̂′ 99K Trop | s ∈ N, σ ∈ Σ(s)), where

for every s ∈ N, σ ∈ Σ(s), P1, . . . , Ps ∈ Q̂, and P ∈ Q̂′, we define

T̂ ′
σ(P1, . . . , Ps, P) =

T̂σ(P1, . . . , Ps, P) if T̂σ(P1, . . . , Ps, P) exists

c if Tσ(P1, . . . , Ps) = (c, P)

∞ otherwise,

and the final weight map is given by (final′)(P) = minq∈Q(u
P
q + t · final(q)) for every

P ∈ Q̂′. Clearly, stepA ,t(Â) is a finite partial WTA with weights in R ∪ {∞}. ◀

Definition 4.9. We define the sequence
(
An = (Qn, Tn, finaln) | n ∈ N

)
of finite partial

WTA inductively by

A0 = (∅, (∅ | σ ∈ Σ), ∅)

and An+1 = stepA ,t(An) for every n ∈ N. ◀

Remark 4.10. Let k ∈ N. It is an easy fact that Qk ⊆ Qk+1, (Tk)σ ⊆ (Tk+1)σ for

every σ ∈ Σ, and finalk ⊆ finalk+1. That is, (An | n ∈ N) is an ascending sequence of

finite partial WTA. In particular, we can define the tuple

A ′ = (Q′, T ′, final′),

where Q′ =
⋃

n∈NQn, T
′
σ =

⋃
n∈N(Tn)σ for every σ ∈ Σ, and final′ =

⋃
n∈N finaln. It

is clear that A ′ is a (possibly infinite) partial WTA. Moreover, for every s ∈ N and

132

4.3 Approximated Determinisation

σ ∈ Σ(s) we have that (Tk+1)σ is a map of type Qs
k ×Qk+1 → S, whence T ′

σ is a map

of type (Q′)s ×Q′ → S. Therefore, A ′ is in fact a (possibly infinite) WTA over Σ and

(R ∪ {∞},min,+,∞, 0).

Clearly, if An = An+1 for some n ∈ N, then it also holds that An = Ak for

every k ≥ n. In this case, A ′ = An and therefore A ′ is a finite WTA over Σ and

(R ∪ {∞},min,+,∞, 0). ◀

Lemma 4.11. For every s ≥ 0, σ ∈ Σ(s), and P1, . . . , Ps, P ∈ Q′ it holds that

T ′
σ(P1, . . . , Ps, P) =∞ or P = proj2(Tσ(P1, . . . , Ps)).

In particular, A ′ is a deterministic WTA over Σ and (R ∪ {∞},min,+,∞, 0).

Proof. Let s ≥ 0, σ ∈ Σ(s), and P1, . . . , Ps, P ∈ Q′ such that T ′
σ(P1, . . . , Ps, P) ̸= ∞.

There exists n ∈ N where (Tn)σ(P1, . . . , Ps, P) ̸= ∞ and (Tn−1)σ(P1, . . . , Ps, P) = ∞.

From the definition of Tn it now follows that Tσ(P1, . . . , Ps) = (c, P) for some c ∈ R.

This proves the first claim.

The second claim can be seen as follows. By Remark 4.10, A ′ is a WTA over Σ

and (R∪ {∞},min,+,∞, 0) and the fact that A ′ is deterministic follows directly from

the first claim.

Example 4.12. We continue Example 4.2 by constructing the sequence (An | n ∈ N)

for t ≥ 2. We denote An = (Qn, Tn, finaln) for every n ∈ N.

By definition we have A0 = (∅, (∅ | σ ∈ Σ), ∅).

Next, we determine A1 = stepA ,t(A0) and denote stepA ,t(A0) = (Q′
0, T

′
0, final

′
0).

We need to calculate Tτ (P1, . . . , Ps) for every s, τ , and P1, . . . , Ps. Since Q0 = ∅, we

only need to consider the case s = 0.

First, we consider α ∈ Σ(0). We calculate

lq1 = min{Tα(q1)} = 1 uq1 = min{t · Tα(q1)} = t

lq2 = min{Tα(q2)} = 2 uq2 = min{t · Tα(q1)} = 2 · t

and obtain c = min{t, 2 · t} = t. Next, we determine

P (q1) = (1− t, 0) and P (q2) = (2− t, t).

133

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

As Q0 is empty, P is not refined by any state in Q0 and hence, we have

Tα() = (t, P ′
1),

where P ′
1 = P =

(
q1 7→ (1− t, 0), q2 7→ (2− t, t)

)
.

Next, we consider β ∈ Σ(0). We calculate

lq1 = min{Tβ(q1)} = 0 uq1 = min{t · Tβ(q1)} = 0

lq2 = min{Tβ(q2)} =∞ uq2 = min{t · Tβ(q1)} =∞

and obtain c = min{0,∞} = 0. Next, we determine

P (q1) = (0, 0) and P (q2) = (∞,∞).

As Q0 is empty, P is not refined by any state in Q0 and hence, we have

Tβ() = (0, P ′
2),

where P ′
2 = P =

(
q1 7→ (0, 0), q2 7→ (∞,∞)

)
.

We have now determined all new values for T () and obtain Q′
0 = {P ′

1, P
′
2},

(T ′
0)α(P

′
1) = t, (T ′

0)α(P
′
2) =∞,

(T ′
0)β(P

′
2) =∞, (T ′

0)β(P
′
2) = 0,

and final′0(P
′
1) = final′0(P

′
2) = 0. This defines the partial WTA A1, which we depict in

Figure 4.2.

Next, we determine A2 = stepA ,t(A1) and denote stepA ,t(A1) = (Q′
1, T

′
1, final

′
1).

We again need to calculate Tτ (P1, . . . , Ps) for every s, τ , and P1, . . . , Ps. However,

since the values of Tτ (P1, . . . , Ps) do not depend on T1 or final1, we obtain that Tα()

and Tβ() are the same as in the calculation of stepA ,t(A0).

We consider σ ∈ Σ(2) and P1 = P2 = P ′
1 from Q1. Similarly to the construction of

134

4.3 Approximated Determinisation

stepA ,t(A0), we calculate

lq1 = min{lP1
q1 + lP2

q1 + Tσ(q1, q1, q1), l
P1
q1 + lP2

q2 + Tσ(q1, q2, q1),

lP1
q2 + lP2

q1 + Tσ(q2, q1, q1), l
P1
q2 + lP2

q2 + Tσ(q2, q2, q1)}

= min{1− t+ 1− t+ 0,∞,∞,∞} = 2− 2 · t,

uq1 = min{0 + 0 + 0,∞,∞,∞} = 0,

lq2 = min{∞,∞,∞, 2− t+ 2− t+ 0} = 4− 2 · t, and

uq2 = min{∞,∞,∞, t+ t+ 0} = 2 · t.

Moreover we obtain c = 0 and

P (q1) = (2− 2 · t, 0) and P (q2) = (4− 2 · t, 2 · t).

Note that P ′
2 does not refine P and that P ′

1 refines P if and only if

2− 2t ≤ 1− t, 0 ≤ 0, 4− 2t ≤ 2− t, and t ≤ 2t.

That is, P is refined by P ′
1 if and only if t ≥ 2, which is true by assumption. In total

we obtain

Tσ(P
′
1, P

′
1) = (0, P ′

1).

By continuing in the same fashion for every other combination of P ′
1 and P ′

2, we obtain

the values

Tσ(P
′
1, P

′
2) = (0, P ′

2), Tσ(P
′
2, P

′
1) = (0, P ′

2), and Tσ(P
′
2, P

′
2) = (0, P ′

2).

We have now determined all new values for T () and obtain Q′
1 = {P ′

1, P
′
2},

final′0(P
′
1) = final′0(P

′
2) = 0, and T ′

1 is ∞ except in the cases

(T ′
1)α(P

′
1) = t, (T ′

1)σ(P
′
1, P

′
1, P

′
1) = 0, (T ′

1)σ(P
′
1, P

′
2, P

′
2) = 0,

(T ′
1)β(P

′
2) = 0, (T ′

1)σ(P
′
2, P

′
1, P

′
2) = 0, (T ′

1)σ(P
′
2, P

′
2, P

′
2) = 0.

This defines the partial WTA A2. Moreover, since Q2 = Q1, we obtain that An = A2

for every n ≥ 2 and hence A ′ = A2. Clearly, A ′ is a finite WTA and one can easily

see that [[A ′]](ξ) = t ·#posα(ξ) for every ξ ∈ TΣ . In particular, A ′ t-approximates A .

A depiction of A ′ can be found in Figure 4.2. ◀

135

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

P ′
1 P ′

2

α β

0t

00

P ′
1 P ′

2

α β

0t

00
σ

σ

0

0

Figure 4.2: Partial WTA A1 (left) and A2 (right) calculated in Example 4.12, where

A2 = A ′ is a deterministic WTA t-approximating the WTA A from Example 4.2.

Remark 4.13. Note that the construction of A ′ does not preserve the weighted lan-

guage of A in general. This is due to the fact that the state normalisation in Def-

inition 4.8 is done with respect to the upper bounds uPq . This yields that if A is

deterministic, then A ′ recognises t · [[A]] rather than [[A]]. This can be proved in a

straightforward way. ◀

4.3.2 Correctness of the Construction

We now set up the proof that if A ′ = An for some n ∈ N, then A ′ is a deterministic

WTA which t-approximates A (see Theorem 4.21).

The following auxiliary lemma is a simple result that can be proven in a straight-

forward manner by induction on ξ using distributivity (cf. Equation 7 of the proof of

[94, Theorem 4.1.] and [10, Lemma 4.1.13]).

Lemma 4.14. Let ξ ∈ TΣ and q ∈ Q and assume that ξ = σ(ξ1, . . . , ξs). It holds that

θA (ξ, q) = min{
(s∑

i=1

θA (ξi, qi)
)
+ Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q}.

Lemma 4.15. Let P ∈ Q′. For every q ∈ Q it holds that uPq ≥ 0. Moreover, if uPq <∞

for some q ∈ Q, then uPq′ = 0 for some q′ ∈ Q.

Proof. Let n ∈ N such that P ∈ Qn+1 \ Qn. By the definition of stepA ,t it holds

that (c, P) = Tσ(P1, . . . , Ps) for some c ∈ Trop, s ≥ 0, σ ∈ Σ(s), and P1, . . . , Ps ∈ Qn.

Since P ̸∈ Qn, it must hold that P is not refined by a state in Qn and therefore

136

4.3 Approximated Determinisation

P (q) = (lq − c, uq − c), where lq, uq ∈ Trop for every q ∈ Q and c = minq∈Q uq (see

Definition 4.8). In particular, uPq = uq − minq∈Q uq ≥ 0 for every q ∈ Q. Moreover,

if uPq < ∞ for some q ∈ Q, then uq < ∞ and hence for q′ = argminq′′∈Q uq′′ we have

uq′ <∞ and uPq′ = uq′ − uq′ = 0. This concludes the proof.

Lemma 4.16. For all σ ∈ Σ it holds that im(T ′
σ) ⊆ R∞ and im(final′) ⊆ R∞.

Proof. One easily sees that all occurring weights are in R ∪ {∞}. Therefore, we only

show their nonnegativity.

Let s ≥ 0, σ ∈ Σ(s), and P1, . . . , Ps, P ∈ Q′. If T ′
σ(P1, . . . , Ps, P) = ∞, then

we are done. Otherwise, T ′
σ(P1, . . . , Ps, P) = c, where (c, P) = Tσ(P1, . . . , Ps) for

c = minq∈Q uq and uq = min{uP1
q1 + · · · + uPs

qs + t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q}

for every q ∈ Q (see Definition 4.8). Thus, it suffices to prove that uq ≥ 0 for every

q ∈ Q. This easily follows from Lemma 4.15, the fact that t ≥ 1, and the fact that

im(Tσ) ⊆ R∞ for every σ ∈ Σ.

Let P ∈ Q′. It holds that final′(P) = minq∈Q(u
P
q +t ·final(q)), which is non-negative

by Lemma 4.15, the fact that t ≥ 1, and the fact that im(final) ⊆ R∞.

Corollary 4.17. If A ′ = An for some n ∈ N, then A ′ is a deterministic finite WTA.

Proof. This follows from Remark 4.10, Lemma 4.16, and Lemma 4.11.

We now turn towards the proof that A ′ indeed t-approximates A .

Definition 4.18. For every P ∈ Q′ we define the depth of P (in A ′), denoted depth(P),

as the unique n ∈ N such that P ∈ Qn \Qn−1, where we let Q−1 = ∅.

We call a transition (P1, . . . , Ps, σ, c, P) of A ′ discovering if c < ∞ and for every

i ∈ [s] we have depth(P) > depth(Pi). In this case, P is introduced in Qdepth(P) as the

second component of Tσ(P1, . . . , Ps) (and is not refined by some state P ′ ∈ Qdepth(P)−1).

Let ξ ∈ TΣ and ρ ∈ RunsA ′(ξ). We call ρ discovering if for every w ∈ pos(ξ) it

holds that (P1, . . . , Ps, σ, c, P) is discovering, where σ = ξ(w), s = rk(σ), Pi = ρ(wi)

for every i ∈ [s], P = ρ(w), and c = locwtA ′(ξ, ρ, w). ◀

Lemma 4.19. Let ξ ∈ TΣ . If there exists a non-vanishing run ρ ∈ RunsA (ξ), then

there exists a non-vanishing run ρ′ ∈ RunsA ′(ξ) such that u
ρ′(ε)
ρ(ε) <∞.

In particular, if [[A]](ξ) ̸=∞, then [[A ′]](ξ) ̸=∞.

137

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

Proof. We prove the claim by structural induction on ξ. We assume ξ = σ(ξ1, . . . , ξs)

and that the claim holds for ξ1, . . . , ξs. Let ρ ∈ RunsA (ξ) be non-vanishing and denote

for every i ∈ [s] the restriction1 of ρ to ξi by ρi. Since ρ is non-vanishing, it holds that

ρi is non-vanishing for every i ∈ [s]. By the induction assumption, there exists a non-

vanishing run ρ′i ∈ RunsA ′(ξi) for every i ∈ [s]. We denote (c, P) = Tσ(ρ
′
1(ε), . . . , ρ

′
s(ε))

and define the run ρ′ : pos(ξ)→ Q′ of A ′ on ξ by

ρ′(w) =

P if w = ε

ρ′i(v) if w = iv for some i ∈ [s] and v ∈ pos(ξi),

for every w ∈ pos(ξ). We need to prove that ρ′ is non-vanishing and uPρ(ε) <∞. Since

wt(ξ, ρ′) = wt(ξ, ρ′1) + · · · + wt(ξ, ρ′s) + T ′
σ(ρ

′
1(ε), . . . , ρ

′
s(ε), P) and wt(ξ, ρ′i) < ∞ for

every i ∈ [s], we know that ρ′ is non-vanishing if T ′
σ(ρ

′
1(ε), . . . , ρ

′
s(ε), P) < ∞. It is an

easy fact that uPρ(ε) < ∞ implies T ′
σ(ρ

′
1(ε), . . . , ρ

′
s(ε), P) < ∞ and hence, it suffices to

show uPρ(ε) <∞. We know that uPρ(ε) ≤ uρ(ε) − c, where c = minq∈Q uq and

uq = min{uρ
′
1(ε)

q1 + · · ·+ uρ
′
s(ε)

qs + t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q}

for every q ∈ Q. This follows from Definition 4.8.

By the induction assumption, it holds that u
ρ′i(ε)

ρi(ε)
<∞ for every i ∈ [s] and since ρ is

non-vanishing we also have Tσ(ρ1(ε), . . . , ρs(ε), ρ(ε)) <∞. This shows that uρ(ε) <∞,

c <∞, and hence uPρ(ε) ≤ uρ(ε) − c <∞.

Lemma 4.20. Let ξ ∈ TΣ such that θA ′(ξ) ̸=∞ and let P ∈ Q′ such that there exists

a run
ξ|θA ′ (ξ)
−−−→ P . For every q ∈ Q, it holds that

θA (ξ, q)− θA ′(ξ)
⋆
≤ lPq ≤ uPq

⋆
≤ t · θA (ξ, q)− θA ′(ξ). (4.3)

Moreover, if there exists a discovering run
ξ|θA ′ (ξ)
−−−→ P , the ⋆-inequalities hold as equalities.

Proof. Let n = depth(P). We first prove the inequality “lPq ≤ uPq ” by induction on

n. The induction base n = 0 is clear since Q0 = ∅. Now assume that n ≥ 1 and the

claimed inequality holds for every P ′ ∈ Qn−1. By the definition of stepA ,t it holds that

(c, P) = Tσ(P1, . . . , Ps) for some c ∈ Trop, s ≥ 0, σ ∈ Σ(s), and P1, . . . , Ps ∈ Qn−1.

1That is, ρi(w) = ρ(iw) for every i ∈ [s] and w ∈ pos(ξi).

138

4.3 Approximated Determinisation

Since P ̸∈ Qn−1, P is not refined by some state in Qn−1 and in particular, P is defined

by Equation (4.2) as P (q) = (lq − c, uq − c), where

lq = min{lP1
q1 + · · ·+ lPs

qs + Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} and

uq = min{uP1
q1 + · · ·+ uPs

qs + t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q}

for every q ∈ Q and c = minq∈Q uq. Therefore we can show that lPq ≤ uPq by proving

lq ≤ uq. However, for every q1, . . . , qs ∈ Q it holds that

lP1
q1 + · · ·+ lPs

qs + Tσ(q1, . . . , qs, q) ≤ uP1
q1 + · · ·+ uPs

qr + t · Tσ(q1, . . . , qs, q)

by the induction assumption and the fact that t ≥ 1, which concludes the proof of this

inequality.

Next we prove the ⋆-inequalities. The proof is done by structural induction on ξ. We

assume that ξ = σ(ξ1, . . . , ξs). By the induction assumption, the claimed inequalities

hold for ξi for every i ∈ [s]. Moreover, let Pi ∈ Q′ be the (unique) state such that there

exists a run
ξi|θA ′ (ξi)
−−−−−→ Pi for every i ∈ [s]. Since A ′ is deterministic, it holds that

θA ′(ξ) =
(s∑

i=1

θA ′
i
(ξi)

)
+ T ′

σ(P1, . . . , Ps, P). (4.4)

We define the weight

c = min{uP1
q1 + · · ·+ uPs

qs + t · Tσ(q1, . . . , qs, q) | q, q1, . . . , qs ∈ Q}.

Since T ′
σ(P1, . . . , Ps, P) <∞, it must hold that Tσ(P1, . . . , Ps) = (T ′

σ(P1, . . . , Ps, P), P).

Moreover, from Definition 4.8 we obtain that c = proj1(Tσ(P1, . . . , Ps)), which yields

c = T ′
σ(P1, . . . , Ps, P). In total, we obtain the following inequality chain for every q ∈ Q.

θA (ξ, q)− θA ′(ξ)

⋆1=min{
(s∑

i=1

θA (ξi, qi)
)
+ Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − θA ′(ξ)

⋆2=min{
(s∑

i=1

θA (ξi, qi)
)
+ Tσ(q1, . . . , qs, q)−

s∑
i=1

θA ′(ξi) | q1, . . . , qs ∈ Q} − c

⋆3=min{
(s∑

i=1

(
θA (ξi, qi)− θA ′(ξi)

))
+ Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − c

⋆4
≤min{lP1

q1 + · · ·+ lPs
qs + Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − c

⋆5
≤ lPq

139

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

Equality ⋆1 uses Lemma 4.14. Equality ⋆2 first uses Equation (4.4) and then pulls

the term
∑s

i=1 θA ′(ξi) inside the minimum. Equality ⋆3 simply rearranges the weights.

Inequality ⋆4 applies the induction hypothesis. Inequality ⋆5 follows from Definition 4.8.

Similarly to ⋆1, . . . , ⋆5, we can prove the following inequality chain for every q ∈ Q.

uPq ≤ min{uP1
q1 + · · ·+ uPs

qs + t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − c

≤ min{
(s∑

i=1

(
t · θA (ξi, qi)− θA ′(ξi)

))
+ t · Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − c

= min{t ·
((s∑

i=1

θA (ξi, qi)
)
+ Tσ(q1, . . . , qs, q)

)
−

s∑
i=1

θA ′(ξi) | q1, . . . , qs ∈ Q} − c

= t ·min{
(s∑

i=1

θA (ξi, qi)
)
+ Tσ(q1, . . . , qs, q) | q1, . . . , qs ∈ Q} − θA ′(ξ)

= t · θA (ξ, q)− θA ′(ξ)

This concludes the proof of Equation (4.3).

If there exists a discovering run
ξ|θA ′ (ξ)
−−−→ P , then inequality ⋆5 holds as an equality,

since P is not refined by a state P ′ ∈ Qdepth(P)−1 and is hence defined by Equation (4.2).

In this case, inequality ⋆4 also holds as an equality by the induction assumption, as

the unique run
ξi|xi

−−−→ Pi such that xi <∞ is a discovering run for every i ∈ [s]. These

arguments analogously apply to the inequalities regarding uPq . This concludes the proof

of the lemma.

The following theorem proves the partial correctness of our approximate determin-

isation construction (Definitions 4.8 and 4.9) and follows from Lemma 4.20 and the

definition of final′.

Theorem 4.21. If A ′ = An for some n ∈ N, then A ′ is a deterministic finite WTA

that t-approximates A . In this case, A is in particular t-determinisable.

Proof. From Corollary 4.17 we obtain that A ′ is a deterministic finite WTA. It remains

to show that A ′ t-approximates A , that is, we need to prove

[[A]](ξ) ≤ [[A ′]](ξ) ≤ t · [[A]](ξ) (4.5)

for every ξ ∈ TΣ .

140

4.4 The Approximated Twinning Property

Let ξ ∈ TΣ . If θA ′(ξ) = ∞, then [[A]](ξ) = ∞ by Lemma 4.19, which proves

Equation (4.5). Now assume that θA ′(ξ) ̸=∞. Since A ′ is deterministic, there exists a

unique run
ξ|θA ′ (ξ)
−−−→ P of A ′ on ξ, where P ∈ Q′. Moreover, [[A ′]](ξ) = θA ′(ξ)+final′(P).

Therefore, after subtracting θA ′(ξ) from all sides of Equation (4.5) and using the fact

that [[A]](ξ) = minq∈Q
(
θA (ξ, q) + final(q)

)
, we only need to show that

min
q∈Q

(
θA (ξ, q) + final(q)

)
− θA ′(ξ)

⋆1
≤ final′(P)

⋆2
≤ t ·min

q∈Q

(
θA (ξ, q) + final(q)

)
− θA ′(ξ).

It holds that final′(P)
⋄
= minq∈Q(u

P
q +t ·final(q)) by definition. We can use Lemma 4.20

to estimate every uPq in Equality ⋄ from below and above, which yields the inequalities

min
q∈Q

(
θA (ξ, q) + t · final(q)

)
− θA ′(ξ)

⋆3
≤ final′(P)

⋆4
≤ min

q∈Q

(
t · θA (ξ, q) + t · final(q)

)
− θA ′(ξ).

Inequality ⋆4 is equivalent to ⋆2 and since t ≥ 1, Inequality ⋆3 implies Inequality ⋆1.

This concludes the proof.

4.4 The Approximated Twinning Property

We start this chapter by defining the so-called t-twinning property for weighted tree

automata, which is a natural extension of both, the word case [4] and the tree case with-

out approximation (that is, t = 1) [14]. We then prove that the t-twinning property is a

sufficient condition for the finiteness of our approximated determinisation construction.

Throughout the rest of Chapter 4.4, if not stated differently, we assume

A = (Q,T, final) to be a finite WTA and t ∈ R to be a real number such

that t ≥ 1.

Definition 4.22. For every p, q ∈ Q we say that p and q are siblings if there exists

a tree ξ ∈ TΣ and non-vanishing runs ρ1 ∈ RunsA (ξ, p) and ρ2 ∈ RunsA (ξ, q). Let p

and q be siblings. We say that p and q are t-twins if for every ζ ∈ CΣ it holds that

θ(p, ζ, p) =∞, θ(q, ζ, q) =∞, or

1

t
· θ(q, ζ, q) ≤ θ(p, ζ, p) ≤ t · θ(q, ζ, q). (4.6)

141

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

We say that A has the t-twinning property if for all siblings p, q ∈ Q it holds that

p and q are t-twins. ◀

Example 4.23. We continue Example 4.2 by showing that A satisfies the 2-twinning

property but not the 1-twinning property. First, note that q1 and q1 are trivially siblings

and t-twins (analogously for q2 and q2). Moreover, q1 and q2 are siblings as there are

two runs ρ1 and ρ2 on ξ = α, where ρ1(ε) = q1 and ρ2(ε) = q2.

Let ζ ∈ CΣ . If ζ contains a β, then we have that θ(q2, ζ, q2) =∞. We now assume

that ζ does not contain a β. Let ρ be a non-vanishing run of A on ζ. One easily sees

that ρ either maps each position to q1 (in this case wt(ζ, ρ) = #posα(ζ)) or ρ maps

each position to q2 (in this case wt(ζ, ρ) = 2 ·#posα(ζ)). Since these are the only valid

runs of A on ζ, we obtain θ(q2, ζ, q2) = 2 · θ(q1, ζ, q1). This proves that A satisfies the

2-twinning property.

Moreover, A does not satisfy the 1-twinning property, as q1 and q2 are siblings but

for ζ = σ(α, x1) it holds that θ(q1, ζ, q1) = 1 ̸= 2 = θ(q2, ζ, q2). ◀

4.4.1 Implications for Approximated Determinisability

In order to show that the t-twinning property is a sufficient condition for the finiteness

of our approximate determinisation construction, we provide three supporting technical

remarks. We begin by defining a multiplication between factors d ∈ R∞ and partial

weighted tree automata whose states are in (R∞ × R∞)Q.

Remark 4.24. Let d ∈ R∞ such that d > 0. For every P : Q → R∞ × R∞ we define

d · P : Q→ R∞ ×R∞ by (d · P)(q) = d · P (q) for every q ∈ Q. Let B = (Q̂, T̂ , final) be

a partial WTA such that Q̂ ⊆ (R∞ × R∞)Q. We denote by d ·B the partial WTA

d ·B = (Q̂d, T̂d, finald),

where Q̂d = {d · P | P ∈ Q̂},

(T̂d)σ(P1, . . . , Ps) = d · T̂σ(d−1 · P1, . . . , d
−1 · Ps), and

finald(P) = d · final(d−1 · P)

142

4.4 The Approximated Twinning Property

for every s ≥ 0, σ ∈ Σ, and P1, . . . , Ps, P ∈ Q̂d. That is, d · B is the partial WTA

constructed from B by multiplying all transition weights and final weights by d and

renaming all states by multiplying all lower and upper residues by d.

A straightforward inductive proof shows that

(d ·A)n = d ·An for every n ∈ N, (4.7)

and hence also (d · A)′ = d · A ′. We briefly outline the proof of Equation (4.7).

The case n = 0 is trivial. Assume that Equation (4.7) holds for some n ∈ N. We

need to show that stepd·A ,t((d · A)n) = d · stepA ,t(An). Let s ≥ 0, σ ∈ Σ, and

P1, . . . , Ps ∈ Qn and let (c, P) = Tσ(P1, . . . , Ps) in the construction of stepA ,t(An) and

(c′, P ′) = Tσ(d ·P1, . . . , d ·Ps) in the construction of stepd·A ,t((d ·A)n). One can easily

verify that c′ = d · c and P ′ = d · P using Definition 4.8 and the induction assumption

(d ·A)n = d ·An. This also uses the fact that for two maps P1, P2 ∈ (R∞ × R∞)Q it

holds that P1 refines P2 if and only if d · P1 refines d · P2. Similarly, one sees that the

final weights of (d ·A)n+1 correspond to the final weights of d ·An+1. ◀

Next we show that every state of A ′ occurs at the root of a discovering run of A ′.

We will use this later to obtain tighter inequalities (than the ones holding for arbitrary

runs).

Remark 4.25. Let P ∈ Q′ be a state of A ′. There exists a tree ξ ∈ TΣ and a

discovering run ρ ∈ RunsA ′(ξ, P). This can be seen as follows. Let n = depth(P). We

proceed by induction on n. The induction base n = 0 trivially holds, since Q0 = ∅. Now

assume that n ≥ 1 such that the claim holds for every P ′ ∈ Qn−1. Since P ∈ Qn, there

exists s ≥ 0, σ ∈ Σ(s), P1, . . . , Ps ∈ Qn−1, and c ∈ R∞ such that (c, P) = Tσ(P1, . . . , Ps)

in the definition of stepA ,t(An). We know that P is not refined by some state in Qn−1,

because P ̸∈ Qn−1. In particular, the transition (P1, . . . , Ps, σ, c, P) is a discovering

transition. By assumption, there exist trees ξ1, . . . , ξs ∈ TΣ and for every i ∈ [s] there

exists a discovering run ρi ∈ RunsA (ξi, Pi). Therefore, the run ρ of A ′ on the tree

ξ = σ(ξ1, . . . , ξs), defined for every w ∈ pos(ξ) by

ρ(w) =

P if w = ε,

ρi(v) if w = iv for some i ∈ [s] and v ∈ N∗

143

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

x1

ξ : x1

ζ :

η :

ξ′ :

p, q

p, q

Figure 4.3: The identification of synchronised loops of two runs ρ1 and ρ2 on a context

tree ξ. The dashed line in ξ marks a path of height > #Q2 + 1. Somewhere along this

path, ξ can be decomposed into the three parts ζ, η, and ξ′ on the right, such that ρ1|η
and ρ2|η are loops (in the respective states p and q). Depending on ξ, the original variable

x1 might occur in ζ, η, or ξ′.

is a discovering run. ◀

In the following remark, we discuss some properties of loops in runs. This will come

in handy multiple times throughout the rest of Chapter 4.

Remark 4.26. Let ξ ∈ TΣ ∪ CΣ . In this remark, we consider ξ as an element of

TΣ∪{x1}, that is, we do not consider x1 as a variable, but rather as a symbol of the

underlying ranked alphabet. Then, for a context ζ ∈ CΣ∪{x1}, the variable occurrence

in ζ is distinguishable from any (other) occurrence of x1 in ζ.

For every run ρ ∈ RunsA (ξ) and every ζ, η ∈ CΣ∪{x1}, and ξ
′ ∈ TΣ∪{x1} such that

ζ[η[ξ′]] = ξ, we define the runs ρ|η ∈ RunsA (η) and ρ|ζ[ξ′] ∈ RunsA (ζ[ξ′]) where

ρ|η(w) = ρ(posvar(ζ)w)

for every w ∈ pos(η) and

ρ|ζ[ξ′](w) =

ρ(w) if w ∈ (pos(ζ) \ {posvar(ζ)}),

ρ(posvar(ζ)posvar(η)v) if w = posvar(ζ)v for some v ∈ N∗

for every w ∈ pos(ζ[ξ′]). We note that ρ|ζ[ξ′] is well-defined as the two given cases

cover pos(ζ[ξ′]). Moreover, it holds that if wt(ξ, ρ) = θ(ξ, ρ(ε)), then we also have

144

4.4 The Approximated Twinning Property

wt(η, ρ|η) = θ(η, ρ|η(ε)) and wt(ζ[ξ′], ρ|ζ[ξ′]) = θ(ζ[ξ′], ρ|ζ[ξ′](ε)). That is, if ρ is the

run with minimal weight on ξ, then ρ|ζ[ξ′] and ρ|η are the runs with minimal weights

on ζ[ξ′] and η, respectively. This fact follows from the commutativity of Trop, as

wt(ξ, ρ) = wt(ζ[ξ′], ρ|ζ[ξ′]) + wt(η, ρ|η).

Now let size(ξ) > maxrk(Σ)#Q2+1 and let ρ1, ρ2 ∈ RunsA (ξ) be two runs of A

on ξ. There exist ζ, η ∈ CΣ∪{x1} and ξ′ ∈ TΣ∪{x1} such that size(ξ) > size(η) > 1,

ζ[η[ξ′]] = ξ, and ρ1|η and ρ2|η are loops. This follows from the pigeonhole principle, as

height(ξ) ≥ #Q2+1 and the maximal number of different pairs of states (ρ1(w), ρ2(w))

is #Q2. If size(ξ) > maxrk(Σ)2·#Q2+1, then we can moreover ensure that η ∈ CΣ , that

is, any variable possibly occurring in ξ is not part of η. We depict the decomposition

of a context into the parts ζ, η, and ξ′ in Figure 4.3. ◀

Throughout the rest of Chapter 4.4.1, we assume that im(A) ⊆ Q∞.

We are now ready to prove that the t-twinning property is a sufficient condition for

the finiteness of our approximate determinisation construction (Theorem 4.27). The

proof is very similar to the proof of [4, Theorem 8]. Note that in [4, Theorem 8], t

is a rational number, whereas we allow for t to be a real number. We resolve this by

multiplying t and all weights occurring in A by 1
t .

Theorem 4.27. If A satisfies the t-twinning property, then A ′ = An for some n ∈ N.

Proof. We define d ∈ R as the least common multiple of the elements in the set{
b
∣∣∣ a, b ∈ N,

a

b
∈ im(A), and a and b are coprime

}
,

where two elements a, b ∈ N are coprime if 1 is the only common divisor of a and b

(cf. [78] for more details on least common multiples and coprimality). Furthermore we

define c = 1
t · d. We note that all weights of c ·A are in 1

t · N ∪ {∞} by the definition

of d. By Remark 4.24, the claim holds for c ·A (that is, (c ·A)′ = (c ·A)n for some

n ∈ N) if and only if it holds for A . Therefore, we henceforth assume that all weights

of A are in 1
t · N ∪ {∞}.

Assume that A satisfies the t-twinning property and A ′ ̸= An for every n ∈ N.

Hence, A ′ has infinitely many states. In particular, there exists an infinite sequence

145

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

π = (Pk | k ∈ N) of pairwise different states of A ′. Next, observe that there exist states

q̂, q̄ ∈ Q and a subsequence π′ = (Pik | k ∈ N) of π such that (i) (l
Pik
q̂ | k ∈ N) is a

sequence of elements in R that monotonically increases towards infinity for k →∞ and

(ii) u
Pik
q̄ = 0 for every k ∈ N. In fact, the very same property is proven in three steps

during the proof of [4, Theorem 8] (for rational t). Our argumentation differs merely

in the fact that all weights are multiplied by the factor 1
t from the argumentation

presented in [4] and hence we omit the proof of this property.

We define the value

x = max{wt(ξ, ρ̂)− t · wt(ξ, ρ̄) | ξ ∈ TΣ , height(ξ) ≤ #Q2,

ρ̂ ∈ RunsA (ξ, q̂), ρ̄ ∈ RunsA (ξ, q̄)}.

By Remark 4.25 it holds that for every k ∈ N, the state Pik is reachable by a discovering

run on some tree ξk ∈ TΣ . Therefore, by Lemma 4.20, it holds that

θA (ξk, q̂)− θA ′(ξk) = l
Pik
q̂ and t · θA (ξk, q̄)− θA ′(ξk) = u

Pik
q̄ (= 0)

for every k ∈ N. Subtracting the right equation from the left equation, we obtain

θA (ξk, q̂)− t · θA (ξk, q̄) = l
Pik
q̂

for every k ∈ N. Since (l
Pik
q̂ | k ∈ N) monotonically increases towards infinity, there

exists k ∈ N such that θA (ξk, q̂) − t · θA (ξk, q̄) > x. Therefore, by the definition of x

we know that height(ξk) > #Q2. The fact that l
Pik
q̂ ∈ R implies that θA (ξk, q̂) < ∞

and θA (ξk, q̄) < ∞ and therefore, there exist two runs ρ̂ ∈ RunsA (ξk, q̂) and ρ̄ ∈

RunsA (ξk, q̄) such that wt(ξk, ρ̂) = θA (ξk, q̂) and wt(ξk, ρ̄) = θA (ξk, q̄). By Remark 4.26

there exist contexts ζ ′, η ∈ CΣ and a tree ξ′ ∈ TΣ such that ξk = ζ ′[η[ξ′]], size(η) > 1,

and both ρ̂|η and ρ̄|η are loops on η. Moreover, since wt(ξk, ρ̂) = θA (ξk, q̂), we know

that wt(ξk, ρ̂) − wt(ζ ′[ξ′], ρ̂|ζ′[ξ′]) = θ(q̂, ζ, q̂) by Remark 4.26. Analogously, we have

wt(ξk, ρ̄) − wt(ζ ′[ξ′], ρ̄ζ′[ξ′]) = θ(q̄, ζ, q̄). Therefore, the fact that A satisfies the t-

twinning property implies that

wt(ξk, ρ̂)− wt(ζ ′[ξ′], ρ̂ζ′[ξ′]) = θ(q̂, ζ, q̂)

≤ t · θ(q̄, ζ, q̄) = t · (wt(ξk, ρ̄)− wt(ζ ′[ξ′], ρ̄ζ′[ξ′])). (4.8)

146

4.4 The Approximated Twinning Property

In total we obtain

wt(ζ ′[ξ′], ρ̂ζ′[ξ′])− t · wt(ζ ′[ξ′], ρ̄ζ′[ξ′])
⋆
≥ wt(ξ, ρ̂)− t · wt(ξ, ρ̄)

= θA (ξk, q̂)− t · θA (ξk, q̄) > x.

where inequality ⋆ is a rearranged version of Equation (4.8). We have thus found

the tree ζ[ξ′] with size(ζ[ξ′]) < size(ξk), yet still height(ζ[ξ′]) > #Q2. By repeatedly

removing loops from ρ̂ and ρ̄ in this manner, we can find a contradiction. This concludes

the proof of this theorem.

Corollary 4.28. If A satisfies the t-twinning property, then A is t-determinisable.

Proof. This follows immediately from Theorems 4.21 and 4.27.

Example 4.29. We continue Example 4.23. We have seen that for t = 2, it holds that

A2 = A1. For t = 1, one can show that An+1 ̸= An for every n ∈ N. That is, our

approximate determinisation construction yields a finite automaton for t = 2, but not

for t = 1. This was expected by Theorem 4.27, as A satisfies the 2-twinning property,

but not the 1-twinning property.

We now provide a short argumentation as to why An+1 ̸= An for every n ∈ N in the

case that t = 1. In Example 4.12, we calculated A2 = stepA ,t(A1) and generated the

successor state P ′ = {(q1, (2−2t, 0)), (q2, (4−2t, 2t))} by considering the input symbol σ

and the predecessor states P ′
1 and P

′
1. If t = 2, then P ′ is refined by P ′

1 and therefore not

added as a new state in Q2. For t = 1, however, P ′ is equal to {(q1, (0, 0)), (q2, (2, 2))}

and hence P ′ is not refined by any previously existing state. Therefore, P ′ is added

to the state space. Next, considering the input symbol σ and the predecessor states

P ′ and P ′, we obtain another unrefineable state, namely P ′′ = {(q1, (0, 0)), (q2, (4, 4))}.

One easily sees that the construction continues to generate every state of the form

{(q1, (0, 0)), (q2, (2k, 2k))} as a new state in Qk+1 and hence the sequence (An | n ∈ N)

does not stagnate after some n ∈ N. ◀

4.4.2 Decidability of the Twinning Property

In the following theorem, we prove the decidability of the t-twinning property. This is

due to the fact that if a WTA A does not satisfy the t-twinning property, then this

147

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

non-satisfaction is already witnessed by a small context tree.

Lemma 4.30. Let A = (Q,T, final) be a WTA and t ∈ R such that t ≥ 1.

If A does not satisfy the t-twinning property, then there exist siblings p, q ∈ Q and

a context ζ ∈ CΣ such that size(ζ) ≤ maxrk(Σ)2·#Q2+1 and

t · θ(q, ζ, q) < θ(p, ζ, p) <∞.

Proof. Assume that A does not satisfy the t-twinning property. Thus, there exist

siblings p, q ∈ Q and a context ζ ∈ CΣ such that

t · θ(q, ζ, q) < θ(p, ζ, p) <∞

(after swapping p and q, if necessary). Among all possible such ζ, we fix a context such

that size(ζ) is minimal. We assume that size(ζ) > maxrk(Σ)2·#Q2+1. In particular,

height(ζ) ≥ 2 ·#Q2 + 1.

Let ρ1 ∈ RunsA (p, ζ, p) and ρ2 ∈ RunsA (q, ζ, q) such that wt(ζ, ρ1) = θ(p, ζ, p) and

wt(ζ, ρ2) = θ(q, ζ, q). By Remark 4.26, there exist ζ ′, ζ ′′ ∈ CΣ∪{x1} and η ∈ CΣ such

that ζ = ζ ′[η[ζ ′′]], size(ζ) > size(η) > 1, and both ρ1 and ρ2 loop on η (in states q1 and

q2, respectively). It holds that θ(q1, η, q1) ≤ t · θ(q2, η, q2) since ζ is by assumption a

minimal witness of the non-satisfaction of the t-twinning property and size(η) < size(ζ).

We ultimately obtain

θ(p, ζ ′[ζ ′′], p)
⋆
= θ(p, ζ, p)− θ(q1, η, q1) > t · (θ(q, ζ, q)− θ(q2, η, q2))

⋆
= t · θ(q, ζ ′[ζ ′′], q),

where the ⋆-equations follow from Remark 4.26, as wt(ζ ′[ζ ′′], ρ1|ζ′[ζ′′]) = θ(p, ζ ′[ζ ′′], p)

and wt(η, ρ1|η) = θ(q1, η, q1), and analogously for ρ2. In particular, we have found a

smaller witness of the non-satisfaction of the t-twinning property than ζ, namely ζ ′[ζ ′′],

which is a contradiction. Hence, the assumption that size(ζ) > maxrk(Σ)2·#Q2+1 must

be dropped.

Theorem 4.31. The t-twinning property is decidable for every WTA A and t ≥ 1.

Proof. First, note that we can determine the set of siblings in Q by only considering

trees ξ ∈ TΣ such that size(ξ) ≤ maxrk(Σ)#Q2+1. This fact is proven analogously to

Lemma 4.30 by removing synchronised loops from runs on bigger input trees.

148

4.5 Conclusion

By Lemma 4.30, A does not satisfy the t-twinning property if and only if there is

a small witness to the non-satisfaction of the t-twinning property.

Hence, we can decide the t-twinning property by (1) determining the set of siblings

of Q, (2) calculating θ(p, ζ, p) for every state p ∈ Q and every context ζ ∈ CΣ such

that size(ζ) ≤ maxrk(Σ)2·#Q2+1, and (3) checking the t-twinning property only on the

values calculated in (2).

4.5 Conclusion

In this chapter, we generalised [4] from the word case to the tree case. First, we gave

a t-approximated determinisation construction by defining a sequence (An | n ∈ N)

of partial WTA for a given input automaton A and considering the limit A ′ of this

sequence. Next, we proved that A ′ is a deterministic WTA that t-approximates A ,

whenever A ′ = An for some n ∈ N. Then, we introduced the t-twinning property for

weighted tree automata and showed that the t-twinning property implies that A ′ = An

for some n ∈ N (under the assumption that all weights of A are in Q∞). We ultimately

showed that our t-twinning property is decidable.

This chapter is a rather compact excursion to approximated determinisation and

some research directions remain untouched. For example, recent work has shown that

the twinning property is equivalent to determinisability in some cases (e.g. [21]). It

would be worthwhile to determine whether in our case, the t-twinning property is nec-

essary for t-determinisability. Another interesting research direction is to introduce

approximated determinisation for general classes of semirings rather than only con-

sidering the tropical semiring. Moreover, it seems rather arbitrary to say x ∈ R is

approximated exactly by the values in the interval [x, t · x]. It would be interesting to

introduce more general notions of “approximation” and find sufficient conditions for

this general approximated determinisability.

149

4. APPROXIMATED DETERMINISATION OF WEIGHTED TREE
AUTOMATA

150

5

Kleene and Büchi Theorems for

Weighted Forest Languages over

M-Monoids

This chapter is a presentation of Dörband [27] with minor changes.

Throughout Chapter 5, we assume Σ to be a ranked alphabet.

5.1 Introduction

We have studied formal languages throughout the previous chapters via the general

model of weighted tree automata over semirings. From a more algebraic perspective,

one can study classes of formal languages through their closure properties under certain

operations. For example, the class of rational word languages is defined as the smallest

class containing the finite languages and that is closed under union, concatenation,

and Kleene star (cf. [81]). A third way of looking at formal languages is from the

logician’s point of view. One can study classes of formal languages through the logical

formulas that they satisfy. A prominent example of such a logic formalism is called

monadic second-order logic (or short: MSO-logic) and was introduced in [13]. The

formal languages represented by MSO-logic formulas are called MSO-definable.

151

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Since a long time, it is established that these different perspectives on formal lan-

guages are strongly related in the word case. The so-called Kleene Theorem [81] states

that the class of recognisable word languages equals the class of rational word lan-

guages. On the other hand, the so-called Büchi Theorem [13] states that the class of

recognisable word languages equals the class of MSO-definable word languages.

Over the years, many different generalisations of the Kleene and Büchi theorems

have been published, both, in the unweighted and the weighted setting. In this chapter,

we consider so-called weighted forest automata. For us, forests are tuples of trees and

weighted forest languages only consider forests containing a fixed number of trees. A

different approach to weighted forest languages is to consider forests with an arbitrary

amount of trees. This has been done by Mathissen in [87], where forests are called

hedges. Various other syntactic objects have been considered and Kleene and Büchi

theorems have been established. However, for our purposes, we will focus on the tree

and forest cases. We collect the relevant literature in the following table.

Trees Forests Hedges

Kleene
X

[107] (unweighted)

[38] (semirings)

[51] (M-monoids)

[70] (tv-monoids)

[104] (unweighted)

[26] (semirings)

this chapter (M-monoids)
X

Büchi
X

[107] (unweighted)

[40] (semirings)

[52] (M-monoids)

[33, 34] (tv-monoids)

X
X

this chapter (M-monoids)
X

X
[87] (semirings)

X
X

As weight structures, we consider so-called M-monoids. Up to some technicalities,

an M-monoid (short for “multioperator”-monoid) is a monoid (M,⊕, 0) together with

a family of operations Ω ⊆ Ops(M). A weighted tree automaton (short: WTA) over M

is a tuple A = (Q, init, T, final), which is defined similarly to weighted tree automata

over semirings, except that all weights are operations from Ω, rather than elements

of the underlying algebra. Moreover, init provides designated leaf weights for variable

positions, which weighted tree automata do not provide. The weight of a run of A on

a tree ξ is the composition of the assigned operations in the natural way and [[A]](ξ) is

an operation on M whose arity depends on the number of variables occurring in ξ. We

152

5.1 Introduction

have chosen this very general weighted automaton model in order to extend as many

of the existing results as possible.

There is an even more general class of weight structures, the so-called tree valuation

monoids (tv-monoids), over which weighted tree automata (WTA) have been consid-

ered. Also, Kleene-like and Büchi-like theorems have been proven for WTA over tree

valuation monoids [33, 34, 70]. We now briefly justify the fact that we only consider

M-monoids, rather than tv-monoids. In [106, Lemma 20], the authors have shown that

for each tv-monoid T, there is an M-monoid M, such that for each WTA A over T,

there is a WTA B over M, such that [[A]] = proj1([[B]]). Hence, the only theoret-

ical difference between recognisable weighted tree languages over T and recognisable

weighted tree languages over M is the application of a projection map. We believe that

this close connection between tv-monoids and M-monoids supports our choice to only

consider M-monoids.

Mathissen’s work [87] on weighted hedge automata is related to our weighted forest

automata model, but the two approaches cannot be compared directly. Two reasons are

the following. First of all, Mathissen considers unranked hedges, whereas we consider

forests over ranked trees. Moreover, the hedges in [87] can consist of an arbitrary

(finite) number of trees, whereas we consider forests with a fixed number of trees.

However, restricting [87] to ranked hedges with a fixed number of trees and restricting

our weighted forest automata to the case of semirings (see Remark 5.14) results in the

same class of recognisable languages.

We note that the restriction from “unranked” to “ranked” is only a technical differ-

ence in the semiring-weighted setting. In fact, it has been shown in [23] that weighted

(ranked) tree automata over semirings together with a so-called binarisation are equiv-

alent to weighted unranked tree automata over semirings.

We now briefly outline the rest of Chapter 5 and our main contributions. In Chap-

ter 5.2, we establish the necessary mathematical foundations. We define M-monoids and

some M-monoid properties, including absorptivity, distributivity, and (1,⋆)-composition

closure. Moreover, we define weighted tree automata over M-monoids. In Chapter 5.3,

we introduce (b, n)-forests for every b, n ∈ N as b-tuples of trees in TΣ(Xn). More-

over, we generalise the weighted tree automaton model from Chapter 5.2 to the case

153

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

of (b, n)-forests by simply allowing for b root distributions final1, . . . , finalb. In order to

define the language of such a weighted (b, n)-forest automaton, we assume that there

is a second operation on M, which distributes over the monoid operation and which is

contained in Ω. Naturally extending the tree case, the weight of a run on a (b, n)-forest

is a tuple of b operations on M, which we then multiply using the second operation on

M. This yields the class Rec(Σ,M, b, n) (and Recf(Σ,M, b, n)) of languages recognised

by weighted (b, n)-forest automata over M (with final states). As a central result, we

obtain that every φ ∈ Rec(Σ,M, b, n) can be decomposed into a product of b elements

φ1, . . . , φb ∈ Rec(Σ,M, 1, n). Here, “product” refers to the second operation on M

applied pointwise. In Chapters 5.4 and 5.5, we lift the Kleene-like result from [51]

and the Büchi-like result from [52] from the tree case to the forest case, respectively.

First, we define the class Rat(Σ,M, b, n) of rational weighted (b, n)-forest languages

over M. Then, we prove our Kleene-like theorem, Theorem 5.37, which generalises the

Kleene-like theorems from [26, 38, 51, 104, 107].

Theorem 5.37 (Kleene result for forests). If M is distributive, then

Rec(Σ,M, b, n) ⊆
⋃
k∈N

Rat(Σ,M, b, k)|TΣ(Xn).

If M is distributive, closed under sum, and (1,⋆)-composition closed, then

Rat(Σ,M, b, n) ⊆ Rec(Σ,M, b, n).

We note that the direction “Rec ⊆ Rat” does not preserve the number of vari-

ables n, which we discuss towards the end of Chapter 5.1. Next, we define the class

MDef(Σ,M, b) of languages defined by (b, 0)-forest M-expressions. Then, we prove

our Büchi-like theorem, Theorem 5.45, which generalises the Büchi-like theorems from

[40, 52, 107].

Theorem 5.45 (Büchi result for forests). Let M be absorptive. It holds that

Recf(Σ,M, b, 0) = MDef(Σ,M, b).

Our definitions of rational forest expressions and forest M-expressions are not in-

ductive, which is why we dedicate Chapter 5.4.3 to a discussion on why straightforward

inductive definitions fail. Lastly, we give some concluding remarks in Chapter 5.6.

154

5.2 Preliminaries

We close this introductory chapter by briefly elaborating the use of variables in

Chapter 5. We recall that our unified automaton model will be used to generalise both

a Kleene-like result [51] and a Büchi-like result [52]. Hence, our automaton model needs

to take into account the way that [51, 52] consider variables.

For the Kleene-like result variables are used during the analysis of an automaton.

Let A be a weighted tree automaton with state space Q and denote k = #Q. We

consider Xk, where each state of Q corresponds to a variable in Xk. In order to

construct a rational expression generating the language [[A]], one decomposes [[A]] into

“easier” intermediate languages, using the variables from Xk. More specifically, a state

q ∈ Q is chosen and one only considers runs of A that can use q only at the root of a

tree and at leaves labelled by the variable corresponding to q. This restriction of runs

is repeated until all states in Q are processed. Thus, our automaton model needs to

be capable of handling variables in trees. As a side product, one can consider trees

that already contain variables from Xn for some n and simply shift the index of the

variables in Xk by n.

For the Büchi-like result, no variables are used [52, 87]. In order to have a unified

automaton model, we disallow variables by requiring n = 0 for our Büchi-like result.

We note that, for our purposes, variables are merely a technical tool and do not

count towards qualitative properties of trees and forests (like the size, height, etc.).

5.2 Preliminaries

M-Monoids A unit-less semiring is an algebra (S,⊕,⊙, 0) satisfying the same prop-

erties as a semiring, except there need not be a unit element with respect to ⊙.

Let (M,⊕, 0) be a commutative monoid and ω ∈ Opsk(M) for some k ≥ 0. We

say that ω is distributive (with respect to (M,⊕, 0)) if for every i ∈ [k], m,m′ ∈ M,

m ∈Mi−1, and m′ ∈Mk−i it holds that

ω(m,m⊕m′,m′) = ω(m,m,m′)⊕ ω(m,m′,m′) and (5.1)

ω(m, 0,m′) = 0. (5.2)

We call (5.1) the distributivity law and (5.2) the annihilation law. If Equation (5.2) is

satisfied (but not necessarily Equation (5.1)), then we say that ω is absorptive.

155

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

A multioperator monoid (or short: M-monoid) is a tuple (M,⊕, 0, ΩM), where

(M,⊕, 0) is a commutative monoid (also called underlying monoid) and ΩM ⊆ Ops(M)

such that idM ∈ ΩM and 0(k) ∈ Ω
(k)
M for every k ≥ 0, where 0(k) ∈ Opsk(M) is the

constant map to 0.

An M-monoid is called

• distributive if every ω ∈ ΩM is distributive with respect to (M,⊕, 0) and

• absorptive if every ω ∈ ΩM is absorptive with respect to (M,⊕, 0).

Whenever the context is clear, we refer to an M-monoid (M,⊕, 0, ΩM) by the set M.

It is an easy fact that to every semiring S one can naturally associate an M-monoid,

denoted M(S). The operations of M(S) are simply finite multiplications in S. Formally,

for every k ≥ 0 we define the k-ary operation Πk : S
k → S on S by Πk(s1, . . . , sk) =

s1 ⊙ · · · ⊙ sk for every s1, . . . , sk ∈ S. We note that Π1 = idM and moreover, since S is

a semiring, Πk is distributive with respect to (S,⊕, 0). Now, the M-monoid induced by

S is M(S) = (S,⊕, 0, Ω), where Ω = {Πk, 0
(k) | k ≥ 0}. For an alternative M-monoid

which can be naturally associated to S, confer [51, Lemma 8.6.].

Given an M-monoid (M,⊕, 0, ΩM), we say that M contains a semiring if there exists

a unit-less semiring with ground set M such that ΩM ⊇ (Πk | k ≥ 0).

Throughout the rest of Chapter 5, if M is left unspecified, then it stands for

an arbitrary M-monoid.

A (Σ,M)-weighted tree language is a map φ : TΣ →M. We make the same conven-

tions as in the semiring-weighted case (see Chapter 2.2).

Let n ∈ N. A tree valuation over Σ, M, and n is a map φ : TΣ(Xn)→ Ops(M). If

for every ξ ∈ TΣ(Xn) the arity of φ(ξ) equals the |ξ|Xn , then we call φ uniform. We

denote the set of all uniform tree valuations over Σ,M, and n by Uvals(Σ,M, n). We

note that Uvals(Σ,M, 0) ∼= MTΣ (as sets).

For every ξ ∈ TΣ(Xn) and ω ∈ Ops|ξ|Xn (M) we define the uniform tree valuation

ω.ξ : TΣ → Ops(M) by

ω.ξ(ζ) =

ω if ζ = ξ and

0 otherwise

156

5.2 Preliminaries

for every ζ ∈ TΣ .

Let k ∈ N and ω1, ω2 ∈ Opsk(M). We define the sum of ω1 and ω2 as the k-ary

operation ω1 ⊕ ω2 on M given for every m ∈Mk by

(ω1 ⊕ ω2)(m) = ω1(m)⊕ ω2(m).

Now let ω ∈ Opsk(M), l1, . . . , lk ∈ N, and ω1 ∈ Opsl1(M), . . . , ωk ∈ Opslk(M). We de-

fine the composition of ω with (ω1, . . . , ωk) as the
(∑k

j=1 lj
)
-ary operation ω(ω1, . . . , ωk)

given for every m1 ∈Ml1 , . . . ,mk ∈Mlk by

ω(ω1, . . . , ωk)(m1, . . . ,mk) = ω(ω1(m1), . . . , ωk(mk)).

This definition naturally extends to the case where ω ∈
(
Opsk(M)

)ℓ
for some ℓ ≥ 1,

that is, ω is a tuple of operations. More precisely, given ω = (ω1, . . . , ωℓ), we define

ω(ω1, . . . , ωk) = (ω1(ω1, . . . , ωk), . . . , ω
ℓ(ω1, . . . , ωk)).

Example 5.1. Consider the set M = P(N∗) and the set

Ω = {idM} ∪ {ωs, ∅(s) | s ≥ 0}

of operations on M, where for every s ≥ 0 and P1, . . . , Ps ∈M we define

ωs(P1, . . . , Ps) =

∅ if Pi = ∅ for some i ∈ [s]

{ε} ∪
⋃

i∈[s] i · Pi otherwise.

The algebra (M,∪, ∅, Ω) is certainly an M-monoid. Note that we have forced the anni-

hilation law in the definition of the ωs. Moreover, one can check that the distributivity

law holds for the ωs and hence M is a distributive M-monoid. ◀

Logics In preparation for our Büchi Theorem, we briefly recall unweighted MSO-logic

for trees in this chapter. Most of the definitions are taken from [52, pages 246–247].

In our MSO-logic, we use first-order variables (denoted by lowercase symbols, like

x, y, z, . . .) and second-order variables (denoted by uppercase symbols, like X,Y, Z, . . .).

We will also use the concept of extended Backus-Naur forms [1] (short: EBNF) in order

to compactly define logic formalisms.

157

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

We define the set MSO(Σ) of MSO-logic formulas over Σ by the following EBNF

with nonterminal ϕ.

ϕ = labelσ(x) | edgei(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ,

where i ∈ [maxrk(Σ)], σ ∈ Σ, x and y are first-order variables, and X is a second-order

variable. The set of free variables of a formula ϕ ∈ MSO(Σ) is defined as usual and

denoted by Free(ϕ) (cf. [105, Chapter II.2]).

Let V be a finite set of first-order and second-order variables. We define the ranked

alphabet ΣV by Σ
(s)
V = Σ(s) × P(V) for every s ≥ 0. We note that Σ∅ ∼= Σ as sets. A

tree ξ in TΣV
is called valid if every first-order variable x ∈ V occurs at exactly one

position in ξ. The set of valid trees in TΣV
is denoted Tv

ΣV
. For every ξ ∈ Tv

ΣV
and

ϕ ∈ MSO(Σ), we define the relation “ξ satisfies ϕ” as usual (cf. [105, Chapter II.2])

and denote it by ξ |= ϕ. Moreover, we define the set LV(ϕ) = {ξ ∈ Tv
ΣV
| ξ |= ϕ} and

abbreviate L(ϕ) = LFree(ϕ)(ϕ).

In order to be able to manipulate valid trees ξ ∈ Tv
ΣV

, we introduce the following

notations. For every first-order variable x and position w ∈ pos(ξ), we denote by

ξ[x 7→ w] the valid tree obtained from ξ by moving the unique occurrence of x to

the position w. Analogously for every second-order variable X and set of positions

W ⊆ pos(ξ), we denote by ξ[X 7→ W] the valid tree obtained from ξ by assigning X

exactly to the positions in W and removing it from the remaining positions.

For every ranked alphabet ∆, we define a ∆-family of operations in M as a family

ω = (ωσ | σ ∈ ∆), where ωσ ∈ Ω
(rk(σ))
M for every σ ∈ ∆. Given a ∆-family ω of

operations in M, we define the map hω : T∆ → M inductively for every ξ ∈ T∆ as

follows. We assume that ξ = σ(ξ1, . . . , ξs) and let

hω(ξ) = ωσ(hω(ξ1), . . . , hω(ξs)).

The experienced reader might observe that hω is the unique homomorphism from the

initial ∆-algebra T∆ to the ∆-algebra (M, ω).

Another technical tool we will use is the extension of index sets of families of opera-

tions. Let U and V be finite sets of variables satisfying U ⊆ V and let ω be a ΣU-family

of operations in M. We define ω[U ∼∼∼▷V] as the ΣV-family of operations in M defined

for every σ ∈ Σ and V ⊆ V by ω[U ∼∼∼▷ V](σ,V) = ω(σ,U∩V).

158

5.2 Preliminaries

Weighted Tree Automata We now recall the concept of weighted tree automata

over M-monoids [51, Definition 3.5.], [52, Section 2.6]. Note that the cited definitions

differ in two regards and our definition will unify these differences. This allows us

to provide both, a Kleene-like result and a Büchi-like result for the same automaton

model. A general survey on weighted tree automata has been done in [36, Chapter 9].

On the one hand, [51] makes use of a finite set Z, which represents variables. The

semantics of an automaton is then a uniform tree valuation over Σ,#Z, and M. We

replace this use of a finite set Z by just the number #Z. This adaptation is purely

syntactical and does not affect any results. However, it is consistent with the notation

in [26]. In [52], variables do not occur in the automaton model, which amounts to the

special case where #Z = 0.

On the other hand, the semantics of weighted tree automata differ in [51] and [52].

Given an automaton A with state set Q, [51] defines the semantics of A pointwise via

[[A]](ξ) =
⊕
q∈Q

finalq(
⊕

run ρ s.th.
ρ(ε)=q

wtA (ξ, ρ)),

whereas [52] defines the semantics of A pointwise via

[[A]](ξ) =
⊕
ρ run

finalρ(ε)(wtA (ξ, ρ)).

These semantics of A are not equal in general but they coincide if the M-monoid M is

distributive [51, Observation 3.9.]. Fortunately, the distributivity of M is assumed in

[51] for the proof of the Kleene result. Therefore, we can safely use the semantics of

weighted tree automata introduced in [52] without diverging from [51].

We arrive at the following unified weighted tree automata model over M-monoids.

Let n ∈ N. An M-weighted tree automaton over Σ, M, and Xn (short: (Σ,M, n)-

MWTA) is a tuple A = (Q, init, T, final), where

• Q is a finite and non-empty set of states,

• init : Xn ×Q→ Ω
(1)
M is the variable assignment,

• T = (Tσ : Q
s ×Q→ Ω

(s)
M | s ≥ 0, σ ∈ Σ(s)) is a family of transition weight maps,

• final : Q→ Ω
(1)
M is the final weight map.

159

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

For every i ∈ [n], we abbreviate the map init(xi,) : Q → Ω
(1)
M by initi. Moreover, we

abbreviate final(q) by finalq for every q ∈ Q. If Σ and M are clear from the context,

then we write n-MWTA rather than (Σ,M, n)-MWTA.

Let A = (Q, init, T, final) be an n-MWTA. Moreover, let ξ ∈ TΣ(Xn) and q ∈ Q.

The set of all runs of A on ξ ending in q, denoted RunsA (ξ, q), is the set

{ρ ∈ TΣ×Q(Xn ×Q) | proj2(ρ(ε)) = q, pos(ρ) = pos(ξ), and

proj1(ρ(w)) = ξ(w) for every w ∈ pos(ξ)}.

We denote the sets RunsA (ξ) =
⋃

q∈QRunsA (ξ, q) and RunsA =
⋃

ξ∈TΣ
RunsA (ξ).

We note that RunsA = TΣ×Q(Xn ×Q).

Furthermore, we define the map wtA : RunsA → Ops(M) by induction as follows.

Let ρ ∈ RunsA . If ρ = (xi, q) for some i ∈ [n] and q ∈ Q, then we define

wtA (ρ) = initi(q).

Otherwise, we assume that ρ = (σ, q)(ρ1, . . . , ρs) and define

wtA (ρ) = Tσ(proj2(ρ1(ε)), . . . , proj2(ρk(ε)), q)
(
wtA (ρ1), . . . ,wtA (ρs)

)
,

which is a composition of operations on M as introduced in Chapter 5.2.

The uniform tree valuation recognised by A is the map [[A]] ∈ Uvals(Σ,M, n) given

for every ξ ∈ TΣ(Xn) by

[[A]](ξ) =
⊕

ρ∈RunsA (ξ)

finalproj2(ρ(ε))(wtA (ρ)).

We say that A is an MWTA with final states if im(final) ⊆ {idM, 0}.

Let φ ∈ Uvals(Σ,M, n). We call φ M-recognisable if there exists an n-MWTA A ,

such that [[A]] = φ. The class of all recognisable uniform tree valuations over Σ, M,

and n is denoted Rec(Σ,M, n). We call φ M-recognisable with final states if there exists

an n-MWTA with final states, denoted A , such that [[A]] = φ. The class of all uniform

tree valuations over Σ, M, and n that are recognisable with final states is denoted

Recf(Σ,M, n). We abbreviate Recf(Σ,M) = Recf(Σ,M, 0).

160

5.2 Preliminaries

Example 5.2. Recall the M-monoid M = (P(N∗),∪, ∅, Ω) from Example 5.1 and con-

sider the ranked alphabet Σ = {σ(2), γ(1), β(0), α(0)}. We define an 0-MWTA over Σ

and M that calculates the set of positions of an input tree.

We define A = (Q, ∅, T, final), where Q = {q}, final = (q 7→ idM), and for every

s ≥ 0 and τ ∈ Σ(s) we have Tτ (q, . . . , q, q) = ωs. We note that A is a 0-MWTA with

final states. For every tree ξ ∈ TΣ there exists a unique run ρ of A on ξ, namely the one

labeling every position with the state q. Therefore [[A]](ξ) = finalq(wtA (ρ)) = wtA (ρ).

By induction on ξ, we easily obtain wtA (ρ) = pos(ξ) and hence [[A]](ξ) = pos(ξ). We

note that in this case, pos(ξ) is considered as a 0-ary operation on M.

We can also construct a finite WTA B over Σ and the semiring (P(N∗),∪, ·, ∅, {ε})

such that [[B]] = [[A]]. Namely, B has two states, an “active” state x and a “passive”

state o. Moreover, the transition maps are chosen such that the non-vanishing runs of

B correspond bijectively to the positions of ξ and if a run ρ corresponds to w ∈ pos(ξ),

then wtB(ξ, ρ) = {w}. However, the automaton B has less desirable properties than

A . For example, A is deterministic, whereas the number of valid runs of B on a tree

ξ equals size(ξ). This demonstrates the advantage of introducing the more technical

M-monoids instead of only considering semirings. ◀

We note that, for every n ∈ N, the M-weighted tree automaton model presented in

this chapter is equivalent to the weighted tree automaton model from [51, Definition

3.5.], given that M is distributive. In this case, for every set Z such that #Z = n, our

class Rec(Σ,M, n) equals the class Rec(Σ,Z,M) defined in [51, Definition 3.8.].

In the case that n = 0, our automaton model degenerates as follows. The variable

assignment becomes irrelevant, uniform tree valuations are simply weighted languages

(Uvals(Σ,M, 0) = MTΣ), and the weight of a run ρ, wtA (ρ), is an element of M.

Therefore, our 0-MWTA with final states coincide with the weighted tree automaton

model from [52, Section 2.6]. In particular, our class Recf(Σ,M) equals the class

Rec(Σ,M) defined in [52, Section 2.6].

Moreover, the semiring-weighted tree automaton model from Chapter 2.3 is a special

case of our M-weighted tree automaton model. More precisely, given a semiring S, the

two classes Rec(Σ,S) and Rec(Σ,M(S), 0) coincide up to identification of STΣ and

Uvals(Σ,M(S), 0).

161

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Using our unified M-weighted tree automaton model, we can state both Kleene’s

Theorem [51] and Büchi’s Theorem [52] in a single setting.

5.3 Weighted Forest Automata

In this chapter, we formally introduce forests and weighted forest automata. As we

will see in Theorems 5.21 and 5.22, this formalism recognises a class of languages

which is very close to the class of languages recognised by weighted tree automata.

This connection is called “rectangularity” and will be a dominant force in proving the

Kleene and Büchi results for weighted forest automata.

5.3.1 Forests

Definition 5.3. Let b, n ∈ N. We define the set

F(Σ)bn = {n} × TΣ(Xn)
b

of (b, n)-forests over Σ. The set of all forests over Σ is then defined as

F(Σ) =
⋃

b′,n′∈N
F(Σ)b

′
n′ .

We also abbreviate the set F(Σ)b =
⋃

n′∈N F(Σ)bn′ .

Moreover, we will denote forests using angle brackets, to aid readability of examples.

In our notation, the lowercase greek letter ξ will be used to denote trees and the

uppercase greek letter Ξ will be used to denote forests1. ◀

Throughout the rest of Chapter 5, given parameters b, n ∈ N, we write “Let

Ξ = ⟨n, ξ1, . . . , ξb⟩ ∈ F(Σ)bn” as an abbreviation for “Let Ξ ∈ F(Σ)bn and

ξ1, . . . , ξb ∈ TΣ(Xn) such that Ξ = ⟨n, ξ1, . . . , ξb⟩”.

Remark 5.4. We note that the sets in (F(Σ)bn | b, n ∈ N) are pairwise disjoint. This

is an immediate consequence of the definition, as forests with different numbers of

variables have different first components and forests with different numbers of trees

have different tuple sizes.

1Because, convincingly enough, forests are the “big version” of trees.

162

5.3 Weighted Forest Automata

Moreover, we note that F(Σ)1n
∼= TΣ(Xn) as sets. This fact is clearly witnessed by

the bijection f : F(Σ)1n → TΣ(Xn) given by f(⟨n, ξ⟩) = ξ. ◀

Definition 5.5. Let b, n ∈ N and Ξ = ⟨n, ξ1, . . . , ξb⟩ ∈ F(Σ)bn. For every i ∈ [b] we

define πbi (Ξ) = ⟨n, ξi⟩. Note that this induces maps πb1, . . . , π
b
b : F(Σ)bn → F(Σ)1n.

Furthermore, we define the maps

pos : F(Σ)bn −→ P(N× N∗),

size : F(Σ)bn −→ N,

height : F(Σ)bn −→ N,

given for every Ξ = ⟨n, ξ1, . . . , ξb⟩ ∈ F(Σ)bn by

pos(Ξ) =
b⋃

i=1

{i} × pos(ξi),

size(Ξ) =
∑
i∈[b]

size(ξi),

height(Ξ) = max{height(ξi) | i ∈ [b]}.

We use the same abbreviations as in the tree case, like pos∆(Ξ) and |Ξ|∆ for a subset

∆ ⊆ Σ ∪Xn and leaf(Ξ) for the set posΣ(0)(Ξ). Moreover, for every (i, w) ∈ pos(Ξ)

we define the label of Ξ at (i, w), denoted by Ξ((i, w)), as ξi(w). ◀

Definition 5.6. Let b, n ∈ N. A (Σ,M)-weighted (b, n)-forest language is a map

φ : F(Σ)bn →M. We drop the parameter (Σ,M) whenever it is clear from the context.

A (b, n)-forest valuation over Σ and M is a map φ : F(Σ)bn → Ops(M). If for

every Ξ ∈ F(Σ)bn the arity of φ(Ξ) equals |Ξ|Xn , we call φ uniform. The set of all

uniform (b, n)-forest valuations over Σ and M is denoted Uvals(Σ,M, b, n). We note

that Uvals(Σ,M, b, 0) ∼= MF(Σ)b0 and Uvals(Σ,M, 1, n) ∼= Uvals(Σ,M, n). ◀

5.3.2 Weighted Forest Automata

Subsequently, we will consider weighted forest languages and forest valuations generated

by weighted forest automata. In order to do this, we fix the values b and n for the forests

we are interested in. We note, however, that our automaton model will be capable of

163

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

processing forests with arbitrary ranks. In fact, the choice of b and n only restricts the

language of an automaton to be a uniform (b, n)-forest valuation.

Throughout the rest of Chapter 5, we let b and n be arbitrary elements of

N. Moreover, we assume that M contains a semiring1.

Definition 5.7. A weighted (b, n)-forest automaton over Σ and M (short: (b, n)-WFA)

is a tuple A = (Q, init, T, final), where

• Q is a finite and non-empty set of states,

• init : Xn ×Q→ Ω
(1)
M is the variable assignment,

• T = (Tσ : Q
s ×Q→ Ω

(s)
M | s ≥ 0, σ ∈ Σ(s)) is a family of transition weight maps,

• final : [b]×Q→ Ω
(1)
M is the final weight map.

For every i ∈ [n] and j ∈ [b], we abbreviate the map init(xi,) : Q→ Ω
(1)
M by initi and

the map final(j,) : Q→ Ω
(1)
M by finalj . Furthermore, we fix the map F : Qb → (Ω

(b)
M)b

such that for every (q1, . . . , qb) ∈ Qb we have

F(q1, . . . , qb) = (final1(q1) ◦ proj1, . . . , finalb(qb) ◦ projb). ◀

In the upcoming Definition 5.8, we define a family (EA
k,k′ | k, k′ ∈ N) of maps of the

form EA
k,k′ : F(Σ)k

′
k ×Qk′ → Ops(M)k

′
. Such a map EA

k,k′ takes as input a (k′, k)-forest

Ξ and k′ states q1, . . . , qk′ ∈ Q (one for each root position of Ξ) and evaluates A on

Ξ, given the states q1, . . . , qk′ . This evaluation is done inductively on the structure

of Ξ. Variables are evaluated as 1-ary operations given by init, tuples are evaluated

component-wise, and Σ-positions w in trees are evaluated in an initial algebra fashion,

similar to [94]. In Definition 5.9, we use these evaluation maps in order to define the

uniform (b, n)-forest valuation i-recognised by A – where “i” stands for “initial”.

1Note that every M-monoid contains a semiring by default: multiplication is simply the constant

map to 0. However, our statement here is to encourage the use of arbitrary multiplication operations.

We compare our approach to an approach that does not require M to contain a semiring in Remark

5.27.

164

5.3 Weighted Forest Automata

Definition 5.8. Let A = (Q, init, T, final) be a (b, n)-WFA over Σ and M. We lift the

transition weight maps to forests as follows. Let k ∈ N. We define

EA
k,0 : F(Σ)0k ×Q0 → Ops(M)0

as the constant map to the empty tuple (). Moreover we define the family of maps(
EA

k,k′ : F(Σ)k
′

k ×Qk′ → Ops(M)k
′ | k, k′ ∈ N

)
by simultaneous induction.

The case k′ = 1 is given for any q ∈ Q and ⟨k, ξ⟩ ∈ F(Σ)1k inductively on the

structure of ξ. If ξ = xi for some i ∈ [k], then we define

EA
k,1(⟨k, ξ⟩, q) = initi(q).

Otherwise, we assume that ξ = σ(ξ1, . . . , ξs) and define

EA
k,1(⟨k, ξ⟩, q) =

⊕
p1,...,ps∈Q

Tσ(p1, . . . , ps, q)
(
EA

k,s(⟨k, ξ1, . . . , ξs⟩, (p1, . . . , ps))
)
.

The case k′ > 1 is given for every q1, . . . , qk′ ∈ Q and Ξ = ⟨k, ξ1, . . . , ξk′⟩ ∈ T (Σ)k
′

k by

EA
k,k′(Ξ, (q1, . . . , qk′)) =

(
EA

k,1(⟨k, ξ1⟩, q1), . . . , EA
k,1(⟨k, ξk′⟩, qk′)

)
.

We will subsequently omit the brackets from the second parameter of EA
k,k′ . ◀

Definition 5.9. Let A = (Q, init, T, final) be a (b, n)-WFA over Σ and M. The

uniform (b, n)-forest valuation i-recognised by A is the map [[A]]i ∈ Uvals(Σ,M, b, n)

given for every Ξ ∈ F(Σ)bn by

[[A]]i(Ξ) =
⊕
q∈Qb

Πb

(
Fq

(
EA

n,b(Ξ, q)
))
.

Let φ ∈ Uvals(Σ,M, b, n). We call φ i-recognisable if there exists a (b, n)-WFA A

over Σ and M, such that [[A]]i = φ. The class of all i-recognisable uniform (b, n)-forest

valuations over Σ and M is denoted Reci(Σ,M, b, n). ◀

In the upcoming Definition 5.10, we define runs of weighted forest automata A and

weights of such runs. Given a forest Ξ, a run ρ of A on Ξ associates to every position

165

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

of Ξ a state of A . The transition weight maps in T and the variable assignment init

induce for every w ∈ pos(Ξ) a local weight of ρ at w. The overall weight of ρ is the

composition of the local weights of ρ in the way that the structure of Ξ induces. This

leads to the definition of the uniform (b, n)-forest valuation r-recognised by A – where

“r” stands for “run”. This semantic of A is similar to the run semantics from [51, 94]

Definition 5.10. Let A = (Q, init, T, final) be a (b, n)-WFA over Σ and M, k, k′ ∈ N,

Ξ ∈ F(Σ)k
′

k , and q1, . . . , qk′ ∈ Q. A run of A on Ξ ending in q = (q1, . . . , qk′) is a map

ρ : pos(Ξ) −→ Q such that

ρ(j, ε) = qj

for every j ∈ [k′].

The set of runs of A on Ξ ending in q is denoted by RunsA (Ξ, q). Moreover we

denote RunsA (Ξ) =
⋃

q′∈Qk′ RunsA (Ξ, q′).

Let ρ be a run of A on Ξ ending in q. For every w = (i, u) ∈ pos(Ξ) we define the

weight of w in Ξ under ρ as the operation wtA (Ξ, ρ, w) ∈ Ops(M) given as follows. If

Ξ(w) = xi for some i ∈ [k′], then we define

wtA (Ξ, ρ, w) = initi(ρ(w)),

and if Ξ(w) = σ for some s ≥ 0 and σ ∈ Σ(s), then we define

wtA (Ξ, ρ, w) = Tσ
(
ρ(i, u1), . . . , ρ(i, us), ρ(i, u)

)(
ω1, . . . , ωs

)
,

where ωℓ = wtA (Ξ, ρ, (i, uℓ)) for every ℓ ∈ [s]. Moreover we define the weight of Ξ

under ρ as the tuple of operations wtA (Ξ, ρ) ∈ (Ops(M))k
′
given by

wtA (Ξ, ρ) =
(
wtA (Ξ, ρ, (1, ε)), . . . ,wtA (Ξ, ρ, (k′, ε))

)
.

We note that wtA (Ξ, ρ) is the empty tuple () for k′ = 0. We say that ρ is vanishing if

wtA (Ξ, ρ) = (0(ℓ1), . . . , 0(ℓk′)) for some ℓ1, . . . , ℓk′ ≥ 0.

We define the uniform (b, n)-forest valuation r-recognised by A , as the map

[[A]]r ∈ Uvals(Σ,M, b, n), defined for every Ξ ∈ F(Σ)bn by

[[A]]r(Ξ) =
⊕

ρ∈RunsA (Ξ)

Πb

(
F(ρ(1,ε),...,ρ(b,ε))

(
wtA (Ξ, ρ)

))
.

166

5.3 Weighted Forest Automata

Let φ ∈ Uvals(Σ,M, b, n). We call φ r-recognisable if there exists a (b, n)-WFA A

over Σ and M such that [[A]]r = φ. The class of all r-recognisable uniform (b, n)-forest

valuations over Σ and M is denoted Recr(Σ,M, b, n). Moreover, we call φ recognisable

with final states if there exists a (b, n)-WFA A = (Q, init, T, final) over Σ and M such

that [[A]]r = φ and im(final) ⊆ {idM, 0}. The class of all uniform (b, n)-forest valuations

over Σ and M that are recognisable with final states is denoted Recf(Σ,M, b, n). ◀

Example 5.11. Recall the M-monoid M = (P(N∗),∪, ∅, Ω) and the ranked alphabet

Σ from Example 5.2. We extend M as follows. For every s ≥ 0 we define the operation

υs ∈ Opss(M) for every P1, . . . , Ps ∈M by

υs(P1, . . . , Ps) =

∅ if Pi = ∅ for some i ∈ [s]⋃
i∈[s]{i} ◦ Pi otherwise.

Furthermore, consider the intersection operation ∩ as another operation on M and

denote the corresponding finite intersection operators by (Πs | s ≥ 0). We define

M′ = (P(N∗),∪, ∅, Ω′), where

Ω′ = {υs, ωs, Πs, ∅(s) | s ≥ 0} ∪ {idM, {ε}}.

The element {ε} of Ω′ denotes a constant map. One can prove in a straightforward

way that M′ is a distributive M-monoid containing a semiring.

We define the (2, 0)-WFA C = (Q, ∅, T, final), where Q = {q, ℓ, i}, final maps every

input to 0 except for final1(q) = final2(ℓ) = final2(i) = idM, and T is given for every

s ≥ 0, τ ∈ Σ(s), and q1, . . . , qs, q
′ ∈ Q by

Tτ (q1, . . . , qs, q
′) =

ωs if q1 = · · · = qs = q′ = q

{ε} if s = 0 and q′ = ℓ

υs if s > 0, q1, . . . , qs ∈ {ℓ, i}, and q′ = i

∅(s) otherwise.

Consider the (1, 0)-forest Ξ = ⟨0, σ(σ(α, α), γ(β))⟩ and the following three runs ρ1, ρ2, ρ3

of C on Ξ (depicted slightly above Ξ).

167

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

ρ1 :

σ

σ

α α

γ

α

q

q

q q

q

q

, ρ2 :

σ

σ

α α

γ

α

i

i

ℓ ℓ

i

ℓ

, ρ3 :

σ

σ

α α

γ

α

i

q

i ℓ

ℓ

q

We can now determine

wtC (Ξ, ρ1) = Tσ(q, q, q)(Tσ(q, q, q)(Tα(q), Tα(q)), Tγ(q, q)(Tα(q)))

= ω2(ω2(ω0, ω0), ω1(ω0)) = {ε, 1, 11, 12, 2, 21}.

In a similar fashion, we obtain

wtC (Ξ, ρ2) = {11, 12, 21} and wtC (Ξ, ρ3) = ∅,

which shows that wtC (Ξ, ρ1) = pos(Ξ) and wtC (Ξ, ρ2) = leaf(Ξ), up to identification

of F(Σ)10 and TΣ . It follows from the definition of T that ρ1 and ρ2 are in fact the

only non-vanishing runs of C on Ξ. More generally, for every tree Ξ ′ ∈ F(Σ)10, there

exist only two non-vanishing runs of C on Ξ ′, namely the run labeling every position

with q and the run labeling every leaf position with ℓ and all other positions with i.

Using these observations, we will calculate the forest language (r-)recognised by C in

Example 5.26. ◀

Theorem 5.12. Let b = 1 and A = (Q, init, T, final) be a (1, n)-WFA over Σ and M.

It holds that

[[A]]r = [[A]],

where the right hand side denotes the uniform tree valuation1 recognised by A as an

n-MWTA.

Proof. Given Ξ = ⟨n, ξ⟩ ∈ F(Σ)1n, it holds that RunsA (Ξ) ∼= RunsA (ξ) as sets. That

is, the set of runs of A on Ξ as a WFA is bijective to the set of runs of A on ξ as an

1Here, we use the identification of F(Σ)1n and TΣ(Xn) to make the types of the maps compatible.

Moreover we use the fact that (1, n)-WFAs have the same components as n-MWTAs up to isomorphism

and hence, A can be seen as a WTA.

168

5.3 Weighted Forest Automata

n-MWTA. The bijection f : RunsA (Ξ) → RunsA (ξ) is given for every ρ ∈ RunsA (Ξ)

by

f(ρ)(w) = (ξ(w), ρ(1, w))

for every w ∈ pos(ξ). A straightforward proof by structural induction on ξ shows that

wtA (Ξ, ρ) = wtA (f(ρ)). Therefore,

[[A]]r(Ξ) =
⊕

ρ∈RunsA (Ξ)

Π1

(
F(ρ(1,ε))

(
wtA (Ξ, ρ)

))
=

⊕
ρ∈RunsA (Ξ)

finalρ(1,ε)
(
wtA (Ξ, ρ)

))
=

⊕
ρ∈RunsA (Ξ)

finalproj2(f(ρ)(ε))
(
wtA (f(ρ))

))
=

⊕
ρ∈RunsA (ξ)

finalproj2(ρ(ε))(wtA (ρ)) = [[A]](ξ).

This concludes the proof.

Corollary 5.13. Up to identification of F(Σ)1n and TΣ(Xn), it holds that

Recr(Σ,M, 1, n) = Rec(Σ,M, n).

Remark 5.14. Let S be a semiring and let M be the M-monoid (S,⊕, 0, Ω), where

Ω = (0(k), Πa
k | a ∈ S, k ≥ 0) and Πa

k = a ·Πk is the multiplication of k operands and

a.

In this case, our automaton model degenerates into the automaton model introduced

in [26, Definition 3.2.1.]. This can easily be verified and validates our present approach

to weighted forest automata. ◀

5.3.3 Rectangularity

We now introduce rectangularity and prove that weighted forest automata only generate

rectangular weighted forest languages. This is the key result of Chapter 5.3, acting as

the driving force in the rest of Chapter 5.

Definition 5.15. Let b1, b2 ∈ N and let τ1 and τ2 be a (b1, n)-forest valuation and

a (b2, n)-forest valuation over Σ and M, respectively. We define the horizontal con-

catenation of τ1 and τ2 as the (b1 + b2, n)-forest valuation τ1 × τ2 given for every

169

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

⟨n, ξ1, . . . , ξb1 , ζ1, . . . , ζb2⟩ ∈ F(Σ)b1+b2
n by

τ1 × τ2(⟨n, ξ1, . . . , ξb1 , ζ1, . . . , ζb2⟩) = Π2(τ1(⟨n, ξ1, . . . , ξb1⟩), τ2(⟨n, ζ1, . . . , ζb2⟩)).

The definition of horizontal concatenation naturally extends to finitely many operands

by the associativity of the operation that induces (Πk | k ≥ 0). ◀

Definition 5.16. A (b, n)-forest valuation τ over Σ and M is called rectangular if there

exist (1, n)-forest valuations τ1, . . . , τb over Σ and M such that

τ = τ1 × · · · × τb.

In this case, we call the forest valuations τ1, . . . , τb the rectangular components of τ . ◀

Remark 5.17. In general, the decomposition of rectangular forest valuations into

rectangular components is not unique. A very simple example is the case M = M(S)

for a commutative semiring S. The rectangular forest valuations (cτ1)×τ2 and τ1×(cτ2)

are equal for every c ∈ S and forest valuations τ1 and τ2. In Chapter 5.4.3, we will

discuss the implications of this ambiguity and why this even invalidates the results

presented in [26]. ◀

Throughout the rest of Chapter 5.3.3, we let A = (Q, init, T, final) be an

arbitrary (b, n)-WFA.

Remark 5.18. Let Ξ ∈ F(Σ)bn and q = (q1, . . . , qb) ∈ Qb. It holds that

RunsA (Ξ, q) ∼= RunsA (πb1(Ξ), q1)× · · · × RunsA (πbb(Ξ), qb).

This can easily be seen by the fact that each run ρ ∈ RunsA (Ξ, q) can be restricted

to the (1, n)-forest πbi (Ξ) for every i ∈ [b]. Formally, given i ∈ [b], we define the run

ρi ∈ RunsA (πbi (Ξ), qi) by ρi((1, u)) = ρ((i, u)) for every (1, u) ∈ pos(πbi (Ξ)). We obtain

the desired bijection by letting ρ 7→ (ρ1, . . . , ρb). ◀

Throughout the rest of Chapter 5, whenever a run ρ on a (b, n)-forest is

quantified, we let ρ1, . . . , ρb be defined as in Remark 5.18.

170

5.3 Weighted Forest Automata

Lemma 5.19. Let Ξ ∈ F(Σ)bn, q ∈ Qb, and ρ ∈ RunsA (Ξ, q) and denote Ξi = πbi (Ξ)

for every i ∈ [b]. It holds that

wtA (Ξ, ρ) =
(
wtA (Ξ1, ρ1), . . . ,wtA (Ξb, ρb)

)
Proof. By the definition of wtA (Ξ, ρ), we have

wtA (Ξ, ρ) =
(
wtA (Ξ, ρ, (1, ε)), . . . ,wtA (Ξ, ρ, (b, ε))

)
.

Therefore, we only need to show equation ⋆ in

wtA (Ξ, ρ, (i, ε))
⋆
= wtA (Ξi, ρi, (1, ε)) = wtA (Ξi, ρi),

for every i ∈ [b] in order to prove the lemma.

In fact, we will prove the slightly more general statement that

wtA (Ξ, ρ, (i, u)) = wtA (Ξi, ρi, (1, u)), (5.3)

for every (i, u) ∈ pos(Ξ). Our proof uses a variant of structural induction on Ξ.

Let (i, u) ∈ pos(Ξ). Firstly, if Ξ((i, u)) = xj for some j ∈ [n], then

wtA (Ξ, ρ, (i, u)) = initj(ρ(i, u)) = initj(ρi(1, u)) = wtA (Ξi, ρi, (1, u)).

This case proves Equation (5.3) for the set posXn
(Ξ).

Now assume that Ξ(i, u) = σ for some σ ∈ Σ(s) and s ≥ 0, such that Equation (5.3)

holds for (i, uℓ) ∈ pos(Ξ) for every ℓ ∈ [s]. We obtain

wtA (Ξ, ρ, (i, u)) = Tσ(ρ(i, u1), . . . , ρ(i, us), ρ(i, u))
(
c1, . . . , cs

)
,

where cℓ = wtA (Ξ, ρ, (i, uℓ)) for every ℓ ∈ [s]. Moreover it holds that

wtA (Ξi, ρi, (1, u)) = Tσ(ρi(1, u1), . . . , ρi(1, us), ρi(1, u))
(
c′1, . . . , c

′
s

)
,

where c′ℓ = wtA (Ξi, ρi, (1, uℓ)) for every ℓ ∈ [s]. The induction hypothesis implies that

cℓ = c′ℓ for every ℓ ∈ [s] and since

Tσ(ρ(i, u1), . . . , ρ(i, us), ρ(i, u)) = Tσ(ρi(1, u1), . . . , ρi(1, us), ρi(1, u))

by the definition of ρi, the proof of Equation (5.3) is complete.

171

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Remark 5.20. For every i ∈ [b] we define the (1, n)-WFA

Ai = (Q, init, T, finali).

Clearly, for every Ξ ∈ F(Σ)1n and every q ∈ Q we have EA
n,1(Ξ, q) = EAi

n,1(Ξ, q)

and RunsA (Ξ, q) = RunsAi
(Ξ, q). Moreover, for every ρ ∈ RunsA (Ξ, q), we have

wtA (Ξ, ρ) = wtAi
(Ξ, ρ). ◀

Theorem 5.21. It holds that

[[A]]r = [[A1]]r × · · · × [[Ab]]r.

In particular, [[A]]r is rectangular.

Proof. Let Ξ = ⟨n, ξ1, . . . , ξb⟩ ∈ F(Σ)bn and denote Ξi = πbi (Ξ) for every i ∈ [b].

Using Lemma 5.19, we obtain that for every ρ ∈ RunsA (Ξ) we have

F(ρ(1,ε),...,ρ(b,ε))

(
wtA (Ξ, ρ)

)
=

(
final1(q1)(wtA (Ξ1, ρ1)), . . . , finalb(qb)(wtA (Ξb, ρb))

)
.

Using this fact, we can now prove the claimed equation.

[[A]]r(Ξ) =
⊕

ρ∈RunsA (Ξ)

Πb

(
F(ρ(1,ε),...,ρ(b,ε))

(
wtA (Ξ, ρ)

))
=

⊕
ρ∈RunsA (Ξ)

Πb

(
final1(q1)

(
wtA (Ξ1, ρ1)

)
, . . . , finalb(qb)

(
wtA (Ξb, ρb)

))
⋆1=

⊕
ρ1∈RunsA (Ξ1)

...
ρb∈RunsA (Ξb)

Πb

(
final1(q1)

(
wtA (Ξ1, ρ1)

)
, . . . , finalb(qb)

(
wtA (Ξb, ρb)

))

⋆2= Πb

(⊕
ρ1∈RunsA (Ξ1)

final1(q1)
(
wtA (Ξ1, ρ1)

)
, . . . ,

⊕
ρb∈RunsA (Ξb)

finalb(qb)
(
wtA (Ξb, ρb)

))
,

where in Equation ⋆1 we use Remark 5.18 and in Equation ⋆2 we use distributivity of

Πb over ⊕ (M contains a semiring, see also the definition of M(S) on page 156). It

holds that⊕
ρi∈RunsA (Ξi)

finali(qi)(wtA (Ξi, ρi))
⋆3=

⊕
ρi∈RunsAi

(Ξi)

finali(qi)(wtAi
(Ξi, ρi)) = [[Ai]]r(Ξi)

for every i ∈ [b], where equation ⋆3 follows from Remark 5.20. In total we obtain

[[A]]r(Ξ) = Πb

(
[[A1]]r(Ξ1), . . . , [[Ab]]r(Ξb)

)
,

which proves the claim.

172

5.3 Weighted Forest Automata

Theorem 5.22. It holds that

[[A]]i = [[A1]]i × · · · × [[Ab]]i

In particular, [[A]]i is rectangular.

Proof. Let Ξ = ⟨n, ξ1, . . . , ξb⟩ ∈ F(Σ)bn and denote Ξi = πbi (Ξ) for every i ∈ [b]. It

holds that

[[A]]i(Ξ) =
⊕

(q1,...,qb)∈Qb

Πb(F(q1,...,qb)(E
A
n,b(Ξ, q1, . . . , qb)))

=
⊕

(q1,...,qb)∈Qb

Πb

(
F(q1,...,qb)

(
EA

n,1(Ξ1, q1), . . . , E
A
n,1(Ξb, qb)

))
⋆
=

⊕
(q1,...,qb)∈Qb

Πb

(
F(q1,...,qb)

(
EA1

n,1(Ξ1, q1), . . . , E
Ab
n,1(Ξb, qb)

))
=

⊕
(q1,...,qb)∈Qb

Πb

(
final1(q1)

(
EA1

n,1(Ξ1, q1)
)
, . . . , finalb(qb)

(
EAb

n,1(Ξb, qb)
))

= Πb

(⊕
q1∈Q

final1(q1)
(
EA1

n,1(Ξ1, q1)
)
, . . . ,

⊕
qb∈Q

finalb(qb)
(
EAb

n,1(Ξb, qb)
))

= Πb

(
[[A1]]i(Ξ1), . . . , [[Ab]]i(Ξb)

)
,

where we use Remark 5.20 in Equation ⋆.

5.3.4 I-recognisable is R-recognisable

Theorem 5.23. Let A be a (b, n)-WFA. Whenever

[[Ai]]r = [[Ai]]i

holds for every i ∈ [b], then also

[[A]]r = [[A]]i

holds.

Proof. By Theorems 5.21 and 5.22, we obtain

[[A]]r = [[A1]]r × · · · × [[Ab]]r and [[A]]i = [[A1]]i × · · · × [[Ab]]i.

By assumption, the two right hand sides are equal, which proves the claim.

173

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Corollary 5.24. Let A be a (b, n)-WFA. If M is distributive, then [[A]]r = [[A]]i.

Proof. By Theorem 5.23 it suffices to prove the claim for the case b = 1. The case b = 1

has been proven for the case of strong bimonoids (rather than M-monoids) in [94]. We

can apply a similar proof idea, which we sketch subsequently.

Let A be a (1, n)-WFA and ξ ∈ F(Σ)1n. First, one applies the distributivity of M

to show that [[A]]r(ξ) = [[A]]i(ξ) holds if the following equation holds.

⊕
ρ∈RunsA (ξ)

wtA (ξ, ρ) =
⊕
q∈Q

EA
n,1(ξ, q) (5.4)

The proof of Equation (5.4) is done by a straightforward structural induction on ξ.

The case ξ = xi follows immediately from the definition and the case ξ = σ(ξ1, . . . , ξs)

follows from the fact that RunsA (ξ) ∼= Q × RunsA (ξ1) × · · · × RunsA (ξs) and the

distributivity of M.

We aim at generalising [51, 52], both of which use the run semantic as the main

semantic of weighted tree automata. Hence, we also choose the run semantic as our

main semantic in the following Definition 5.25.

Definition 5.25. We define the uniform (b, n)-forest valuation recognised by A , as the

map [[A]] = [[A]]r. We naturally define recognisability as r-recognisability and denote

Rec(Σ,M, b, n) = Recr(Σ,M, b, n). ◀

Example 5.26. We continue Example 5.11 by calculating the uniform (2, 0)-forest

valuation (that is, the weighted (2, 0)-forest language) recognised by C . Recall that M′

is distributive and hence [[C]]i = [[C]]r.

For every Ξ ∈ F(Σ)10 we have already observed (see Example 5.11) that there are

exactly two non-vanishing runs of C on Ξ. The first case is that q is assigned to all

positions of Ξ. In this case, a straightforward induction over Ξ proves that the cost of

the run is pos(Ξ). We denote this run by ρΞ,1. The second case is that ℓ is assigned

to all leaf positions of Ξ and i is assigned to the remaining positions. In this case, a

similar induction over Ξ proves that the cost of the run is leaf(Ξ). We denote this run

by ρΞ,2.

174

5.3 Weighted Forest Automata

By Theorem 5.21 we know that [[C]]r = [[C1]]r × [[C2]]r, where Ci = (Q, ∅, T, finali)

for i ∈ [2]. Surely, given a (1, 0)-forest Ξ ∈ F(Σ)10, the runs of C1 (respectively, C2) on

Ξ are the same as the runs of C on Ξ. We obtain

[[C1]]r(Ξ) = final1(ρΞ,1(ε))(wtC1(Ξ, ρΞ,1)) + final1(ρΞ,2(ε))(wtC1(Ξ, ρΞ,2))

= wtC1(Ξ, ρΞ,1) = pos(Ξ) and

[[C2]]r(Ξ) = final2(ρΞ,1(ε))(wtC2(Ξ, ρΞ,1)) + final2(ρΞ,2(ε))(wtC2(Ξ, ρΞ,2))

= wtC2(Ξ, ρΞ,2) = leaf(Ξ).

Now, let Ξ ∈ F(Σ)20 be a (2, 0)-forest and Ξi = π2i (Ξ) for i ∈ [2]. It then holds

[[C]]r(Ξ) = [[C1]]r(Ξ1) ∩ [[C2]]r(Ξ2) = pos(Ξ1) ∩ leaf(Ξ2).

This proves that [[C]]r = pos× leaf.

We note that our automaton model is capable of recognising other similar languages

as well. For example, we consider the weighted forest languages φ1, φ2, φ3 : F(Σ)20 → N,

defined by

φ1(Ξ) = #pos(Ξ1) ·#leaf(Ξ2),

φ2(Ξ) = max(#pos(Ξ1),#pos(Ξ2)), and

φ3(Ξ) = height(Ξ1) + height(Ξ2)

for every Ξ ∈ F(Σ)20, where Ξi = π2i (Ξ) for every i ∈ [2]. We can easily find an

M-monoid Mj and a (2, 0)-WFA Cj such that [[Cj]] = φj , for every j ∈ [3]. To support

this claim, we give M1 and C1.

Consider M1 = N and the set of operations ΩM1 = {idN} ∪ {ω̂s, υ̂s, Πs, 0
(s) | s ≥ 0}

on M1, where for every s ≥ 0 and n1, . . . , ns ∈M1 we define

ω̂s(n1, . . . , ns) = 1 +

s∑
i=1

ni, υ̂s(n1, . . . , ns) =

1 if s = 0,∑s
i=1 ni otherwise,

and Πs(n1, . . . , ns) =
∏s

i=1 ni. It certainly holds that (M1,+, 0, ΩM1) is an M-monoid

which contains a semiring (namely (N,+, ·, 0, 1)).

175

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

We define the (2, 0)-WFA C1 = (Q̂, ∅, T̂ , final) over Σ and M1, where Q̂ = {q, ℓ, i},

final maps every input to 0 except for final1(q) = final2(ℓ) = final2(i) = idN, and for

every s ≥ 0, τ ∈ Σ(s), and q1, . . . , qs, q
′ ∈ Q̂, we define

T̂τ (q1, . . . , qs, q
′) =

ω̂s if q1 = · · · = qs = q′ = q

υ̂0 if s = 0, q′ = ℓ

υ̂s if s > 0, q1, . . . , qs ∈ {ℓ, i}, q′ = i

∅(s) otherwise.

Indeed, C1 is very similar to C and one can show analogously to the case of C that

[[C1]] = φ1. ◀

Remark 5.27. We conclude this chapter by discussing our choice to require that M

contains a semiring. In particular, we illustrate an alternative, more general automaton

model without this requirement on M and show why precisely the case that M contains

a semiring results in a robust theory.

Let (M,⊕, 0, ΩM) be an arbitrary M-monoid. A generalised (b, n)-wfa over Σ and

M is a tuple A = (Q, init, T, final, π), where Q, init, T , and final are as in the definition

of (b, n)-WFA and π ∈ Ω(b)
M is called the horizontal multiplication operation. Both, the

i-semantic and r-semantic of A can be defined similar to the WFA case by replacing

Πb by the new horizontal multiplication operation π.

[[A]]i(Ξ) =
⊕
q∈Qb

π(Fq(E
A
n,b(Ξ, q)))

[[A]]r(Ξ) =
⊕

ρ∈RunsA (Ξ)

π
(
F(ρ(1,ε),...,ρ(b,ε))

(
wtA (Ξ, ρ)

))
We observe that, similar to Corollary 5.24, one obtains [[A]]i = [[A]]r only if M (and

hence also π) is distributive.

In order to define a horizontal concatenation operation on the set of uniform for-

est valuations, similar to × (see Definition 5.15), one can do the following. Let

ω ∈ Ω
(k)
M for some k ∈ N and τi ∈ Uvals(Σ,M, bi, n) for every i ∈ [k]. We define

the horizontal concatenation of τ1, . . . , τk via ω, denoted ω(τ1, . . . , τk), for every forest

Ξ = ⟨n, ξ11 , . . . , ξ1b1 , . . . , ξ
k
1 , . . . , ξ

k
bk
⟩ ∈ F(Σ)b1+...+bk

n by

ω(τ1, . . . , τk)(Ξ) = ω(τ1(⟨n, ξ11 , . . . , ξ1b1⟩), . . . , τk(⟨n, ξ
k
1 , . . . , ξ

k
bk
⟩)).

176

5.4 Kleene’s Theorem

Analogously to our upcoming Theorem 5.36, one would desire that the class of languages

recognised by generalised WFA is closed under this horizontal concatenation with any

ω ∈ ΩM. However, for such a proof, one needs the distributivity and associativity of ω

and the closedness of ΩM under composition.

This shows that in exactly the case where M contains a semiring, we obtain an

automaton model that satisfies the requirements to yield both (a) that the i-semantic

and r-semantic coincide and (b) that the class of languages recognised by WFA is closed

under horizontal concatenation. ◀

5.4 Kleene’s Theorem

In [51], a Kleene-like result for weighted tree automata over M-monoids has been es-

tablished, which in essence states that rational tree expressions and WTA generate the

same class of uniform tree valuations. We recall the theorem and the main definitions

and then utilise the rectangularity of recognisable uniform forest valuations in order to

lift the results to forests. In Chapter 5.4.3, we discuss the question, why our definition

of rational forest expressions is not inductive.

5.4.1 Kleene’s Theorem for Trees

We begin by introducing rational operations on Uvals(Σ,M, n).

Definition 5.28 (Definition 4.3 from [51]). Let Ω ⊆ Ops(M).

We say Ω is sum closed if ω1 ⊕ ω2 ∈ Ω for every k ≥ 0 and ω1, ω2 ∈ Ω(k).

We say Ω is (1, ⋆)-composition closed if ω(ω′) ∈ Ω for every ω ∈ Ω(1) and ω′ ∈ Ω.

We say that M is sum closed (resp. (1, ⋆)-composition closed) if ΩM is so. ◀

Definition 5.29 (Definition 4.9 from [51]). Let i ∈ [n]. A uniform tree valuation

φ ∈ Uvals(Σ,M, n) is i-proper if φ(xi) = 0. ◀

We now define the operator ◦ξ,i for every i ∈ [n] and ξ ∈ TΣ(Xn). The intuition for

this operator is the following. Let ℓ = #posXn
(ξ) and k = #posxi

(ξ). The operator ◦ξ,i
takes as input an ℓ-ary operator ω and k many operators ω1, . . . , ωk. We assign to the

j-th parameter of ω the j-th occurrence of a variable in the tree ξ (counted from left to

177

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

right). The operation ◦ξ,i then composes ω with ω1, . . . , ωk at exactly the parameters

that have assigned the variable xi.

Definition 5.30 (Definition 5.1 from [51]). Let i ∈ [n] and ξ ∈ TΣ(Xn). Denote

{w1, . . . , wℓ} = posXn
(ξ) and {v1, . . . , vk} = posxi

(ξ), where w1 <lex · · · <lex wℓ and

v1 <lex · · · <lex vk.

We define the map

◦ξ,i : Ops(ℓ)(M)×Ops(M)k → Ops(M)

for every ω ∈ Ops(ℓ)(M) and ω1, . . . , ωk ∈ Ops(M) by

ω ◦ξ,i (ω1, . . . , ωk) = ω(ω′
1, . . . , ω

′
ℓ),

where we define

ω′
j =

ωm if wj = vm for some m ∈ [k]

idM otherwise.

for every j ∈ [ℓ] . ◀

Definition 5.31 (Definition 5.3 from [51]). Let φ,ψ ∈ Uvals(Σ,M, n). The (pointwise)

sum of φ and ψ is denoted by φ⊕ ψ.

Let k ≥ 0, σ ∈ Σ(k), and ω ∈ Ω(k)
M . The top-concatenation with σ via ω is the k-ary

operation topσ,ω on Uvals(Σ,M, n) given for every φ1, . . . , φk ∈ Uvals(Σ,M, n) by

topσ,ω(φ1, . . . , φk) =
⊕

ξ1,...,ξk∈TΣ(Xn)

ω(φ1(ξ1), . . . , φk(ξk)).σ(ξ1, . . . , ξk).

Let i ∈ [n]. The i-concatenation is the binary operation ·i on Uvals(Σ,M, n) given

for every φ,ψ ∈ Uvals(Σ,M, n) by1

φ ·i ψ =
⊕

ξ∈TΣ(Xn),|ξ|xi=ℓ,
ξ1,...,ξℓ∈TΣ(Xn)

(
φ(ξ) ◦ξ,i

(
ψ(ξ1), . . . , ψ(ξℓ)

))
.ξ[xi ← (ξ1, . . . , ξℓ)].

Let i ∈ [n] and φ ∈ Uvals(Σ,M, n). For every k ≥ 0 we define the k-th i-power of

φ, denoted φk
i , inductively via φ0

i = 0 and φk+1
i = (φ ·i φk

i) ⊕ idM.xi. Moreover, if φ

1Note that both, topσ,ω and ·i, are well-defined for the following reason. For every ξ ∈ TΣ(Xn)

there is only a finite number of summands in both sums which assign a non-vanishing value to ξ.

178

5.4 Kleene’s Theorem

is i-proper, we define the i-Kleene star of φ, denoted φ∗
i , by φ

∗
i (ξ) = φ

height(ξ)+1
i (ξ) for

every ξ ∈ TΣ(Xn). We extend this definition by 0, that is, if φ is not i-proper, then

we define the i-Kleene star of φ as the constant uniform tree valuation 0. ◀

Definition 5.32 (Definition 5.6 from [51]). We define the set of all rational expres-

sions over Σ, M, and n, denoted RatExp(Σ,M, n), inductively as the smallest set R

satisfying conditions (i)–(v). For every η ∈ RatExp(Σ,M, n) we define its semantics

[[η]] ∈ Uvals(Σ,M, n) simultaneously.

(i) For every i ∈ [n] and ω ∈ Ω(1)
M , it holds that ω.xi ∈ R and [[ω.xi]] = ω.xi.

(ii) For every s ≥ 0, σ ∈ Σ(s), ω ∈ Ω
(s)
M , and η1, . . . , ηs ∈ R, it holds that

topσ,ω(η1, . . . , ηs) ∈ R and [[topσ,ω(η1, . . . , ηs)]] = topσ,ω([[η1]], . . . , [[ηs]]).

(iii) For every η1, η2 ∈ R, it holds that η1 ⊕ η2 ∈ R and [[η1 ⊕ η2]] = [[η1]]⊕ [[η2]].

(iv) For every η1, η2 ∈ R and i ∈ [n], it holds that η1 ·iη2 ∈ R and [[η1 ·iη2]] = [[η1]]·i [[η2]].

(v) For every η ∈ R and i ∈ [n], it holds that η∗i ∈ R and [[η∗i]] = [[η]]∗i .

We call φ ∈ Uvals(Σ,M, n) rational if there exists η ∈ RatExp(Σ,M, n) such that

φ = [[η]]. The class of all rational uniform tree valuations over Σ, M, and n is denoted

by Rat(Σ,M, n). We denote the union
⋃

k∈NRat(Σ,M, k) by Rat(Σ,M, fin). ◀

Example 5.33. We continue Example 5.2 and consider the rational expression η over

Σ, M, and 1 where

η = topα,ω0
()⊕ topβ,ω0

()⊕ topγ,ω1
(idM.x1)⊕ topσ,ω2

(idM.x1, idM.x1).

From Definition 5.32 we obtain that [[η]](α) = [[η]](β) = ω0, [[η]](γ(x1)) = ω1, and

[[η]](σ(x1, x1)) = ω2. Moreover, [[η]] maps every other tree to an element of {0(k) | k ≥ 0}.

We note that η is 1-proper. One can determine that [[(η)∗1]](ξ) = pos(ξ) for every

ξ ∈ TΣ and hence it holds that [[(η)∗1]]|TΣ
= [[A]]. In fact, we have calculated the

rational expression η′ = (η)∗1 by following the construction from [51, Theorem 6.8]

applied to A and simplifying some terms. This also illustrates how the analysis of

an automaton introduces new variables that are used in the rational expression. In

our case, A did not consider any variables, whereas η′ considers one variable. This is

expected, as A has exactly one state. ◀

179

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Theorem 5.34 (Theorems 6.8 and 7.10 from [51]). If M is distributive, then

Rec(Σ,M, n) ⊆ Rat(Σ,M, fin)|TΣ(Xn).

More specifically, for every n-WTA A = (Q, init, T, final), there exists a rational ex-

pression η ∈ RatExp(Σ,M, n+#Q) such that [[A]] = [[η]]|TΣ(Xn).

Moreover, if M is distributive, closed under sum, and (1,⋆)-composition closed, then

Rat(Σ,M, n) ⊆ Rec(Σ,M, n).

In [51], the authors additionally introduce a lift map, which 0-extends the occurring

uniform tree valuations to a countably infinite set of variables. This allows the authors

to combine the two directions of Theorem 5.34 into the equation

lift(Rec(Σ,M, fin)) = lift(Rat(Σ,M, fin)),

where Rec(Σ,M, fin) =
⋃

k∈NRec(Σ,M, k).

5.4.2 Kleene’s Theorem for Forests

We introduce rational forest expressions as the “horizontal concatenation” of rational

tree expressions and prove that the class of uniform forest valuations generated by ra-

tional forest expressions equals the class of recognisable forest valuations. Since the

rectangularity of recognisable forest valuations gives us a powerful tool to perform au-

tomata analysis, we are primarily concerned with closure properties of Rec(Σ,M, b, n).

Definition 5.35. We define the set of all rational (b, n)-forest expressions over Σ and

M, denoted RatExp(Σ,M, b, n), by

RatExp(Σ,M, b, n) = RatExp(Σ,M, n)b.

We denote (η1, . . . , ηb) ∈ RatExp(Σ,M, b, n) by η1 × · · · × ηb and define its semantics

[[η1 × · · · × ηb]] ∈ Uvals(Σ,M, b, n) by

[[η1 × · · · × ηb]] = [[η1]]× · · · × [[ηb]].

That is, rational (b, n)-forest expressions over Σ and M are “rectangles” over ratio-

nal tree valuations over Σ, M, and n.

180

5.4 Kleene’s Theorem

A uniform (b, n)-forest valuation φ ∈ Uvals(Σ,M, b, n) is called rational if there

exists η ∈ RatExp(Σ,M, b, n) such that φ = [[η]]. The class of all rational uniform (b, n)-

forest valuations is denoted Rat(Σ,M, b, n). We denote the union
⋃

k∈NRat(Σ,M, b, k)

by Rat(Σ,M, b, fin). ◀

Theorem 5.36. Let b1, b2, n ∈ N, φ ∈ Rec(Σ,M, b1, n), and ψ ∈ Rec(Σ,M, b2, n). It

holds that

φ× ψ ∈ Rec(Σ,M, b1 + b2, n).

Proof. We prove the statement by an explicit construction. Let A = (Q, init, T, final)

be a (b1, n)-WFA such that [[A]] = φ and let B = (Q′, init′, T ′, final′) be a (b2, n)- WFA

such that [[B]] = ψ. We moreover assume that Q ∩Q′ = ∅.

Consider the (b1 + b2, n)-WFA C = (Q′′, init′′, T ′′, final′′) where Q′′ = Q ∪Q′, init′′

and final′′ are given for every k ∈ [b1 + b2], i ∈ [n], and q ∈ Q′′ by

init′′i (q) =

init(q) if q ∈ Q

init′i(q) if q ∈ Q′
and final′′k(q) =

finalk(q) if k ≤ b1, q ∈ Q

final′k−b1(q) if k > b1, q ∈ Q′

0(1) otherwise,

and T ′′ is given for every s ≥ 0, σ ∈ Σ(s), and q1, . . . , qs, q ∈ Q′′ by

T ′′
σ (q1, . . . , qs, q) =

Tσ(q1, . . . , qs, q) if q1, . . . , qs, q ∈ Q

T ′
σ(q1, . . . , qs, q) if q1, . . . , qs, q ∈ Q′

0(s) otherwise.

We claim that [[C]] = [[A]]× [[B]]. The proof of this claim is straightforward and hence

we just sketch it. First one shows that a run ρ of C on a tree vanishes if states from

both Q and Q′ occur in ρ. On the other hand, if ρ only uses states from Q (or Q′), then

the cost of ρ in C equals the cost of ρ in A (or B, respectively). One ultimately uses

the fact that Πb1+b2 = Π2(Πb1 , Πb2) to match the definition of [[C]] with the definition

of [[A]]× [[B]].

Theorem 5.37 (Kleene result for forests). If M is distributive, then

Rec(Σ,M, b, n) ⊆ Rat(Σ,M, b, fin)|F(Σ)bn
.

181

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

More specifically, for every (b, n)-WFA A = (Q, init, T, final), there exists a rational

forest expression η ∈ RatExp(Σ,M, b, n+#Q) such that [[A]] = [[η]]|F(Σ)bn
.

If M is distributive, closed under sum, and (1,⋆)-composition closed, then

Rat(Σ,M, b, n) ⊆ Rec(Σ,M, b, n).

Proof. Let M be distributive, closed under sum, and (1,⋆)-composition closed and let

φ ∈ Rat(Σ,M, b, n). By definition, there exist φ1, . . . , φb ∈ Rat(Σ,M, n) such that

φ = φ1 × · · · × φb. By Theorem 5.34, we obtain that φi ∈ Rec(Σ,M, 1, n) for every

i ∈ [b]. Theorem 5.36 now proves that φ1 × · · · × φb ∈ Rec(Σ,M, b, n).

Now let M be distributive and φ ∈ Rec(Σ,M, b, n). From Theorem 5.21 we obtain

that there exist φ1, . . . , φb ∈ Rec(Σ,M, 1, n) such that φ = φ1×· · ·×φb. Corollary 5.13

shows that φ1, . . . , φb ∈ Rec(Σ,M, n) and thus we can apply Theorem 5.34 to obtain

that φi ∈ Rat(Σ,M, fin)|TΣ(Xn) for every i ∈ [b]. For every n′, n′′ ∈ N such that n′ < n′′,

it clearly holds that Rat(Σ,M,n′) ⊆ Rat(Σ,M, n′′) and therefore, there exists n′ ∈ N

such that φi ∈ Rat(Σ,M, n′)|TΣ(Xn) for every i ∈ [b]. Since TΣ(Xn) ∼= F(Σ)1n, we ob-

tain Rat(Σ,M, 1, n′)|F(Σ)1n
= Rat(Σ,M, n′)|TΣ(Xn), whence φi ∈ Rat(Σ,M, 1, n′)|F(Σ)1n

for every i ∈ [b]. This ultimately proves that φ1× · · ·×φb ∈ Rat(Σ,M, b, n′)|F (Σ)bn
and

hence φ ∈ Rat(Σ,M, b, fin)|F (Σ)bn
.

If an automaton A is given such that [[A]] = φ, then we know that [[Ai]] = φi

and also the number of states in Ai equals the number of states in A . In particular,

Theorem 5.34 yields that n′ = n+#Q is a possible choice for n′, which concludes our

proof.

Example 5.38. We continue Example 5.26 and recall the rational expression η over

Σ, M, and 1 from Example 5.33. Moreover, we define the rational expression τ over

Σ, M′, and 1, where

η = topα,ω0
()⊕ topβ,ω0

()⊕ topγ,ω1
(idM.x1)⊕ topσ,ω2

(idM.x1, idM.x1)

τ = topα,υ0()⊕ topβ,υ0()⊕ topγ,υ1(idM′ .x1)⊕ topσ,υ2(idM′ .x1, idM′ .x1).

The definition of η and τ shows that η and τ are 1-proper. Moreover, since the M-

monoid M is contained in the M-monoid M′, η can be viewed as a rational expression

182

5.4 Kleene’s Theorem

over M′ . Therefore, it holds that η∗1 × τ∗1 is a rational (2, 1)-forest expression over Σ

and M′.

In Example 5.33 we have seen that [[η∗1]]|TΣ
= pos. Moreover, one can show that

[[τ∗1]]|TΣ
= leaf. This proves

[[η∗1 × τ∗1]]|F(Σ)20
= pos× leaf.

Recall from Example 5.26 that [[C]]r = pos× leaf, whence [[η∗1 × τ∗1]]|F(Σ)20
= [[C]]r. ◀

5.4.3 An Inductive Approach

In Chapter 5.4.2 we proved a straightforward Kleene Theorem for our weighted (b, n)-

forest automaton model. However, our rational forest expressions are very simple and

not defined inductively (which is rather contradictory to the idea behind the word

“rational”). In this chapter, we discuss an approach to an inductive definition of rational

forest expressions and why it fails.

One reasonable way to introduce rational forest expressions would be to define ap-

propriate operations that lift summation, top-concatenation, i-concatenation, and the

i-Kleene star (for every i) from the case of trees to the case of forests. However, defining

a vertical concatenation operation on uniform forest valuations (or even weighted forest

languages over semirings, for that matter) turns out to be challenging.

First, we define a vertical concatenation of forests. For every a,m, o ∈ N and forests

Ξ1 ∈ F(Σ)am and Ξ2 ∈ F(Σ)mo , the vertical concatenation of Ξ1 and Ξ2, denoted

Ξ1 · Ξ2, is defined as the (a, o)-forest ⟨o, ξ1, . . . , ξa⟩, where for every i ∈ [a] we define

ξi = πai (Ξ1)[π
m
1 (Ξ2), . . . , π

m
m(Ξ2)].

Using an analogous approach to [26] and [104], we can now try to define a vertical

concatenation of uniform forest valuations. Let a,m, o ∈ N, φ1 ∈ Uvals(Σ,M, a,m),

and φ2 ∈ Uvals(Σ,M,m, o). Then, the vertical concatenation of φ1 and φ2 is the

(a, o)-forest valuation φ1 · φ2, given for every Ξ ∈ F(Σ)ao as follows. (φ1 · φ2)(Ξ) is

“φ1(Ξ1) applied to φ2(Ξ2)” summed up over all Ξ1 ∈ F(Σ)am and Ξ2 ∈ F(Σ)mo such

that Ξ1 ·Ξ2 = Ξ. Because Ξ1 can have multiple or zero occurrences of a single variable

xi and moreover, variables do not have to be ordered from left to right in Ξ1, we

need to access rectangular components of φ2, so we can account for the variables in

183

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Ξ1 properly. If φ2 is rectangular with rectangular components φ2,1, . . . , φ2,m, then our

desired definition of (φ1 · φ2)(Ξ) is

(φ1 · φ2)(Ξ) =
∑

Ξ1·Ξ2=Ξ

φ1(Ξ1)
(
φ2,i1(π

m
i1 (Ξ2)), . . . , φ2,iℓ(π

m
iℓ
(Ξ2))

)
, (5.5)

where ℓ is the number of variables in Ξ1 and for every j ∈ [ℓ] the j-th occurrence of a

variable in Ξ1 (from left to right) is xij . However, the rectangular components of φ2

need not be unique, as we have seen in Remark 5.17. Indeed, different choices of the

rectangular components of φ2 result in different maps φ1 · φ2. Hence, Equation (5.5)

is not well-defined.

Indeed, one can easily show that Equation (5.5) is not even well-defined in the

case of commutative semirings. For example, choose the field (R,+, ·, 0, 1) of real

numbers. Because every element has a multiplicative inverse, we can move factors

between rectangular components as described in Remark 5.17. This proves that our

results from [26] are based on an ill-defined vertical concatenation and are hence invalid.

To end this chapter on a positive note, we want to point out that if the M-monoid

M admits unique rectangular decompositions, then Equation (5.5) is indeed a good

definition of the vertical concatenation. This is the case if, for example, M is the

Boolean semiring or the multiplication in M is a “free” operation. Therefore, the

correctness of [104] is not affected by the present thesis.

5.5 Büchi’s Theorem

In [52], a Büchi-like result for weighted tree automata over M-monoids has been es-

tablished, which in essence states that tree M-expressions and WTA (with final states)

generate the same class of weighted tree languages. We recall this theorem and the

relevant definitions and then utilise the rectangularity of the weighted forest languages

generated by WFA (without variables) in order to lift the results to forests. An analo-

gous argument as in Chapter 5.4.3 explains why our definition of forest M-expressions

is not inductive. However, in this chapter we do not designate a seperate chapter for

this discussion.

184

5.5 Büchi’s Theorem

5.5.1 Büchi’s Theorem for Trees

Definition 5.39 (Definition 3.1 from [52]). The set MExp(Σ,M) of multioperator

expressions (short: M-expressions) over Σ and M is defined by the following EBNF

with nonterminal e.

e = H(ω) | e⊕ e |
∑
x

e |
∑
X

e | ϕ ▷ e,

where ω is a ΣV-family of operations in M (for some finite set V of first-order and

second-order variables), x is a first-order variable, X is a second-order variable, and

ϕ ∈ MSO(Σ). ◀

Definition 5.40 (Definition 3.2 from [52]). For every e ∈ MExp(Σ,M), the set of free

variables of e, denoted Free(e), is defined inductively on the structure of M-expressions.

Free(H(ω)) = V,

Free(e1 ⊕ e2) = Free(e1) ∪ Free(e2),

Free(
∑
x

e) = Free(e) \ {x},

Free(
∑
X

e) = Free(e) \ {X},

Free(ϕ ▷ e) = Free(ϕ) ∪ Free(e),

for every finite set V of first-order and second-order variables, ΣV-family ω of operations

in M, first-order variable x, second-order variable X, and ϕ ∈ MSO(Σ). If Free(e) = ∅,

then we call e a sentence. ◀

Definition 5.41 (Definition 3.3 from [52]). For every e ∈ MExp(Σ,M) and finite set

V ⊇ Free(e) of first-order and second-order variables, the semantics of e with respect

to V is defined as the (ΣV,M)-weighted tree language [[e]]V : TΣV
→ M as follows. For

every ξ ∈ (TΣV
\ Tv

ΣV
), we let [[e]]V(ξ) = 0. Moreover, for every ξ ∈ Tv

ΣV
, we define

185

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

[[e]]V(ξ) inductively using the structure of M-expressions.

[[H(ω)]]V(ξ) = hω[U∼∼∼▷V](ξ),

[[e1 ⊕ e2]]V(ξ) = [[e1]]V(ξ)⊕ [[e2]]V(ξ),

[[
∑
x

e]]V(ξ) =
∑

w∈pos(ξ)

[[e]]V∪{x}(ξ[x 7→ w]),

[[
∑
X

e]]V(ξ) =
∑

W⊆pos(ξ)

[[e]]V∪{X}(ξ[X 7→W]),

[[ϕ ▷ e]]V(ξ) =

[[e]]V(ξ) if ξ ∈ LV(ϕ)

0 otherwise

for every finite set U of first-order and second-order variables, ΣU-family ω of operations

in M, first-order variable x, second-order variable X, and ϕ ∈ MSO(Σ).

We abbreviate [[e]] = [[e]]Free(e). A (Σ,M)-weighted tree language φ is called definable

by M-expressions over Σ and M, if there exists a sentence e ∈ MExp(Σ,M) such

that [[e]] = φ. The class of (Σ,M)-weighted tree languages that are definable by M-

expressions over Σ and M is denoted by MDef(Σ,M). ◀

Example 5.42. We continue Example 5.33 and consider the Σ-family of operations

ω = (ωσ | σ ∈ Σ), where ωσ = ωrk(σ) for every σ ∈ Σ. Moreover, we define the

M-expression e1 over Σ and M, where

e1 = H(ω).

A straightforward proof shows that the homomorphism hω : TΣ → M is given by

hω(ξ) = pos(ξ) for every ξ ∈ TΣ . This shows that [[e1]] = pos and hence also [[e1]] = [[A]].

In Example 5.33, we calculated η following the construction from [51]. We could

have done the same for the case of M-expressions by following the construction from [52,

Lemma 4.2]. However, the M-expression resulting from the analysis of the automaton

A is very long and not very easy to grasp. Hence, we choose to refrain from depicting

such a constructed M-expression and rather consider e1. ◀

Theorem 5.43 (Theorem 4.1 from [52]). Let M be absorptive. It holds that

Recf(Σ,M) = MDef(Σ,M).

186

5.5 Büchi’s Theorem

5.5.2 Büchi’s Theorem for Forests

Definition 5.44. We define the set of all b-forest multioperator expressions (short:

b-forest M-expressions) over Σ and M, denoted MExp(Σ,M, b), by

MExp(Σ,M, b) = MExp(Σ,M)b.

We denote (e1, . . . , eb) ∈ MExp(Σ,M, b) by e1 × · · · × eb and define its semantics

[[e1 × · · · × eb]] : F(Σ)b0 →M by

[[e1 × · · · × eb]] = [[e1]]× · · · × [[eb]].

A weighted (b, 0)-forest language φ : F(Σ)b0 →M is called definable by M-expressions

if there exists e ∈ MExp(Σ,M, b) such that φ = [[e]]. The class of all weighted (b, 0)-

forest languages that are definable by M-expressions is denoted MDef(Σ,M, b). ◀

Theorem 5.45 (Büchi result for forests). Let M be absorptive. It holds that

Recf(Σ,M, b, 0) = MDef(Σ,M, b)

Proof. First, let φ ∈ Recf(Σ,M, b, 0). From Theorem 5.21 we obtain the existence

of φ1, . . . , φb ∈ Rec(Σ,M, 0) such that φ = φ1 × · · · × φb. Moreover, the proof of

Theorem 5.21 shows that φi is recognisable with final states for every i ∈ [b], whence

φ1, . . . , φb ∈ Recf(Σ,M). By Theorem 5.43, we have that φ1, . . . , φb ∈ MDef(Σ,M),

which yields φ ∈ MDef(Σ,M, b). This concludes the proof of the inclusion “⊆”.

Now let φ ∈ MDef(Σ,M, b). By the definition of MExp(Σ,M, b), there exist

e1, . . . , eb ∈ MExp(Σ,M) such that φ = [[e1]] × · · · × [[eb]]. By Theorem 5.43, we have

that [[ei]] ∈ Recf(Σ,M) for every i ∈ [b] and hence by Theorems 5.12 and 5.36, we

obtain that φ ∈ Rec(Σ,M, b, 0). The proof of Theorem 5.36 moreover shows that

φ ∈ Recf(Σ,M, b, 0). This concludes the proof of the inclusion “⊇”.

Example 5.46. We continue Example 5.42 and consider the Σ-family of operations

υ = (υσ | σ ∈ Σ), where υσ = υrk(σ) for every σ ∈ Σ. We recall the M-expression

e1 over Σ and M from Example 5.42 and define the M-expression e2 over Σ and M′,

where

e1 = H(ω) and e2 = H(υ).

187

5. KLEENE AND BÜCHI THEOREMS FOR WEIGHTED FOREST
LANGUAGES OVER M-MONOIDS

Since the M-monoid M is contained in the M-monoid M′, e1 can be considered as an

M-expression over M′. Therefore, it holds that e1 × e2 is a 2-forest M-expression over

Σ and M′.

In Example 5.42 we have seen that [[e1]] = pos. Moreover, one can show that the

homomorphism hυ : TΣ →M ′ is given by hυ(ξ) = leaf(ξ) for every ξ ∈ TΣ . This shows

that [[e2]] = leaf and hence we obtain

[[e1 × e2]] = pos× leaf.

We have seen in Example 5.26 that [[C]]r = pos× leaf and hence, [[e1 × e2]] = [[C]]r. ◀

5.6 Conclusion

In this chapter, we have introduced a weighted forest automata model over M-monoids.

We then showed that this model recognises exactly the finite products of recognisable

weighted tree languages over M-monoids. Next, we introduced rational weighted forest

expressions and forest M-expressions over M-monoids and showed that the classes of

languages generated by these formalisms coincide with our recognisable weighted forest

languages under certain conditions on the underlying M-monoid.

In upcoming research, it would be worthwhile to study other ways to define weighted

forest automata, especially models where the tree components in forests are not handled

independently. This could be done while simultaneously considering unranked hedges

(rather than ranked forests) and tree valuation monoids (rather than M-monoids).

188

6

Rational Weighted Tree

Languages with Storage

This chapter is a presentation of Dörband, Fülöp, and Vogler [30] with minor changes.

Throughout Chapter 6, we assume Σ to be a ranked alphabet and S to be a

complete semiring.

6.1 Introduction

Nondeterministic one-way finite-state string automata have been used very successfully

for the specification of aspects of programming languages and of natural languages. Of

course, there is also a need for more powerful automata which can model more sophisti-

cated aspects of such languages, like block-structuredness or cross-serial dependencies.

As a consequence, a number of models of automata with auxiliary data store were in-

troduced; examples of such storages are pushdown [18], stack [63], checking-stack [45],

checking-stack pushdown [111], nested stack [2], iterated pushdown [20, 46, 71, 86],

tree-stack [22], and monoid [75, Example 3] (cf. [79]). Each of these automata models

are constructed according to the recipe

“finite-state automaton + data store” [101]

where (i) the finite-state automaton uses predicates and instructions in its transitions,

(ii) the data store [46, 67, 101] is a set of configurations on which the predicates and

189

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

instructions are interpreted, and there is a distinguished initial configuration. A string

u ∈ Σ∗ is accepted if there is a sequence d of transitions such that (a) d leads the

automaton from some initial to some final state, (b) the projection of d to Σ∗ is u,

and (c) the projection of d to the sequence of involved instructions is executable on the

storage, i.e., it is applicable to the initial configuration (e.g., pop pop is not executable

on the pushdown, because initially it contains only one symbol and pop is not defined

for the empty pushdown).

In the 60’s and 70’s of the previous century, a theory of classes of formal languages

was established [60, 61, 62] where the classes were defined

(A) by closure properties (like closure under union, concatenation, Kleene-star, and

a-transductions) or

(B) by “finite state automata + data store”.

The first type of definition led to the concept of abstract family of languages (AFL) and

the second one to the concept of abstract family of acceptors (AFA). A fundamental

theorem is that, roughly speaking, each class of formal languages is a full principle AFL

if and only if it is the class of formal languages accepted by some finitely-encoded AFA

[60].

In [67, 68, 69], Goldstine criticised the complexity of the definition of AFA. As

alternative, he advocated another approach to automata with storage by applying the

implication “recognisable ⇒ rational” of Kleene’s theorem [81] to the automaton part

of the recipe, thereby obtaining

“rational expressions + data store” [67, 68, 69]

(see also the introduction of [55]). More precisely, he defined an automaton with data

store [68, p. 276] as a rational subset A of the monoid (Σ∗ × I∗)∗ where Σ is an

alphabet and I is the set of instructions of the data store. The language defined by A

is the set

L(A) = {u ∈ Σ∗ | ∃(v ∈ Â) such that u = proj1(v) and proj2(v) is executable}

where (̂.) is the natural morphism from the free monoid (Σ∗ × I∗)∗ to the product

monoid Σ∗ × I∗ (with string concatenation in both components), i.e., Â ⊆ Σ∗ × I∗. It

190

6.1 Introduction

is very important to notice that, although each sequence v ∈ Â is built up according

to the rational set A, the executability of the sequence proj2(v) ∈ I∗ is checked outside

of Â (by the requirement “proj2(v) is executable”). By means of an example using the

pushdown storage, Goldstine demonstrates [67] that the description of the context-free

language {anbn | n ∈ N} is much easier in terms of a rational expression + data store

than in terms of a classical state-based pushdown automaton (also cf. [55]).

The recipe “finite-state automaton + data store” has also been applied in the

weighted case, for example, to the combination of weighted word automata and data

store [54, 74, 112]. Moreover, in [55], Goldstine’s approach was applied to the recipe

“weighted regular tree grammar + storage” [50]1,

where the considered weight structures are commutative, complete semirings. More pre-

cisely, the implication “regular ⇒ rational” of the Kleene-theorem [38, Theorem 7.1]

was applied to the weighted regular tree grammar part and executability of instruc-

tion sequences was checked outside of the rational weighted tree languages. Actually,

sequences of instructions now turn into trees, which we call behaviours (cf. [48] where

they are called approximations). This led to the new concept of rational weighted tree

language with storage. In the present chapter, we will repeat this definition and add

some more discussion. Then the Kleene-Goldstine theorem [55, Theorem 3] (see also

Theorem 6.8) says the following:

Reg(S, Σ, S) = Rat(S, Σ, S)

where S is commutative, S is a storage type, and Reg(S, Σ, S) and Rat(S, Σ, S) are

the classes of weighted tree languages of type TΣ → S that are generated by weighted

tree grammars with storage type S and that are rational weighted tree languages with

storage type S, respectively.

In the following, we discuss the definition of rational weighted tree languages with

storage in more detail. For this, we recall the class of rational weighted tree languages

[38, Definition 3.17] (without any reference to storage). Let Θ be a ranked alphabet.

1Cf. [46] for the unweighted case of such grammars. We also note that regular tree grammars and

finite-state tree automata are equivalent, cf., e.g., [58, Theorem 2.3.6]. The same holds for the weighted

case, cf. [49, Corollary 3.6] and [53, Theorem 3.40].

191

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

The class Rat(Θ,S) of rational weighted tree languages over Θ and S is the smallest class

of weighted tree languages of type TΘ → S which is closed under the rational operations,

that is, under top-concatenation, scalar multiplication, sum, tree concatenation, and

Kleene-star (see Chapter 2.2).

Now assume additionally that S is a storage type (in the sense of [46, 101]) and Σ is

a ranked alphabet. Intuitively, we obtain (S, Σ, S)-rational weighted tree languages by

imposing on the set of behaviours of S a rational structure (as in Goldstine’s approach).

To make this more precise, we first discuss the concept of behaviour. For this, let P ′ and

F ′ be some finite subsets of the sets of predicates and instructions of S, respectively.

We pair Boolean combinations over P ′ with finite sequences over F ′ into a ranked

alphabet ∆ (where the length of the sequence in (F ′)∗ determines the rank). Then a

tree b ∈ T∆ is a ∆-behaviour if each path of b is executable on the storage type S.

For instance, let S be the storage type COUNT which has N as set of configurations,

0 as initial configuration, the predicate zero?, and the instructions inc, dec, and id

(standing for increment, decrement, and identity, respectively). Figure 6.1 shows a

behaviour b ∈ T∆ (right, solid part). Indeed, each path of b is executable on the initial

configuration 0. For instance, the execution of the path

(true, inc) (true, inc) (true, id) (¬zero?, dec) (¬zero?, dec) (zero?, ε)

which leads from the root of b to its rightmost leaf, may be illustrated as follows (where

tt denotes the truth value true):

0
true(0)=tt−→ inc(0) = 1

true(1)=tt−→ inc(1) = 2
true(2)=tt−→ id(2) = 2

¬zero?(2)=tt−→ dec(2) = 1
¬zero?(1)=tt−→ dec(1) = 0

zero?(0)=tt−→ stop .

Figure 6.1 also shows the two sequences of configurations (right, grey part).

Next, we combine symbols from ∆ and symbols of Σ ∪ {∗}, where the symbol ∗

allows to change configurations independent from Σ-symbols. This results in the ranked

alphabet ⟨∆,Σ⟩. We denote by proj1 : T⟨∆,Σ⟩ → T∆ and proj2 : T⟨∆,Σ⟩ → TΣ the

projections to the first component (without the symbol ∗) and second component of

the labels, respectively. For instance, Figure 6.1 shows a tree ζ ∈ T⟨∆,Σ⟩ (left), where

Σ = {σ(2), δ(1), α(0)} is a ranked alphabet, the behaviour b = proj1(ζ) in T∆ (right),

192

6.1 Introduction

0

1

2

2

1

0

2

1

0

⟨(true, inc), ∗⟩

⟨(true, inc), ∗⟩

⟨(true.id id), σ ⟩

⟨(¬zero?, dec), δ ⟩

⟨(¬zero?, dec), δ ⟩

⟨(zero?, ε), α ⟩

⟨(¬zero?, dec), δ ⟩

⟨(¬zero?, dec), δ ⟩

⟨(zero?, ε), α ⟩

proj2

proj1

σ

δ 2

α

δ 2

α

(true, inc)

(true, inc)

(true, id id)

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

Figure 6.1: A tree ζ ∈ T⟨∆,Σ⟩ over the extended ranked alphabet ⟨∆,Σ⟩ (left), a tree

ξ ∈ TΣ (middle), and a behaviour b ∈ T∆ (right). In the behaviour b, the intermediate

configurations along each of its paths are indicated in grey.

and the tree proj2(ζ) = ξ in TΣ (middle). We note that the set T⟨∆,Σ⟩ corresponds to

the product monoid Σ∗ × I∗ of Goldstine1[67, 68, 69].

Finally, we define the map B∆ which maps each tree ξ ∈ TΣ to the set of all

ζ ∈ T⟨∆,Σ⟩ such that proj1(ζ) is a ∆-behaviour and proj2(ζ) = ξ. Then, a weighted

tree language φ : TΣ → S is (S, Σ, S)-rational if there is a weighted tree language

ψ : T⟨∆,Σ⟩ → S in Rat∞(⟨∆,Σ⟩, S) (where ∞ indicates that ψ may use for tree con-

catenation an arbitrary but finite number of nullary symbols additionally to ⟨∆,Σ⟩)

such that

φ = B∆;ψ , (6.1)

where the map (B∆;ψ) : TΣ → S is defined for every ξ ∈ TΣ by

(B∆;ψ)(ξ) =
⊕

ζ∈B∆(ξ)

ψ(ζ) ,

and where
⊕

is an infinitary summation in S. We note that the weighted tree languages

in Rat∞(⟨∆,Σ⟩, S) do not account for executability of sequences of instructions (as in

Goldstine’s approach).

Usually, a class of rational objects is defined as the smallest class which contains

some finite set of objects and which is closed under some appropriate sum operation,

concatenation operation, and iteration operation. For instance, the class Rat(Θ,S)

1However, our notation differs from Goldstine’s one as follows: in Σ∗ × I∗ instructions are in the

second components, while in our T⟨∆,Σ⟩ instructions are in the first components.

193

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

(for every ranked alphabet Θ) is defined in this way. However, this is not true for our

class Rat(S, Σ, S) of rational weighted tree languages with storage, because each such

weighted tree language has the form B∆;ψ (cf. Equation (6.1)) and we do not know

how to decompose behaviours under tree concatenation and Kleene-star. That means

we could not prove the following: for every ψ1, ψ2, ψ ∈ Rat∞(⟨∆,Σ⟩, S) and nullary

symbol ᾱ = ⟨(p, ε), α⟩ in ⟨∆,Σ⟩ there are ψ′
1, ψ

′
2, ψ

′ ∈ Rat∞(⟨∆,Σ⟩, S) such that ψ′
i

only depends on ψi for i ∈ {1, 2}, ψ′ only depends on ψ, and

B∆; (ψ1 ◦ᾱ ψ2) = (B∆;ψ
′
1) ◦α (B∆;ψ

′
2) and B∆;ψ

∗
ᾱ = (B∆;ψ

′)∗α .

We even claim that these statements are wrong. Thus, the definition of Rat(S, Σ, S)

does not imply that Rat(S, Σ, S) is closed under the rational operations, in particular,

tree concatenation and Kleene-star.

However, in [56, Lemma 6.6 and 6.7] it was proved that, if S is commutative, then

the class Reg(S, Σ, S) is closed under tree concatenation and Kleene-star if S contains

a reset instruction (i.e., an instruction ¢ which transforms each configuration into the

initial configuration). The proofs consist of direct constructions and their correctness

proofs. Then, it follows from our Kleene-Goldstine theorem that also Rat(S, Σ, S) is

closed under tree concatenation and Kleene-star (again assuming that S contains a

reset instruction).

In this chapter, we show alternative proofs of the closure of Rat(S, Σ, S) under the

rational operations, where closure under tree concatenation and Kleene-star assumes

that S contains a reset instruction (cf. Theorem 6.21); here we do not assume that S

is commutative. For this, we show how to compose behaviours. In particular, we prove

the following for every s ∈ N, σ ∈ Σ(s), ψ,ψ1, ψ2, . . . , ψs ∈ Rat∞(⟨∆,Σ⟩, S), and a ∈ S

it holds that

• topσ((B∆;ψ1), . . . , (B∆;ψs)) = B∆; (top⟨(true,id···id),σ⟩(ψ1, . . . , ψs)) (cf. Lemma

6.9)

• a⊙ (B∆;ψ) = B∆; (a⊙ ψ) (cf. Lemma 6.10),

• (B∆;ψ1)⊕ (B∆;ψ2) = B∆; (ψ1 ⊕ ψ2) (cf. Lemma 6.11),

• (B∆;ψ1) ◦α (B∆;ψ2) = B∆; (ψ
↓
1 ◦ᾱ ψ2) (cf. Lemma 6.15), and

194

6.2 Preliminaries

• (B∆;ψ)
∗
α = B∆; (ψ

↓)∗ᾱ if B∆;ψ is α-proper (cf. Lemma 6.20).

Here, ψ↓
1 and ψ

↓ are extensions of ψ1 and ψ, respectively, which use the reset instruction.

Both ψ↓
1 and ψ↓ are elements of Rat∞(⟨∆,Σ⟩, S) (cf. Lemma 6.13).

We now point out the benefit of our new proofs compared to the existing ones. In

[56], proofs were given by constructions and their correctness proofs. This is a quite un-

rewarding approach, as very similar proofs have already been done in [38] for the case of

the trivial storage type. The fact that Rat(S, Σ, S) essentially equals Rat∞(⟨∆,Σ⟩, S)

precomposed by B∆ is enough knowledge to prove the closure properties. Hence, we

do not need to know the formalism generating Reg(S, Σ, S) in order to prove the clo-

sure properties. We much rather show that the way, in which storage is introduced,

preserves these properties.

This chapter supplements [55]. However, we will also repeat the main definitions

and the main theorem of [55], i.e., the Kleene-Goldstine theorem.

6.2 Preliminaries

0-Extensions A 0-extension of Σ is a ranked alphabet Θ such that Σ ⊆ Θ, rkΘ(σ) =

rkΣ(σ) for each σ ∈ Σ, and rkΘ(σ) = 0 for each σ ∈ Θ \Σ.

Let φ : TΣ → S be a weighted tree language. A 0-extension of φ is a weighted tree

language φ′ : TΘ → S such that Θ is a 0-extension of Σ, φ′|TΣ
= φ and φ′(ξ) = 0 for

every ξ ∈ TΘ \ TΣ .

Let Θ be a ranked alphabet, τ : TΣ → P(TΘ) a map, and φ : TΘ → S. We define

the (Σ,S)-weighted tree language (τ ;φ) : TΣ → S for every ξ ∈ TΣ by

(τ ;φ)(ξ) =
⊕

ζ∈τ(ξ)

s(ζ),

where
⊕

is an infinitary sum operation on S (recall that S is complete).

Storage Types and Behaviours We recall the (slightly modified) concept of storage

type from [46]. Storage types are a reformulation of the concept of machines [101] and

data stores [68, 69].

195

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

A storage type is a tuple S = (C,P, F, c0), where C is a set of configurations, c0 ∈ C

is the initial configuration, P is a set of maps each having the type p : C → {0, 1}, called

predicates, and F is a nonempty set of partial maps f : C 99K C, called instructions.

Moreover, we assume that F contains idC , which we abbreviate by id and call identity

instruction (on C).

The reset instruction (for S) is the map ¢ : C → C which maps each configuration

to c0. We denote by S¢ the storage type (C,P, F¢, c0) where F¢ = F ∪ {¢}. Clearly,

if ¢ ∈ F , then S = S¢.

The trivial storage type is the storage type TRIV = ({c}, ∅, {id{c}}, c), where c is

some arbitrary but fixed symbol. Clearly, TRIV¢ = TRIV. Another example of a

storage type is the counter COUNT = (N, {zero?}, {idN, inc, dec}, 0), where for each

n ∈ N, we let zero?(n) = 1 iff n = 0, inc(n) = n + 1, and dec(n) = n − 1 if n ≥ 1 and

undefined otherwise. Surely, COUNT¢ ̸= COUNT.

We define the maps true: C → {0, 1} and false : C → {0, 1} by true(c) = 1 and

false(c) = 0 for every c ∈ C. We denote by BC(P) the Boolean closure of P , i.e., the

smallest set of maps of type C → {0, 1} which contains true, false, and all predicates

in P and which is closed under negation ¬, disjunction ∨, and conjunction ∧. If P

is finite, then BC(P) is also finite because it is a finitely generated subalgebra of the

Boolean algebra of all predicates over C (cf. [64, Corollary 2]).

Throughout the rest of Chapter 6, if S is left unspecified, then it stands for

an arbitrary storage type S = (C,P, F, c0). Also, if P and F are left unspec-

ified, then they stand for the sets of predicates and instructions, respectively,

of some storage type S.

Let P ′ ⊆ P be a finite set and F ′ ⊆ F be a non-empty, finite set. Moreover, let

n ∈ N. We define the ranked alphabet

∆ =
⋃

0≤k≤n

∆(k) with ∆(k) = BC(P ′)× (F ′)k .

We call ∆ the ranked alphabet n-corresponding to P ′ and F ′. We write elements

(p, f1, . . . , fk) of ∆ in the slightly shorter form (p, f1 · · · fk). Note that the parameter n

is used to put an upper bound on the rank of symbols in ∆, whence maxrk(∆) = n. The

196

6.3 Rational Weighted Tree Languages with Storage

ranked alphabet corresponding to Σ, P ′, and F ′ is the ranked alphabet n-corresponding

to P ′ and F ′ where n = max{maxrk(Σ), 1}.

We now turn towards the concept of behaviour, which is inspired by the set LD of

all executable sequences of instructions (defined on [60, p. 148]; also cf. the notion of

storage tracks in [68]). In [48, Definition 3.23] a family of behaviours is put together into

a tree by sharing common prefixes; such a tree is called approximation. Here we recall

the concept of approximation from [50], but we keep the original name “behaviour”.

Formally, let c ∈ C, n ∈ N, and ∆ be the ranked alphabet n-corresponding to

P ′ ⊆ P and F ′ ⊆ F . Then a tree b ∈ T∆ is a (∆, c)-behaviour if there exists a family

(cw ∈ C | w ∈ pos(b)) of configurations such that cε = c and for every w ∈ pos(b)

it holds that if b(w) = (p, f1 · · · fk), then (i) p(cw) = 1 and (ii) for every i ∈ [k] the

configuration fi(cw) is defined and cwi = fi(cw). If b is a (∆, c)-behaviour, then we

call (cw ∈ C | w ∈ pos(b)) the family of configurations determined by b and c. A

∆-behaviour is a (∆, c0)-behaviour. The right part of Figure 6.1 shows an example b

of a ∆-behaviour; the grey-shaded tree is the family of configurations determined by

b and 0. We denote the set of all ∆-behaviours by B(∆). We refer the reader to [50,

Figure 2] for an example of a behaviour of the pushdown storage.

In Figure 6.2, we provide a table which compares our concepts of storage types and

of behaviours with the corresponding concepts of data stores and storage tracks from

[68, Definition 3.1].

6.3 Rational Weighted Tree Languages with Storage

In this chapter, we generalise the approach of [68, 69] from the unweighted case to the

weighted case and from strings to trees. For the definition of rational weighted tree

languages (disregarding storage for the time being), we first recall what it means for

weighted tree languages to be closed under rational operations. We refer the reader to

Chapter 2.2 for the definition of the rational operations.

Let L ⊆ STΣ be a class of weighted tree languages. We say that L is

• closed under scalar multiplication if for every φ ∈ L and a ∈ S, the (Σ,S)-

weighted tree language a⊙ φ is in L,

197

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

data store [68, Definition 3.1] storage type [present chapter]

D = (D0, ι,D1) (data store) S = (C,P, F, c0) (storage type)

D (set of configurations) C (set of configurations)

D0 ⊆ D (initial configurations) c0 ∈ C (initial configuration)

D1 ⊆ D (terminal configurations) –

– P (set of predicates)

I (set of instructions) F (set of instructions)

ι(i) ⊆ D ×D (interpretation of instruction i ∈ I) f : C → C (instruction)

v ∈ I∗ such that ι(v) : D0 7→ D1 (storage track) ∆-behaviour b ∈ B(∆)

Figure 6.2: Comparison of data storage and storage types.

• closed under sum if for every φ1, φ2 ∈ L, the (Σ,S)-weighted tree language φ1⊕φ2

is in L,

• closed under top-concatenation if for every s ∈ N, σ ∈ Σ(s), and φ1, . . . , φs ∈ L,

the (Σ,S)-weighted tree language topσ(φ1, . . . , φs) is in L,

• closed under tree concatenation if for every φ1, φ2 ∈ L and for every α ∈ Σ(0),

the (Σ,S)-weighted tree language φ1 ◦α φ2 is in L, and

• closed under Kleene-star if for every α ∈ Σ(0) and φ ∈ L such that φ is α-proper,

the (Σ,S)-weighted tree language φ∗
α is in L.

Definition 6.1. The set of rational weighted tree languages over Σ and S, denoted

by Rat(Σ,S), is the smallest class of (Σ,S)-weighted tree languages which is closed

under the rational operations, that is, scalar multiplication, sum, top-concatenation,

tree concatenation, and Kleene star. ◀

By iterating top-concatenations and using scalar multiplication and sum, we can

build up each weighted tree language with finite support. Hence each weighted tree

language with finite support is in Rat(Σ,S).

We note that the class Rat(Σ,S) is the same as the class Arat⟨⟨TΣ⟩⟩ from [38].

198

6.3 Rational Weighted Tree Languages with Storage

However, the Kleene-theorem [38, Theorem 7.1] only applies to the class

Arat⟨⟨TΣ(Q∞)⟩⟩ =
⋃

Q finite set of
nullary symbols

Arat⟨⟨TΣ∪Q⟩⟩ .

These nullary symbols are needed for the analysis of chain-free (Σ,S)-regular tree

grammars (cf. Section 6.4), specifically to do a certain q-concatenation with q ∈ Q∞

(see [38, Theorem 5.2], cf. also [107, Theorem 9]). We therefore extend our definition

to capture this phenomenon by adding 0-extensions.

Definition 6.2. The set of extended (Σ,S)-rational weighted tree languages, denoted

by Rat∞(Σ,S), contains each (Σ,S)-weighted tree language φ such that there exists a

0-extension φ′ ∈ Rat(Σ′, S) of φ for some 0-extension Σ′ of Σ. ◀

In particular, Rat(Σ,S) ⊆ Rat∞(Σ,S).

Remark 6.3. Let Arat⟨⟨TΣ⟩⟩ and Arat⟨⟨TΣ(Q∞)⟩⟩ be defined as in [38, Definitions 3.18

and 4.2]. It holds that

Rat(Σ,S) = Arat⟨⟨TΣ⟩⟩

Rat∞(Σ,S) = Arat⟨⟨TΣ(Q∞)⟩⟩ .

We note that in [55], the sets Rat(Σ,S) and Rat∞(Σ,S) are denoted by L(Σ,S) and

Rat(Σ,S), respectively. We have changed these notations here in order to be more

compatible with the notations used in [38, 83]. ◀

Remark 6.4. Let Σ′ be a ranked alphabet such that Σ ⊆ Σ′. One can easily verify

that Rat∞(Σ,S) ⊆ Rat∞(Σ′, S). ◀

In our definition of rational weighted tree languages over Σ and S with storage S,

we will use the rational operations to build up trees and each such tree ζ combines a

tree ξ ∈ TΣ and a tree b over the ranked alphabet ∆ corresponding to Σ and some

finite sets P ′ ⊆ P and F ′ ⊆ F . Then, according to Goldstine’s idea, we check outside

of the building process whether b is a behaviour. In order to allow manipulation of the

storage via P ′ and F ′ also independently from the generation of a Σ-symbol, we use

the symbol ∗ as a padding symbol of rank 1 such that ∗ ̸∈ Σ. (We refer the reader to

199

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

pages 205 and 213 for a short discussion on the usage and necessity of ∗.) Formally, we

define the Σ-extension of ∆, denoted by ⟨∆,Σ⟩, to be the ranked alphabet where

⟨∆,Σ⟩(1) = ∆(1) × (Σ(1) ∪ {∗}) and ⟨∆,Σ⟩(k) = ∆(k) ×Σ(k) for k ̸= 1.

Additionally, we define the maps proj1 : T⟨∆,Σ⟩ → T∆ and proj2 : T⟨∆,Σ⟩ → TΣ

such that for every k ∈ N, ⟨δ, σ⟩ ∈ ⟨∆,Σ⟩(k), and ζ1, . . . , ζk ∈ T⟨∆,Σ⟩, we have

proj1(⟨δ, σ⟩(ζ1, . . . , ζk)) = δ(proj1(ζ1), . . . , proj1(ζk)) ,

and

proj2(⟨δ, σ⟩(ζ1, . . . , ζk)) =

σ(proj2(ζ1), . . . , proj2(ζk)) if σ ̸= ∗

proj2(ζ1) otherwise.

We note that proj1 is a tree relabeling in the sense of [43]. Then, we define the map

B∆ : TΣ → P(T⟨∆,Σ⟩) for each ξ ∈ TΣ by

B∆(ξ) = {ζ ∈ T⟨∆,Σ⟩ | proj1(ζ) ∈ B(∆) and proj2(ζ) = ξ} .

We call B∆(ξ) the set of ξ-extended behaviours. We note that this definition of B∆(ξ)

is equivalent to the one on [55, p. 143], and that B∆(ξ) is infinite due to the presence of

the padding symbol ∗ and the fact that id ∈ F . We refer to Figure 6.1 for an example

of ξ ∈ TΣ and ζ ∈ B∆(ξ).

Let ζ ∈ B∆(ξ). We define≃ζ as the smallest equivalence relation on pos(ζ) such that

for every w′ ∈ pos(ζ) satisfying ζ(w′) = ⟨δ, ∗⟩ for some δ ∈ ∆, we have w′ ≃ζ w
′1. In

Figure 6.3, we visualise the equivalence classes of ≃ζ by the light gray boxes. Moreover,

Figure 6.3 illustrates that each equivalence class of ≃ζ corresponds to exactly one

position of ξ. We use this intuition of correspondence of equivalence classes of ≃ζ to

positions of ξ in order to formally define the following relation. Given w′ ∈ pos(ζ) and

w ∈ pos(ξ) we say that w′ corresponds to w if [w′]≃ζ
corresponds to w. The following

table shows the complete list of correspondences of positions for ζ and ξ from Figure 6.3.

position w′ of ζ position of ξ corresponding to w′

ε, 1 ε

11, 111, 1111 1

11111 11

12, 121 2

200

6.3 Rational Weighted Tree Languages with Storage

σ

γ

α

β

proj2

⟨−, ∗⟩

⟨−,σ⟩

⟨−, ∗⟩

⟨−, ∗⟩

⟨−,γ⟩

⟨−,α⟩

⟨−, ∗⟩

⟨−,β⟩

Figure 6.3: A tree ξ ∈ TΣ (left) and a tree ζ ∈ B∆(ξ) (right) for which ξ = proj2(ζ)

holds. Each occurrence of the hyphen (−) in ζ represents an element of ∆; different

occurrences of the hyphen may represent different elements of ∆.

Definition 6.5. Let φ : TΣ → K be a weighted tree language. We say that φ is

(S, Σ, S)-rational if there are finite sets P ′ ⊆ P and F ′ ⊆ F and a weighted tree

language ψ ∈ Rat∞(⟨∆,Σ⟩, S) such that

φ = B∆;ψ, that is, φ(ξ) =
⊕

ζ∈B∆(ξ)

ψ(ζ) for every ξ ∈ TΣ .

We denote by Rat(S, Σ, S) the class of all (S, Σ, S)-rational weighted tree languages,

which we also call the class of rational weighted tree languages with storage. ◀

Now we compare rational weighted tree languages with storage and automata with

data store [68]. As a technical tool, we use the concept of characteristic functions.

For every set B and every B′ ⊆ B, the characteristic function of B′ in B is the map

χ(B,B′) : B → B defined for every a ∈ B by χ(B,B′)(a) = 1 if a ∈ B′ and χ(B,B′)(a) = 0

otherwise. If we transcribe the definition of the language L(A) ⊆ Σ∗ defined by a

Goldstine-automaton A (as given in [68, p. 276] for some alphabet Σ) by replacing the

membership test u ∈ L(A) (for some string u ∈ Σ∗) by the equation χ(Σ∗,L(A))(u) = 1,

then the definition of L(A) reads:

χ(Σ∗,L(A))(u) =
∨

v∈I∗ s.th.
ι(v) : D0 7→D1

χ(Σ∗×I∗,Â)(u, v) (6.2)

where ι(v) : D0 7→ D1 says that there is an initial configuration c0 ∈ D0 and a final

configuration c1 ∈ D1 such that the sequence v of instructions can transform c0 into

201

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

language defined by an (S,Σ,K)-rational weighted tree language

automaton over data store [68] [present chapter]

string u ∈ Σ∗ tree ξ ∈ TΣ

sequence v ∈ I∗ of instructions tree b ∈ T∆

combination of v ∈ I∗ and u ∈ Σ∗ tree ζ ∈ T⟨∆,Σ⟩

v ∈ I∗ is storage track if ι(v) : D0 7→ D1 b ∈ T∆ is a behaviour if b ∈ B(∆)

automaton A rational expression (not contained here)

trace Â (⟨∆,Σ⟩, S)-rational weighted tree language ψ

χ(Σ∗×I∗,Â)(u, v) ψ(ζ)

addition ∨ in the Boolean semiring addition + in an arbitrary complete semiring S

truth value χ(Σ∗,L(A))(u) value φ(ξ) in S

Figure 6.4: Comparison of concepts in [68] and in the present chapter.

c1; and Â is the trace of A. Moreover, the operator
∨

is the generalisation of binary

disjunction of truth values to a finite number of arguments. Then, Equation (6.2) can

easily be compared to the definition of rational weighted tree languages with storage:

φ(ξ) =
⊕

ζ∈B∆(ξ)

ψ(ζ) . (6.3)

Thus our concept of (S, Σ, S)-rational weighted tree languages generalises the concept

of automata over data stores [68] from the unweighted to the weighted case (i.e., from

the Boolean semiring B to any complete semiring S) and from strings to trees. The

correspondences between the quantities involved in (6.2) and (6.3) are shown in Figure

6.4. For an example of a rational weighted tree language with storage we refer the

reader to [55, Example 1].

6.4 The Kleene-Goldstine Theorem

In this chapter, we briefly recall from [55] the definition of weighted regular tree

grammars with storage and the Kleene-Goldstine theorem. Our grammar model is

the weighted version of regular tree grammar with storage [48], where we take the

weights from a complete semiring S. Our concept slightly extends the form of rules of

202

6.4 The Kleene-Goldstine Theorem

(S, Σ, S)-regular tree grammars as defined in [50, Section 3.1] by allowing any number

of terminal symbols in the right hand side of rules. Also, in [50], the weight algebras

are complete M-monoids, which are more general than complete semirings.

A weighted regular tree grammar over Σ with storage S and weights in S (for short:

(S, Σ, S)-rtg) is a tuple G = (N,Z,R,wt), where N is a finite set of nonterminals such

that N ∩ Σ = ∅, Z ⊆ N is the set of initial nonterminals, R is a finite and nonempty

set of rules, such that each rule has the form

A(p)→ ξ ,

where A ∈ N , p ∈ BC(P), and ξ ∈ TΣ(N(F)) with N(F) = {A(f) | A ∈ N, f ∈ F},

and wt: R→ S is the weight function. We recall that P and F are the sets of predicates

and of instructions, respectively, of the storage type S.

If r is a rule of the form A(p)→ B(f), then it is called a chain rule. If G does not

have chain rules, then we call it chain-free. We say that G is in normal form if each

rule contains at most one symbol from Σ. We let PG and FG denote the finite sets of

predicates and instructions, respectively, which occur in G. Moreover, if FG ̸= ∅, then

we denote the ranked alphabet corresponding to R, PG, and FG by ∆G, where we view R

as a ranked alphabet such that the rank of a rule r ∈ R is the number of nonterminals

in its right hand side.

For the formal definition of the weighted tree language generated by G, denoted by

[[G]] : TΣ → S, we refer the reader to [55]; here we only give an intuition by showing a

slight modification of [55, Example 2]. We consider the semiring (N∞,+, ·, 0, 1) where

N∞ = N ∪ {∞} and the (COUNT, Σ,N∞)-rtg G = ({Z,A}, Z,R,wt) where all rules

in R and their corresponding weights are shown in Figure 6.5. Clearly, G is in normal

form (in contrast to [55, Example 2]) and the topmost rule in Figure 6.5 is a chain rule.

At the left of Figure 6.6, a derivation tree d ∈ DG(ξ) for the input tree ξ (middle)

is shown, where DG(ξ) is the set of all derivation trees for ξ [55, Section 5]. We note

that DG(ξ) ⊆ TR. The involved maps have the types π : TR → TΣ and β : TR → T∆G

and they extract from a given derivation tree d the tree ξ that is generated by d

and the behaviour b that was used to generate ξ, respectively. Additionally, the map

wtG : TR → S multiplies the weights of the rules which occur in its argument in a fixed

203

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

rule r: wt(r):

Z(true) → Z(inc) 2

Z(true) → σ(A(id), A(id)) 1

A(¬zero?) → δ(A(dec)) 2

A(zero?) → α 1

Figure 6.5: Rules of a (COUNT, Σ,N∞)-rtg.

0

1

2

2

1

0

2

1

0

Z(true) → Z(inc)

Z(true) → Z(inc)

Z(true) → σ (A(id), A(id))

A(¬zero?) → δ (A(dec))

A(¬zero?) → δ (A(dec))

A(zero?) → α

A(¬zero?) → δ (A(dec))

A(¬zero?) → δ (A(dec))

A(zero?) → α

π

β

σ

δ 2

α

δ 2

α

(true, inc)

(true, inc)

(true, id id)

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

Figure 6.6: A derivation tree d ∈ DG(ξ) (left), the input tree ξ = π(d) = σ(δ2(α), δ2(α))

(up middle), the ∆G-behaviour b = β(d) (right), the family (cw | w ∈ pos(b)) of configura-

tions (in grey) determined by b and 0.

order. The weighted tree language generated by G is the map [[G]] : TΣ → S defined for

each ξ ∈ TΣ by

[[G]](ξ) =
⊕

d∈DG(ξ)

wtG(d) .

Due to chain rules, the index set DG(ξ) can be infinite. Also in this case, the sum is

well defined because S is a complete semiring.

For our example grammar G, it is rather easy to see that [[G]] : TΣ → N∞ and

[[G]](ξ) =

(2n)3 if ξ = σ(δn(α), δn(α)) for some n ∈ N,

0 otherwise.

In general, let φ be a (Σ,S)-weighted tree language. We say that φ is (S, Σ, S)-regular

if there exists an (S, Σ, S)-rtg G such that φ = [[G]]. The class of all (S, Σ, S)-regular

tree languages is denoted by Reg(S, Σ, S). We note that a (TRIV, Σ, S)-rtg in which

204

6.4 The Kleene-Goldstine Theorem

rule r: wt(r):

Z → ⟨(true, inc), ∗⟩
(
Z
)

2

Z → ⟨(true, id id), σ⟩
(
A,A

)
1

A → ⟨(¬zero?, dec), δ⟩
(
A
)

2

A → ⟨(zero?, ε), α⟩ 1

Figure 6.7: Rules of a (TRIV, ⟨∆,Σ⟩,N∞)-rtg.

every rule contains exactly one terminal symbol, is just another syntactic form of a

weighted tree automaton over Σ and S [53].

The Kleene-Goldstine theorem is based on two theorems: (a) a decomposition the-

orem and (b) a Kleene theorem. The decomposition theorem (a) was proved in [50,

Theorem 5.3] for (S, Σ, S)-rtg in normal form. We recall the slightly extended version

from [55] for the case of arbitrary (S, Σ, S)-rtg.

Theorem 6.6 (Theorem 1 from [55]). Let φ : TΣ → S. The following are equivalent:

(i) φ = [[G]] for some (S, Σ, S)-rtg G.

(ii) There are finite sets P ′ ⊆ P and F ′ ⊆ F , and a chain-free (TRIV, ⟨∆,Σ⟩, S)-

rtg G such that ∆ is the ranked alphabet corresponding to Σ, P ′, and F ′, and

φ = B∆; [[G]].

We illustrate the easy construction involved in (i) ⇒ (ii) of Theorem 6.6 by con-

sidering the (COUNT, Σ,N∞)-rtg G with rules given in Figure 6.5. The rules of the

chain-free (TRIV, ⟨∆,Σ⟩,N∞)-rtg resulting from that construction are shown in Fig-

ure 6.7 where we have dropped the Boolean combination true from the left hand side

of each rule and the instruction id from each nonterminal of the right hand side of each

rule. This example indicates how the symbol ∗ is used as a padding symbol. Indeed,

weighted regular tree grammars over TRIV are equivalent to weighted regular tree

grammars without storage type (cf. special case (ii) of [50, page 13] and [56, page 9]).

The used Kleene theorem (b) was proved in [38] for weighted tree automata over

a ranked alphabet Θ and commutative semiring S, which are equivalent to chain-free

(TRIV, Θ, S)-rtg in normal form (cf. special cases (ii) on [50, p. 13]).

205

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

Theorem 6.7 (Theorems 5.2 and 6.8(2) from [38]). For every ranked alphabet Θ and

commutative semiring S, we have

Regnc(TRIV, Θ, S) = Rat∞(Θ,S),

where Regnc(TRIV, Θ, S) is the class of (Θ,S)-weighted tree languages generated by

chain-free (TRIV, Θ, S)-rtg.

Now we recall the Kleene-Goldstine theorem for weighted regular tree grammars

with storage, which follows easily from Theorems 6.6 and 6.7 (by choosing Θ = ⟨∆,Σ⟩)

and from the definition of rational weighted tree languages with storage. This theorem

generalises [38, Theorem 7.1] from the trivial storage type TRIV to an arbitrary storage

type.

Theorem 6.8 (Theorem 3 from [55]). Let S be commutative. It holds that

Reg(S, Σ, S) = Rat(S, Σ, S).

We refer the reader to [55] for a discussion of some special cases.

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

In this chapter, we prove that Rat(S¢, Σ, S) is closed under the rational operations.

Throughout the rest of Chapter 6.5, we assume that P ′ is a finite subset of

P , F ′ is a finite and nonempty subset of F , and ∆ is the ranked alphabet

corresponding to Σ, P ′, and F ′.

6.5.1 Top-Concatenation, Scalar Multiplication, and Sum

The next three lemmas are preparations for the proof that Rat(S, Σ, S) is closed under

top-concatenation, scalar multiplication, and sum, respectively.

Lemma 6.9. For every s ∈ N, σ ∈ Σ(s), and φ1, . . . , φs ∈ Rat∞(⟨∆,Σ⟩, S) it holds

that

topσ((B∆;φ1), . . . , (B∆;φs)) = B∆; top⟨(true,id···id),σ⟩(φ1, . . . , φs)

with s occurrences of id.

206

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

Proof. Let ξ ∈ TΣ . First, we assume that there do not exist ξ1, . . . , ξs ∈ TΣ such that

ξ = σ(ξ1, . . . , ξs). Then, topσ((B∆;φ1), . . . , (B∆;φs))(ξ) = 0. Moreover, using φ̄ as

abbreviation of top⟨(true,id···id),σ⟩(φ1, . . . , φs), it holds

(B∆; φ̄)(ξ) =
⊕

ζ∈B∆(ξ)

φ̄(ζ) = 0

by definition of B∆(ξ) and the forms of φ̄ and ξ.

Next, we assume that there exist ξ1, . . . , ξs ∈ TΣ such that ξ = σ(ξ1, . . . , ξs). Using

the same abbreviation as above, it holds that

topσ((B∆;φ1), . . . , (B∆;φs))(ξ)

= (B∆;φ1)(ξ1)⊙ . . .⊙ (B∆;φs)(ξs)

=

 ⊕
ζ1∈B∆(ξ1)

φ1(ζ1)

⊙ . . .⊙
 ⊕

ζs∈B∆(ξs)

φs(ζs)

⋆1=

⊕
ζ1∈B∆(ξ1)

. . .
⊕

ζs∈B∆(ξs)

φ1(ζ1)⊙ . . .⊙ φs(ζs)

=
⊕

ζ1∈B∆(ξ1)

. . .
⊕

ζs∈B∆(ξs)

φ̄(⟨(true, id . . . id), σ⟩(ζ1, . . . , ζs))

⋆2=
⊕

ζ∈B∆(ξ)

φ̄(ζ) = (B∆; φ̄)(ξ)

where in Equation ⋆1 we have used the generalised distributivity law (see Equation (2.4)

on page 21) and in Equation ⋆2 we use the definition of B∆ and the fact that φ̄(ζ) = 0

for every ζ ∈ B∆(ξ) such that ζ(ε) ̸= ⟨(true, id . . . id), σ⟩.

Lemma 6.10. For every a ∈ S and φ ∈ Rat∞(⟨∆,Σ⟩, S) it holds that

a⊙ (B∆;φ) = B∆; (a⊙ φ).

Proof. Let ξ ∈ TΣ . Then

(a⊙ (B∆;φ))(ξ) = a⊙ (B∆;φ)(ξ) = a⊙
⊕

ζ∈B∆(ξ)

φ(ζ)

⋆
=

⊕
ζ∈B∆(ξ)

a⊙ φ(ζ) =
⊕

ζ∈B∆(ξ)

(a⊙ φ)(ζ) = (B∆; a⊙ φ)(ξ)

where in Equality ⋆ we have used the generalised distributivity law, Equation (2.4).

207

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

⟨(p, f), γ⟩

⟨(p′, f1f2), σ⟩

⟨(q, g1g2), σ⟩

⟨(p′′, ε), α⟩ ⟨(p, ε), β⟩

⟨(p′, ε), α⟩

ζ =

⟨(p, f), γ⟩

⟨(p′, f1f2), σ⟩

⟨(q, g1g2), σ⟩

⟨(p′′, ¢), ∗⟩

⟨(true, ε), α⟩

⟨(p, ε), β⟩

⟨(p′, ¢), ∗⟩

⟨(true, ε), α⟩

ζ↓ =

Figure 6.8: A tree ζ and its α-extension ζ↓.

Lemma 6.11. For every φ1, φ2 ∈ Rat∞(⟨∆,Σ⟩, S) it holds that

(B∆;φ1)⊕ (B∆;φ2) = B∆; (φ1 ⊕ φ2).

Proof. Let ξ ∈ TΣ . Then

((B∆;φ1)⊕ (B∆;φ2))(ξ) =
⊕

ζ∈B∆(ξ)

φ1(ζ)⊕
⊕

ζ∈B∆(ξ)

φ2(ζ)

=
⊕

ζ∈B∆(ξ)

(φ1 ⊕ φ2)(ζ) = (B∆; (φ1 ⊕ φ2))(ξ).

6.5.2 α-Concatenation

In [56, Lemma 6.6] it was proved that Reg(S¢, Σ, S) is closed under α-concatenation.

Thus, by the Kleene-Goldstine theorem (cf. Theorem 6.8), also Rat(S¢, Σ, S) is closed

under α-concatenation. Next we prepare an alternative proof of this fact.

Throughout the rest of Chapter 6.5, we assume that ¢ ∈ F ′ and α ∈ Σ(0).

For our closure proof, we would like to concatenate a tree ζ over ⟨∆,Σ⟩ at each

leaf which contains α with another tree ζ ′. But then the following problem occurs, cf.

Figure 6.8. The tree ζ has two leaves which are labeled by ⟨(p′′, ε), α⟩ and ⟨(p′, ε), α⟩,

respectively. Now if p′ and p′′ are different elements of BC(P), then there is no nullary

symbol ⟨x, α⟩ ∈ ⟨∆,Σ⟩ such that the ⟨x, α⟩-concatenation replaces both leaves by ζ ′.

208

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

We solve this problem by transforming ζ into its α-extension ζ↓ (cf. Figure 6.8) which

involves the padding symbol ∗. Thereby we have homogenised the labels containing α

and we can use ζ↓ ◦⟨(true,ε),α⟩ ζ for the desired concatenation.

Definition 6.12. Let ζ ∈ T⟨∆,Σ⟩. We define the α-extension of ζ, denoted ζ↓, as

the tree obtained from ζ by replacing each occurrence of the leaf ⟨(p, ε), α⟩, where

p ∈ BC(P), by the tree ⟨(p, ¢), ∗⟩(⟨(true, ε), α⟩). This defines an injective map

−↓ : T⟨∆,Σ⟩ → T⟨∆,Σ⟩. We extend the definition of −↓ to sets of trees in the natu-

ral way.

Given a weighted tree language φ : T⟨∆,Σ⟩ → S, we define the α-extension of φ as

the weighted tree language φ↓ : T⟨∆,Σ⟩ → S, given for every ζ ∈ T⟨∆,Σ⟩ by

φ↓(ζ) =

φ(η) if ζ = η↓ for some η ∈ T⟨∆,Σ⟩

0 otherwise.
◀

Lemma 6.13. Let φ ∈ Rat∞(⟨∆,Σ⟩, S). It holds that φ↓ ∈ Rat∞(⟨∆,Σ⟩, S).

Proof. Let φ ∈ Rat∞(⟨∆,Σ⟩, S) and let us consider a rational expression R which

represents φ (cf. [38, Definition 3.17]). Let {p1, . . . , pn} be the set of all elements in

BC(P) \ {true} which occur in R. For each p ∈ {p1, . . . , pn} ∪ {true} we define

Rp = ⟨(p, ¢), ∗⟩(⟨(true, ε), α⟩) .

Now we define the rational expression R′ as follows:

R′ = (· · · ((R ◦⟨(true,ε),α⟩ Rtrue) ◦⟨(p1,ε),α⟩ Rp1) · · ·) ◦⟨(pn,ε),α⟩ Rpn .

We note that it is possible that true does not occur in R. In this case, the ⟨(true, ε), α⟩-

concatention has no effect in R′.

By standard arguments, we can prove that R′ represents φ↓. Hence we have shown

that φ↓ ∈ Rat∞(⟨∆,Σ⟩, S).

Let Θ be a ranked alphabet (later, we will instantiate Θ = Σ or Θ = ⟨∆,Σ⟩),

ξ ∈ TΘ, β ∈ Θ(0), n ∈ N, and w̃ = (w1, . . . , wn) ∈ pos(ξ)n such that w1 <l · · · <l wn.

We denote

ξw̃,0
β = ξ[β]w̃ and ξw̃,i

β = ξ|wi

209

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

for every i ∈ [n]. Whenever β is clear from the context, for example if w̃ ∈ cutβ(ξ), we

drop the annotation of β and simply write ξw̃,i. In particular, ξ(),0 = ξ.

Let ξ ∈ TΣ and ζ ∈ B∆(ξ). We recall that each position w′ ∈ pos(ζ) corresponds

to a unique w ∈ pos(ξ) (cf. Figure 6.3). Therefore, for every w̃′ = (w′
1, . . . , w

′
n)

in cut⟨(true,ε),α⟩(ζ), there is a unique tuple w̃ = (w1, . . . , wn) in pos(ξ)n such that w′
i

corresponds to wi. We say that w̃ corresponds to w̃′. We note that w1 <l · · · <l wn and

proj2(ζ
w̃′,i) = ξw̃,i

α for every 0 ≤ i ≤ n. However, w̃ does not necessarily cover posα(ξ).

In fact, w̃ ∈ cutα(ξ) iff w̃
′ covers all positions in ζ which contain α (as opposed to just

pos⟨(true,ε),α⟩(ζ)).

Lemma 6.14. Let ξ ∈ TΣ . Consider the sets

D = {(w̃, ζ0, . . . , ζ|w̃|) | w̃ ∈ cutα(ξ), ∀(0 ≤ i ≤ |w̃|) : ζi ∈ B∆(ξ
w̃,i)},

I = {(ζ, w̃′) | ζ ∈ B∆(ξ), w̃
′ ∈ cut⟨(true,ε),α⟩(ζ)},

and the map κ : D→ I defined by

(w̃, ζ0, . . . , ζ|w̃|) 7→ (ζ↓0 [ζ1, . . . , ζ|w̃|]w̃′ , w̃′),

where w̃′ consists of the elements of pos⟨(true,ε),α⟩(ζ
↓
0) in lexicographic order. We visu-

alise the ingredients of the map κ in Figure 6.9.

It holds that

1. κ is well defined,

2. κ is injective,

3. im(κ) = {(ζ, w̃′) ∈ I | w̃ ∈ pos(ξ)|w̃
′|, w̃ corresponds to w̃′,

ζw̃
′,0 ∈ im(−↓), and ∀(0 ≤ i ≤ |w̃′|) : ζw̃′,i ∈ B∆(ξ

w̃,i
α)}.

Proof. First, we prove 1. Let (w̃, ζ0, . . . , ζ|w̃|) ∈ D. We note that there are |w̃| occur-

rences of ⟨(true, ε), α⟩ in ζ↓0 , hence |w̃′| = |w̃| and thus the substitution ζ↓0 [ζ1, . . . , ζ|w̃|]w̃′

is legal. Let ζ = ζ↓0 [ζ1, . . . , ζ|w̃|]w̃′ . In order to prove well-definedness, we still have

to show that (ζ, w̃′) ∈ I. For every 0 ≤ i ≤ |w̃|, ζi is a ξw̃,i-extended behaviour

by definition. The forced reset instructions in the α-extension of ζ0 now ensure that

210

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

ξ ∈ TΣ :

w̃ ∈ cutα(ξ)σ γ
. . .

decompose ξ along w̃

ξw̃,0 :

α α. . .
w̃ ∈ cutα(ξ)

ξw̃,1: σ ξw̃,n: γ

apply B∆

ζ0 ∈ B∆(ξw̃,0) :

⟨(p, ε), α⟩ ⟨(p′, ε), α⟩. . .

ζ1 ∈ B∆(ξw̃,1) : ζn ∈ B∆(ξw̃,n) :

α-extension of ζ0

ζ ∈ B∆(ξ) : ζ↓0

⟨(p, ¢), ∗⟩ ⟨(p′, ¢), ∗⟩. . .

w̃′∈cut⟨(true,ε),α⟩(ζ)

ζ1 : ζn :

compose ζ↓0

and ζ1, . . . , ζn

ζ↓0 ∈ B∆(ξw̃,0) :

⟨(p, ¢), ∗⟩ ⟨(p′, ¢), ∗⟩. . .

⟨(true, ε), α⟩ ⟨(true, ε), α⟩

ζ1 ∈ B∆(ξw̃,1) : ζn ∈ B∆(ξw̃,n) :

Figure 6.9: Illustration of (w̃, ζ0, . . . , ζn) ∈ D
κ; (ζ, w̃′) ∈ I, realising the map κ : D→ I.

211

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

proj1(ζ) is indeed a ∆-behaviour and hence, ζ ∈ B∆(ξ). Moreover, it surely holds that

w̃′ ∈ cut⟨(true,ε),α⟩(ζ) because w̃′ covers all positions of ζ which contain α. In fact, w̃

corresponds to w̃′.

Next, we prove 2. Let d1, d2 ∈ D with the components d1 = (w̃, ζ0, . . . , ζ|w̃|) and

d2 = (ṽ, η0, . . . , η|ṽ|). Assume that κ(d1) = κ(d2). The equality of the second com-

ponents of κ(d1) and κ(d2) means that the first components of κ(d1) and κ(d2) are

obtained from ζ0 and η0 respectively by replacing the same set of positions w̃′ and

hence also |w̃| = |ṽ|. Together with the fact that

ζ↓0 [ζ1, . . . , ζ|w̃|]w̃′ = proj1(κ(d1)) = proj1(κ(d2)) = η↓0[η1, . . . , η|ṽ|]w̃′ ,

we can deduce that ζ↓0 = η↓0 (and hence ζ0 = η0) and ζi = ηi for every i ∈ [|w̃|].

Moreover, w̃ and ṽ both correspond to the vector which consists of the positions in

pos⟨(true,ε),α⟩(ζ
↓
0) in lexicographic order. This implies w̃ = ṽ. In total, we have seen

that d1 = d2, which proves claim 2.

Next, we prove 3. Surely, every (ζ, w̃′) ∈ im(κ) is an element of the set on the right

hand side of claim 3. Conversely, let (ζ, w̃′) be an element of the set on the right hand

side of claim 3. Moreover, let η0 ∈ T⟨∆,Σ⟩ such that η↓0 = ζw̃
′,0 and let w̃ ∈ pos(ξ)|w̃

′|

be the tuple corresponding to w̃′. It surely holds that

κ(w̃, η0, ζ
w̃′,1, . . . , ζw̃

′,|w̃′|) = (ζ, w̃′).

In particular, (ζ, w̃′) ∈ im(κ), which concludes our proof of claim 3.

Lemma 6.15. For every φ1, φ2 ∈ Rat∞(⟨∆,Σ⟩, S) it holds that

(B∆;φ1) ◦α (B∆;φ2) = B∆; (φ
↓
1 ◦⟨(true,ε),α⟩ φ2).

212

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

Proof. Denote I and κ as in Lemma 6.14. Let ξ ∈ TΣ . It holds that

((B∆;φ1) ◦α (B∆;φ2))(ξ)

=
⊕

w̃∈cutα(ξ)

(B∆;φ1)(ξ
w̃,0)⊙

|w̃|⊙
i=1

(B∆;φ2)(ξ
w̃,i)

=
⊕

w̃∈cutα(ξ)

(⊕
ζ0∈B∆(ξw̃,0)

φ1(ζ0)
)
⊙

|w̃|⊙
i=1

(⊕
ζi∈B∆(ξw̃,i)

φ2(ζi)
)

⋆1=
⊕

w̃∈cutα(ξ)

⊕
ζ0∈B∆(ξw̃,0),

...,
ζ|w̃|∈B∆(ξw̃,|w̃|)

φ↓
1(ζ

↓
0)⊙

|w̃|⊙
i=1

φ2(ζi)

⋆2=
⊕

ζ∈B∆(ξ)

⊕
w̃′∈cut⟨(true,ε),α⟩(ζ)

s.th. (ζ,w̃′)∈im(κ)

φ↓
1(ζ

w̃′,0)⊙
|w̃′|⊙
i=1

φ2(ζ
w̃′,i)

⋆3=
⊕

ζ∈B∆(ξ)

⊕
w̃′∈cut⟨(true,ε),α⟩(ζ)

φ↓
1(ζ

w̃′,0)⊙
|w̃′|⊙
i=1

φ2(ζ
w̃′,i)

=
⊕

ζ∈B∆(ξ)

(φ↓
1 ◦⟨(true,ε),α⟩ φ2)(ζ) = (B∆; (φ

↓
1 ◦⟨(true,ε),α⟩ φ2))(ξ) .

In Equation ⋆1 we apply the generalised distributivity law (Equation (2.4)) in S and

the definition of α-extensions of weighted tree languages. In Equation ⋆2 we use

Lemma 6.14. Equation ⋆3 is justified by the fact that for every (ζ, w̃′) ∈ I \ im(κ)

it holds that

φ↓
1(ζ

w̃′,0)⊙
|w̃′|⊙
i=1

φ2(ζ
w̃′,i) = 0.

This can be proven as follows. If ζw̃
′,0 ̸∈ im(−↓), then φ↓

1(ζ
w̃′,0) = 0. If ζw̃

′,0 ∈ im(−↓),

then by Lemma 6.14(3), there exists 0 ≤ i ≤ |w̃′| such that ζw̃
′,i ̸∈ B∆(ξ

w̃,i) where

w̃ ∈ pos(ξ)|w̃
′| is the tuple corresponding to w̃′. This cannot occur, as ζ ∈ B∆(ξ) is an

extended behaviour.

Via the use of α-extension, we have homogenised the labels containing α. This

solution has the price that the padding symbol ∗ was inserted into the tree. The

question may arise whether the homogenisation problem can be solved without the use

213

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

of ∗. Let us briefly discuss a possible solution. Instead of pushing the α down into a

new position, we can push the p ∈ BC(P) up to the parent of the current position.

There we can replace the corresponding instruction f by a new instruction f ′ where

f ′(c) = f(c) if p(f(c)) = true, and undefined otherwise. Of course, this is only possible

if F is closed under such a filtering with Boolean closures of predicates. For this reason

we refrained from elaborating this solution.

6.5.3 α-Kleene Star

In [56, Lemma 6.7] it was proved that Reg(S, Σ, S) is closed under α-Kleene star.

Thus, by the Kleene-Goldstine theorem (cf. Theorem 6.8), also Rat(S, Σ, S) is closed

under Kleene-star. Next, we prepare an alternative proof of this fact.

We recall that α ∈ Σ(0) is fixed.

Throughout the rest of Chapter 6.5, we assume that φ ∈ Rat∞(⟨∆,Σ⟩, S)

and we abbreviate ⟨(true, ε), α⟩ ∈ ⟨∆,Σ⟩(0) by ᾱ.

Lemma 6.16. For every n ∈ N, it holds that

(B∆;φ)
n
α = B∆; (φ

↓)nᾱ. (6.4)

Proof. The proof is done by induction on n. The case n = 0 is trivial as both sides in

(6.4) are equal to the constant map 0.

Assume that Equation (6.4) holds for some n ∈ N. It holds that

(B∆;φ)
n+1
α = (B∆;φ) ◦α (B∆;φ)

n
α ⊕ 1.α

⋆1= (B∆;φ) ◦α (B∆; (φ
↓)nᾱ)⊕B∆; (1.ᾱ)

⋆2= B∆; (φ
↓ ◦ᾱ (φ↓)nᾱ ⊕ 1.ᾱ) = B∆; (φ

↓)n+1
ᾱ .

In Equation ⋆1, we use the induction hypothesis and the fact that 1.α = B∆; (1.ᾱ). In

Equation ⋆2 we use Lemmas 6.15 and 6.11. This concludes the induction step and the

proof of the lemma.

Let us assume that B∆;φ is α-proper. We can hope for the equation

(B∆;φ)
∗
α = B∆; (φ

↓)∗ᾱ

214

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

to hold, yet (for every ξ ∈ TΣ) the left hand side satisfies

(B∆;φ)
∗
α(ξ) = (B∆;φ)

height(ξ)+1
α (ξ)

= (B∆; (φ
↓)

height(ξ)+1
ᾱ)(ξ) =

⊕
ζ∈B∆(ξ)

(φ↓)
height(ξ)+1
ᾱ (ζ), (6.5)

whereas the right hand side satisfies

(B∆; (φ
↓)∗ᾱ)(ξ) =

⊕
ζ∈B∆(ξ)

(φ↓)∗ᾱ(ζ) =
⊕

ζ∈B∆(ξ)

(φ↓)
height(ζ)+1
ᾱ (ζ) . (6.6)

Note that in Equation (6.5) we use the same ᾱ-power of φ↓ for every ζ, whereas in

Equation (6.6) the ᾱ-power of φ↓ depends on ζ. As B∆(ξ) is an infinite set, there is no

upper bound for height(ζ)+1 that only depends on ξ. Hence, we can not simply apply

Lemma 6.16 to prove closure under α-Kleene star.

The weighted tree language (φ↓)
height(ξ)+1
ᾱ cuts every input ζ into height(ξ) + 1

“stripes” and measures each stripe separately with φ↓, whereas (φ↓)
height(ζ)+1
ᾱ cuts ζ

into height(ζ) + 1 stripes. Unfortunately, cutting off only ∗-positions from ζ does not

yield the weight 0 in φ↓. That is, we cannot prove (φ↓)
height(ξ)+1
ᾱ (ζ) = (φ↓)

height(ζ)+1
ᾱ (ζ).

However, we can use the fact that

0 = (B∆;φ)(α) =
∑

ζ∈B∆(α)

φ(ζ) =
∑

ζ∈B∆(α)↓

φ↓(ζ) (6.7)

(by α-properness of (B∆;φ)) to show that cutting off only ∗-positions from ζ does

indeed give us weight 0 after summing over all α-extended behaviours.

To make these thoughts precise, we need some more notation.

Definition 6.17. Let ξ ∈ TΣ . We define the map shift : B∆(ξ)→ N which counts the

number of consecutive ∗-positions at the root of ξ-extended behaviours inductively by

shift(⟨δ, ∗⟩(ζ1)) = 1 + shift(ζ1) and

shift(⟨δ, σ⟩(ζ1, . . . , ζrk(σ))) = 0

for every δ ∈ ∆ and σ ∈ Σ.

215

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

Moreover, let k ∈ N and w̃′ ∈
⋃

n∈N(N∗)n. We define the sets

B∆(ξ)
=k = {ζ ∈ B∆(ξ) | shift(ζ) = k},

Bw̃′
∆ (ξ)=k = {ζ ∈ B∆(ξ)

=k | w̃′ ∈ cutᾱ(ζ)},

B
w̃′,0
∆ (ξ)=k = {ζw̃′,0 | ζ ∈ Bw̃′

∆ (ξ)=k}.

Furthermore we call w̃′ k-extended if for every component w′
i of w̃

′ there exists an

element vi ∈ N∗ \ {ε} such that w′
i = 1 · · · 1vi with k occurrences of 1. The set of k-

extended tuples w̃′ is denoted by k-Ext. For every 0 ≤ ℓ ≤ k, we define k − ℓ = (1 · · · 1)

with k− ℓ occurrences of 1. In other words, k − ℓ is a vector with one component, and

its only component is the position 1 · · · 1 with k − ℓ occurrences of 1. ◀

Lemma 6.18. Let ξ, k, and w̃′ as in Definition 6.17.

1. For every 0 ≤ ℓ ≤ k, it holds that

{ζ ∈ Bk−ℓ
∆ (ξ)=k | ζk−ℓ,0 ∈ im(−↓)} ∼= (6.8)(

B∆(α)
=k−ℓ ∩ im(−↓)

)
×B∆(ξ)

=ℓ

2. It holds that

{ζ ∈ Bw̃′
∆ (ξ)=k | ζw̃′,0 ∈ im(−↓)} ∼= (6.9)(

B
w̃′,0
∆ (ξ)=k ∩ im(−↓)

)
×B∆(ξ

w̃,1
α)× . . .×B∆(ξ

w̃,|w̃|
α),

where w̃ corresponds to1 w̃′.

Proof. First we prove claim 2. In fact, we show that the map f defined by

ζ
f7→ (ζw̃

′,0, . . . , ζw̃
′,|w̃′|)

is a bijection from the left hand side (lhs) to the right hand side (rhs) of Equation (6.9).

First, note that f is indeed a well-defined map of type “lhs → im(f)”. Moreover, f is

clearly injective. It remains to show that im(f) = rhs.

1We recall that w̃ need not be an element of cutα(ξ), because w̃′ does not necessarily cut off all

positions of ζ which contain α.

216

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

Let (ζ0, . . . , ζw̃) be an element of rhs. Since w̃ corresponds to w̃′, we know that

|w̃| = |w̃′|. Therefore, the substitution ζ0[ζ1, . . . , ζw̃]w̃′ exists and is in lhs since ζ0 ∈

im(−↓). Moreover, f(ζ0[ζ1, . . . , ζw̃]w̃′) = (ζ0, . . . , ζw̃), whence rhs ⊆ im(f).

Next, let ζ be in lhs. By assumption we have that ζw̃
′,0 ∈

(
B

w̃′,0
∆ (ξ)=k ∩ im(−↓)

)
.

We also have ζw̃
′,i ∈ B∆(ξ

w̃,i
α) for every 1 ≤ i ≤ |w̃′|. This follows from the fact that

ζ ∈ B∆(ξ) and w̃ corresponds to w̃′. This concludes the proof of claim 2.

The proof of claim 1 is very similar. For this, we note that (ε) corresponds to k − ℓ

and it decomposes ξ into α and ξ.

Lemma 6.19. Let B∆;φ be α-proper. For every ξ ∈ TΣ it holds that⊕
ζ∈B∆(ξ)

(φ↓)
height(ξ)+1
ᾱ (ζ) =

⊕
ζ∈B∆(ξ)

(φ↓)
height(ζ)+1
ᾱ (ζ).

Proof. The proof is by structural induction on ξ. Let n : B∆(ξ) → N be an arbitrary

map (later, it will be instantiated by ζ 7→ height(ζ) and ζ 7→ height(ξ)).

Case ξ = α: We have that⊕
ζ∈B∆(ξ)

(φ↓)
n(ζ)+1
ᾱ (ζ)

=
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

(φ↓ ◦ᾱ (φ↓)
n(ζ)
ᾱ ⊕ 1.ᾱ)(ζ)

=
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

(φ↓ ◦ᾱ (φ↓)
n(ζ)
ᾱ)(ζ)⊕

⊕
k∈N

⊕
ζ∈B∆(ξ)=k

(1.ᾱ)(ζ)

⋆1= 1⊕
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

⊕
w̃′∈cutᾱ(ζ)

φ↓(ζw̃
′,0)⊙ (φ↓)

n(ζ)
ᾱ (ζw̃

′,1)

⋆2= 1⊕
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

k⊕
ℓ=0

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

⋆3= 1⊕
⊕
ℓ∈N

⊕
k≥ℓ

⊕
ζ∈Bk−ℓ

∆ (ξ)=k

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

⋆4= 1⊕
⊕
ℓ∈N

⊕
k≥ℓ

⊕
ζ∈Bk−ℓ

∆ (ξ)=k,

ζk−ℓ,0∈im(−↓)

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

⋆5= 1⊕
⊕
ℓ∈N

⊕
k≥ℓ

(⊕
ζ0∈B∆(α)=k−ℓ∩im(−↓)

φ↓(ζ0)
)
⊙
(⊕

ζ1∈B∆(ξ)=ℓ

(φ↓)
n(ζ)
ᾱ (ζ1)

)
.

217

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

In Equation ⋆1 we use the fact that (1.ᾱ)(ζ) = 0 whenever ζ ̸= ᾱ. Equation ⋆2 is

justified by the fact that the set of ᾱ-cuts of ζ are exactly the k − ℓ for k ∈ N and

0 ≤ ℓ ≤ k. In Equation ⋆3 we first swap the sum for ζ with the sum for ℓ and then swap

the sum for k with the sum for ℓ (which is possible due to Equation (2.3)). Equation

⋆4 holds because φ↓ vanishes if ζk−ℓ,0 is not in im(−↓). Finally, in Equation ⋆5 we use

Lemma 6.18(1) and the distributivity in S. Moreover, for every ℓ ∈ N we have that⊕
k≥ℓ

(⊕
ζ0∈B∆(α)=k−ℓ∩im(−↓)

φ↓(ζ0)
)
=

⊕
ζ0∈B∆(α)↓

φ↓(ζ0),

which vanishes by Equation (6.7). In total, we obtain that
⊕

ζ∈B∆(ξ)(φ
↓)

n(ζ)+1
ᾱ (ζ) = 1.

As n was arbitrary, this proves the claim.

Case ξ = β for β ∈ Σ(0) \ {α}: The proof of this case is analogous to the case

ξ = α except for the following parts. In Equation ⋆1 we use that (1.ᾱ)(ζ) = 0 for every

ζ and hence we lose the “1⊕” in all subsequent equations. On the right hand side of

Equation ⋆2, we need to consider the remaining case w̃′ = (), that is, we do not cut

ζ at all. Therefore, we get the additional term
⊕

ζ∈B∆(ξ) φ
↓(ζ) = (B∆;φ

↓)(β) on the

right hand side of ⋆2 and all the subsequent equations.

Case ξ = σ(ξ1, . . . , ξs) for s ≥ 1, σ ∈ Σ(s): Then⊕
ζ∈B∆(ξ)

(φ↓)
n(ζ)+1
ᾱ (ζ)

♦1=
⊕

ζ∈B∆(ξ)

⊕
w̃′∈cutᾱ(ζ)

φ↓(ζw̃
′,0)⊙

|w̃′|⊙
i=1

(φ↓)
n(ζ)
ᾱ (ζw̃

′,i)

♦2=
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

k⊕
ℓ=0

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

⊕
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

⊕
w̃′∈cutᾱ(ζ)∩k-Ext

φ↓(ζw̃
′,0)⊙

|w̃′|⊙
i=1

(φ↓)
n(ζ)
ᾱ (ζw̃

′,i)

♦3= 0⊕
⊕
k∈N

⊕
ζ∈B∆(ξ)=k

⊕
w̃′∈cutᾱ(ζ)∩k-Ext

φ↓(ζw̃
′,0)⊙

|w̃′|⊙
i=1

(φ↓)
n(ζ)
ᾱ (ζw̃

′,i)

♦4=
⊕
k∈N

⊕
w̃′∈k-Ext

⊕
ζ∈Bw̃′

∆ (ξ)=k,

ζw̃
′,0∈im(−↓)

φ↓(ζw̃
′,0)⊙

|w̃′|⊙
i=1

(φ↓)
n(ζ)
ᾱ (ζw̃

′,i).

218

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

In Equation ♦1 we use the definition of (φ↓)
n(ζ)+1
ᾱ and the definition of ◦ᾱ. We observe

that (1.ᾱ)(ζ) vanishes as ζ can never be ᾱ in this case. Equation ♦2 is justified by the

fact that the ᾱ-cuts of ζ ∈ B∆(ξ)
=k are either of the form k − ℓ for some 0 ≤ ℓ ≤ k

or in k-Ext. We note that the empty ᾱ-cut w̃ = () of ζ is in k-Ext. In Equation ♦3

we argue analogously to the cases ξ = α and ξ = β to see that the sum for the case

w̃′ = k − ℓ vanishes. More precisely, we first swap the sums for ζ, k, and ℓ, and then

use Lemma 6.18(1) and Equation (6.7):

⊕
k∈N

⊕
ζ∈B∆(ξ)=k

k⊕
ℓ=0

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

=
⊕
ℓ∈N

⊕
k≥ℓ

⊕
ζ∈B∆(ξ)=k

φ↓(ζk−ℓ,0)⊙ (φ↓)
n(ζ)
ᾱ (ζk−ℓ,1)

(6.8)
=

⊕
ℓ∈N

⊕
k≥ℓ

⊕
ζ0∈B∆(α)=k−ℓ∩im(−↓),

ζ1∈B∆(ξ)=ℓ

φ↓(ζ0)⊙ (φ↓)
n(ζ)
ᾱ (ζ1)

=
⊕
ℓ∈N

(⊕
ζ0∈B∆(α)↓

φ↓(ζ0)
)
⊙
(⊕

ζ1∈B∆(ξ)=ℓ

(φ↓)
n(ζ)
ᾱ (ζ1)

)
(6.7)
= 0

In Equation ♦4 we first swap the sums for w̃′ and ζ and then restrict ζw̃
′,0 to be in the

image of −↓, as otherwise φ↓(ζw̃
′,0) = 0.

Now we instantiate n with ζ 7→ height(ζ) and reduce a subterm of the right hand

side of ♦4 to show the claim.

⊕
ζ∈Bw̃′

∆ (ξ)=k,

ζw̃
′,0∈im(−↓)

φ↓(ζw̃
′,0)⊙

|w̃′|⊙
i=1

(φ↓)
height(ζ)
ᾱ (ζw̃

′,i)

♦5=
⊕

ζ0∈Bw̃′,0
∆ (ξ)=k∩im(−↓)

⊕
ζ1∈B∆(ξw̃,1),

...,
ζ|w̃|∈B∆(ξw̃,|w̃|)

φ↓(ζ0)⊙
|w̃|⊙
i=1

(φ↓)
height(ζ)
ᾱ (ζi)

♦6=
⊕

ζ0∈Bw̃′,0
∆ (ξ)=k∩im(−↓)

φ↓(ζ0)⊙
|w̃|⊙
i=1

(⊕
ζi∈B∆(ξw̃,i)

(φ↓)
height(ζi)+1
ᾱ (ζi)

)
,

where on the right hand side of Equations ♦5 and ♦6, w̃ corresponds to w̃′. In Equation

♦5 we apply Lemma 6.18(2). In Equation ♦6 we use the generalised distributivity law

219

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

in S, Equation (2.4), as the ζ1, . . . , ζ|w̃| are independent of each other (once ζ0 is fixed).

Moreover, we use the fact that height(ζ) ≥ height(ζi) + 1, whence by [38, Lemma 3.10]

we have that (φ↓)
height(ζ)
ᾱ (ζi) = (φ↓)

height(ζi)+1
ᾱ (ζi).

We now apply the induction hypothesis to obtain⊕
ζi∈B∆(ξw̃,i)

(φ↓)
height(ζi)+1
ᾱ (ζi)

IH
=

⊕
ζi∈B∆(ξw̃,i)

(φ↓)
height(ξw̃,i)+1
ᾱ (ζi)

= (B∆; (φ
↓)

height(ξw̃,i)+1
ᾱ)(ξw̃,i)

♦7= (B∆;φ
↓)height(ξ

i)+1
α (ξw̃,i)

♦8= (B∆;φ
↓)height(ξ)α (ξw̃,i) =

⊕
ζi∈B∆(ξi)

(φ↓)
height(ξ)
ᾱ (ζi),

where in Equation ♦7 we use Lemma 6.16 and Equation ♦8 we apply [38, Lemma 3.10]

to height(ξ) ≥ height(ξw̃,i) + 1.

Now, starting on the right hand side of the very last equation, we can trace back

all the steps up to the right hand side of Equation ♦4 by always choosing height(ξ) as

power; then we end up at the right hand side of Equation ♦4 with n instantiated by

ζ 7→ height(ξ). This completes the proof of both, this case and the lemma.

Lemma 6.20. Let (B∆;φ) be α-proper. It holds that

(B∆;φ)
∗
α = B∆; (φ

↓)∗ᾱ. (6.10)

Proof. Let ξ ∈ TΣ . We have

(B∆;φ)
∗
α(ξ) = (B∆;φ)

height(ξ)+1
α (ξ)

⋆1= (B∆; (φ
↓)

height(ξ)+1
ᾱ)(ξ)

=
⊕

ζ∈B∆(ξ)

(φ↓)
height(ξ)+1
ᾱ (ζ)

⋆2=
⊕

ζ∈B∆(ξ)

(φ↓)
height(ζ)+1
ᾱ (ζ)

=
⊕

ζ∈B∆(ξ)

(φ↓)∗ᾱ(ζ) = (B∆; (φ
↓)∗ᾱ)(ξ).

In Equations ⋆1 and ⋆2 we use Lemma 6.16 and 6.19, respectively.

We now collect our previous results in order to prove the closure of rational weighted

tree languages with storage under the rational operations.

Theorem 6.21. Let S be an arbitrary complete semiring. Then Rat(S, Σ, S) is

closed under top-concatenation, multiplication with a scalar, and sum. Moreover,

Rat(S¢, Σ, S) is closed under α-concatenation and α-Kleene star.

220

6.5 Closure of Rat(S¢, Σ, S) under Rational Operations

Proof. Top-concatenation: Let s ∈ N, σ ∈ Σ(s), and φ1, . . . , φs ∈ Rat(S, Σ, S). Thus,

for every i ∈ [s], there are a finite subsets Pi ⊆ P and Fi ⊆ F and a weighted tree

language ψi ∈ Rat∞(⟨∆i, Σ⟩, S) such that φi = B∆;ψi, where∆i is the ranked alphabet

corresponding to Σ, Pi, and Fi.

Now let P̂ =
⋃s

i=1 Pi and F̂ =
⋃s

i=1 Fi ∪ {id} and ∆̂ be the ranked alphabet

corresponding to Σ, P̂ , and F̂ . By Remark 6.4, ψi ∈ Rat∞(⟨∆̂,Σ⟩, S) for every i ∈ [s].

Moreover, ⟨(true, id · · · id), σ⟩ ∈ ⟨∆̂,Σ⟩. Since Rat∞(⟨∆̂,Σ⟩, S) is closed under top-

concatenation, we have that top⟨(true,id···id),σ⟩(ψ1, . . . , ψs) ∈ Rat∞(⟨∆̂,Σ⟩, S). Hence,

we obtain that topσ(φ1, . . . , φk) ∈ Rat(S, Σ, S) by Lemma 6.9.

Multiplication with a scalar: The proof easily follows from Lemma 6.10 and the fact

that Rat∞(⟨∆,Σ⟩, S) is closed under multiplication with scalar.

Sum: Let φ1, φ2 ∈ Rat(S, Σ, S). For every i ∈ {1, 2}, there exist finite subsets

Pi ⊆ P and Fi ⊆ F and a weighted tree language ψi ∈ Rat∞(⟨∆i, Σ⟩, S) such that

φi = B∆i ;ψi, where ∆i is the ranked alphabet corresponding to Σ, Pi, and Fi.

Now let P̂ = P1 ∪ P2, F̂ = F1 ∪ F2, and ∆̂ be the ranked alphabet corresponding

to Σ, P̂ , and F̂ . By Remark 6.4 we have ψi ∈ Rat∞(⟨∆̂,Σ⟩, S) for i ∈ {1, 2} and thus

ψ1 ⊕ ψ2 ∈ Rat∞(⟨∆̂,Σ⟩, S) because Rat∞(⟨∆̂,Σ⟩, S) is closed under sum. Then by

Lemma 6.11 we obtain that φ1 ⊕ φ2 ∈ Rat(S, Σ, S).

α-concatenation: Let φ1, φ2 ∈ Rat(S¢, Σ, S). For i ∈ {1, 2}, let Pi ⊆ P , Fi ⊆ F¢,

∆i, and ψi be the same as in the case of sum. Let P̂ = P1 ∪ P2, F̂ = F1 ∪ F2 ∪ {¢},

and ∆̂ be the ranked alphabet corresponding to Σ, P̂ , and F̂ . By Remark 6.4 we have

ψi ∈ Rat∞(⟨∆̂,Σ⟩, S) for every i ∈ {1, 2}. Moreover, ψ↓
1 ∈ Rat∞(⟨∆̂,Σ⟩, S) by Lemma

6.13 and thus ψ↓
1 ◦ᾱ ψ2 ∈ Rat∞(⟨∆̂,Σ⟩, S) because ᾱ ∈ ⟨∆̂,Σ⟩ and Rat∞(⟨∆̂,Σ⟩, S) is

closed under ᾱ-concatenation. By Lemma 6.15 we obtain that φ1◦αφ2 = B∆̂; (ψ
↓
1 ◦ᾱψ2)

and hence φ1 ◦α φ2 ∈ Rat(S¢, Σ, S).

α-Kleene star: Let φ ∈ Rat(S¢, Σ, S) be α-proper. There exist finite subsets P̂ ⊆ P

and F̂ ⊆ F¢ and a weighted language ψ ∈ Rat∞(⟨∆̂,Σ⟩, S) such that φ = B∆;ψ, where

∆̂ is the ranked alphabet corresponding to Σ, P̂ , and F̂ . We may assume without loss

of generality that ¢ ∈ F̂ . Due to Lemma 6.13, we have that ψ↓ ∈ Rat∞(⟨∆̂,Σ⟩, S)

and thus (ψ↓)∗ᾱ ∈ Rat∞(⟨∆̂,Σ⟩, S) because ᾱ ∈ ⟨∆̂,Σ⟩ and Rat∞(⟨∆̂,Σ⟩, S) is closed

under ᾱ-Kleene star. Hence by Lemma 6.20 we obtain that φ∗
α ∈ Rat(S¢, Σ, S).

221

6. RATIONAL WEIGHTED TREE LANGUAGES WITH STORAGE

6.6 Conclusion

We have recalled the Kleene-Goldstine theorem which states the equivalence of rational

and regular weighted tree languages with storage for commutative complete semirings.

Moreover, we have shown that Rat(S, Σ, S) is closed under the rational operations for

arbitrary complete semirings. More precisely, we proved that our way of introducing

storage to weighted regular tree grammars, preserves closure properties from the case

without storage.

We believe that this preservation property can be proven also for other formalisms

generating classes of formal languages, such as regular string languages, recognisable

forest languages, and their weighted analoga.

222

7

Outlook

In this thesis, we investigated different theoretical questions concerning weighted au-

tomata models over tree-like input structures. First, we studied exact and approxi-

mated determinisation and then, we turned to Kleene-like and Büchi-like characteri-

sations. We considered multiple weighted automata models, including weighted tree

automata over semirings (Chapters 3 and 4), weighted forest automata over M-monoids

(Chapter 5), and rational weighted tree languages with storage (Chapter 6). For an

explanation as to why the last class can be considered as a weighted automaton model,

we refer to page 190. We will now summarise the main contributions of the thesis.

In Chapter 3, we focused on the determinisation of weighted tree automata and pre-

sented our determinisation framework, called M-sequentialisation, which can model dif-

ferent notions of determinisation from the existing literature. Then, we provided a posi-

tiveM-sequentialisation result for the case of additively idempotent semirings or finitely

M-ambiguous weighted tree automata. Another important contribution of Chapter 3

is Theorem 3.77, where we provide a blueprint theorem that can be used to find deter-

minisation results for more classes of semirings and weighted tree automata easily. In

fact, instead of repeating an entire determinisation construction, Theorem 3.77 allows

us to prove a determinisation result by finding certain finite equivalence relations. This

is a very potent tool for future research in the area of determinisation.

In Chapter 4, we moved from exact determinisation towards approximate deter-

minisation. We lifted the formalisms and the main results from [4] from the word

223

7. OUTLOOK

case to the tree case. This successfully resulted in an approximated determinisation

construction for weighted tree automata over the tropical semiring. We also provided

a formal mathematical description of the approximated determinisation construction,

rather than an algorithmic description as in [4, 28].

In Chapter 5, we turned away from determinisation and instead considered Kleene-

like and Büchi-like characterisations of weighted recognisability. We introduced

weighted forest automata over M-monoids, which are a generalisation of weighted tree

automata over M-monoids and weighted forest automata over semirings. Then, we

proved that our recognisable weighted forest languages can be decomposed into a finite

product of recognisable weighted tree languages. We also proved that the initial algebra

semantic and the run semantic for weighted forest automata are equivalent under cer-

tain conditions. Lastly, we defined rational forest expressions and forest M-expressions

and and proved that the classes of languages generated by these formalisms coincide

with recognisable weighted forest languages under certain conditions.

In Chapter 6, we considered rational weighted tree languages with storage, where

the storage is introduced by composing rational weighted tree languages without storage

with a storage map. In [56], it was proven that rational weighted tree languages with

storage are closed under the rational operations. In Chapter 6, we provided alternative

proofs of these closure propertiess. In fact, we proved that our way of introducing stor-

age to rational weighted tree languages preserves the closure properties from rational

weighted tree languages without storage.

Our results raise many new research questions, especially surrounding the mathe-

matical machinery introduced for our M-sequentialisation approach in Chapter 3. We

have designated separate subchapters at the end of Chapters 3 to 6, which capture

some of the most important questions and possible future research directions.

224

References

[1] ISO/IEC 14977:1996(E). Information technology — Syntactic metalan-

guage — Extended BNF. Standard, International Organization for Standard-

ization, Geneva, CH, December 1996. 157

[2] Alfred Vaino Aho. Nested stack automata. Journal of the Association for

Computing Machinery, 16:383–406, 1969. 189

[3] Athanasios Alexandrakis and Symeon Bozapalidis. Weighted gram-

mars and Kleene’s theorem. Information Processing Letters, 24(1):1–4, 1987.

30

[4] Benjamin Aminof, Orna Kupferman, and Robby Lampert. Rigorous

approximated determinization of weighted automata. Theoretical Com-

puter Science, 480:104–117, 2013. 5, 7, 125, 126, 129, 141, 145, 146, 149, 223,

224

[5] Marie-Pierre Béal and Olivier Carton. Determinization of transduc-

ers over finite and infinite words. Theoretical Computer Science, 289(1):225–

251, 2002. 3, 4, 6, 34, 35, 36, 38, 43, 105, 106, 107, 108

[6] Jean Berstel and Christophe Reutenauer. Recognizable formal power

series on trees. Theoretical Computer Science, 18(2):115–148, 1982. 30

[7] Jean Berstel and Christophe Reutenauer. Rational Series and Their

Languages, 12 of EATCS Monographs on Theoretical Computer Science.

Springer-Verlag, 1988. 3

225

REFERENCES

[8] Udi Boker and Thomas Henzinger. Approximate determinization of

quantitative automata. In IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2012). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2012. 5, 125

[9] Udi Boker and Thomas Henzinger. Exact and Approximate Deter-

minization of Discounted-Sum Automata. Logical Methods in Computer

Science, 10(1), 2014. 5, 125

[10] Björn Borchardt. The Theory of Recognizable Tree Series. Verlag für

Wissenschaft und Forschung, Berlin. PhD thesis, Technische Universität Dresden,

Dresden, 2004. 136

[11] Björn Borchardt. The Myhill-Nerode Theorem for Recognizable Tree

Series. In Z. Ésik and Z. Fülöp, editors, Developments in Language Theory,

pages 146–158. Springer Berlin Heidelberg, 2003. 4

[12] Björn Borchardt and Heiko Vogler. Determinization of finite state

weighted tree automata. Journal of Automata, Languages and Combinatorics,

8(3):417–463, 2003. 3, 33

[13] Julius Büchi. Weak second-order arithmetic and finite automata. Math-

ematical Logic Quarterly, 6(1-6):66–92, 1960. 2, 151, 152

[14] Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization

of Weighted Tree Automata Using Factorizations. Journal of Automata,

Languages and Combinatorics, 15(3/4):229–254, 2010. 4, 6, 34, 39, 105, 115, 116,

118, 141

[15] Arindam Chakrabarti, Krishnendu Chatterjee, Thomas Henzinger,

Orna Kupferman, and Rupak Majumdar. Verifying Quantitative Prop-

erties Using Bound Functions. In Proceedings of the 13th International Con-

ference on Correct Hardware Design and Verification Methods (CHARME 2005),

pages 50–64, Berlin, Heidelberg, 2005. Springer-Verlag. 5

226

https://doi.org/10.1007/11560548_7
https://doi.org/10.1007/11560548_7

REFERENCES

[16] Krishnendu Chatterjee, Laurent Doyen, and Thomas Henzinger.

Quantitative Languages. ACM Transactions on Computational Logic - TOCL,

11:385–400, 2008. 5

[17] Christian Choffrut. Une Caracterisation des Fonctions Sequentielles

et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles.

Theoretical Computer Science, 5(3):325–337, 1977. 3, 34

[18] Avram Noam Chomsky. Context-free grammars and pushdown storage.

Technical report, MIT Research Lab of Electronics, Quaterly Progress Report 65,

1962. 2, 189

[19] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Flo-

rent Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi.

Tree Automata Techniques and Applications, 2007. see also: https:

//jacquema.gitlabpages.inria.fr/files/tata.pdf. 4

[20] Werner Damm and Andreas Goerdt. An automata-theoretical char-

acterization of the OI-hierarchy. Information and Control, 71:1–32, 1986.

189

[21] Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, and Didier

Villevalois. Degree of Sequentiality of Weighted Automata. In J. Es-

parza and A. Murawski, editors, Proceedings of the 20th International Confer-

ence on Foundations of Software Science and Computation Structures (FOSSACS

2017), 10203 of LNCS, pages 215–230, 2017. 3, 4, 34, 35, 36, 38, 43, 105, 110,

111, 112, 149

[22] Tobias Denkinger. An automata characterisation for multiple context-

free languages. In S. Brlek and C. Reutenauer, editor, Proceedings of the

20th International Conference on Developments in Language Theory (DLT 2016),

pages 138–150. Springer, 2016. 189

[23] Toni Dietze. Equivalences between Ranked and Unranked Weighted

Tree Automata via Binarization. In B. Jurish, A. Maletti, K.-M.

227

https://jacquema.gitlabpages.inria.fr/files/tata.pdf
https://jacquema.gitlabpages.inria.fr/files/tata.pdf

REFERENCES

Würzner, and U. Springmann, editors, Proceedings of the ACL Workshop

on Statistical Natural Language Processing and Weighted Automata (StatFSM

2016), pages 1–10, 2016. 153

[24] John Doner. Decidability of the weak second-order theory of two suc-

cessors. Notices of the American Mathematical Society, 12, 1965. Abstract

65T-468, 819. 4

[25] John Doner. Tree acceptors and some of their applications. Journal of

Computer and System Sciences, 4:406–451, 1970. 4

[26] Frederic Dörband. A Kleene Theorem for Weighted Forest Automata.

Master’s thesis, Technische Universität Dresden, Dresden, 2019. 6, 152, 154, 159,

169, 170, 183, 184

[27] Frederic Dörband. Kleene and Büchi Theorems for Weighted Forest

Languages over M-Monoids. Special issue of Information and Computation

devoted to WATA 2020, 281:104765, 2021. 7, 151

[28] Frederic Dörband, Thomas Feller, and Kevin Stier. Approxi-

mated Determinisation of Weighted Tree Automata. In A. Leporati,

C. Mart́ın-Vide, D. Shapira, and C. Zandron, editors, Proceedings of the

15th International Conference on Language and Automata Theory and Appli-

cations (LATA 2021), 12638 of LNCS, pages 255–266. Springer International

Publishing, 2021. 7, 125, 224

[29] Frederic Dörband, Thomas Feller, and Kevin Stier. Sequentiality

of Group-Weighted Tree Automata. In A. Leporati, C. Mart́ın-Vide,

D. Shapira, and C. Zandron, editors, Proceedings of the 15th International

Conference on Language and Automata Theory and Applications (LATA 2021),

12638 of LNCS, pages 267–278. Springer International Publishing, 2021. 4, 6, 7,

33, 34, 35, 36, 38, 43, 56, 105, 110, 111, 112

228

REFERENCES

[30] Frederic Dörband, Zoltán Fülöp, and Heiko Vogler. Rational

Weighted Tree Languages with Storage. Special issue of Information and

Computation devoted to CAI 2019, 2019. Accepted. 7, 189

[31] Frederic Dörband and Richard Mörbitz. A General Approach to

Determinisation of Weighted Automata. Manuscript, 2021. 7, 31, 33, 56,

104

[32] Manfred Droste and Paul Gastin. Weighted automata and weighted

logics. Theoretical Computer Science, 380(1):69–86, 2007. Automata, Languages

and Programming. 3

[33] Manfred Droste, Doreen Götze, Steffen Märcker, and Ingmar Mei-

necke. Weighted Tree Automata over Valuation Monoids and Their

Characterization by Weighted Logics. In W. Kuich and G. Rahonis, ed-

itors, Algebraic Foundations in Computer Science: Essays Dedicated to Symeon

Bozapalidis on the Occasion of His Retirement, pages 30–55. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2011. 6, 152, 153

[34] Manfred Droste, Doreen Heusel, and Heiko Vogler. Weighted Un-

ranked Tree Automata over Tree Valuation Monoids and Their Char-

acterization by Weighted Logics. In Proceedings of the 6th International

Conference on Algebraic Informatics (CAI 2015), 9270 of LNCS, pages 90–102,

2016. 6, 152, 153

[35] Manfred Droste and Werner Kuich. Semirings and formal power

series. In M. Droste, W. Kuich, and H. Vogler, editors, Handbook of

Weighted Automata, pages 3–28. Springer-Verlag, 2009. 21

[36] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Hand-

book of Weighted Automata. EATCS Monographs in Theoretical Computer

Science. Springer-Verlag, 2009. 3, 20, 31, 159

229

https://www.sciencedirect.com/science/article/pii/S0304397507001582
https://www.sciencedirect.com/science/article/pii/S0304397507001582
https://doi.org/10.1007/978-3-642-24897-9_2
https://doi.org/10.1007/978-3-642-24897-9_2

REFERENCES

[37] Manfred Droste and Dietrich Kuske. Weighted Automata. In J.-É.

Pin, editor, Handbook of Automata Theory, pages 113–150. EMS Press, Berlin,

2021. 23

[38] Manfred Droste, Christian Pech, and Heiko Vogler. A Kleene the-

orem for weighted tree automata. Theory of Computing Systems, 38:1–38,

2005. 4, 6, 24, 25, 26, 152, 154, 191, 195, 198, 199, 205, 206, 209, 220

[39] Manfred Droste, Torsten Stüber, and Heiko Vogler. Weighted finite

automata over strong bimonoids. Information Sciences, 180:156–166, 2010.

34, 35

[40] Manfred Droste and Heiko Vogler. Weighted Tree Automata and

Weighted Logics. Theoretical Computer Science, 366:228–247, 2006. 4, 6, 30,

152, 154

[41] Samuel Eilenberg. Automata, Languages, and Machines – Volume A,

59 of Pure and Applied Mathematics. Academic Press, 1974. 21

[42] Calvin Creston Elgot. Decision Problems of Finite Automata De-

sign and Related Arithmetics. Transactions of the American Mathematical

Society, 98(1):21–51, 1961. 2, 6

[43] Joost Engelfriet. Bottom-up and top-down tree transformations - a

comparison. Mathematical Systems Theory, 9(3):198–231, 1975. 200

[44] Joost Engelfriet. Tree automata and tree grammars. Technical Report

DAIMI FN-10, Institute of Mathematics, University of Aarhus, Aarhus, 1975. see

also: arXiv:1510.02036v1 [cs.FL] 7 Oct 2015. 4

[45] Joost Engelfriet. Two-way automata and checking automata. Mathe-

matical Centre Tracts, 108:1–69, 1979. 189

[46] Joost Engelfriet. Context–free grammars with storage. Technical Re-

port 86-11, University of Leiden, Leiden, 1986. see also: arXiv:1408.0683v1 [cs.FL]

04 Aug 2014. 189, 191, 192, 195

230

REFERENCES

[47] Joost Engelfriet. Alternative Kleene theorem for weighted automata.

personal communication, 2003. 25, 26

[48] Joost Engelfriet and Heiko Vogler. Pushdown machines for the

macro tree transducer. Theoretical Computer Science, 42(3):251–368, 1986.

191, 197, 202

[49] Zoltán Ésik and Werner Kuich. Formal Tree Series. Journal of Automata,

Languages, and Combinatorics, 8(2):219–285, 2003. 191

[50] Zoltán Fülöp, Luisa Herrmann, and Heiko Vogler. Weighted Reg-

ular Tree Grammars with Storage. Discrete Mathematics and Theoretical

Computer Science, 20(1):#26, 2018. see also: arXiv:1705.06681v6 [cs.FL] 02 Jul

2020. 191, 197, 203, 205

[51] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. A Kleene

theorem for weighted tree automata over distributive multioperator

monoids. Theory of Computing Systems, 44:455–499, 2009. 4, 6, 152, 154, 155,

156, 159, 161, 162, 166, 174, 177, 178, 179, 180, 186

[52] Zoltán Fülöp, Thorsten Stüber, and Heiko Vogler. A Büchi-like the-

orem for weighted tree automata over multioperator monoids. Theory

of Computing Systems, 50(2):241–278, 2012. 4, 6, 152, 154, 155, 157, 159, 161,

162, 174, 184, 185, 186

[53] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree

transducers. In M. Droste, W. Kuich, and H. Vogler, editors, Handbook

of Weighted Automata, pages 313–403. Springer-Verlag, 2009. 24, 30, 191, 205

[54] Zoltán Fülöp and Heiko Vogler. Weighted iterated linear control.

Acta Informatica, 56(5):447–469, 2018. 191

[55] Zoltán Fülöp and Heiko Vogler. Rational Weighted Tree Lan-

guages with Storage and the Kleene-Goldstine Theorem. In M. Ćirić,

M. Droste, and J.-É. Pin, editors, Algebraic Informatics (CAI 2019), 11545

of LNCS, pages 138–150, 2019. 6, 7, 190, 191, 195, 199, 200, 202, 203, 205, 206

231

REFERENCES

[56] Zoltán Fülöp and Heiko Vogler. Principal Abstract Families of

Weighted Tree Languages. Special issue of Information and Computation

devoted to WATA 2018, 282:104657, 2022. 194, 195, 205, 208, 214, 224

[57] Zoltán Fülöp, Dávid Kószó, and Heiko Vogler. Crisp-determinization

of weighted tree automata over strong bimonoids. Discrete Mathematics

& Theoretical Computer Science, 23(1), 2021. 4, 6, 34, 35, 40

[58] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó,

Budapest, 1984. see also: arXiv:1509.06233v1 [cs.FL] 21 Sep 2015. 30, 31, 191

[59] Ferenc Gécseg and Magnus Steinby. Tree Languages. In G. Rozenberg

and A. Salomaa, editors, Handbook of Formal Languages, 3(1), pages 1–68.

Springer, 1997. 30, 31

[60] Seymour Ginsburg. Algebraic and automata-theoretic properties of

formal languages. North-Holland, 1975. 190, 197

[61] Seymour Ginsburg and Sheila Adele Greibach. Abstract families of

languages. Memoirs of the American Mathematical Society, 87:1–32, 1969. 190

[62] Seymour Ginsburg and Sheila Adele Greibach. Principal AFL. Journal

of Computer and System Sciences, 4:308–338, 1970. 190

[63] Seymour Ginsburg, Sheila Adele Greibach, and Michael Alexander

Harrison. One-Way Stack Automata. Journal of the Association for Com-

puting Machinery, 14(2):389–418, 1967. 189

[64] Steven Givant and Paul Halmos. Introduction to Boolean Algebras.

Springer, 2009. 196

[65] Jonathan Samuel Golan. Semirings and their Applications. Kluwer

Academic Publishers, Dordrecht, 1999. 20, 21

[66] Jonathan Samuel Golan. Complete semirings. In Semirings and Affine

Equations over Them: Theory and Applications, pages 39–47. Springer Nether-

lands, Dordrecht, 2003. 21

232

REFERENCES

[67] Jonathan Goldstine. Automata with data storage. In Proceedings of the

Conference on Theoretical Computer Science, University of Waterloo, Ontario,

pages 239–246, 1977. 189, 190, 191, 193

[68] Jonathan Goldstine. A rational theory of AFLs. In H.A. Maurer,

editor, Proceedings of the 6th International Colloquium on Automata, Languages

and Programming (ICALP 1979), 71 of LNCS, pages 271–281. Springer, 1979.

190, 193, 195, 197, 198, 201, 202

[69] Jonathan Goldstine. Formal languages and their relation to automata:

What Hopcroft & Ullman didn’t tell us. In R. V. Book, editor, Formal

Language Theory: Perspectives and Open Problems, pages 109–140. Academic

Press, New York, 1980. 190, 193, 195, 197

[70] Doreen Götze, Zoltán Fülöp, and Manfred Droste. A Kleene theo-

rem for weighted tree automata over tree valuation monoids. Informa-

tion and Computation, 269:104445, 2019. 6, 152, 153

[71] Seymour Greibach. Full AFLs and nested iterated substitution. Infor-

mation and Control, 16:7–35, 1970. 189

[72] Michael Alexander Harrison. Introduction to formal language theory.

Addison-Wesley series in computer science. Addison-Wesley Longman Publishing

Co., Inc, 1978. 1

[73] Udo Hebisch and Hanns Joachim Weinert. Semirings - Algebraic The-

ory and Applications in Computer Science. World Scientific, Singapore,

1998. 21

[74] Luisa Herrmann and Heiko Vogler. A Chomsky-Schützenberger The-

orem for Weighted Automata with Storage. In Proceedings of the 6th

International Conference on Algebraic Informatics (CAI 2015), 9270 of LNCS,

pages 115–127, 2015. 191

233

REFERENCES

[75] Luisa Herrmann, Heiko Vogler, and Manfred Droste. Weighted au-

tomata with storage. Special Issue of Information and Computation devoted

to LATA 2016, 269:104447, 2019. 189

[76] John Edward Hopcroft and Jeffrey David Ullman. Introduction to

Automata Theory, Languages, and Computation. Addison-Wesley, USA,

1979. 1, 2, 4, 31, 33

[77] Yasuyoshi Inagaki and Teruo Fukumura. On the description of fuzzy

meaning of context-free languages. In Fuzzy Sets and Their Applications to

Cognitive and Decision Processes, pages 301–328. Elsevier, 1975. 3

[78] Gareth Aneurin Jones and Josephine Mary Jones. Elementary Num-

ber Theory. Springer Science & Business Media, 1998. 145

[79] Mark Kambites. Formal languages and groups as memory. Communi-

cations in Algebra, 37(1):193–208, 2009. 189

[80] Daniel Kirsten and Ina Mäurer. On the Determinization of Weighted

Automata. Journal of Automata, Languages and Combinatorics, 10:287–312,

2005. 4, 34, 105, 119, 126, 129

[81] Stephen Kleene. Representation of events in nerve nets and finite

automata. In J.McCarthy C.E. Shannon, editor, Automata Studies, pages

3–42, 1956. 1, 2, 6, 151, 152, 190

[82] Kevin Knight and Jonathan Graehl. An Overview of Probabilistic

Tree Transducers for Natural Language Processing. In Alexander Gel-

bukh, editor, Computational Linguistics and Intelligent Text Processing, pages

1–24, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. 4

[83] Werner Kuich. Formal power series over trees. In S. Bozapalidis, editor,

Proceedings of the 3rd International Conference on Developments in Language

Theory (DLT 1997), pages 61–101. Aristotle University of Thessaloniki, 1998.

199

234

REFERENCES

[84] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, 5

of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1986.

3

[85] Sylvain Lombardy and Jacques Sakarovitch. Sequential? Theoreti-

cal Computer Science, 356(1):224–244, 2006. In honour of Professor Christian

Choffrut on the occasion of his 60th birthday. 3, 33, 34

[86] Aleksandr Nikolaevich Maslov. Multilevel stack automata. Problems

of Information Transmission, 12:38–43, 1976. 189

[87] Christian Mathissen. Weighted Automata and Weighted Logics over

Tree-like Structures. PhD thesis, Universität Leipzig, Leipzig, 2009. 3, 6, 152,

153, 155

[88] Warren Sturgis McCulloch and Walter Pitts. A logical calculus of

the ideas immanent in nervous activity. The Bulletin of Mathematical

Biophysics, 5(4):115–133, 1943. 1

[89] Robert McNaughton and Hisao Yamada. Regular Expressions and

State Graphs for Automata. IRE Transactions on Electronic Computers,

EC-9(1):39–47, 1960. 1

[90] Mehryar Mohri. Finite-State Transducers in Language and Speech

Processing. Computational Linguistics, 23(2):269–311, 1997. 4, 34, 126

[91] Anil Nerode. Linear Automaton Transformations. Proceedings of the

American Mathematical Society, 9(4):541–544, 1958. 2

[92] Erik Paul. Finite sequentiality of unambiguous max-plus tree au-

tomata. In R. Niedermeier and C. Paul, editors, Proceedings of the 36th

International Symposium on Theoretical Aspects of Computer Science (STACS

2019). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 34

[93] Michael Rabin and Dana Scott. Finite Automata and Their Decision

Problems. IBM Journal of Research and Development, 3:114–125, 1959. 1, 2,

33

235

https://www.sciencedirect.com/science/article/pii/S0304397506001174

REFERENCES

[94] Dragica Radovanovic. Weighted tree automata over strong bimonoids.

Novi Sad Journal of Mathematics, 40(3):89–108, 2010. 136, 164, 166, 174

[95] George Rahonis. Fuzzy Languages. In Manfred Droste, Werner

Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata, pages

481–517. Springer Berlin Heidelberg, 2009. 3

[96] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal

Languages, Vol. 1: Word, Language, Grammar. Springer-Verlag, Berlin,

Heidelberg, 1997. 3

[97] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal

Languages, Vol. 3: Beyond Words. Springer-Verlag, Berlin, Heidelberg,

1997. 3, 4

[98] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of

Formal Power Series. Texts and Monographs in Computer Science, Springer-

Verlag, 1978. 3

[99] Marcel-Paul Schützenberger. On the definition of a family of au-

tomata. Information and Control, 4:245–270, 1961. 3, 23, 24

[100] Thomas Schwentick. Foundations of XML Based on Logic and Au-

tomata: A Snapshot. In Proceedings of the 7th International Symposium on

Foundations of Information and Knowledge Systems (FoIKS 2012), pages 23–33,

2012. 4

[101] Dana Scott. Some definitional suggestions for automata theory. Journal

of Computer and System Sciences, 1:187–212, 1967. 189, 192, 195

[102] Imre Simon. Limited Subsets of a Free Monoid. In 19th Annual Symposium

on Foundations of Computer Science, pages 143–150. IEEE Computer Society,

1978. 3

[103] Imre Simon. Recognizable Sets with Multiplicities in the Tropical

Semiring. In Proceedings of the 13th International Symposium on Mathematical

236

https://doi.org/10.1007/978-3-642-01492-5_12
https://doi.org/10.1109/SFCS.1978.21

REFERENCES

Foundations of Computer Science (MFCS 1988), pages 107–120. Springer-Verlag,

1988. 3

[104] Lutz Straßburger. A Kleene theorem for forest languages. In Language

and automata theory and applications, 5457 of LNCS, pages 715–727. Springer,

Berlin, 2009. 6, 152, 154, 183, 184

[105] Howard Straubing. Finite Automata, Formal Logic, and Circuit Com-

plexity. Birkhauser Verlag, CHE, 1994. 158

[106] Markus Teichmann and Johannes Osterholzer. A link between mul-

tioperator and tree valuation automata and logics. Theoretical Computer

Science, 594:106 – 119, 2015. 153

[107] James Thatcher and Jesse Wright. Generalized finite automata the-

ory with an application to a decision problem of second-order logic.

Mathematical Systems Theory, 2(1):57–81, 1968. 6, 152, 154, 199

[108] Ken Thompson. Programming Techniques: Regular Expression Search

Algorithm. 11(6):419–422, 1968. 1

[109] Boris Avraamovich Trakhtenbrot. Finite automata and the logic of

one-place predicates. American Mathematical Society Translations : Series 2,

59:23–55, 1966. 2

[110] Alan Mathison Turing. On Computable Numbers, with an Applica-

tion to the Entscheidungsproblem. Proceedings of the London Mathematical

Society, s2-42(1):230–265, 1937. 1

[111] Jan van Leeuwen. Variations of a new machine model. In Proceedings of

the 17th Annual Symposium on Foundations of Computer Science (FOCS 1976),

pages 228–235, 1976. 189

[112] Heiko Vogler, Manfred Droste, and Luisa Herrmann. A Weighted

MSO Logic with Storage Behaviour and Its Büchi-Elgot-Trakhtenbrot

Theorem. In A.-H. Dediu, J. Janoušek, C. Mart́ın-Vide, and B. Truthe,

237

https://doi.org/10.1007/978-3-642-00982-2_61
http://www.sciencedirect.com/science/article/pii/S030439751500376X
http://www.sciencedirect.com/science/article/pii/S030439751500376X

REFERENCES

editors, Proceedings of the 10th International Conference on Language and Au-

tomata Theory and Applications (LATA 2016), pages 127–139. Springer Interna-

tional Publishing, 2016. 191

[113] Andreas Weber and Reinhard Klemm. Economy of Description for

Single-Valued Transducers. Information and Computation, 118(2):327–340,

1995. 107

[114] Wolfgang Wechler. The Concept of Fuzziness in Automata and Lan-

guage Theory. In Studien zur Algebra und ihre Anwendungen. Akademie-Verlag,

Berlin, 1978. 3

238

https://www.sciencedirect.com/science/article/pii/S0890540185710711
https://www.sciencedirect.com/science/article/pii/S0890540185710711

	1 Introduction
	2 Preliminaries
	2.1 Languages
	2.2 Weighted Languages
	2.3 Weighted Tree Automata

	3 A Unifying Framework for the Determinisation ofWeighted Tree Automata
	3.1 Introduction
	3.2 Preliminaries
	3.3 Factorisation in Monoids
	3.3.1 Ordering Multisets over Monoids
	3.3.2 Cayley Graph and Cayley Distance
	3.3.3 Divisors and Rests
	3.3.4 Factorisation Properties

	3.4 Weighted Tree Automata over Mfin(M) and the Twinning Property
	3.4.1 Weighted Tree Automata over Mfin(M)
	3.4.2 The Twinning Property

	3.5 Sequentialisation of Weighted Tree Automata over Mfin(M)
	3.5.1 The Sequentialisation Construction
	3.5.2 The Finitely R-Ambiguous Case

	3.6 Relating WTA over Mfin(M) and WTA over S
	3.7 M-Sequentialisation of Weighted Tree Automata
	3.7.1 Accumulation of D_A
	3.7.2 M-Sequentialisation Results

	3.8 Comparison of our Results to the Literature
	3.8.1 Determinisation of Unweighted Tree Automata
	3.8.2 The Free Monoid Case
	3.8.3 The Group Case
	3.8.4 The Extremal Case

	3.9 Conclusion

	4 Approximated Determinisation of Weighted Tree Automata
	4.1 Introduction
	4.2 Preliminaries
	4.3 Approximated Determinisation
	4.3.1 The Approximated Determinisation Construction
	4.3.2 Correctness of the Construction

	4.4 The Approximated Twinning Property
	4.4.1 Implications for Approximated Determinisability
	4.4.2 Decidability of the Twinning Property

	4.5 Conclusion

	5 Kleene and Büchi Theorems for Weighted Forest Languages over M-Monoids
	5.1 Introduction
	5.2 Preliminaries
	5.3 Weighted Forest Automata
	5.3.1 Forests
	5.3.2 Weighted Forest Automata
	5.3.3 Rectangularity
	5.3.4 I-recognisable is R-recognisable

	5.4 Kleene's Theorem
	5.4.1 Kleene's Theorem for Trees
	5.4.2 Kleene's Theorem for Forests
	5.4.3 An Inductive Approach

	5.5 Büchi's Theorem
	5.5.1 Büchi's Theorem for Trees
	5.5.2 Büchi's Theorem for Forests

	5.6 Conclusion

	6 Rational Weighted Tree Languages with Storage
	6.1 Introduction
	6.2 Preliminaries
	6.3 Rational Weighted Tree Languages with Storage
	6.4 The Kleene-Goldstine Theorem
	6.5 Closure of Rat(S103,,S) under Rational Operations
	6.5.1 Top-Concatenation, Scalar Multiplication, and Sum
	6.5.2 -Concatenation
	6.5.3 -Kleene Star

	6.6 Conclusion

	7 Outlook
	References

