35 research outputs found

    Cost estimation for the monitoring instrumentation of landslide early warning systems

    Get PDF
    Landslides are socio-natural hazards. In Colombia, for example, these are the most frequent hazards. The interplay of climate change and the mostly informal growth of cities in landslide-prone areas increases the associated risks. Landslide early warning systems (LEWSs) are essential for disaster risk reduction, but the monitoring component is often based on expensive sensor systems. This study presents a data-driven approach to localize landslide-prone areas suitable for low-cost and easy-to-use LEWS instrumentation, as well as to estimate the associated costs. The approach is exemplified in the landslide-prone city of Medellín, Colombia. A workflow that enables decision-makers to balance financial costs and the potential to protect exposed populations is introduced. To achieve this, city-level landslide susceptibility is mapped using data on hazard levels, landslide inventories, geological and topographic factors, and a random forest model. Then, the landslide susceptibility map is combined with a population density map to identify highly exposed areas. Subsequently, a cost function is defined to estimate the cost of LEWS monitoring sensors at the selected sites, using lessons learned from a pilot LEWS in Bello Oriente, a neighbourhood in Medellín. This study estimates that LEWS monitoring sensors could be installed in several landslide-prone areas with a budget ranging from EUR 5 to EUR 41 per person (roughly COP 23 000 to 209 000), improving the resilience of over 190 000 exposed individuals, 81 % of whom are located in precarious neighbourhoods; thus, the systems would particularly reduce the risks of a social group of very high vulnerability. The synopsis of all information allows us to provide recommendations for stakeholders on where to proceed with LEWS instrumentation. These are based on five different cost-effectiveness scenarios. This approach enables decision-makers to prioritize LEWS deployment to protect exposed populations while balancing the financial costs, particularly for those in precarious neighbourhoods. Finally, the limitations, challenges, and opportunities for the successful implementation of a LEWS are discussed.</p

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Development and Applications of Similarity Measures for Spatial-Temporal Event and Setting Sequences

    Get PDF
    Similarity or distance measures between data objects are applied frequently in many fields or domains such as geography, environmental science, biology, economics, computer science, linguistics, logic, business analytics, and statistics, among others. One area where similarity measures are particularly important is in the analysis of spatiotemporal event sequences and associated environs or settings. This dissertation focuses on developing a framework of modeling, representation, and new similarity measure construction for sequences of spatiotemporal events and corresponding settings, which can be applied to different event data types and used in different areas of data science. The first core part of this dissertation presents a matrix-based spatiotemporal event sequence representation that unifies punctual and interval-based representation of events. This framework supports different event data types and provides support for data mining and sequence classification and clustering. The similarity measure is based on the modified Jaccard index with temporal order constraints and accommodates different event data types. This approach is demonstrated through simulated data examples and the performance of the similarity measures is evaluated with a k-nearest neighbor algorithm (k-NN) classification test on synthetic datasets. These similarity measures are incorporated into a clustering method and successfully demonstrate the usefulness in a case study analysis of event sequences extracted from space time series of a water quality monitoring system. This dissertation further proposes a new similarity measure for event setting sequences, which involve the space and time in which events occur. While similarity measures for spatiotemporal event sequences have been studied, the settings and setting sequences have not yet been considered. While modeling event setting sequences, spatial and temporal scales are considered to define the bounds of the setting and incorporate dynamic variables along with static variables. Using a matrix-based representation and an extended Jaccard index, new similarity measures are developed to allow for the use of all variable data types. With these similarity measures coupled with other multivariate statistical analysis approaches, results from a case study involving setting sequences and pollution event sequences associated with the same monitoring stations, support the hypothesis that more similar spatial-temporal settings or setting sequences may generate more similar events or event sequences. To test the scalability of STES similarity measure in a larger dataset and an extended application in different fields, this dissertation compares and contrasts the prospective space-time scan statistic with the STES similarity approach for identifying COVID-19 hotspots. The COVID-19 pandemic has highlighted the importance of detecting hotspots or clusters of COVID-19 to provide decision makers at various levels with better information for managing distribution of human and technical resources as the outbreak in the USA continues to grow. The prospective space-time scan statistic has been used to help identify emerging disease clusters yet results from this approach can encounter strategic limitations imposed by the spatial constraints of the scanning window. The STES-based approach adapted for this pandemic context computes the similarity of evolving normalized COVID-19 daily cases by county and clusters these to identify counties with similarly evolving COVID-19 case histories. This dissertation analyzes the spread of COVID-19 within the continental US through four periods beginning from late January 2020 using the COVID-19 datasets maintained by John Hopkins University, Center for Systems Science and Engineering (CSSE). Results of the two approaches can complement with each other and taken together can aid in tracking the progression of the pandemic. Overall, the dissertation highlights the importance of developing similarity measures for analyzing spatiotemporal event sequences and associated settings, which can be applied to different event data types and used for data mining, sequence classification, and clustering

    Multi-sensor movement analysis for transport safety and health applications

    Get PDF
    Recent increases in the use of and applications for wearable technology has opened up many new avenues of research. In this paper, we consider the use of lifelogging and GPS data to extend fine-grained movement analysis for improving applications in health and safety. We first design a framework to solve the problem of indoor and outdoor movement detection from sensor readings associated with images captured by a lifelogging wearable device. Second we propose a set of measures related with hazard on the road network derived from the combination of GPS movement data, road network data and the sensor readings from a wearable device. Third, we identify the relationship between different socio-demographic groups and the patterns of indoor physical activity and sedentary behaviour routines as well as disturbance levels on different road settings

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach

    Proceedings. 9th 3DGeoInfo Conference 2014, [11-13 November 2014, Dubai]

    Get PDF
    It is known that, scientific disciplines such as geology, geophysics, and reservoir exploration intrinsically use 3D geo-information in their models and simulations. However, 3D geo-information is also urgently needed in many traditional 2D planning areas such as civil engineering, city and infrastructure modeling, architecture, environmental planning etc. Altogether, 3DGeoInfo is an emerging technology that will greatly influence the market within the next few decades. The 9th International 3DGeoInfo Conference aims at bringing together international state-of-the-art researchers and practitioners facilitating the dialogue on emerging topics in the field of 3D geo-information. The conference in Dubai offers an interdisciplinary forum of sub- and above-surface 3D geo-information researchers and practitioners dealing with data acquisition, modeling, management, maintenance, visualization, and analysis of 3D geo-information

    Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

    Get PDF
    Advancements in sensor technology have made it less expensive to deploy massive numbers of sensors to observe continuous geographic phenomena at high sample rates and stream live sensor observations. This fact has raised new challenges since sensor streams have pushed the limits of traditional geo-sensor data management technology. Data Stream Engines (DSEs) provide facilities for near real-time processing of streams, however, algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are limited. This dissertation investigates near real-time representation and analysis of continuous ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors, using a DSE and proposes two novel stream query operator frameworks. First, the ST Interpolation Stream Query Operator Framework (STI-SQO framework) continuously transforms sensor streams into rasters using a novel set of stream query operators that perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D, main memory-based, ST Grid Index that enables high performance ST insertion and deletion of massive numbers of sensor observations through Isotropic Time Cell and Time Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation. Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO framework) efficiently evaluates value predicates over ST streams of ST continuous phenomena. The framework contains several stream-based predicate evaluation algorithms, including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target predicate evaluation to regions with seed points and minimize the number of raster cells that are interpolated when evaluating value predicates. The performance of the proposed frameworks was assessed with regard to prediction accuracy of output results and runtime. The STI-SQO framework achieved a processing throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error under 0.19 using a 500Ă—500 grid. The STP-SQO framework processed over 250,000 observations in under 0.25 s for predicate results covering less than 40% of the observation area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm tested

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF
    corecore