
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

Summer 8-17-2018

Towards an Efficient, Scalable Stream Query
Operator Framework for Representing and
Analyzing Continuous Fields
John Whittier
john.c.whittier@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd

Part of the Databases and Information Systems Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact
um.library.technical.services@maine.edu.

Recommended Citation
Whittier, John, "Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous
Fields" (2018). Electronic Theses and Dissertations. 2927.
https://digitalcommons.library.umaine.edu/etd/2927

https://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/2927?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


TOWARDS AN EFFICIENT, SCALABLE STREAM QUERY OPERATOR

FRAMEWORK FOR REPRESENTING AND ANALYZING

CONTINUOUS FIELDS

By

John Chandler Whittier

B.S. University of Maine, 2010

A DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

August 2018

Advisory Committee:

Silvia Nittel, Associate Professor in Spatial Information Science and Engineering, Advisor

Kate Beard-Tisdale, Professor of Spatial Information Science and Engineering

Torsten Hahmann, Assistant Professor of Spatial Information Science and Engineering

James Fastook, Professor of Computer Science

Ali Abedi, Professor of Electrical & Computer Engineering



TOWARDS AN EFFICIENT, SCALABLE STREAM QUERY OPERATOR

FRAMEWORK FOR REPRESENTING AND ANALYZING

CONTINUOUS FIELDS

By John Chandler Whittier

Dissertation Advisor: Dr. Silvia Nittel

An Abstract of the Dissertation Presented
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
(in Spatial Information Science and Engineering)

August 2018

Advancements in sensor technology have made it less expensive to deploy massive

numbers of sensors to observe continuous geographic phenomena at high sample rates and

stream live sensor observations. This fact has raised new challenges since sensor streams

have pushed the limits of traditional geo-sensor data management technology. Data Stream

Engines (DSEs) provide facilities for near real-time processing of streams, however,

algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are

limited.

This dissertation investigates near real-time representation and analysis of continuous

ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors,

using a DSE and proposes two novel stream query operator frameworks. First, the ST

Interpolation Stream Query Operator Framework (STI-SQO framework) continuously

transforms sensor streams into rasters using a novel set of stream query operators that

perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D,

main memory-based, ST Grid Index that enables high performance ST insertion and

deletion of massive numbers of sensor observations through Isotropic Time Cell and Time



Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using

ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and

Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW

algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation.

Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO

framework) efficiently evaluates value predicates over ST streams of ST continuous

phenomena. The framework contains several stream-based predicate evaluation algorithms,

including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target

predicate evaluation to regions with seed points and minimize the number of raster cells

that are interpolated when evaluating value predicates.

The performance of the proposed frameworks was assessed with regard to prediction

accuracy of output results and runtime. The STI-SQO framework achieved a processing

throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error

under 0.19 using a 500× 500 grid. The STP-SQO framework processed over 250,000

observations in under 0.25 s for predicate results covering less than 40% of the observation

area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm

tested.
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CHAPTER 1

INTRODUCTION

1.1 Real-Time Sensing in Sensor-Rich Environments

Technology advancements in wireless data networks, microelectronics, and mobile

devices have made it easier and less expensive to deploy and receive live data from sensors.

Sensors are able to function independently or connect to other devices in order to upload

observations, and they are no longer constrained to stationary locations. These technology

developments enable dense deployments of networked sensors, developed and installed by

municipalities [144], researchers [97, 116, 177], and concerned citizen who engage in

participatory sensing [2, 25, 27, 60, 115, 142], where individuals operate environmental

sensors that live stream data to be shared and analyzed as part of a larger, collective data

set.

Sensor platforms used in such deployments are often comprised of stand-alone devices

assembled using inexpensive microcontrollers with open source hardware and software such

as Arduino [15], BeagleBone [20], Intel Galileo [73], Libelium Waspmote [93], and

Raspberry Pi [137] development boards. With these development boards it is easy to

combine hardware and software components for a particular task. Another type of

commonly used sensing device is a smartphone, which can connect to external

environmental sensors [21, 102, 161, 167] or use built-in sensors including temperature,

humidity, barometric pressure [143], air quality including fine particulate matter (e.g.,

PM2.5) and Volatile Organic Compoundss (VOCs) [24, 125], and radiation levels [147].

Many early examples of deploying stationary and mobile sensors for monitoring

different environmental phenomena exist today [67, 97, 116, 139, 144, 142, 177]. For

instance, ocean observing buoys such as the NOAA National Buoy Data Center [118], the

NERACOOS system [120], or the Argo network [139] consist of large numbers of live
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streaming sensor buoys. Other deployments include sensor networks on municipal

infrastructures such as light poles (e.g., CitySense [116], SmartSantander [144], Cambridge,

UK [97]), or on buses or private vehicles [142, 144]. Recent applications feature sensors

deployed in forests to measure wildfires (RISER [177], [44]), wearable sensors to measure

air quality [64, 67], and sensor networks to monitor earthquake activity [45, 72, 79].

This type of technology infrastructure with sensors directly connected to the Internet

enables the collection of observations from potentially hundreds of thousands of sensors

deployed over a geographic area, such as a large city, at a high sample rate. It is now

possible to observe continuous, environmental phenomena that are seamlessly distributed

across a geographic region and exhibit continuous change over space and time in near

real-time. Examples of such continuous phenomena are airborne particulate matter,

chemical particles in the air or water, rainfall, or the dispersion and decay of radioactive

particles.

Near real-time analysis of continuous, Spatio-Temporal (ST) phenomena observed by

sensors is required to facilitate rapid reaction to events. This is particularly relevant in the

context of emergency management, where near real-time performance becomes critical to

minimize impact on citizens. In the event of a nuclear or chemical plume disaster, citizens

need timely access to information about the areas impacted by the disaster in order to

reduce personal exposure and to identify evacuation routes.

1.1.1 Challenges

There are several challenges associated with the availability of massive sensor streams

that enable us to observe spatio-temporally continuous phenomena in near real-time based

on near live sensing and data delivery.
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• Mapping Massive Streams of Discrete Observations to ST Continuous

Representations of Phenomena, in Near Real-Time

Each geosensor observation is a discrete observation, at an instant in time and point

in space, of the spatially continuous phenomena that is continuously evolving over

time. Aref [16] argues “that in sensor networks, processing should be at the

phenomenon-level and not at the data signal level.” In order to analyze the

phenomenon and capture its continuity over space and time, the discrete observations

need to be combined using the available data to predict the phenomenon for those

locations that have not been sampled. A continuous representation is needed to

visualize the phenomenon and necessary as a basis for analysis so that meaningful

information can be extracted and communicated to users. This information includes

which regions have hazardous radiation levels, which evacuation route will minimize

personal exposure, or the calculation of a personal exposure given a person’s

trajectory [115].

Representations of continuous phenomena based on discrete observation points are

created by applying a spatial interpolation function to the point samples to calculate

a value for the non-sampled points. The spatial interpolation functions are

computationally expensive and today’s implementations do not scale to keep up with

the high velocity of arriving observations and demands of producing continuous

representations in near real-time. In our context, we define near real-time as being

able to generate a new representation every 1-3 seconds.

Urban sensor networks can consist of thousands to millions of deployed sensors. Each

of those sensors can produce an observation every few seconds. For such a sensor

network deployment with one million sensors in which sensors update at roughly

every 1-10 seconds, the stream could have an average data rate of 100,000 to 1

million observations per second. This presents several data management challenges:

For a stream of sensor observations to be continuously processed in near real-time,
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the system needs to be able to process data at the rate new observations arrive. This

could mean processing 500,000 observations tuples/s, indefinitely. The processing

needs to transform the individual sensor observations into a continuous

representation of the phenomenon.

• Continuous Phenomena Vary Dynamically over Space and Time

Characteristically, continuous phenomena are continuous both over physical space

and also over time as they change, slowly or rapidly depending on the phenomenon.

Sensors that are able to observe and deliver high frequency updates allow us for the

first time to capture both types of change in near real-time. However, sensor samples

are only taken at discrete locations and times while for analysis a continuous

representation is necessary, which must be able to capture both the spatial and

temporal continuity of the phenomenon. While creating spatially continuous

representations at temporal snapshots with large temporal gaps is state of the art

today, the estimation and representation of ST continuity is still largely unexplored.

ST interpolation methods are necessary that estimate the behavior of the

phenomenon as correctly as possible. Furthermore, they also need to scale their

computational capacity to high-throughput sensor data streams.

• Analyzing ST Continuous Phenomena based on Massive Sensor Data

Streams in Near Real-Time

Automated analysis is an important aspect of continuously monitoring real-world

processes and ST continuous phenomena. Such analysis, or queries, can find relevant

trends and identify and alert to events, while irrelevant events can be filtered out and

discarded. For users, it is convenient if analysis needs can be expressed as queries

that can be easily configured and reused. For instance, queries could analyze the

streams to detect areas where measurements are above a certain threshold, applicable

for detecting areas with hazardous air pollution or radiation levels and to detect new
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spot fires around a wildfire. First, appropriate query operators for ST Continuous

Phenomena need to be identified. Secondly, methods need to be developed to execute

such ST analysis queries efficiently over vast sensor data streams that only present

discrete samples in arbitrary spatial order. Furthermore, such queries need to return

accurate results for both interpolated values and detected areas satisfying a threshold.

The point samples do not capture the continuity of the phenomena, and selecting the

point samples that satisfy a query (e.g., samples that are above a minimum

threshold) is different from selecting the portion of the phenomenon that satisfies the

query. While areas near samples that satisfy the threshold are likely to also satisfy

the threshold, samples not satisfying the threshold are also important in order to

determine the limits on the area satisfied by the query. Fourth, since observations

arrive continuously as a stream, analysis must be performed incrementally as the

data arrive rather than waiting for all data to arrive. Sensor observations arrive at a

high velocity, so processing must be fast in order to keep up with the arriving data.

1.2 Current State of the Art

As previously shown [156, 162, 90, 77], the high velocity of sensor observation

production from very large sensor deployments exceeds the capabilities of traditional data

management and query support for representing and analyzing continuous phenomena such

as Geographic Information System (GIS) software [169] or a Spatial Database Management

System (SDBMS) [148].

1.2.1 Traditional GIS and Database Management Systems

Geographic Information System (GIS) [22, 169] software packages contain a wide

variety of support to represent and analyze spatial data. GIS include, among others, tools

for working with point sensor observations, and converting point observations into different

phenomenon representations; they also support functions for filtering point data as well as
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phenomena by spatial and value conditions. However, GIS software is not built today to

automatically handle data that arrive in a stream; instead, GISs are implemented to process

data stored in files (e.g., ArcGIS [41]) or in-memory data frames (e.g., R [135] using the

gstat package [128]) in which all necessary data is stored and available before an operation

is started. Furthermore, GIS relying on a Spatial Database Management System (SDBMS)

cannot handle the throughput requirements of processing point observations, producing

representations, and performing analysis in near real-time for massive streams of sensor

observations because the libraries were not designed to work with streaming data [162, 77].

Available with GIS software are spatial interpolation methods [84, 85, 103] that

transform discrete point samples into a spatially continuous representation of a

phenomenon. Different representations for continuous phenomenon are available [22, 35],

including rasters, tessellations (e.g., TIN [131] and Voronoi diagrams [18, 23]), or contour

lines (isoline framework [35]), and different methods exist to create such representations. In

this thesis, we focus on raster representations for continuous phenomena since they are

widely used and compatible with other representations such as satellite images. Two of the

most common spatial interpolations methods to generate rasters are Inverse Distance

Weighting (IDW) [149] and Kriging [80]. Kriging is a geo-statistical interpolation method

with a high computational complexity (O(n4)) compared to non-geostatistical methods

such as IDW [149] (O(n)). When sensors are stationary, the performance can be further

improved by reusing distance weights and covariance matrices when interpolating using

new values [68]. The accuracy of an interpolated raster can be assessed by calculating the

Root Mean Square Error (RMSE) between the interpolated raster and known values.

One way of capturing the change of a ST phenomena over time is a temporal sequence

of spatial snapshots, called the snapshot model [17]. The snapshot model represents space

as being continuous, as each spatial snapshot is continuous over space, but these snapshots

are only at discrete time instants that may be regularly [54] or irregularly spaced. A
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well-known representation of ST continuity using raster snapshots was provided by the

space-time cube [54, 99].

SDBMS (e.g., Oracle Spatial and Graph [126], Microsoft SQL Server [100],

PostGIS [133] extension for PostgreSQL), are designed to manage and query large spatial

data sets conveniently. To do so they provide a data model language to describe the

structure of spatial data objects and a query language to express declarative analysis

queries over the spatial data. Today, SDBMSs are best suited for spatial objects, such as

land parcels, roads, geographical features, and utility systems, which are represented as

vector geometries and are updated infrequently. SDBMSs are built as extension to

traditional, general purpose Database Management Systems (DBMSs), and, as is also

required for DBMSs, data must always first be written to disk before they can be queried or

analyzed. This requirement limits the velocity of a stream that DBMSs and SDBMSs are

able to process. Comparing tuple processing throughput between a Data Stream Engine

(DSE) and DBMS, [155] showed that on the same machine a DSE was able to process

160,000 tuples/s while a DBMS was only able to process 900 tuples/s, over two orders of

magnitude faster. This means that DSEs are much better suited than SDBMSs for near

real-time processing of high velocity data streams from massive sensor deployments.

1.2.2 Data Stream Engines

Since mid-2000, DSEs were designed and implemented as an alternative data

management system to DBMS to provide high-throughput query processing for data

streams [13, 14, 29, 31, 66, 109, 140]. Streams are buffered in main memory only and

immediately processed, eliminating the disk bottleneck of a DBMSs and enable DSEs to

achieve significantly higher processing throughput. Additionally, DSEs provide support for

continuous queries [158, 33], which are queries over data streams that are continuously

evaluated as new data arrive. A stream query can be applied to an entire stream that has

arrived since the time the query was posed, or it is run over the latest portion of the
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stream, a so-called window [14]. A window is defined by its length and slide, both specified

in terms of either tuple count or time interval, which dictate how the window advances over

the data stream as new data arrive. Data stream queries are translated into a query plan

and executed by DSE using scalable, one-pass [117] stream operators, which can be

parallelized and optimized [49].

1.2.3 Data Stream Engine Support for Continuous Phenomena

While DSEs are promising data management technology for processing continuous

queries over high-throughput data streams in near real-time, they only provide limited

support for the representation and querying of ST phenomena today. Many of the DSE

extensions have focused on support for location update streams of moving objects with

limited query operators and operator implementations [65, 105, 106, 109, 119]. Also, initial

research has been done to extend DSEs for monitoring ST continuous phenomenon and

generating continuous spatial representations from a stream of

observations [95, 96, 123, 177, 176]. These extensions were initiated by our previous

work [123, 92] where we extended DSE to generate raster representations as spatial

snapshots and enabled a throughput of 250,000 sensor observations in under 3 seconds

producing a raster with a resolution of 512× 512 for sensors distributed on a street

network. [176, 177, 95, 96] explored extending DSE to preform interpolation using

Kriging. [176, 177] implemented spatial Kriging and [95, 96] ST Kriging for a DSE. The

work has confirmed that Kriging does not scale to large numbers of sensors, with Kriging

taking 2 seconds for processing 20 tuples using a 50× 50 raster grid [176] and 30 seconds

for 10 tuples using a 150× 150 grid [95, 96], respectively. This is far below the expected

arrival rate of 100,000 tuples/s.

8



1.3 Problem Statement

DSEs are a tool capable to provide the throughput needs for querying and analyzing

phenomena in near real-time based on massive sensor data streams, but current support for

querying spatio-temporally continuous phenomenon representation and analysis is limited.

Most existing research efforts in using DSEs to query ST continuous phenomenon do not

provide the throughput for processing a high number of point sensor observations in near

real-time [95, 96, 176, 177]. For instance, the throughput of [95, 96, 176, 177] is limited to

around 30 tuples/s to generate a new raster representation using adaptations of the

Kriging [80] interpolation method, far from the requirement of being able to process

100,000 tuples/s.

Our previous work [123] focused on implementing a stream operator framework for

IDW. This approach provided a significantly higher throughput, i.e., transforming 250,000

sensor observations into a 512× 512 raster in under 2 seconds. However, this approach has

several limitations. It assumes that all sensors update synchronously, once per window, and

a purely spatial interpolation method is sufficient. However, these assumptions are often

not realistic in the real-world since synchronizing the update behavior of around 1 million

potential independent sensors is impractical.

Therefore, the following problems need to be addressed:

• Near Real-Time Continuous Query Operators to Transform Asynchronous

Sensor Data Streams into Representations of ST Phenomenon

In order to capture the ST continuity of a phenomenon, DSE query support is needed

that can transform a massive stream of continuously arriving sensor observations into

an accurate representation of the ST continuous phenomena in near real-time. Sensor

deployments in large metropolitan environments, can contain sensors installation on

public transportation vehicles and municipal infrastructure, e.g. light poles or traffic

lights, which easily scale to millions of sensors. The streaming rates depend on the

phenomenon that is observed and its rate of change; thus, a sensor network with

9



500,000 sensors with each sensor updating every 5 seconds can lead to 100,000

tuples/s. Thus, the system must be able to handle streaming data from sensors that

are potentially mobile and sample asynchronously and be able to process 100,000

tuples/s.

• Near Real-Time Continuous Query Operators for Simple Analysis Queries

over Continuous ST Phenomena

DSE query operators for queries over ST phenomena are required. Today, query

operators other than transforming point observation streams into continuous

representations are not available. To support an intuitive user interface, operators

should be based on the high-level abstraction of a continuous phenomenon instead of

operators over individual observation streams. While [90] formally defined the

signature of a set of query operators for ST continuous phenomena, which are based

on relational algebra and include predicate, projection, union, and other operators,

high-throughput, real-time algorithms for such query operators are not yet available

today. These operators need to support streaming sensor observations, sensors that

are asynchronous or mobile, high-throughput processing, and the ability to transform

and analyze phenomena from discrete observations into a ST continuous

representation in near real-time.

1.4 Research Objective and Contributions

The hypothesis of this dissertation is that using a stream query operator framework for

a DSE to accomplish ST interpolation and predicate evaluation evaluation is an efficient

approach for representing and analyzing continuous ST phenomenon, observed via massive

numbers of asynchronous, mobile sensor streams if the framework employs an ST

anisotropy-aware ST grid index with a shell-based search algorithm, combined with ST

interpolation stream operators using an ST Adaptive k-Shell (ST ak-Shell)-based ST IDW

interpolation algorithm, and predicate evaluation stream operators that localize predicate
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evaluation to the areas that satisfy the predicate. Such a framework performs stream query

evaluation in near real-time while achieving high accuracy of query results.

Specifically, such a DSE framework running on a on a single CPU socket workstation

class machine should achieve a processing throughput target of 100,000 observation

tuples/s, and generate a continuous representation in near real-time, repeatedly, every 1-3

seconds. Further, while achieving near real-time throughput, accuracy of interpolated

values (assessed using Normalized Root Mean Square Error (NRMSE)) should not decrease

compared to standard, non-real-time spatio-temporal interpolation. Similarly, the predicate

result regions produced from real-time predicate evaluation over continuous representations

should be accurate (evaluated using Jaccard index [74]).

1.4.1 Research Contributions

The contributions of this dissertations focus on a novel, scalable stream query operator

framework that can be integrated into a DSE. The introduced stream query operator

framework enables the high-throughput transformation of massive sensor data streams of

point observation into representations of continuous ST phenomena. Additionally, the

stream query operator framework supports the evaluation of high-level predicate queries

posed over such continuous ST phenomena in near real-time. In detail, the following

contributions are made:

• Real-time Stream Query Operator Framework

We introduce the ST Interpolation Stream Query Operator Framework (STI-SQO

framework) that transforms a high-throughput stream of sensor observations into

continuous representations in near real-time. The transformation of streaming ST

point clouds into spatial rasters is performed as a stream query that is evaluated via

a set of novel stream query operators. The operators are a novel one-pass stream

algorithm for IDW-based ST interpolation. The stream operators can be cloned and

parallelized during run-time to reduce the computational bottlenecks of the
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algorithm. The computational bottlenecks of the stream query framework are the

identification of the subset of sample points, determined for each raster cell, to

predict the value of each cell point and the calculation of each predicted value.

• Flexible Query Result Presentations for Stream Queries over ST

Continuous Phenomena

A stream query window captures an ST point cloud over a temporal interval. How

should the ST continuous phenomenon be presented for the window? We introduce

the concept of the Interpolation Center (IC) as a user-defined timestamp within each

query window at which a ST snapshot of the continuous phenomenon is constructed

using ST interpolation. The snapshot represents the predicted state of the

phenomenon at that instant based on the observations from the entire window that

are in spatial and temporal proximity to each prediction location. Thus, the user can

control the time instant within each window. Further, we introduce several novel

types of stream query result representations for ST continuous phenomena, that are

either a single summary snapshot at the IC or a window movie composed of multiple

snapshots showing an animation of the ST phenomena over a window.

• ST Grid Index with Isotropic Time Cells

We introduce an in-memory ST grid index with Isotropic Time Cells to enable

efficient selection of observations within a ST neighborhood around each raster cell

specified using a combined ST distance. An ST anisotropy ratio is used to partition

space-time into Isotropic Time Cells by adjusting the temporal length of ST index

grid cells relative to the spatial size of a raster cell. The isotropic time cells are

centered about the IC, enabling the ability to search, emanating from the center of

each raster cell, for proximate observations in space and time. Additionally, the ST

grid index is designed to be efficiently reused between windows, able to quickly

identify the outdated portion of the index and clear tuples so that portion may be
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refilled with the newest data added to the window. This results in each tuple being

inserted into the index once, saving both computation time and memory usage.

• ST Interpolation Algorithms

For the stream query operator framework, two Spatio-Temporal Inverse Distance

Weighting (ST-IDW) operator algorithms for near real-time ST interpolation with a

throughput of over 100,000 tuples/s are introduced. The ST Shell Approach (ST

Shell) algorithm uses all observations within a spatio-temporal shell around each cell

in the output grid and within the temporal bounds of the window. In the ST ak-Shell

method, the observations used for a particular predicated cell are determined using an

iteratively expanding ST search for a lower bound of k points within a maximum ST

radius r. The ST-IDW algorithms support any arrangement of sensor observations in

a ST point cloud, allowing both asynchronous and mobile sensors. The reusable

Cylindrical Shell Template and Nested Shell Template, for ST Shell and ST ak-Shell,

respectively, are introduced as templates for searching the index for nearby tuples to

each cell interpolated. We introduce an ST anisotropy ratio to merge spatial distance

and temporal difference between and into a combined ST distance weight.

• Data Skew Adaptive kNN-based ST-IDW Interpolation

The deployment of massive numbers of sensors, many of them moving, can lead to

skewed distributions of sensor observations over space and time. To deal with this

type of skew adaptively, we introduce the dynamic ST ak-Shell operator. This

operator locates a bounded number (k) of sample points within a bounded search

radius (r) during an iteratively expanding ST search using the ST grid index and

Nested Shell Template (NST) that terminates when k is reached. The ST ak-Shell

operator is able to adapt to data density, with k serving as the termination condition

when data are dense and r when data are sparse.
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• Stream Query Operator Framework for Evaluating Value Predicates over

ST Phenomena

We introduce the ST Predicate Stream Query Operator Framework (STP-SQO

framework) with different algorithms for evaluating value predicate queries over the

ST phenomena accurately in near real-time. This novel approach evaluates the

predicates over the phenomena representation instead on directly filtering the raw

sensor data stream to achieve higher accuracy of predicate query result. Overall, we

introduce three different approaches described in the next three contributions:

• Seed Selection and Region Growing ST-IDW Algorithm

We introduce a seed selection algorithm that identifies a set of ‘seed (raster) cells’

that have one or more tuples that satisfy the predicate. Using seed cells, two region

growing algorithms are proposed: a) Breadth-First (BF) and b) Scan Line (SL) using

ST-IDW. BF region growing expands each seed to a region using an breadth-first

pattern, while the SL approach expands regions row-by-row. Both region growing

algorithms reduce the number of cells that need to be interpolated in regions which

do not satisfy the query and thus improve query evaluation time.

• Tile-based Seed Expansion Algorithm

A tile-based approach is introduced for high resolution grids to implement a greedy

algorithm that partitions the prediction grid into larger tiles; if a tile is queued for

interpolation, all cells in that tile are interpolated. If a tile contains a seed, it is

interpolated, including all eight neighboring tiles and their cells. The tile approach

trades interpolating more cells for not having to keep track of a parallel expanding

search as done in the BF and SL region growing approaches.

• Informed, Phenomenon-Aware Seed Expansion Algorithm

The phenomenon-aware algorithm, which uses the interpolated query result

from the previous window for optimization is introduced as an improvement to
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the tile-based approach to prune the number of cells interpolated by using a

different algorithm based on how a snapshot from the previous window is categorized.

The raster query result is partitioned into tiles and each tile is categorized as being

Interior (all cells satisfy query), Boundary (mix of cells that do and do not satisfy

query), and Exterior tiles (no cells satisfy the query) to determine whether or not

each tile needs to be expanded or interpolated based on its classification and the seed

cells from the current window.

1.4.2 Summary of Results

1.4.2.1 ST Interpolation Accuracy and Runtime

The STI-SQO framework was prototyped using Java and it can be integrated into an

open source DSE. The prototype was tested using simulated sensor data streams of moving

sensors sampling the air after the Fukushima nuclear event in March 2011. First, the

algorithms were assessed under different parameter configurations, including radius r, k

nearness, ST-IDW power p, ST anisotropy ratio a, IC, timestamp of the phenomenon, rate

of change of the phenomenon, number of sensors per window, and window size, to

determine the configurations that yielded the lowest RMSE; these configuration were

evaluated further for runtime performance. The parameters a = 4 and p = 4 were identified

as the parameters for ST anisotropy ratio and ST-IDW power that yielded the lowest

RMSE. Using an IC at the center of the window resulted in the lowest NRMSE. For a

dataset representing a sparse street network, using r = 48 resulted in the lowest NRMSE

and for the more uniform distribution of sensors in the Cambridge and Random data sets,

r = 16 was the appropriate parameter for the most accurate representation. Using a radius

larger than r = 16 with ST ak-Shell for the Cambridge and Random data sets does not

negatively impact NRMSE as search is adaptive to the data distribution and terminates

after k tuples are found. Using k = 16 achieved the lowest NRMSE for all data sets with

an IC at the end of the window.
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Using a = 4, p = 4, r = 48, k = 16, an IC at the center of the window, and the ST

ak-Shell algorithm for ST-IDW our performance results show that the framework was able

to generate 500× 500 pixel spatial snapshots of ST phenomena with an NRMSE under 0.19

in 2.5 seconds with over 250,000 tuples per query window using sensors located in a dense,

urban street network (Cambridge data set) and freely moving in space (Random data set).

For the Japan data set, using r = 16 took around 10 seconds and using r = 48 took around

55 seconds with an NRMSE of 0.3. This increase in runtime for the Japan data set results

from the fact that a large portion of the observation area consisting of water where ST

ak-Shell must expand to the full search radius. In an adapted algorithm, these areas can be

omitted, and the remaining ares can be interpolated in near real-time.

1.4.2.2 ST Predicate Evaluation Accuracy and Runtime

Secondly, the STP-SQO framework was tested with regard to evaluating predicate

queries. The algorithms for detecting and interpolating predicate regions were first

evaluated with respect to the accuracy of the region they extracted compared to the region

extracted by applying the predicate to the ground truth. The differences between these

results were calculated using the Jaccard distance [74] and showed that the proposed

predicate evaluation algorithms did not sacrifice accuracy compared to the baseline Naïve

approach. Further performance testing was conducted to evaluate the runtime performance

of the proposed predicate evaluation algorithms, which showed that the Scan Line region

growing algorithm was the fastest predicate evaluation algorithm tested for all data set

sizes and characteristics. Using the Scan Line algorithm for the ST Predicate Region

Evaluator Operator and with ST interpolation performed by the ST ak-Shell algorithm,

predicate evaluation takes around 0.2 seconds to evaluate a predicate for both an urban

and rural street networks, for over 250,000 sensor observations per window from mobile,

asynchronous sensors for a predicate result that takes up 28% of a raster with a resolution
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over 500× 500 cells. The Scan Line algorithm, which grows regions from seed cells line by

line, was the fastest predicate evaluation algorithm for all tested configurations.

1.5 Outline of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2 reviews the related work in the domain of near real-time processing of sensor

observations of continuous ST phenomena and critically analyses the limitations of other

approaches for capturing ST continuity of phenomena.

Chapter 3 introduces a system architecture and index structure for real-time indexing

of streaming ST sensor observations.

Chapter 4 introduces an approach for generating spatial snapshots of a phenomenon

computed using ST interpolation and a sliding data window over a stream of sensor

observations of the phenomenon.

Chapter 5 introduces approaches for evaluating predicates over ST phenomena.

Chapter 6 contains conclusions and directions for future research.

1.6 Intended Audience

This dissertation is intended primarily for researchers and developers interested in

evaluating queries over continuous, ST phenomena in near real-time using a DSE,

especially those interested in implementing support for ST fields, ST interpolation, and ST

predicate evaluation. The intended audience includes experts in the field of computer

science whose research focuses on real-time processing of spatial and ST data. The thesis is

also relevant to specialists of GIS and scientists working on modeling environmental

phenomena and looking to incorporate real-time sensor data into models.
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CHAPTER 2

BACKGROUND

This chapter describes the background and reviews the related work with regard to

querying continuous Spatio-Temporal (ST) phenomena observed via point-based sensor

data streams originating from large deployments of wireless, network-connected sensors in

real-time.

In this chapter, we first define the terminology around ST continuous phenomena.

Secondly, we review the limitations of processing such phenomena using methods and

techniques found in traditional information systems, namely Geographic Information

Systems (GISs) and Relational Database Management Systems (RDBMSs). Thirdly, we

introduce Data Stream Engines (DSEs) and their novel architectural characteristics that

support real-time query processing for massive data streams. We conclude this chapter

with an assessment of the current limitations of support for ST stream query processing in

DSEs.

2.1 Spatio-Temporal Continuous Phenomena in Spatial Information Science

In this section, we discuss the distinction between different entity types in spatial

information science, and focus on physical entities that are continuous in space and time,

so-called fields. After formalizing the description of such entities, we analyze how they are

represented and processed with state of the art GISs and RDBMSs.

2.1.1 Terminology

2.1.1.1 Fields vs. Objects

Entities in the domain of spatial information science are classified into two categories:

fields and objects. In many cases, geographic entities can easily be identified as one type or

the other, while with some entities it depends on the perspective whether something should
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be classified as an object or a field. Defining the difference between objects and fields,

Galton [52] states that “objects often involve a higher level of abstraction than fields: fields

provide the raw data in the form of what properties are ascribed to individual locations,

whereas objects are ‘chunks’ that are ‘carved out’ of the raw data and referred to as unities

with their own (higher-level) properties.”

Considering space as being a bounded geographic area, we use the example of a spatial

field and spatial object. We define a field as a property value (or set of values) of specific

locations within the space. For example, considering a geographic area, temperature can be

measured at any location within a well-defined spatial region. Thus, the temperature field

is continuous over space and bound by the spatial region. On the other hand, objects are

entities with distinct identities and have property values that depend on the object; for

instance, a lake is a spatial object. In some cases, there is a choice whether an entity

should be represented as either a field or an object, for instance, a hurricane. As a field,

the spatio-temporal behavior of a hurricane is captured by one or more location dependent

properties (e.g., barometric pressure, wind speed, cloud cover) over a region. On the other

hand, as an object a hurricane is represented by a well-defined boundary and identity-based

properties (e.g., maximum sustained wind speed, eye pressure, speed and direction of

movement.) Galton [52] identifies these types of entities, which can be viewed from the

perspective of both a field and object, as hyperobjects or multi-aspect phenomena.

Objects and fields are referred to as continuants and occurrents in philosophy [52],

respectively, by how they exist in time [61]. Examples of continuants are people, carts,

trees, buildings, roads, mountains, and administrative units [52]. Examples of occurrents

“include: your smiling, her walking, the landing of an aircraft, the passage of a rainstorm

over a forest, the rotting of fallen leaves” [61], which are examples of processes.

Continuants persist for a period of time while occurrents evolve as a process.
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In this dissertation, the focus is on fields, specifically fields that are continuous over

time and space (e.g., environmental phenomena such as the temperature value over the

Earth’s surface.)

2.1.2 Formal Definition of Fields

As discussed above philosophically, fields represent phenomena that changes over time.

To capture a field’s properties formally, we introduce a mathematical

equivalent [51, 52, 38, 91]. Using a mathematical foundation allows us to describe the

characteristics more systematically, and it provides a well-understood, formal foundation

for implementing fields in information systems [90, 91, 26].

2.1.2.1 Mathematical Definition of a Field

Galton formally defines a field over a space S and states that “a field over S is a

(possibly partial) function f : S → V , where V = V (f) is the set of values characteristic of

the field. The value set may be ordered or unordered, finite or infinite, continuous or

discrete, numeric or symbolic” [51]. Galton makes no restrictions on S, just stating that it

requires “some sort of topological or pre-topological structure ascribed to it” able to

support connected components [51]. This means that S “may be discrete or continuous,

finite or infinite, and it may or may not have various homogeneity or isotropy

properties” [51]. Without restricting the space, S, a field may be used for different spaces,

applicable examples being geographic space, time, the combination of geographic space and

time through restrictions on the space.

2.1.2.2 Spatial Field

A spatial field, short for geospatial field, fs is a mapping from geospatial locations to

values and represents the value of a variable over space. In the scope of this thesis, a spatial

field will be assumed to be two-dimensional and the spatial domain, S, is assumed to be

planar and defined formally as S ⊆ R2. The spatial field is thus defined as fs : S → V .
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2.1.2.3 Temporal Field

A temporal field ft is a mapping from time locations to attribute values that captures

the change of an attribute over time. For a temporal field, the temporal domain, T , is

assumed to be one dimensional, linear and formally defined as T ⊆ R. Similarly to the

definition of spatial fields, a temporal field is defined as ft : T → V . A temporal field can

represent the change of a sensor’s location or any other type of measured value over time.

2.1.2.4 Spatio-Temporal Field

A Spatio-Temporal Field (ST field) has a domain D : S × T , with S and T as defined in

Section 2.1.2.2 and Section 2.1.2.3, that is the domain contains space-time locations. A ST

field is defined as a function fst : S × T → (V ∪ ∅) that assigns each element of the cross

product S × T an attribute value in V or a null value ∅. The null value is needed for cases

where the ST field is not continuous.

The phenomena of temperature over a city and how it changes over time is an example

of an ST field that is continuous over both space and time. Here, every < s, t > location

pair maps to a temperature value. Sensors around the city sample the temperature at

discrete points in space and time, which can be conceptualized as a discrete ST field.

Similarly, an ST field can be used for discrete, ST point events that occur irregularly in

space and time (e.g., location and time of lightning strikes). For an irregular, discrete

phenomena, taking the cross product S × T yields space-time locations, (s, t), where an

event (e.g., lightning strikes) did occur. To handle this issue, the option of mapping to

either V or NULL was added by Liang [90].

2.1.2.5 Specialization of Spatio-Temporal Fields

In the scope of this thesis, we will discuss three different types of ST fields: 1) fields as

human and formal descriptions of continuous phenomena, 2) fields observed at ST point

locations by sensors, so-called observation fields, and 3) a ‘continuous’ computer

representation of the phenomenon, the so-called continuous spatio-temporal field.
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• Phenomenon

The phenomenon being observed is the field as it exists in the physical world, termed

physical field in [78]. In this thesis the assumptions about the physical field that is

the phenomenon are that it has:

– continuous spatial domain

– continuous temporal domain

– continuous value range

– bound to a spatial extent of the earth

– not bound to a temporal interval

• Observation Field

A phenomenon can be captured using sensors; however, sensors can only sample at

discrete points in space and time. The observation field is the discrete field that

contains the observations of the phenomenon over a period of time and can be

thought of as a point cloud, a Spatio-Temporal “data cube” in which two of the cube

dimensions are spatial and the third is temporal [136]. The restrictions for the

observation field are:

– contains a finite number of observations

– discrete spatial domain

– discrete temporal domain

– continuous value range (though limited by numeric precision)

– bound to a spatial extent that is a subset of the surface of the earth

– bound to a temporal interval
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• Continuous Spatio-Temporal Field

The continuous spatio-temporal field provides a continuous view of the phenomenon

by combining the observation field with an estimator function. This term is in regard

to a computer representation and approximation of the real-world phenomenon. The

estimator function calculates a value for any ST point using data from the observation

field. The continuous spatio-temporal field can then be queried to get an estimated

value for any point. The restrictions for the continuous spatio-temporal field are:

– can process finite number of prediction points in finite time

– continuous over the spatial domain (though limited by numeric precision)

– continuous over the temporal domain (though limited by numeric precision)

– continuous over the value range (though limited by numeric precision)

– bound to a spatial extent is a subset of the surface of the earth

– bound to a temporal interval

A major challenge of creating computer representations of continuous fields is dealing

with the continuous nature of the phenomenon in the physical space and finding precise

representation or approximations for them on a computer. Therefore, we will discuss

current approaches of such representations first.

2.1.3 Representations of Continuous Space and Time

The mathematical definition of fields provides a precise foundation to formalize fields

and capture the aspects of spatio-temporal continuity mathematically. In detail, this means

that ST phenomena are defined at infinitely many spatial locations and time instants, even

with bounded space and time. A characteristic of such continuity is that we can ‘zoom in’

infinitely and ‘see’ more detail of the phenomenon. Today, two different types of computer

representations for fields exist: equation fields and sampled fields [91]. An equation field is

the implementation of the mathematical, predictive function that encodes the
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well-understood, entire behavior of the phenomenon. For example, gravity can be seen as

an equation field. For equation fields, observations are not necessary. On the other hand, a

sampled field relies on observations and a prediction function that estimates the value of

the phenomena for non-sampled points based on the sample and some statistical prediction.

In the context of representing continuity of phenomena on a computer, equation fields

can support the characteristic of ‘infinitely zooming in’ and providing more detail since

they are defined via a computational function. The function delivers a value for any input

value of the domain. Similarly, sample fields can represent continuity, and any requested

value is estimated based on the samples. So, zooming might be possible but is constrained

to the available sample to produce a reasonably accurate result. Visually representing the

entire field, in both cases, needs to deal with the fact that only a finite number of points

can be stored on a computer, and if a field is represented as a raster, a finite number of

cells needs to be chosen.

2.1.3.1 Defining Continuity

While continuity is easy to define mathematically, there are more considerations when

defining continuity in the context of space and time and for ST phenomena. The

underlying concepts of continuity are defined below.

• Boundedness vs. Unboundedness

A finite number of sensors with finite sample rate can take a finite number of

observations of a continuous ST phenomenon over a finite period of time, while the

phenomenon itself is defined at infinitely many space-time points. Such a

phenomenon is continuous over space, time, and value but it can be only observed

and represented within a study area, that is, within a spatially-bounded study area

A ⊂ R2 and time interval t ∈ T ⊂ R|tstart ≤ t ≤ tend and it is defined at points within

A× T . If A or T contains infinitely many points, then there are infinitely points in

A× T .
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• Continuous vs. Discrete

Between two (non-equal) points in an ordered domain, the number of points will be

finite or infinite depending on the domain of the points. If the set of integers (Z) is

used, then there is a limited number of points between the two points in question. If

the set of all real numbers (R) is used, then the number of points is infinite, as

between every pair of points there exists another point.

The set of real numbers is continuous, since between any two numbers another

number always exists, whereas the set of all integers is discrete because between

consecutive integers, (e.g. 1 and 2), no other integer exists. A continuous set is

always infinite because of this fact, and a discrete set can be finite or infinite

depending on whether or not it is bounded. In the case of a field, the domain can be

continuous or discrete. An observation field has a discrete domain, while a continuous

ST field has a continuous domain.

• Resolution and Granularity

Resolution is either the measurement or representation of precision for space, time,

and value. The resolution of each dimensions is limited by the measurement

instruments used and the chosen computer representation. For data that are

continuous (real numbers), floating point number representations are commonly used

for their ability to represent (approximate) decimal numbers with different

exponential scale. If there is a limit on how fine the resolution between elements can

be, such as the spacing between consecutive integers, clock ticks, or pixels in an

image, that resolution limit is called the granularity.

Mathematically, the set of real numbers is continuous, as was described above.

Extending this concept of continuity from a numerical dimension to a plane or cube (as

could be used to represent an space-time cube) is intuitive in theory. Space-time can be

thought of as being continuous, except at extremely small distances where it is unknown
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whether space-time is continuous or discrete [5]. Some phenomena that appear to be

continuous, (e.g., temperature and humidity) have a resolution limit, as the phenomenon

appears continuous at the scale of human perception, but it is undefined at the molecular

scale in the vacuum between individual molecules. However, in the context of geographic

information science, this fine of a scale is not necessary and for all purposes temperature

and humidity can be considered as being a continuous phenomenon.

There are inherent challenges with representing continuity on computers. All numbers

must be represented using bits, and computers can only store and process a finite number

of bits. With a limited number of bits, only a subset of the real numbers can be

represented. Even with the inherent resolution limits of number systems and their limited

number of values, computer representations of decimal numbers in practice are sufficient

and exceed the precision of measurement equipment and appear to work as if a continuous

number system were used. The continuous ST field model can be thought of as being

continuous over space and time, but does not work for exceedingly small distances because

of possible granularity limits on physical space-time, the phenomena may be undefined

between molecules, and limits of computer numeric representation.

The computer representations for spatially continuous phenomena are well established;

however, temporal and ST continuity is less common in spatial information systems.

2.1.3.2 Representations of Spatial Continuity

Today, a variety of computer representations for continuous spatial fields exists.

Continuous phenomena are typically observed either remotely using imaging sensors or in

situ using stationary or moving point sensors. Representations of continuous spatial

phenomena can be classified in raster-, vector-, and field-based.

• Raster

A raster [22, 35] representation uses a regular grid consisting of equal-sized polygons.

Most commonly, the grid is composed of square grid cells, or pixels, but other
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alternatives include triangular or hexagonal cells. A value is assigned to each grid cell

that captures the value of the phenomenon within that cell. The value may be an

observation (e.g., the nearest observation to the cell center) or a calculated aggregate

based on a set of nearby observations.

• Vector

Vector [22, 35] representations include contour lines and tessellations created using

triangles or other polygons. The most common tessellations are Triangulated

Irregular Network (TIN) [131] or Voronoi diagrams [18, 23]. A TIN is a triangular

mesh, created by first identifying the significant points (including local maxima and

minima and saddle points), and then using this subset of points non-overlapping

triangles are constructed using three neighboring points [131]. A TIN is a continuous

surface where within each triangular shaped facet the value is estimated by linear or

cubic polynomial spatial interpolation using the values of the vertices of the

triangle [84]. Each polygon in a Voronoi diagram contains one sample point and the

value of the interior of the polygon is the value of that sample point. Thus a Voronoi

diagram has a step change between adjacent polygons having a different value while a

TIN has a continuous change along each face.

• Continuous Spatial Field

A data model based on the concept of fields [26, 78, 90, 91] provides a continuous

view of space and time. Kemp [78] argues that “the simple concepts of raster and

vector may be incomplete for working with representations of continuous phenomena.

There is more to representing reality than just breaking it into pieces that can be fit

into the computer.” Camara et al. [26] calls for a field data model as data structure,

independent from any type of vector or raster representation. Liang et al. [90, 91]

extend this perspective and define a field data model to support streaming data, fields

that change over time, and operations over fields. The basic idea of a field Abstract
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Data Type (ADT) is that various representations (such as rasters, contour lines, or

TIN) are computed on the fly, and the field is not locked into a single representation.

For all three representations, a finite set of user-provided sample points are used to

construct a continuous representation. While with a TIN and Voronoi diagram the process

of transforming sample points into a continuous representation is tied to the representation

format, with a raster there are many different algorithms from which to choose. Similarly

in Camara et al. [26], the user can specify the estimator function used to calculate a value

for a desired query point. The transformation of a set of sample points into a continuous

representation is performed by a spatial interpolation algorithm [85, 84], to be discussed

later in Section 2.1.4.2.

2.1.3.3 Representations of Temporal Continuity

The time domain has gained increasing importance in GIS, with the availability of

inexpensive sensors with wireless communication that are able to observe continuous, high

resolution temporal change. Initial work in Spatio-Temporal entities focused on capturing

and preserving discrete changes of spatial objects, such as the ownership change of a land

parcel or the development of land over time. However, slow, gradual change of

environmental phenomena such as geological phenomena (e.g., orogenesis and erosion [36])

or climate change [130] have also been of interest. These are gradual changes that take

place over long time periods, such as years, decades, or centuries. Today, with the

availability of live streaming sensors a new type of temporal continuity and rate of change

can be observed, including the individual trajectories of cars and the continuous change in

a phenomena over time at the location of sensors. Models of time have several

characteristics including structure, continuity, density, and granularity [129, 153].

Structure: In the physical world, humans perceive the structure of time to be linear

and progressing onward like an arrow into the future. In a computer, the representation of

time structure is more flexible. For example, if applications are used to predict future
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states, a branching time model captures multiple future possibilities from the current time.

A periodic (also called cyclic) time model can be used to represent cyclical processes (e.g.

lunar cycle, tide, a week).

Continuity and granularity: Time is perceived as being continuous in the physical

world: between any two time instants another time instant exists [153]. Computer clocks

and representations of time provide a high resolution, but are discrete. Clock instruments

produce discrete pulses at a constant frequency, and computers are only able to tell that an

event occurred between clock pulses rather than the exact time. The term chronon is used

to describe the smallest, indivisible unit supported in a system [75]. Computer data types

for representing time have a granularity for temporal resolution. For instance, a date data

type has a granularity of a day while a timestamp can have a granularity of a second. A

point in time is represented in a computer using a finite number of bits, where the required

size in bytes to store a time point is based on how the data are encoded in the

representation, the range of the representable time value, and the granularity. Even though

resolution limits to time exist for computer representations, time can be modeled as a

discrete or continuous variable. Continuous time is best for fields, as it can capture the

continuous change of a phenomena over an interval. Discrete time can be used for abrupt

change, like the movement of an administrative boundary [171].

The terminology of transaction time and valid time is introduced by Snodgrass and

Ahn [152] to distinguish the time point or time interval when information about an entity

is present in a database system and the time point or time interval when the entity is valid

in the real world. For sensing applications, valid time is the time stamp attached by a

sensor, and database time the time stamp when information arrives at the information

system. Therefore, a database system can reason about network latency and correlate

different data correctly. Time in databases is discussed further by Snodgrass [153] and the

concepts of transaction and valid time are extended by Worboys [171] to support recording

changes to spatial objects over time in a database.
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2.1.3.4 Representations of Spatio-Temporal Continuity

In the past, the primary focus of Spatio-Temporal GIS and Spatio-Temporal Database

Management System (ST-DBMS) has been mostly on spatial objects, and how to capture

how they change and how their relationships with other spatial objects change, over long

periods of time with few updates, and potentially establish a topological temporal

framework for representing entity-based events [17, 36, 83, 170].

With the availability of inexpensive GPS units, database research started to support

queries over the continuous movement of spatial objects over time [40, 47, 62, 168].

However, DBMSs could still only support sparse updates (e.g., once every 30 min). With

the support of DSEs [155], the continuous movement of spatial objects over time can be

supported in real-time today [48, 109, 119]. Models that attempt to capture continuity for

fields over space and time can be classified as having a primarily spatial focus, temporal

focus, or treating space and time equally.

• Spatial Focus

Today, the most common view of Spatio-Temporal continuity is still the primarily

spatial focus that captures the change of ST phenomena as a temporal sequence of

spatial snapshots, called the the snapshot model [17]. The snapshot model represents

space as being continuous, and time as discrete [54] and regularly or irregularly

spaced time instants. A well-known representation of ST continuity using raster

snapshots was provided by the space-time cube [54, 99]. It is common that the

distance between snapshots is relatively wide compared to the change of the

phenomenon. Therefore, the temporal aspect has a more ‘discrete’ feel than the

spatial aspect, while both aspects are discrete in nature.

• Temporal Focus

Other representations focus on ST phenomena from a temporal perspective, looking

at the process of the phenomena over time and the times when change occurs. This

allows a user to compress a temporally dense sequence of raster snapshots so that
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change between rasters is captured but redundant information is omitted. Peuquet

and Duan [132] looked at extracting interesting event regions from ST continuous

phenomena (represented as rasters) in the Event oriented Spatio-Temporal Data

Model (ESTDM). Since only incremental changes are stored, less data are kept

overall. Each event is time-stamped and associated with a list of event components,

which are the raster cells that changed from the last event.

• Spatio-Temporal Focus

The continuous ST field [26, 90] provides a continuous view over both space and

time. This allows a phenomena to be sliced as a temporal field of spatial fields or

spatial field of temporal fields. Camara et al. [26] implemented spatio-temporal fields

on top of the SciDB array database system using rasters and support operators for

subsetting rasters, while [90] provides a prototypical mapping to data streams.

Mennis et al. [99] note that using a fixed ST resolution is disadvantageous for analysis

across different datsets as the representation is inflexible and requires re-sampling as all

data need to have the same spatial and temporal gird size to be comparable. This is the

advantage of the continuous spatio-temporal field as the representation is not tied to a

specific resolution.

So far, we introduced different concepts related to how scientists classify geographic

phenomena into objects and fields, and how fields can be described more formally. We also

discussed the limitations of representing aspects such as spatial and/or temporal continuity

on a computer. In the following section, we discuss the current state of the art in sensing

geographically continuous phenomena via point-based sensors and the methods of

reconstructing a continuous computer representation.

2.1.4 Sensing and Reconstructing Spatio-Temporal Phenomena

Continuous phenomenon are often observed via camera-like instruments from space

(remote sensing), but the focus on this dissertation is the sensing based on many individual
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point-based sensors in physical space. Thereby, the layout of a sensor network can be

spatially regular or irregular. Further, we discuss the different types of spatial interpolation

methods [103] that are used to approximate and fill in missing values for a continuous

representation, such as a raster.

2.1.4.1 Sensing Spatio-Temporal Phenomena

Continuous ST phenomena can be sensed using in situ sensors that sample periodically.

Depending on the type of sensor and an application’s needs, different spatial

representations are more suitable. A raster data format is commonly used in remote

sensing, especially with cameras and line scanners. However, to simplify data integration,

rasters are also common formats for in situ based sensing. To represent data from in situ

sensors as a raster, spatial interpolation is used to fill in unsampled cells in a raster using

the available sensor observations.

2.1.4.2 Reconstructing Continuous Phenomena using Spatial Interpolation

When irregular spatial sampling is used, spatial interpolation is needed to transform the

set of point observations, observation field, into a continuous spatial representation. Spatial

interpolation methods can be classified as being non-geostatistical, geostatistical, or as

more advanced combined methods that use both non-geostatistical and geostatistical

methods [84, 85].

Non-geostatistical interpolation methods such as IDW [149], TIN [131], or

Voronoi [18, 23] do not consider the statistical properties of the distribution of sample

points and are not able to assess how well the interpolation fits the data.

As an example, IDW is based on the premise that the value at a non-sampled point can

be approximated as a weighted average of values at points that are spatially close, due to

Tobler’s Law [159]. To assess the prediction error, the error between a value predicted

using interpolation and the actual value of the phenomena at that point, external analysis

is required. For example, the error in a non-statistical method can be calculate by omitting
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some sample points and checking the variation of the interpolation at those

points [101, 112, 160]. In the ideal case where the ground truth of a phenomenon is known,

possible when using simulated sensors that sample a simulated phenomenon on a

computer, the difference between the interpolated and known value can be determined for

each raster cell and then aggregated across a raster to calculate the RMSE.

Geostatistcal methods (e.g. Kriging [80]) assess the spatial (or the temporal)

correlation of observations and calculate the uncertainty of each predicted value as the

kriging variance, thus providing a continuous map of both the interpolated value and

uncertainty [96]. In contrast to IDW, spatial Kriging assesses the spatial autocorrelation of

sample points, using a variogram. Ordinary Kriging is referred to as the best linear

unbiased estimator [154]. However, this comes at the expense of increased computational

complexity for Kriging (O(n3)) [96, 176] over IDW (O(n)).

2.1.4.3 Reconstructing Continuous Phenomena using Spatio-Temporal

Interpolation

The problem of ST interpolation is relatively new, and only limited related work exists

for estimating phenomena that are continuous in both space and time based on point

observations [46, 87, 88, 154]

In [87, 88], two alternative approaches for ST interpolation are considered. In the

‘reduction’ approach [87, 88], for each sample point location a function is generated that

captures how the value of the phenomenon changes over time using the time series of

sample points and 1-dimensional interpolation to predict a value at the sample point

location for any desired time instant. These functions over time are queried at a time

instant and processed using spatial interpolation to calculate a value for any ST point. In

the ‘extension’ approach [87, 88], 2-dimensional interpolation methods are extended to

3-dimensional space where time is treated as the third dimension. Treating time as a third

dimension has yielded the best accuracy [87] and been the approach used by
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others [46, 154]. An issue with treating time as a third spatial dimension is that the

autocorrelation of a phenomenon between the spatial and temporal dimensions, and an

anisotropy factor can be used to scale distances in spatial and temporal dimensions [82] .

Different ST interpolation algorithms include shape functions [87, 88],

Kriging [46, 87, 154], and IDW [87, 46]. Shape functions [87] come from finite element

methods, and produce a vector mesh that represents the value of a phenomenon. In

contrast, Kriging and IDW are typically used to interpolate regular grids. Time is added as

an additional dimension in ST Kriging [46, 87, 154]. Both [46, 87] investigate ST IDW;

however, [87] does not consider anisotropy between space and time.

2.1.5 Critical Review

Over the last decade, sensing continuous phenomena has significantly changed due to

increasingly dense sensor deployments and an ability to observe phenomena and transmit

the observations in real-time.

Traditional GIS and RDBMS technology have struggled to keep up with the increasing

throughput demands from these new sensor environments. To work with sets of point

sensor observations, spatial interpolation is needed to generate a continuous spatial

representation and ST interpolation is needed for a continuous ST representation. Spatial

interpolation is well established, but ST interpolation isn’t as well established. Faster

variants of interpolation algorithms are necessary to work with live sensor data. Existing

interpolation methods focus on producing the best approximation of a phenomena using a

limited data set where processing time is not an issue. This is different from the situation

where there are live sensor observations and algorithms must keep up with the massive

amount of continually arriving sensor data.
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2.2 Data Stream Processing Support for Spatio-Temporal Phenomena

As required by the real-time processing and throughput demands of massive sensor

deployments, financial transactions, and fraud detection, a significant part of database

research has focused on developing a novel type of data management technology called

DSEs over the last 15 years. DSEs have been designed to cope with extremely high

throughput of tuple updates, bursty data arrival, and real-time answers of queries that are

executed continuously over new arriving data. In DSEs the traditional RDBMS bottleneck

of writing data to disk before it can be processed in queries is eliminated. In a DSE, data

are both stored and processed in main memory [156].

2.2.1 Data Streams

Similar to RDBMS, DSEs are structured around a relational or tuple-oriented data

model. A tuple is an element of a data stream and represents an update about the

phenomena represented by a stream. A tuple can represent the price update for a stock

ticker symbol, the time and corresponding location for a specific moving object, or the

time, location and value of a sensor observation of an environmental phenomena. A tuple

may have several attributes, possibly including a key identifying the item (e.g. an identifier

for an stock, moving object, or sensor) or unique identifier.

A data stream is a sequence of tuples that are transferred incrementally to a receiving

computer system, a consumer, for processing. The order of tuples in the stream is

determined by their arrival time. Data streams are produced by a variety of external

sources, especially sensors. A DSE is a consumer of the stream and decoupled from the

producer and has no control over the number of devices streaming tuples, the arrival rate of

tuples, or the arrival order of tuples. Once an element from a data stream has been

processed by a DSE, it is discarded or archived.

In a data stream tuples arrive continuously, that is the next tuple may arrive at any

time in the future. The arrival rate of the number of data tuples of any time point in the
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future is uncertain. Therefore, a stream is called unbounded, that is, it is impossible to

place a bound on the number of tuples that will have arrived by any point in the

future [14]. However, in hindsight, the number of tuples that have arrived is finite.

In a RDBMS, a query is posed over a stored relation, that is, all tuples that are relevant

for the query are available at the beginning of query, and they have to be pulled from the

disk. In a DSE, a query is issued over a data stream, that is all data are not available yet

when the query is issued, but continue to arrive during a query. Furthermore, a query is

typically not posed over an entire stream but over a specified moving interval of a stream.

2.2.2 Stream Windows

To pose queries on a bounded set of tuples, the concept of ‘windows’ has been

introduced with regard to stream query execution [14]. A window is often specified using

either a fixed number of tuples (count-based window) or a time interval (time-based

windows). If no window is specified, then the query is executed on each tuple individually.

A window query starts executing with the opening of a window. Non-blocking query

operators execute a tuple at a time (e.g a filter that selects tuples satisfying a predicate),

while blocking query operators (e.g. a join between two streams) may begin when the first

tuple arrives but wait to process until all tuples in a window have arrived to produce a

result. The variables inside an operator are called the operator state.

The most common window types are windows that are defined by their length, i.e.

count-based and time-based windows; other window types like the predicate-based window

exist [58]. A count-based window defines the window length via a user-defined number of

tuples. A time-based window, on the other hand, is defined by an time-based interval, and

the number of tuples that arrive within the time interval can vary. Another important

window parameter is the slide of a window. The window can either move continuously over

the time (or tuple arrival) axis, as in [14], or periodically according to the window slide

parameter.
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Figure 2.1. Stream operator graph

Based on both the length and the slide, windows are classified as sliding, tumbling, or

jumping [59]. A sliding window is defined such that the slide is less than the length, a

tumbling window is defined when the slide and length are equal sized, and a jumping

window is when the slide is greater than the length.

2.2.3 Stream Query Processing

The query language for a DSE is either implemented as an extension of SQL, e.g.,

CQL [14, 13], or as an operator graph as in [30, 29]. The execution of stream queries is

significantly different from processing queries over relations [19]: Stream queries are issued

as continuous queries [158], that is the user submits the query once, but the DSE continues

to re-evaluate the query over windows until it is explicitly removed from the system.

Depending on the type of stream operators executed in a stream query, the query delivers a

(new) stream of (filtered) tuples or an aggregated result tuple; this stream can be the input

to other queries.

Similar to RDBMS, a query in a DSE is transformed into a query plan which is a graph

of query operators that evaluate the query over one or several data streams. An operator

may perform a select, project, join, aggregate, or other operation. Besides the operators,

the query plan contains the connections between the operators representing the data flow

between operators. The operator and the flow of data between them follows a Directed,

Acyclic Graph (DAG). An example operator graph for a stream query is shown in

Figure 2.1 for a query to pass tuples every tuple t where attribute x is greater than 10 and

then aggregate as an average of x using a window of 5 tuples (slide of 1).
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DSEs have several other components of built-in functionality to adapt to high data

velocity that exceeds the processing capability. These components support adaptive

resource handling to adapt to sudden and prolonged data bursts using load shedding [157],

query plan migration and adaptive processing [140], and others.

The research field of data stream processing has advanced to the point that research

prototypes and concepts have been incorporated into commercial products and there are

multiple open source and widely used stream processing products. Notable DSEs available

today are: Microsoft StreamInsight [6, 77]; Oracle Streams [53]; IBM System S [55] and

InfoSphere Streams; Apache Storm [12]; Apache Spark Streaming [11, 174]; Apache

Samza [10, 124]; and Apache Flink [9, 28].

2.2.4 Supporting Spatio-Temporal Streams

In a ST data stream a tuple has both a spatial location and timestamp attribute,

sometimes called a geo-stream [71, 122]. Two types of ST streams are location updates for

moving objects and updates of the value of point sensors, where the sensors may be

stationary or mobile. Early research in ST DSEs [65, 105, 106, 109, 119] focused on

supporting queries over moving spatial objects. In recent years, processing support for

producing a representation of a continuous phenomenon from a stream of sensor

observations data streams in near real-time has become available [7, 95, 96, 123, 176, 177].

2.2.4.1 Stream Support for Moving Objects

Real-time moving object tracking has been a widely researched application of DSEs.

Research has focused on tracking moving objects and their trajectories and analysis of

traffic jams and traffic behavior in real-time [105, 106, 109, 119, 65]. Research systems are

PLACE [109, 105], OCEANUS [50], and CAPE [119]. Commercial systems extension

include GeoInsight which extends Microsoft’s StreamInsight [6] to support online analysis

for moving objects [77, 76].
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While processing moving object stream queries is different from queries over fields,

there are interesting lessons to be learned in how ST stream query processing differs from

conventional stream query processing. The first significant difference is that all incoming

update streams of moving objects are shared between all user stream queries. Secondly,

queries are spatial in nature, for instance, monitor for each moving object the k-Nearest

Neighbors (kNN) neighboring moving objects. Since a tuple could end up being compared

with every other tuple in such a query, a naïve implementation that compares every

element with every other element would have computation complexity O(n2). Therefore, to

answer such queries fast, tuples are re-sorted in a spatial dimension instead of the temporal

dimension (their arrival order), and main memory indexes are necessary [105, 106, 109].

Third, [77, 76] showed that real-time stream queries cannot achieve sufficient throughput if

DSEs are used with traditional ST-DBMS libraries [77, 162]. Novel, single pass, stream

based operator re-implementations are necessary to achieve the necessary throughput for

real-time query answers.

Research has focused on extending stream data model and query languages with

concepts for ST streams [48, 71, 81]. Galic et al. [48] presents a formal framework of data

types for geo-spatial data streams and changing vector data types including trajectories of

moving objects.

2.2.4.2 Stream Support for Continuous Phenomena

Today, there is limited related work with regard to using DSEs to process sensor data

streams to monitor continuous phenomenon. Liang et al. [90, 91] have focused on

extending stream data models and query languages with a novel field data type hierarchy

to support expressing high-level abstractions of ST phenomena on a schema level.

Furthermore, [123] established the initial work exploring the feasibility of extending a DSE

to monitor continuous phenomena in real-time based on massive sensor data streams. [123]

explored novel stream based operators that implement the IDW method to generate spatial
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raster snapshots of continuous phenomena. In order to make the problem tractable,

simplified assumptions were made such that all sensors produce time synchronized

updates. [123] demonstrated that a stream-based operator frameworks for spatial

interpolation can achieve spatial interpolation of up to 256K update/s into a raster

representation in under 2 seconds.

Aref [7] introduced a phenomenon-level monitoring framework, Nile-PDT, that is based

on the assumption that groups of streams showing similar behavior over a period of time

establish a ‘phenomenon.’ Phenomena are detected by joining observations from different

streams using an SN-Join, an extension of the multi-way join algorithm MJoin [164]. This

type of join, however, being agnostic of spatial neighborhoods, becomes too

computationally expensive for large numbers of sensors. Additionally, each phenomena is

represented as the set of sensors having similar values and is visualized as a closed polyline,

which does not capture the spatial or temporal continuity of the continuous phenomenon

being observed. The focus of our work is on representing the entire continuous phenomena,

not just the boundary of phenomena.

Recently, [95, 96, 176] explored adapting Kriging [80] to work in a stream-based

processing framework. Kriging has a computation complexity of O(n3) where n is the

number of observations [176] compared to other methods like IDW that have a linear time

complexity O(n). Zhong et al. [176] present a stream-based version of the Kriging spatial

interpolation method for processing streaming data using sliding windows that is able to

reduce computation when there are the same tuples in successive windows and where the

set of sensors and their locations is relatively static. The resulting computational

complexity after the optimizations approaches O(n2). Lorkowski and Brinkhoff [95, 96]

present an approach that partitions sensor observations into subsets, creates submodels

using the partitioned data, and then merges the submodels according to probability weight.

Using the partitioning method, computational complexity is a floor function that increases

roughly linearly with the number of observations. Both of these approaches have worked
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with relatively small observation sets, with Lorkowski and Brinkhoff [96] processing 400

point observations in roughly 30 seconds and Zhong et al. [176] with a processing time of

20 seconds for the 600 initial observation points. Though these methods are more accurate

than IDW used in [123], they have not been shown to be scalable to massive numbers of

sensors of over 100K samples per second, that are spatially and temporally dense.

2.3 Summary

In summary, traditional GIS and RDBMS technology is unable to keep up with

processing streaming data [155]. DSEs are a promising technology for representing and

analyzing continuous phenomena observed by mobile point sensors that sample

asynchronously, but within DSEs there is limited support for representing and analyzing

continuous ST fields. Current DSE approaches [95, 96, 176] support monitoring of

continuous phenomena and representing them as a raster, but these approaches, relying on

Kriging [80], do not scale to be able to transform a massive volume of streaming of point

observations from mobile sensors that sample asynchronously in near real-time into a

spatially-continuous snapshot representation of the phenomenon that captures continuous

change over time. Our previous work [123], supports spatial snapshots in near real-time

using IDW for mobile sensors that update synchronously. New stream operator

implementations are necessary to support representing and analyzing continuous ST fields

efficiently in a DSE.
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CHAPTER 3

A STREAM QUERY OPERATOR FRAMEWORK FOR CONTINUOUS

REAL-TIME SPATIO-TEMPORAL INTERPOLATION

3.1 Motivation

Following the Fukushima Daiichi nuclear disaster in Japan in 2011, the Safecast [142]

group of volunteers designed and built independent radiation sensor nodes to collect data

about radiation levels in the area surrounding Fukushima rather than rely on the

SPEEDI [34] data from the government of Japan. Equipped with a GPS receiver, the

sensor nodes were used to collect measurements by volunteers driving in vehicles. Using

mobile sensors, a much larger area can be sampled inexpensively compared to a stationary

sensor network since measurements can be taken at different locations with the same sensor

device.

One can imagine that in the future a much larger and denser radiation sensor network

will be deployed, with the support of citizens and the government. Such a deployment can

contain stationary sensors at street intersections and mobile sensors mounted on municipal

and personal vehicles. The total sensor node population can easily reach around 1 million

sensors for a metropolitan area. With such a large number of sensors it is unlikely that all

sensors sample synchronously and instead massive streams of observations will arrive

continuously at a centralized server where the data is to be integrated and analyzed, in

near real-time.

At the central server, the constantly arriving individual observations need to be

combined into a representation of the entire radiation field as it changes over space and

time in real-time. Ideally, the observations streams are transformed into a ‘movie’ of how

the radiation field changes. A ‘movie’ representation of the radiation field is a series of

time-stamped spatial ‘snapshots’. The spatial snapshots need to be recomputed often,
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Figure 3.1. Sensor observation tuples distributed over space and time

potentially every 5 to 10 seconds, depending on the update rate of the sensor network. We

call the rate at which new snapshots are generated the prediction rate. Each prediction

interval consists of a finite set of spatio-temporal point samples, distributed over both

space and time but bound by the spatial region of interest and prediction interval (see

Figure 3.1).

3.2 Problem Statement

The example scenario, which is representative of many massive geo-sensor streaming

applications, faces several challenges with regard to building a data management system to

transform massive streams of continuously arriving sensor observations into a sequence of

raster snapshots generated every few seconds to represent the ST evolution of a

phenomenon for near real-time geo-visualization. We define the term ‘near real-time’ as

being able to keep up with the generation of continuous representations based on arriving

data with only 1-3 seconds of delay of the events happening in the physical world.

To constrain this research question, the following assumptions were made: sensors are

irregularly distributed in physical space and send observations asynchronously. Sensors

may be stationary, mobile, or transient, meaning that sensors may have a limited lifespan

or enter or leave the spatial region of observation. Sensors are part of a massive sensor

network (up to 1 million sensors total), the observations from each sensor are combined

into one time-ordered stream, and the processing throughput target is 100,000 tuples/s.
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The result of each prediction interval is at least one raster snapshot with a resolution of at

least 500× 500 cells.

3.2.1 Challenges

• Asynchronous Sensing

With asynchronous sensing, the requirement that all senor nodes have a synchronized

clock, which has shown to be a challenging problem in a sensor networks [43, 146], is

removed. In a sensor deployment in which sensors likely have heterogeneous

hardware, software, energy supply, and communications technologies and in which

data processing is centralized and decoupled from the sensors, the centralized

processing unit is unable to control when, where, or at what rate samples are taken,

and thus, synchronous sensing is impractical. Asynchronous sensing leads to sensor

observations being distributed over time and space, conceptualized as a ST point

cloud as depicted in Figure 3.1, over a prediction interval. We assume that sensor

network latency is minimal and that tuples are uniformly timestamped on arrival.

• Mobile Sensing

Although many applications involve stationary sensors, in emerging scenarios (e.g.,

sensing urban air quality using sensors on transit vehicles) many of the sensors are

moving [3, 173], and therefore, their location changes between updates. Statistical

spatial interpolation methods determine the influence of each sample point on a

predicated value based on its location. When sensors maintain the same location

between consecutive predictions at different time stamps, the influence factor for each

sensor does not need to be recalculated, and reduces a computationally expensive

aspect of the algorithm. However, with moving sensors, the influence factors have to

be recalculated for each individual interpolation step. This makes any spatial

interpolation method that is computationally expensive with regard to calculating

weights for predicted values not suitable.
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• Representing Spatio-Temporal Continuity of a Phenomenon

A prediction interval contains a set of discrete point observations over a spatial region

and time interval, which establishes sampling a continuous phenomenon in this

space-time continuum, while it changes. Similar to representing the spatial continuity

of the phenomenon, it is challenging to represent its temporal continuity. While many

approaches exist to deal with the spatial continuity, methods for representing

temporal continuity accurately is a challenging, novel problem that today arises due

to technological advances of wireless networked sensor networks producing

high-density streams in real time. Ideally, the user would like to view a fine-grained

temporal change of the phenomenon during a time interval. However, similar to

spatial continuity, temporal continuity has to be approached via discretization. While

ideally the ST continuity of a phenomenon is represented as a movie, even a movie

consists of frames, i.e. snapshots, at discrete times with limited spatial resolution.

• High Data Throughput Spatio-Temporal Interpolation

If sensor observations arrive at a very high rate and sliding query windows are short

(e.g., 10 seconds or less) the interpolation step needs to execute efficiently to be able

to keep up with the demands of continuously arriving data and transforming them

into a continuous representation for each query window. The amount of execution

time required to generate a raster at a given resolution using a spatial interpolation

method depends on the algorithm implementing the statistical method. Typically,

the run-time for an algorithm increases with the number of prediction locations and

sample points. For instance, for m prediction locations and n sample points, the

computational complexity for traditional IDW algorithms [149] is O(mn) and

Kriging [80] algorithms is O(mn4) and, even reformulated, still requires

O(mn3) [68, 154, 176]. Therefore, traditional algorithms implementing spatial

interpolation are not able to scale in order to deliver throughput for such high

numbers of updates. Furthermore, the sample points within a window are distributed
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over both space and time, and therefore require both novel Spatio-Temporal

interpolation methods as well as algorithms supporting very high-throughput.

• Spatio-Temporal Data Skew

An additional challenge is data skew, which is created during sampling and occurs

due to the irregular geographic distribution of sensors, varying sampling rates, and

potential movement of sensors. Thus, data skew can temporarily occur spatially,

temporally, and spatio-temporally. Spatial data skew has the implication that the

spatial distribution of sensors varies over the area of interest with respect to density

per region. For instance, an area such as a dense urban center can contain a

significantly higher number of sensors while in other regions few or no sensors exist

(e.g., water bodies). Temporal data skew occurs when the number of observations per

prediction interval changes over time. For example, sensors on public transportation

buses sample only when the bus is operating. Also, since sensors sample

asynchronously the density of observations within a prediction interval can be

temporally skewed due to random effects. The combined ST data skew is described

as a changing spatial skew over time or changing temporal skew over space (e.g., a

swarm of aerial vehicles tracking a plume [145]). All three types of data skew can

influence the data quality of the prediction raster generated using ST interpolation.

Thus, an interpolation algorithm needs to be aware of and adapt to spatial, temporal,

and ST data skew to improve the performance and interpolation quality.

• Sliding Prediction Intervals over Spatio-Temporal Data Streams

Sliding intervals are defined as consecutive observation intervals that overlap in time.

From a practical perspective, this means that a portion of the data from the ‘older’

interval are preserved for the current interval; sliding intervals allow the users to

compute ‘running’ aggregates. To support such queries, it is necessary to be able to

rapidly discern the data that are expired from an interval and the data to be carried
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over to the next interval. This is a significant problem due to the very high data

arrival rate in sensor stream environments.

3.3 Related Work

In this section, we review the related work with regard to processing massive ST point

clouds of sensor observations and representing ST continuous phenomenon in real-time.

Additionally, we explore how DSEs have been used for processing stream queries over

moving objects streams and which lessons can be learned from this type of near real-time

ST stream processing for ST continuous phenomena.

3.3.1 High-Throughput Spatial and Spatio-Temporal Interpolation of Massive

Point Clouds

Although high-throughput Spatio-Temporal interpolation is necessary for transforming

massive point cloud streams into continuous representations of phenomena, little progress

has been made so far to address this. Therefore, we first investigate the current state of the

art in purely spatial interpolation algorithms for high-throughput data processing, and

then analyze the advancements in Spatio-Temporal interpolation.

3.3.1.1 High-Throughput Spatial Interpolation

Traditional algorithms to implement spatial interpolation methods are designed to work

with sparsely sampled data and in an offline context where the amount of runtime required

is typically not critical. For novel applications with high data rates and fast throughput,

diverse work has been proposed to adapt traditional algorithms for these requirements. We

focus on interpolation methods that generate rasters as output and address the two main

categories of such methods: adaptations for IDW algorithms and Kriging algorithms.

Several approaches addressed the problem of increasing throughput for

IDW [123, 138, 68]. One way to improve the performance of IDW is to reduce the number

of sample points that are used to interpolate a cell in the prediction grid. This can be
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achieved by including only sample points within a specified radius around each prediction

location [123, 138] or only using the k nearest sample points to a prediction

location [4, 123]. In [68], it is assumed that sensors sample synchronously and are

stationary. Here, sensor locations and normalized observation weights for interpolation are

stored in a matrix, and new observations are supplied as a vector; however, this approach is

not feasible for mobile sensors as the weights have to be recomputed for each sensor that

has moved. Another approach to speed up execution is parallel execution of IDW. This has

been explored for CPU [68, 123], GPU [68], and clusters [70]. Our previous work [123] is

the only approach that has investigated parallel, stream-based IDW for streaming point

observations.

Other work has explored the adaptation of Kriging algorithms to increase throughput.

Traditional implementations of Kriging [154] have a computational time complexity of

O(n4); [68, 154, 176] reformulated the algorithm to achieve O(n3). However, scalability

becomes the main challenge for real-time streaming applications as otherwise processing

power p must also scale by p3 to keep execution time constant.

Zhong et al. [176] proposed an adapted version of spatial Kriging for stream processing

that works for sliding, count-based window queries, which assumes stationary sensors. Here,

the assumption is made that a portion of the data remains constant between consecutive

windows and, thus, is reused. The amount of tuples added and removed (20 per window

slide) is significantly smaller than the overall number of tuples per window (600 tuples).

The incremental algorithm executes in roughly 10% of the execution time of the initial

window for each window thereafter. For instance, with an initial execution time of slightly

under 20 seconds, each of the subsequent windows takes around 2 seconds to compute for

the following windows when using a 50× 50 prediction grid. The resulting average

computational complexity is O(n2). However, our work performs ST interpolation with a

target throughput of 100,000 tuples/s and complete representations in about 2 seconds.
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3.3.1.2 High-Throughput ST Interpolation

The related work with regard to high-throughput spatial interpolation is very limited

today due to the fact that both the statistical methods to address ST interpolation are in

their infancy, and thus, algorithms to implement them are also very limited. Most of the

work has been done in the area of extending spatial interpolation methods to incorporate

time, e.g., ST IDW [87, 88, 46] and ST kriging [82, 103], however these do not address the

throughput challenges for near real-time representation of massive sensor data streams.

For performing ST interpolation using ST kriging more efficiently, such as for ST sensor

observation streams [95], modifications have been made to the algorithms [154]. The

results produced by these algorithms are ST snapshots that are periodically

completely [154] or incrementally in areas of change [95].

A challenge with ST interpolation of point observations is the anisotropy distance

measured in space vs. time [82, 83]. Li and Revesz [87] use ST IDW and treat distance in

space and time uniformly. Fitzner and Sester [46] discuss extending IDW for ST data

points using a ST anisotropy factor and present a ST version of IDW able to use

directional movement information from the phenomenon.

Lorkowski and Brinkhoff [95, 96] proposed a stream-based adaptation of ST Kriging to

produce incremental updates to a raster snapshot for each new set of data points, assuming

that sensors asynchronously sample at a slow rate (at most around 20 tuples per minute).

Sensor observations are partitioned into subsets, and submodels are created using the

partitioned data. Submodels are then merged according to probability weight. Using the

data partitioning method, the computation complexity is a floor function that increases

roughly linearly with the number of observations. The method was tested for a

comparatively small number of observations (100-400 points). The 400 point set was

partitioned into batches of 10 points; computational time took over 30 seconds for the

combined result even using the proposed method for a 150× 150 raster grid. Thus, this

approach is not feasible for large numbers of mobile sensor stations.
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3.3.2 Stream Query Frameworks for Moving Objects Update Streams

DSEs have been used to support real-time stream query evaluation over moving

objects [107, 105, 106, 108, 104, 127]. Moving objects are represented as a point, and the

spatial change of this point over time, i.e. a moving object’s trajectory, is the focus. This

problem is different from synthesizing point clouds into continuous representations at

particular time stamps. However, some similarities between moving object stream query

processing and continuous phenomena can be found. Typical stream queries for moving

objects streams are “find all vehicles in a specified region;” to answer such spatial queries

over sensor data streams, a shared, in-memory, spatial or ST index structure is

proposed [105, 106, 108]. The need for a shared ST index across stream queries is similar to

our work; however, for representing phenomenon in real-time, the purpose of the ST index

is different since it needs to be designed to efficiently identify the sample points to use to

interpolate each raster grid cell and is not concerned with tracking the movements of

sensors.

Some SDBMSs include libraries supporting spatial queries. Since these spatial libraries

have not been designed for the stream processing paradigm of incremental, single-pass

processing, they cannot be used for efficient stream query evaluation [77, 162].

3.3.3 Spatio-Temporal Indexing for Stream Queries

Today, several entity-based spatial index structures such as R-trees [63] are considered

state of the art spatial index structures due to their height balance. However, such a

tree-based spatial index structure does not perform well in a streaming environment. An

R-tree’s performance rapidly deteriorates with massive numbers of incremental inserts and

deletes due to the constantly required reorganization of the tree. Additionally, the R-tree is

designed for disk-based storage instead of main memory as is desired for a DSE. In

previous work [92, 123] we used a spatial grid index, based on the grid file [121], for

tumbling windows to index sensor observations before interpolation and demonstrated its

50



ability to efficiently insert, delete, and search for over 250,000 sensor observations. For

moving object streams, grid index structures have been used for continuous kNN

queries [114], and for tracking flocks consisting of multiple moving objects [163], and to

answer object in region queries [108, 110, 106]. Grid indexes have also been used with

multi-dimensional data streams and queries, supporting skyline [89] and top-k [113] queries

using sliding windows. In [113] both time- and count-based windows are supported with

each cell containing a list of tuples sorted by time. Only count-based sliding windows are

supported in [89] and a sub-window partitioning of the grid index in introduced to

distribute index data to nodes in a cluster for distributed skyline query processing.

3.4 Hypothesis and Research Objectives

Our hypothesis is that a stream query operator framework for a DSE utilizing an

adaptive k-Shell-based ST-IDW stream operator algorithm, and a Sliding Spatio-Temporal

Grid Index (ST grid index) with a shell-based search template transforms massive numbers

of asynchronous and mobile sensor observation streams of a continuous ST phenomenon

into an ST continuous representation in near real-time while achieving high prediction

accuracy of the phenomenon. Specifically, such a DSE stream operator framework achieves

a query processing throughput target of 100,000 observation tuples/s to generate a

500× 500 raster representation per query window in 1-3 seconds on a single CPU socket

workstation class machine. The hypothesis is verified though evaluation of a prototype

implementation of the stream operator framework and assessed with regard to RMSE

accuracy and runtime performance using real-world and simulated data streams.

3.5 Contributions

To achieve the research objectives, we made the following contributions:

• We introduce the scalable ST Interpolation Stream Query Operator Framework

(STI-SQO framework) that transforms a high-throughput stream of sensor
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observations into continuous representations in a user-defined way in near real-time.

The transformation of the ST point clouds of sensor observations within a query

window over the stream into ST snapshots is performed as a stream query utilizing a

set of novel operators that are implemented as pipelined, one-pass stream query

operators.

• A key component of the STI-SQO framework is an in-memory, Sliding

Spatio-Temporal Grid Index (ST grid index) that can be visualized as an ST cuboid,

that enables efficient search for proximate sensor observation tuples. This index is

used by ST interpolation operators. The ST grid index supports an isotropic view of

space and time facilitated by a user-customizable ST anisotropy ratio, the

introduction of Isotropic Time Cells (ITCs), and a mapping between ITCs and time

blocks through the use of time subblocks.

• Through the introduction of time blocks that slice the ST grid index temporally into

regularly sized blocks based on the window length and slide, the tuples in the index

to be removed or reused can be identified efficiently during sliding window query

evaluation. Additionally, using time blocks allows three operations on the ST grid

index to be performed concurrently during a window wi by separate stream

operators, namely the operations of removing of old tuples from an expired time

block from wi−1, inserting new data into a new time block for wi+1, and searching the

time blocks that constitute wi.

• To retrieve relevant observation tuples from the ST grid index within a specified

neighborhood of a grid cell distance in a corrected way based on the anisotropy

between space and time, we introduce two Shell-Based Search Templates. A shell

allows to efficiently determine which index cells are relevant for any raster cell that

needs to be interpolated. The shell-based search templates consist of either a single

shell used in the Cylindrical Shell Template (CST) or nested shells used in the Nested
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Shell Template (NST) to enable a search that iteratively expands in space and time

with each shell.

• We introduce a combined ST distance weight for IDW in order to perform

Spatio-Temporal Inverse Distance Weighting (ST-IDW) interpolation. Through the

use of the ST anisotropy ratio, ST-IDW is able to scale spatial and temporal distance

components correctly into a combined ST distance weight. By using ST distance in

interpolation, asynchronous sensor observations distributed in time over the window

can be used and weighted correctly rather than only the observations at the same

time as the Interpolation Center (IC).

• In order to perform ST-IDW, we define two stream-based operator algorithms, ST

Shell and ST Adaptive k-Shell (ST ak-Shell), for generating ST snapshots at each IC.

ST Shell uses a user-defined search radius r for each time-space cell and height equal

to the length of the window. ST ak-Shell is adaptive and searches for tuples in an

expanding isotropic sphere using the NST and ITCs and adaptively copes with

spatial and temporal data skew.

• The framework supports user-defined query result representations of window queries

by allowing them to choose the timestamp within a window for which an ST snapshot

is to be constructed (the IC). An ST snapshot generated at the IC represents the

predicted state of the phenomenon at that time instant. Instead of a single snapshot

per window, the framework also supports a movie representation that represents the

evolution of a phenomenon within each window as a sequence of raster snapshots and

thus captures the temporal continuity of the phenomenon over the window. The

movie representation allows the user to specify the number of snapshots to be

constructed within each window.
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3.6 Real-time Stream Query Operator Framework for Spatio-Temporal

Interpolation

In this section, we give an overview of the proposed ST Interpolation Stream Query

Operator Framework (STI-SQO framework).

3.6.1 STI-SQO Framework Overview

The STI-SQO framework processes sensor streams in terms of windows over streams. A

window is a finite spatio-temporal point cloud of sensor observation. The data of each

window is transformed into a spatial raster in near real-time via a novel ST-IDW

algorithm. This algorithm is broken up into several stream query operators each of which

performs a sub-function. The operators work in a pipelined fashion and those that are

computational bottlenecks can be cloned and run in parallel as needed. Thus, the

STI-SQO framework is highly scalable and adaptive. Pseudocode for the proposed

operators and algorithms can be found in Appendix B.
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The STI-SQO framework consists of the following operators (see Figure 3.2):

• Index Operators

The index operator consists of several, collaborative operators: the ST Grid Index

Manager Operator maintains the state of the spatio-temporal grid index. It

cooperates with the Index Loader Operator, which inserts new tuples into the index,

and Index Recycler Operator, which identifies and clears expired tuples from the

index. The index operators are aware of real-time aspects of the grid index, and are

designed to insert, search, and delete massive numbers of tuples efficiently.

• ST Interpolation Manager Operator

The ST Interpolation Manager operator coordinates the parallel ST-IDW (Cell)

Interpolation Operators and cooperates with the Grid Pane Index Manager Operator

with regard to windows and available data in the index.

• ST Interpolation Operators

An individual ST Interpolation Operator instance estimates the value for a single 2D

cell of the output raster at a time; it accesses the 3D grid index and searches the

index to identify proximate tuples using a search method described in more detail

later in Section 3.6.3. It computes the cell value and produces an output tuple.

Multiple ST interpolation operators run concurrently and are independent of each

other; they share read access to the same grid index.

• Assemble Operator

The Assemble Operator sorts and arranges an output raster per window based on the

output tuples from the cell interpolation operators.

3.6.2 ST Grid Index Supporting Sliding Windows

A core component of STI-SQO framework is the Sliding Spatio-Temporal Grid Index

(ST grid index). Tuples arrive in temporal order per stream query window, but they need
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to be quickly identified based on their location and time stamp; they need to be indexed as

soon as they arrive, and potentially expunged from the index at the end of the current

window. In sliding windows, only tuples that are expired need to be purged, while a larger

part of the index might be kept for the following window.

3.6.2.1 Index Data Structure

The proposed ST grid index has two spatial (x, y) and one temporal dimension (t). The

index can be visualized as a cuboid that slides over the temporal axis, indexing all tuples of

the current window of the stream in a 3D ST grid index. The cuboid that is the ST grid

index is constructed from a regular spatial grid sg and temporal partitioning tp of the

current window of the stream into cells as sg × tp = stg. The stg consists of ST grid cells

created from spatial grid cells in sg and temporal time cells of tp. A ST grid cell stgcx,y,t is

defined as sgxy × tpt.

With each window slide, the ST cuboid of the ST grid index shifts along the temporal

axis towards the future. Tuples no longer within the window are removed and new tuples

are inserted into the index. The ST grid index is a data structure shared by all operators

in the proposed STI-SQO framework.

3.6.2.2 Temporal Partitioning

Unlike with tumbling windows, where each window contains a unique set of tuples, with

sliding windows tuples in the overlapping interval of consecutive windows belong to both

windows. There are three regions created from the intersection of consecutive, overlapping

sliding windows. These regions are shown for windows wi−1 and wi in Figure 3.3. A subset

of tuples in wi−1 are also a subset of wi, in wi−1 there exist tuples that are too old to be in

wi, and in wi there exist tuples that do not exist in wi−1.

In order for the ST grid index to efficiently support overlapping sliding windows, we

introduce a temporal partitioning of the ST grid index that allows the ST grid index

defined over the overlapping portion of consecutive windows to be reused, expired tuples
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Figure 3.3. Portions of ST grid index that are classified as Expired, Reused, and New for
consecutive sliding windows wi−1 and wi.

efficiently removed, and the new tuples inserted. To support this function, we introduce

time blocks. Similar to window panes [86], the temporal length of a time block corresponds

to the greatest common divisor of the window length and slide, but for each time block the

portion of the ST grid index corresponding to its interval is constructed. Thus, the ST grid

index for a window is formed from the union of each time block tbj belonging to the window

wi. Within each time block, a temporal partitioning of time cells is used. The partitioning

used depends on the query and must have correct time cell locations for all windows that

contain each time block. A time block may have one or many time cells within it, and all

time blocks for a stream in the query must use an identical time partitioning.

Using time blocks aids in the identification of the portions of the ST grid index that are

classified as expired, reused, and new for each window as the same template of time blocks

will be used for all windows of the query. For instance, in the example shown in Figure 3.4,

the intersection between windows wi−1 and wi corresponds to tbj+1 and tbj+2 which are

reused from qi to wi+1. tbj+3 is classified as expired as it is not in wi+1 and thus, removed

from the index. tbj+3 was not in wi and belongs to wi+1, so the new tbj+3 is added to the

index.

Since all time blocks have the same time cells and spatial grid, once expired tuples have

been removed from a time block, that time block can then be refilled with tuples and again

appended to the window.
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Figure 3.4. Sliding ST grid index structure showing Windows, Time Blocks, Time Cells,
and Spatial Grid

3.6.2.3 Index Operations

The ST grid index supports the operations Insert, Delete and Search, which occur

concurrently on different parts of the index, and are coordinated by the Index Manager.

Initialization: In a single stream query setting, the spatial size of the grid index is

likely chosen to be equal to the size of the desired output grid, for simplicity. The number

of cells in, and the length of each cell along, the temporal axis in the index depends on the

window itself (i.e., range and slide), and whether the temporal dimension is scaled to be

isotropic with space through the use of the ST anisotropy ratio a. The Index Manager is

initialized, which constructs the ST grid index using these parameters. The Index Manager

then initializes and configures the Index Loader and Index Recycler.

Insertion: The Index Loader operator is responsible for loading tuples into the ST grid

index. It inserts tuples in the ST index defined on the time block currently held in its

internal state. Tuples are inserted into the grid index based on each tuple’s location and

time stamp. The Index Loader is aware of window semantics, and able to determine if a
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tuple’s timestamp belongs in the current window being filled or if it is the first tuple of the

next time block. If the timestamp is greater than the end timestamp associated with the

time block, the current time block is added to an output queue (input to Index Manager)

and a new time is taken from the input queue (output from Index Recycler).

Search: The ST cells of the ST grid index are traversed during search by the ST-IDW

interpolation operators using their configured search procedure. The ST-IDW operators are

notified when all data for the current window are inserted into the index and it is ready to

be searched; the ST-IDW operators notify the Index Manager when search of the index is

completed but they must also complete within the window time line or be aborted.

Searching is described in more detail later on.

Deletion: Once search in the index for a window has finished, the Index Manager

performs a window slide, outputs the expired time block to the Index Recycler, and takes

the next new time block from the input queue of time blocks from the Index Loader. The

Index Recycler processes each time block in its input queue and removes all tuples from all

cells so that the time block can later be reused and refilled by the Index Loader.

3.6.2.4 ST Anisotropy Ratio and Adjustment using Isotropic Time Cells

The ST grid index’s purpose is to aid in the search for sample points around a

prediction location, that is to find tuples that are close in both space and time to a

prediction location. However, as different units are used for spatial and temporal

measurement and a phenomenon may behave differently in space than in time, distances in

space and time are not directly compatible.

Partitioning the ST grid index along the time dimension into time blocks alone yields

ST grid cells where the ratio of time units to distance units can only be configured by

changing the window configuration or grid resolution. To facilitate an expanding ST

search, expansion in time has to be performed in a corrected proportion to expansion in

space. This relationship between temporal difference and spatial distance is specified by
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the ST anisotropy ratio a (see Equation 3.1) and defines an isotropic mapping between

space and time. We use a in order to adjust the temporal size of each ST grid cell without

changing the window or grid resolution. These ST grid cells, that now have equal spatial

and temporal size with respect to the phenomenon, are termed ITCs.

ST anisotropy ratio = a =
number of time units

number of distance units
(3.1)

In performing ST search by ST interpolation operators, search begins at the IC for the

window. Thus, ITCs are defined as a reusable template for isotropic search of the ST grid

index. ITCs are introduced to address these issues by providing an isotropic mapping to

time and centering this mapping about the IC. With each window slide, the same template

of ITCs is applied to each window with the ITC at time index 0 being centered at the IC.

Since the alignment of ITCs may overlay differently for each time block in a window,

another partitioning of the ST grid index is needed to align the time cells in a time block

with ITCs.

In order to align both time blocks and ITCs, we introduce time subblocks (see

Figure 3.5) as the smallest temporal partition of the grid that can be mapped in multiples

to both time blocks and ITCs. Thus, the temporal size of each ST grid cell is the size of a

subblock, and time cells and ITCs are two ‘views’ of the underlying ST grid enabled

through a temporal coordinate transformation. A single ITC corresponds to a multiple of

subblocks (five subblocks shown in Figure 3.5). On the other hand, once the window slides,

data are discarded in units of time blocks, which also correspond to multiples of subblocks

(four subblocks in Figure 3.5).

3.6.3 ST Index Search Templates

We propose two Shell-Based Search Templates for searching the ST grid index.
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Figure 3.5. Subblocks and Isotropic Time Cells

3.6.3.1 ST Index Search using Shell-Based Search Templates

We introduce Shell-Based Search Templates that are used to search the grid index and

select the subset of sample points to use to interpolate a value for a cell. This subset of

sample points comes from the grid cells within a neighborhood defined by a so-called shell.

A shell consists of array index offsets into the 3D array of the ST grid index for each cell

within the defined neighborhood of a cell. Shell-Based Search Templates are reusable,

meaning that for a query the same template can be used to search the neighborhood for

any cell in the grid, it will work for all windows, and it can be shared between operators

accessing the index. Symmetry can be exploited, allowing offsets from the positive ST

coordinate cubic space |x| ×|y| ×|t| to be mirrored to the other seven cubic spaces

corresponding to combinations of ±x×±y ×±t in the case of ST search

3.6.3.2 Search by ST Proximity with Spatial Flexibility: Cylindrical Shell

Template

Using the first Shell-Based Search Template, Cylindrical Shell Template (CST), a

interpolation operator searches the ST grid using a cylindrically shaped shell. The CST

retrieves all tuples within a cylinder with height equal to the window range and a radius

equal to the spatial search radius surrounding each prediction location. All tuples from

cells, which have cell centers within this cylinder are returned. Since the CST retrieves

tuples from all time blocks in the window, it is not necessary to encode temporal offsets in
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Figure 3.6. Visualization of CST query applied to ST grid index for two cells in the
corresponding output grid

the CST. The CST contains a list of the relative spatial offsets for cells within radius r

from the northeast quadrant of a Cartesian coordinate system. The coordinates are then

mirrored to the other three quadrants. Since a 3D array is used for implementing the ST

index, only x, y are needed from the CST as tuples from all time blocks of the current

window are returned.

3.6.3.3 Search by ST Proximity with Spatio-Temporal Flexibility: Nested

Shell Template

Rather than returning all tuples within a cylinder, the Nested Shell Template (NST)

performs an iteratively expanding search in the shape of a sphere. Since expansion is

performed iteratively, expansion can be terminated after k tuples are found. The maximum

extent of the search of the NST is the same as the CST and bounded by the same cylinder

though expansion is performed in the shape of a sphere.

The structure of the NST is a nested list (list of shells) of equidistant spherical shells

ordered by distance. Each shell consists of coordinate triples with positive x, y, and t

offsets that have equal 3D distance from the origin. Only position coordinate offsets are

stored in each shell as the full spherical shell can be constructed through mirroring. The
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Figure 3.7. NST: NN by cell distance shown in 2D

shells in the NST are ordered by distance. All offsets in the NST are within the spatial

radius and expansion is limited to the bounds of the window, thus the NST is constrained

by the same cylinder as the CST for a given radius r.

The NST requires an x, y, t position to begin the search and terminates expansion of

additional shells once k tuples have been found or all cells within the search cylinder have

been visited, whichever occurs first. The NST is constructed by generating all

combinations of coordinates that fall within the search radius and time window and sorting

the list based on the cells’ distance to the center of the cell being interpolated.

3.6.4 ST-IDW using Shell-Based Search Templates

We first discuss stream-based ST-IDW and present two algorithms for performing

stream-based ST-IDW.

3.6.4.1 Approximating Continuous Phenomena using an ST Interpolation

Center

The problem of representing spatial snapshots of a continuous phenomenon over space

at a certain time instant is well established in traditional GIS. This is performed under the

assumption that all sensor observations are collected at exactly the same time stamp by all

sensors. When the assumption of synchronous updates is removed, the temporal location of
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each sample point within a window must be considered when representing the

phenomenon, and requires the use of ST interpolation.

In order to accurately represent the spatio-temporal development of a continuous

phenomenon, we introduce the concept of the IC. The IC is the time within each window at

which a spatial snapshot is constructed using ST interpolation; it represents the predicted

state of the phenomenon at that instant within the window based on samples that are in

spatial and temporal proximity. An IC, with time tic, is calculated as a relative integer

time offset from the start of the window. An IC offset lies within the interval ts ≤ tic < te.

The integer time offset operates identically to a linear array. A window of length 5 time

units maps to an array with length 5 and indices ranging from 0 to 4. Specifying an IC at

offset 2 maps to the midpoint of the window and results in a snapshot at 2 1/2 time units

and 4 maps to the last cell in the window and results in a snapshot at 4 1/2 time units.

We choose not to pre-define a fixed IC, and allows users to specify an IC based on their

needs. This supports different user and application needs including near real-time

phenomenon representation using an IC near the end of the window or a summary of the

phenomenon using an IC in the middle of the window.

3.6.4.2 Stream-Based ST-IDW

ST interpolation is performed in parallel by ST-IDW operator instance clones, which

produce an ST snapshot for each IC. The operator clones are independent of each other

and share read access to the same ST grid index. Each ST-IDW operator takes a tuple

representing the grid cell to interpolate, calculates an interpolated value using ST-IDW,

and outputs the tuple with the interpolated value. The interpolated values from all

ST-IDW operators in the query are assembled into the output grid by the Grid Assemble

operator as they arrive in its input queue. The interpolation of each cell in the prediction

grid is completely independent from every other cell, and since interpolating the entire

raster is the most time consuming step in the query plan, running ST-IDW operators in

64



parallel with one operator per thread reduces the computation time. For this type of

simple-to-parallelize problem, the resulting speedup factor compared to using only a single

thread approaches the number of threads, as long as the number of threads is less than the

number of threads that can be executed concurrently by the CPU.

ST-IDW performs ST interpolation by performing IDW and replacing the spatial

distance weight with a combined ST distance weight calculated using Equation 3.2. In

Equation 3.2 the spatial distance between a prediction location and a tuple is calculated in

terms of great-circle distance using the haversine formula [151]. The temporal distance is

calculated from the difference between the interpolation center and the timestamp of the

tuple and is scaled by the anisotropy ratio a (see Equation 3.1) and length of the grid

diagonal in both arc degrees and number of spatial grid cells in order to combine the

spatial and temporal distance components into a combined ST distance.

d(cellc, tuplet) =

√
hav(cellc, tuplet)2 +

(
grid diag in arcdegrees

grid diag in cells
× tic − tt

a

)2

(3.2)

Parameters to ST-IDW additionally include a power factor, a variable spatial search

radius around a cell (r), and, in some cases, a threshold level of k sample points to use to

interpolate each grid cell.

3.6.4.3 ST-IDW Interpolation using ST Shell Approach

In the ST Shell to ST-IDW approach, the CST is used to access the ST grid index using

a ST cylindrical template of spatial radius r around each prediction location. All sample

points found using the CST are weighted by their combined ST distance (Equation 3.2)

using ST-IDW.

The ST Shell approach performs well if the search radius r is small with a given window

range, but as the radius increases, the number of grid cells that need to be accessed and

the number of tuples to be processed increases significantly. In cases when samples are

sparse, it might be necessary to require a large preset spatial search radius until sufficient
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sample data are found, and even simple checking of cells for tuples is expensive. However,

if tuples are abundant, a small search radius is sufficient.

3.6.4.4 ST-IDW using ST Adaptive k-Shell Interpolation Algorithm

Based on the previous discussion of the ST Shell approach, using a constant

interpolation radius for all prediction grid cells can become inefficient for sparse and

skewed data sets. Thus, we introduce the ST ak-Shell algorithm implementing ST-IDW

using the NST access method. The ST ak-Shell adapts to the available data distribution

automatically.

Since ST-IDW assigns more weight to samples closer in space and time than to those

farther away, samples at greater distance contribute statistically less information about the

value of the cell being predicted. At some point, any further samples can be disregarded

without affecting the error of the interpolation beyond some tolerance. We exploit this and

propose the ST ak-Shell approach to ST-IDW interpolation. As described above, for each

cell in the output raster, tuples from successively more distant cells (distant in both time

and space) are used to determine the predicted value, and when the specified number of

tuples have been processed the operator terminates interpolation for this cell.

The ST ak-Shell approach works well in regions where data are dense as once k tuples

are found, the value of the cell in the prediction grid is calculated. An increase in the

search radius r means that the algorithms can search farther in space and time in areas

where data are sparse. Increasing radius from an initial radius r0 to a larger radius r1 will

increase time to interpolate every cell in the prediction grid where there are less than k

tuples within r0. Cells having k tuples within r0 will experience no change in interpolation

time using r1.
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3.7 User-Defined Stream Query Support

Creating a stream based ST phenomena depends often on the application, which

influences appropriate parameter setting. Thus, these parameters need to be user-defined

and controlled by the user. The STI-SQO framework allows the users to configure the

STI-SQO framework to their requirements, discussed as follows.

3.7.1 Spatio-Temporal Interpolation Center

A dynamic ST phenomenon is represented as a raster that represents the phenomenon

as a ST snapshot capturing the predicted state of the phenomenon at the timestamp of the

IC using the sample points from the window. Since the IC is specified by the user, it allows

the users to specify the IC that is best for their requirements.

An IC, tic, defined at the end of the query window, te, predicts the latest state of the

phenomenon and results in a time decaying effect of earlier samples collected at the

beginning of the window. This means that the values at the beginning of the window have

less influence than the ones towards the end of the window.

For applications that are focused on continuous monitoring or archiving dynamic

phenomena, choosing an IC in the middle of the window, i.e., (ts + te)/2, provides the best

summary of the phenomenon’s changes during the window, as it considers both samples

before and after tic (within the window) for interpolation. While the end of window and

the middle of window are the two most likely ICs, there are no restrictions on when to

place the IC within the query window, only that it must be at an integer time offset.

It is advisable that a user chooses an IC in the interval between the middle and end of

the window based on their prioritization of minimizing latency between the current time

and snapshot time (IC at the end of the window) and maximizing accuracy (IC at the

center of the window). Thus, using an IC near the end of the window is best for real-time

phenomenon representation, while for maximizing accuracy and best summarizing the

phenomenon an IC at the center of the window is best.
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Using the IC approach, we distinguish the following window query result types over

continuous phenomenon: ST snapshot stream queries, which return a stream query results

consisting of a single ST snapshot per window, and ST movie stream queries, which return

a series of snapshots and thus captures the evolution of the phenomenon over a window.

3.7.1.1 ST Movie Stream Queries

A user may be interested in capturing the temporal variation of a phenomenon over a

window, which is not captured by a single ST snapshot. An intuitive way to capture this

variation is a ‘movie’ of the phenomenon, i.e., a series of ST snapshots, or frames, within a

window. Each frame of the movie is a spatial raster produced using ST interpolation.

However, the input for each interpolation is smaller, i.e., a fraction of the window size. For

example, a 5 minute window can be represented at different frame rates such as one frame

every 30 seconds (10 frames overall), or one every minute (5 frames overall). Each frame

can be computed using time decaying ICs at the end or middle of the window subinterval,

depending on the application needs. Movie queries are described and tested in [165] in

more detail.

3.7.2 Spatio-Temporal Anisotropy

The isotropic view of the ST grid index using ITCs and ST distance calculation can be

adjusted by the ST anisotropy ratio based on the ST anisotropy of the phenomenon. The

ST anisotropy ratio depends on the spatial and temporal units used to observe the

phenomenon and how the phenomenon evolves over space and in time. As individual

phenomena may behave in a different manner and may be observed using various spatial

and temporal units, the ST anisotropy is provided as a parameter for the user to configure

the STI-SQO framework based on the behavior of the phenomenon and spatial and

temporal units.

68



3.7.3 ST-IDW Parameters

Several parameters exist to configure the behavior of the two algorithms for ST-IDW,

ST Shell and ST ak-Shell. These are the radius r, number of sample points k, and the

power p. The parameters r and p are required for both ST Shell and ST ak-Shell and k is

used only by ST ak-Shell. With r adjusting the spatial radius of the search cylinder,

increasing r widens the search for sample points, but sample points farther away may not

be as closely correlated as closer points. Thus, p adjusts how the weight of points based on

distance should decay.

In order to adapt to the skew of distribution of observations over space and time in the

window, k is used to terminate the search once k tuples are found. Using k is advantageous

as areas with sparse sample points are allowed to expand to the full radius r while in areas

where the sample points are dense the search stops once k sample points are found. Thus,

by using k the ST ak-Shell operator is able to adapt to data density, with k being the

termination condition when data are dense and r for when data are sparse.

3.7.4 Additional Parameters to the STI-SQO Framework

There are additional parameters available for the user to configure including the width

and height of the grid used for the ST snapshots, the length and slide of the window, and

the number of ST-IDW operator clones.

3.8 Summary

In this chapter we presented the STI-SQO framework and its main components. The

STI-SQO framework is designed to process high-throughput sensor observation streams in

near real-time and to produce ST snapshots in the form of rasters using ST-IDW. This is

performed using a stream query operator framework including an ST grid index, consisting

of the Index Manager, Index Loader, and Index Recycler sub-operators, and parallel ST

interpolation operator clones that interpolate the raster cell-by-cell using ST-IDW. The ST
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Shell Approach and ST Adaptive k-Shell algorithms for ST-IDW are presented along with

their corresponding ST grid index shell-based search templates, Cylindrical Shell Template

and Nested Shell Template.

In the following chapter, we will discuss the performance evaluation that includes the

discussion of the test data sets, a first set of tests that investigates optimal parameter

choices based on RMSE evaluation and secondly, throughput performance tests for these

selected parameters.
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CHAPTER 4

ACCURACY AND RUNTIME PERFORMANCE EVALUATION OF

STI-SQO FRAMEWORK

4.1 Introduction

This chapter continues with the assessment of the STI-SQO framework introduced in

Chapter 3. We introduce relevant test data sets and discuss parameter configurations. The

first set of experiments analyzes the impact of parameter choices on RMSE; the second set

of experiments evaluates the throughput and runtime for the configurations with the lowest

RMSE. While the STI-SQO framework supports many configurations, we selected several

scenarios that are representative of massive mobile sensors deployed over small- and

large-scale street networks and dynamic ST phenomena.

4.2 Experimental Setup

Since sensor data streams in high spatial and temporal density of continuous ST

phenomena are not available (yet) for the STI-SQO framework, we built an agent-based

model to simulate the generations of such massive sensor data streams for different test

environments. Using the simulation, simulated sensor agents sampled a model of a real

world spatio-temporal event of radiation deposition (Fukushima 2011). The observation

streams from these simulated sensors were used as input to evaluate the approach with

respect to accuracy of prediction and runtime for different parameter configurations.

4.2.1 Radiation Data Sets

The ST phenomenon we considered represents the estimated radiation deposition levels

in Japan after the Fukushima Daiichi nuclear disaster in March 2011. The predicted

radiation levels were calculated in R using data from ZAMG [172] and SPEEDI [34] using
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Figure 4.1. Evolution of phenomenon over time

the process described in [92]. From those snapshots, a sequence of snapshots of the event

between the fourth and fifth day after the disaster in 15-minute sampling increments was

generated, a subset of which are shown in Figure 4.1. For the snapshots, tick 0 maps to

March 15 00:00 UTC, 9:00 JST and tick 104 is March 16 02:00 UTC, 11:00 JST. The time

interval during which the phenomenon is highly dynamic occurs before tick 40, which

corresponds to March 15 10:00 UTC, 19:00 JST, and after that time the phenomenon

exhibits little change.
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Figure 4.2. Data generator built in NetLogo

4.2.2 Stream Data Generator

To generate high-density data streams, a data generator simulation (shown in

Figure 4.2) of moving sensor agents sampling a ST phenomenon in their environment and

creating sensor streams was implemented in NetLogo [166]. The data generator uses an an

ST phenomenon input that is represented as a sequence of raster snapshots.

The data generator sampled the phenomena snapshots using 2M (221) sensor agents

that moved as the model iterated through the phenomenon snapshots. The mobility of

sensors was simulated by movement constrained to links in a street network and an

unconstrained random walk. In our test cases, the street networks, shown in Figure 4.3, are

a) a large region of Japan with a coarse road network and b) a small area of the Cambridge

and Boston, MA area with a dense road network. Additionally, three random walk data

sets were generated, each by a different initialization of the model.
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(a) Fukushima, Japan (b) Cambridge, Massachusetts

Figure 4.3. Radiation plume and simulated sensors over (a) Fukushima, Japan and
(b) Cambridge, Massachusetts

In order to assess the spatial skew of points in the generated Cambridge, Japan, and

Random simulated mobile sensor data sets, the distributions of distance from each sensor

to every other sensor were generated. A subset consisting of 8K (8,192) sensor observations

from each of the street network data sets was used to generate the distributions. The plot

(see Figure 4.4) shows that the distribution of sensors in the Random and Cambridge data

sets are very similar while the distribution for the Japan data set is skewed towards shorter

distances, likely due to a relatively large portion of the image constituting water where no

sensors were deployed.

4.2.3 Implementation and Run-time Environment

The STI-SQO framework was implemented in Java as a DSE prototype consisting of

pipelined operators connected by queues designed for testing the performance of the ST

grid index and ST-IDW (implementations of ST Shell and ST ak-Shell) for varying data

sets and interpolation parameters. We did not consider any of the other DSE components,

e.g., load shedding. The Spatial4j [94] library was used for calculating spatial distance

using the haversine formula.
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Figure 4.4. Distance distribution by street network

The experiments were run on an HP Z440 workstation with a 3.5 GHz, six core (Intel

Xeon E5-1650v3) processor and 32 GB of DDR3 1866 memory. The system ran Ubuntu

14.04 and Java 1.8.0_131. The Java heap size was set at 16GB, which was used to buffer

the input stream and to run all operators.

4.2.4 RMSE Validation

In order to evaluate the accuracy of the output rasters produced during experiments,

the Root Mean Square Error (RMSE) is used to quantify the error between each output

raster, p, and the ground truth raster (input to the data generator), o, for the

corresponding time stamp and is shown in Equation 4.1.

RMSE =

√√√√ n∑
i=1

(
pt,i − ot,i

)2
n

(4.1)
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Figure 4.5. Comparison between interpolated image and ground truth

For a predicted output raster of p at timestamp t, where t = WindowStart+ IC having

n raster cells and the corresponding ground truth o for the same timestamp t, the RMSE is

calculated from the difference between each corresponding cell location t, i.

To make the RMSE comparable among different snapshot timestamps, the RMSE was

normalized by dividing the RMSE by the mean of ot to produce NRMSE (see

Equation 4.2.) In essence, the NRMSE captures the RMSE as a proportion of the mean of

the ground truth.

NRMSE =
RMSE

ōt
(4.2)

4.2.5 Runtime Testing

Runtime tests were performed running each framework query operator with its own

thread, except for the ST-IDW operator where 8 clones were run. For the runtime tests,

results were averaged for 5 iterations. Runtime was calculated as:

runtime = mean(tindex) + mean
(
max(tidw1), . . . ,max(tidwn)

)
(4.3)
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4.3 RMSE Performance Evaluation

In this section the performance of ST Shell and ST ak-Shell was evaluated with respect

to RMSE. The RMSE tests aim to identify the configurations with the lowest RMSE to be

evaluated further in the runtime tests in Section 4.4 and RMSE vs. runtime in

Section 4.5.1.

For the following tests, a sliding window with a length of 32 ticks (time units) and a

slide of 4 ticks was used unless noted otherwise. Tests were configured to assess the impact

of the ST anisotropy ratio a, radius r, k, IC location within a window, timestamp of IC,

rate of phenomenon change, the number of sensors n, and the width of the window. A

random sample of 1/32 of the sensor observations taken for each time tick to simulate the

stream of asynchronous sensor observations. The tests were configured to produce a

500× 500 raster grid with each window slide. For plots, snapshot time is defined as the

time tick at which a snapshot is created, specified by WindowStart + IC.

4.3.1 ST Anisotropy Ratio

The first set of ST tests investigated the impact of the ST anisotropy. The tests were

performed using an IC located at the center and end of the window for both the ST Shell

and ST ak-Shell algorithms. Results are presented for ST Shell, using r = 32 for an IC

located at the center (see Figure 4.6) and end (see Figure 4.7), and for ST ak-Shell, using

r = 32 and k = 8 for IC center (see Figure 4.8) and end (see Figure 4.9). These results

show the NRMSE for the time tick at which each snapshot is created. Results are shown

for p = 4, and additional combinations of p and a are presented in Section 4.3.2. The plots

are presented separately by interpolation algorithm (ST Shell and ST ak-Shell) and IC,

series and each plot shows the street network (Japan, Cambridge, and Random). From

these plots, the following anisotropy ratios were eliminated from future testing: 0.0625,

0.125, 0.25, 0.5, 16, 32 because they resulted in higher NRMSE compared to other ST

anisotropy ratios tested. ST anisotropy ratios a = 16 and a = 32 had the highest NRMSE
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before t=50 using an IC at the end of the window and similarly before t=46 when using an

IC at the center of the window. When a = 16 and a = 32 did not have the highest

NRMSE, a ∈ {0.0625, 0.125, 0.25, 0.5} had the highest NRMSE. Further analysis to identify

the optimal value of a is performed in Section 4.3.2 using the remaining a ∈ {1, 2, 4, 8}.
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Figure 4.6. ST anisotropy RMSE using ST Shell, r = 32 p = 4, n = 128K sensors, and an
IC at the center of the window
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Figure 4.7. ST anisotropy RMSE using ST Shell, r = 32 p = 4, n = 128K sensors, and an
IC at the end of the window
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Figure 4.8. ST anisotropy RMSE using ST ak-Shell, r = 32, k = 8, p = 4, n = 128K sensors,
and an IC at the center of the window
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Figure 4.9. ST anisotropy RMSE using ST ak-Shell, r = 32, k = 8, p = 4, n = 128K sensors,
and an IC at the end of the window

4.3.2 ST-IDW Power

Further analysis was performed to investigate the best combination of a and the

ST-IDW power p using a ∈ {1, 2, 4, 8} and p ∈ {1, 2, 3, 4}. From the results, presented in

Figures 4.10, 4.11, 4.12, and 4.13, the combination of p = 4 and a = 4 was chosen as the

configuration to use for the remaining tests. For an IC at the end of the window, the

combination p = 4 and a = 4 resulted in the lowest NRMSE for the Cambridge, Random,

and Japan data sets in Figures 4.10, and 4.11.

With an IC at the center of the window, using a = 4 (see Figure 4.12) indicated that

p ∈ {3, 4} were the two powers that resulted in the lowest NRMSE with both having very

similar graphs. Since p = 4 performed similarly to p = 3 and was clearly the best option for

an IC at the end of the window, p = 4 was chosen as the power to use for all tests. Looking

at the NRMSE for an IC at the center of the window and using p = 4 (see Figure 4.13),

a = 4 the lowest NRMSE second to a = 4 after tick 54 when the phenomenon is static and
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a = 4 has a lower NRMSE than a = 8 before tick 54 when the phenomenon is changing.

Thus, the parameters p = 4 and a = 4 are selected for the remaining tests.
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Figure 4.10. ST ak-Shell NRMSE by power using r = 48, k = 16, 128K sensors, an IC
located at the end of the window, and ST anisotropy ratio a = 4
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Figure 4.11. ST ak-Shell NRMSE by ST anisotropy ratio using r = 48, k = 16, 128K sensors,
an IC located at the end of the window, and power p = 4
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Figure 4.12. ST ak-Shell NRMSE by power using r = 48, k = 16, 128K sensors, an IC
located at the center of the window, and ST anisotropy ratio a = 4
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Figure 4.13. ST ak-Shell NRMSE by ST anisotropy ratio using r = 48, k = 16, 128K sensors,
an IC located at the center of the window, and power p = 4

4.3.3 ST Shell Approach: NRMSE by Radius

For ST Shell radii r ∈ {16, 24, 32, 40, 48} are evaluated for RMSE shown in Figure 4.14.

The results show that the smallest radius tested, r = 16, performed best for the dense

Cambridge street network and random walk data sets while for the more sparse Japan

street network the larger radii r ∈ {40, 48} were the two configurations with the lowest

NRMSEs. Previous work [165] showed that r = 32 was able to interpolate nearly all the

entire land area portion of the Japan data set study area while smaller radii tested were

not.
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Figure 4.14. ST Shell NRMSE using 128K sensors and an IC located at the center of the
window

4.3.4 ST Adaptive k-Shell: NRMSE by k

Using a radius r = 48, we test the impact of k ∈ {1, 2, 4, 6, 8, 12, 16} on RMSE. The

results show that increasing k resulted in a lower RMSE. Additionally, as the number of

sensors increase, from 16K to 128K, using larger values of k result in further decrease in

RMSE. Results are presented for 16K (Figure 4.15) and 128K (Figure 4.16) sensors with an

IC at the end of the window.
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Figure 4.15. ST ak-Shell RMSE using r = 48 and 16K sensors and an IC located at the
center of the window
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Figure 4.16. ST ak-Shell RMSE using r = 48 and 128K sensors and an IC located at the
center of the window
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4.3.5 RMSE Comparison of ST Shell and ST ak-Shell

The NRMSE of ST Shell compared to ST ak-Shell is investigated. In Figure 4.17, which

shows both ST Shell and ST ak-Shell for an IC at the center of the window, all the tested

configurations of ST ak-Shell have lower NRMSE values than ST Shell for the Cambridge

and Random data sets and for Japan both configurations of ST Shell had higher NRMSE

than ST ak-Shell while the phenomenon was changing and then ST Shell performed

slightly better than ST ak-Shell for configurations using the same radius. When using an

IC at the end of the window, shown in Figure 4.18, ST Shell performed better initially than

ST ak-Shell in response to the changing phenomenon, and later after the phenomenon

change slowed ST ak-Shell had a lower RMSE than ST Shell.
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Figure 4.17. ST ak-Shell and ST Shell RMSE using, a = 4, p = 4, 128K sensors, and an IC
located at the center of the window
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Figure 4.18. ST ak-Shell and ST Shell RMSE using, a = 4, p = 4, 128K sensors, and an IC
located at the end of the window

4.3.6 IC location: Center vs. End of Window

We investigate the impact of the chosen IC, either the center or end of the window, on

RMSE and compare the results in Figure 4.19. The results are presented for ST ak-Shell

using r = 48 and k ∈ {4, 16} and show that using an IC at the center of the window yields

a lower RMSE than an IC at the end of the window. The difference in RMSE between IC

end and center is largest while the phenomenon is changing rapidly and the RMSE of IC

end approaches the performance of IC center when the phenomenon is static. A lower

RMSE when the IC is located at the center vs. end is expected behavior for IDW as it is

an interpolation method based on weighted averaging.

While an IC at the end of the window aims to predict the most current state of the

phenomenon, this comes at an increase in RMSE compared to summarizing the window in

the center since less data ‘close’ to the IC is available, and thus, the results are more skewed

towards older data. The IC can be specified by the user to an integer time point within the
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window, thus, depending on the phenomenon, its current behavior, and the importance of

RMSE to the user, the user could choose the desired location for their application.
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Figure 4.19. ST ak-Shell RMSE comparing ICs

4.3.7 Adjusting Phenomenon Rate of Change

In order to investigate the impact of the rate of phenomenon change and the ST

anisotropy ratio, the the phenomenon was simulated at varying rate of change. A faster

evolving phenomenon exhibits greater change over less time. To speed up the evolution of

the (real) phenomenon, new streams were generated that captured greater change over a

shorter period of time. This was accomplished by only using observations from 1/2 and 1/3

of the ticks and scaling the timestamps by dividing each by 2 and 3, respectively. This

results in streams that simulate the phenomenon evolving two to three times faster than

the original velocity. We chose an IC at the end of the window since the phenomenon

develops faster and therefore, we want to represent the latest point in time of a window.

The results for using ST ak-Shell with r = 32, k = 4, 128K sensors, and a drop rate of 1/2

88



are presented in Figure 4.20 with timestamps mapped to the original snapshot ticks. The

results confirm that as the rate of phenomenon change increases, a should be decreased to

minimize RMSE.
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Figure 4.20. RMSE results from increasing phenomenon rate of change by dividing
timestamps by 2 using ST ak-Shell with r = 32, k = 4 plot, IC at the center of the window,
and 128K sensors

4.3.8 Adjusting Window Size

We investigated the impact of the window size on RMSE. In order to test the impact of

window size rather than the number of tuples in a window, a constant stream tuple density

of 512 tuples per tick was used. Having a fixed tuple density allows the impact of window

size over a given stream to be investigated. Window sizes w ∈ {1, 2, 4, 8, 16, 32} were

tested, yielding n ∈ {512, 1024, 2048, 4096, 16384} tuples per window. An IC at the end of

each window was used and results are shown in Figure 4.21. The results show that while

using a large window size of w = 32 yielded the worst results in time of change, it

performed best when the phenomenon was static.
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Figure 4.21. Adjusting window size with constant tuple density of 512 tuples/tick

4.3.9 RMSE Summary

In the RMSE tests, the RMSE of ST Shell and ST ak-Shell was investigated for

different parameter configurations. The configuration producing the lowest RMSE

comparing different ST anisotropy ratio (a) and ST-IDW power (p) value was found to be

a = 4 and p = 4. Using ST Shell, r = 16 produced the lowest RMSE for the Cambridge and

Random data sets and r = 48 performed best for the Japan street network data set. For ST

ak-Shell, r = 32 and r = 48 performed similarly for the Cambridge and Random data sets

and for Japan r = 48 performed resulted in a lower RMSE than r = 32. For the parameter

k, k = 16 had the lowest RMSE in response to change in the phenomenon and had similar

RMSE compared to those for other values of k when the phenomenon was static. The

difference in RMSE between IC end and center is largest while the phenomenon is changing

rapidly, with an IC located at the center of the window having lower RMSE than an IC at

the end of the window. For an IC at the center of the window, all the tested configurations

of ST ak-Shell have lower RMSE than ST Shell for the Cambridge and Random data sets
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and for Japan both configurations of ST Shell had higher NRMSE than ST ak-Shell while

the phenomenon was changing. When using an IC at the end of the window, after the

phenomenon change slowed ST ak-Shell had a lower RMSE than ST Shell.

As the Cambridge, Japan, and Random data sets are representative of different sensor

distributions, insights from the RMSE tests are relevant to other sensor deployments. The

tests demonstrate the suitability of using ST ak-Shell with a neighborhood defined by r

and k for both dense and sparse distributions of observations. For a sparse distribution, r

should be sufficiently large such that all cells in the area of interest can find sample points.

If data are dense, k can be reduced from 16. To minimize RMSE an IC at the center of the

window should be used, while if representing the latest predicted state of the phenomenon,

an IC closer to the end of the window should be used. From these tests, we determined the

configurations that produced the lowest RMSE to evaluate further with respect to runtime.

4.4 Runtime Investigation

After we determined appropriate parameters that can produce query results with an

appropriate RMSE we now evaluate the runtime and throughput performance of ST Shell

and ST ak-Shell.

4.4.1 Impact of Radius Size r for ST Shell on Runtime

First, we investigated the impact of the neighborhood radius, r, on runtime for ST Shell

using r ∈ {16, 32, 48}. The results for ST Shell using 128K sensors and an IC at the center

of the window are plotted in Figure 4.22, which shows consistent runtime performance for

ST Shell across all street networks and snapshot times. As expected, increasing the value

of r results in an increase in runtime. In Figure 4.23, the scalability of ST Shell is

investigated as the number of sensors in a window increases, and the constant slope for

each r confirms linear scalability of ST Shell with respect to the number of sensors.
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Figure 4.22. ST Shell runtime using 128K sensors, testing r ∈ 16, 32, 48 and an IC located
at the center of the window
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Figure 4.23. ST Shell runtime vs. number of sensors, testing r ∈ 16, 32, 48 using an IC
located at the center of the window
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4.4.2 Impact of Parameter r and k for ST ak-Shell

In ST ak-Shell, the parameter k is used to limit the search for tuples and terminate the

expanding ST search once k tuples are found, whereas r is used to define the radius of the

expanding search sphere and bounding ST cylinder. The combined runtime plots for

r ∈ {16, 32, 48} and k ∈ {4, 6, 8} for configurations r × k are shown with respect to

snapshot time (Figure 4.24) and the number of sensors in a window Figure 4.25.

The runtime of ST ak-Shell depends significantly on the spatial distribution and

number of sensors. This is most evident in Figure 4.24 where runtime for the Random data

set is impacted most significantly by k whereas for the Japan data set runtime is impacted

most by r. The Random data set (minimal spatial skew) and Japan data set(high spatial

skew) result in k being the dominating termination condition for the Random data set and

r for the Japan data set.

The Cambridge data set results show that the runtime for this distribution of sensor is

impacted by both k and r, but most significantly by k. This is due to the distribution of

observations on the Cambridge street network, which is similar to the random distribution

over land portion but there are still large water bodies without any observations. Thus, in

areas near the street network search terminates after k points and in areas over water

interpolation of some cells requires expanding to larger radius to find k tuples. Since

runtime plots for Cambridge are not as closely grouped by k as in Random, this means

that for r ∈ {16, 32} in Cambridge there are some cells where k tuples are not within r and

search terminates by r, but a much smaller area than for Japan.
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Figure 4.24. ST ak-Shell runtime using r = 32 and 128K sensors, testing r × k for r ∈
{16, 32, 48} and k ∈ {4, 8, 16} and an IC located at the center of the window
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Figure 4.25. ST ak-Shell runtime vs. number of sensors, testing r × k for r ∈ {16, 32, 48}
and k ∈ {4, 6, 8} and IC located at the center of the window and averaged over all snapshots
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4.4.3 Snapshots: Center vs. End of Window

We investigate the impact of the chosen IC, either the center or end of the window, on

runtime and compare the results in Figure 4.26. The results are shown for ST ak-Shell

using r = 48 and k ∈ {4, 16}. The results show that for the configurations tested, runtime

performance is consistent between an IC at the End and Center of the window. Note, that

in [165] where a = 1, p = 2, and Cartesian distance were used, having an IC at the end of

the window was found to be faster than at the center, but now using a = 4, where search is

performed at four times the rate in time as in space, and there is increased computational

time spent on distance calculation using haversine and p, the difference in runtime

performance for and IC at the Center and End of the window is no longer noticeable.
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Figure 4.26. ST ak-Shell runtime comparing ICs for 16K sensors
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Figure 4.27. ST ak-Shell runtime comparing ICs for 128K sensors

4.5 Summary

4.5.1 RMSE vs. Runtime

We evaluated the trade-off between runtime and accuracy for ST ak-Shell for

r ∈ {16, 32, 48} and k ∈ {4, 8, 16} for r × k. Results for anisotropy ratio a = 4 and power

p = 4 are presented for an IC at the center (see Figure 4.28 and Figure 4.29) and end of

window (see Figure 4.30 and Figure 4.31) for a snapshot at tick 51 and tick 83. In terms of

runtime for ST ak-Shell, as shown in all RMSE vs. runtime plots (Figures 4.28 to 4.31), an

increase in the number of sensors observations per window reduces the runtime since the

search for each cell is shorter as data are more dense and the number of cells to interpolate

is constant.

ST ak-Shell with an IC at the center of a window performs consistently well with regard

to runtime and RMSE as the number of observations per window increases, both when the

phenomenon is changing quickly in Figure 4.28 and is more stationary as in Figure 4.29.

Larger data sets provide both low runtime and low RMSE since k samples can be found in
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closer proximity to each cell when data are more dense, which reduces search effort and

RMSE as samples are closer to prediction locations.

ST interpolation is more challenging when using an IC at the end of the window as the

samples in a window only capture the state of the phenomenon prior to the IC. When

using an IC at the center of the window, there are samples both before and after the IC,

which enables ST interpolation to predict values between observed data. The results for an

IC at the end of the window (see Figure 4.30) indicate that when the phenomenon is

changing quickly, using an IC at the end of the window has a higher RMSE compared to

an IC at the center of the window (Figure 4.28). Additionally, the results for an IC at the

end of the window show a change in concavity of the graphs between snapshots for tick 51

(Figure 4.30) and tick 83 (Figure 4.31). This trend for an IC at the end of the window is

most clearly seen in the Random data set where at tick 51 (Figure 4.30), an increase in

data points above 64K resulted in an increase in NRMSE, while at tick 83 (Figure 4.31), an

increase in data points resulted in a decrease in NRMSE.

The RMSE vs. runtime plots identify the trade-off between runtime and accuracy based

on different parameter configurations of ST ak-Shell and the number of sensor observations

per windows. Depending on a user’s prioritization of low runtime and high accuracy, the

parameters of r and k can be chosen for the distribution of sensors in the data set.

• Cambridge data set

For the Cambridge data set, the configuration of r = 32 and k = 16 produced the

lowest NRMSE with a runtime of 2-3 seconds for 128K sensors. In order to reduce

runtime further, r or k can be decreased; a reduction in k offers the most significant

reduction in runtime at the cost of significantly increasing NRMSE.

• Random data set

For the Random data set, using r = 16 and k = 16 provided the most accurate results

and the runtime was 1-3 seconds. Reducing k from k = 16 increased runtime at the

97



cost of an increase in NRMSE while increasing r did not have a noticeable impact on

runtime.

• Japan data set

In the Japan data set, using r = 48 and k = 16 yielded the lowest NRMSE and had a

runtime around 60 seconds due the sparse sampling based on rural street networks

and therefore large radius per estimated value. Decreasing r improved runtime since

the search for sample points was terminated after expanding to a smaller radius

(r = 16 or r = 32 compared to r = 48) in areas where samples were sparse, including

areas over the ocean and remote mountains. The reduced runtimes, at 20-30 seconds

for r = 32 and around 10 seconds for r = 16, came at the expense of increased

NRMSE, as for areas that had no samples within r, an interpolated value for the cell

could not be calculated based on ST neighboring samples. Instead, the value of these

missing cells was replaced by the mean of the cells that were interpolated. While

reducing r lead to a reduction in overall NRMSE, the RMSE of cells having k

samples within r is not impacted.

Overall, the recommended configurations that produced the lowest RMSE are: r = 32

and k = 16 for Cambridge, r = 16 and k = 16 for Random, and r = 48 and k = 16 for

Japan. Runtime for these configurations is around 2-3 seconds for Cambridge, 1-3 seconds

for Random, and around 60 seconds for Japan. The NRMSE is lowest in Figure 4.29 with

around 0.185 for Cambridge, 0.1 for Random, and 0.3 for Japan.
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Figure 4.28. ST ak-Shell runtime vs RMSE using an IC located at the center of the window
for a snapshot at time t=51
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Figure 4.29. ST ak-Shell runtime vs RMSE using an IC located at the center of the window
for a snapshot at time t=83
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Figure 4.30. ST ak-Shell runtime vs RMSE using an IC located at the end of the window
for a snapshot at time t=51
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Figure 4.31. ST ak-Shell runtime vs RMSE using an IC located at the end of the window
for a snapshot at time t=83
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4.5.2 Performance Comparison to Related Stream-Based ST Interpolation

To evaluate the runtime performance of our approach using stream-based ST-IDW, we

compared our runtime results to the stream-based ST Kriging approach used by Lorkowski

and Brinkhoff [95, 96]. Performance tests [96] demonstrated roughly linear runtime

scalability with the number of observations n and with the number of prediction locations

m, meaning that both ST-IDW and ST stream-based Kriging have comparable

computational complexity of O(mn). The results [95, 96] showed that for a set of 400

sample points, partitioned into batches of 10 points, cumulative computational time takes

over 30 seconds for the combined result for a 150× 150 raster grid. Scaling these results up

to a larger grid of 500× 500 pixels and 128K tuples yield an expected runtime of over 30

hours whereas our approach using ST ak-Shell requires around 2 seconds, over four orders

of magnitude faster.

500× 500 pixels

150× 150 pixels
× 131, 072 tuples

400 tuples
× 30 s

3, 600 s/h
= 30.34 h

4.5.3 Discussion of Results

For the RMSE tests, a = 4 and p = 4 were found to be the best tested parameters for

ST anisotropy and ST-IDW power, respectively. Using an IC at the center of the window

results in the lowest RMSE. The ST ak-Shell approach performs better than ST Shell for

an IC in the center of the window, and ST ak-Shell was only slightly worse than ST Shell

during the expansion phase of the phenomenon. Increasing the change rate of the

phenomenon showed that a should be decreased as the rate of change of the the

phenomenon increases. The optimal value of r and k depends on the spatial arrangement

of sensors, with small values of r being best for dense distributions (Cambridge and

Random) and larger values of r being best for sparse distributions(Japan), and large values

of k result in a decrease in RMSE for all distributions. Larger values of k were tested and

did not show significant improvement, or were even worse.
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In the runtime tests, the termination condition that has the highest impact on runtime

for ST ak-Shell depends on the distribution of the sample points. When points are more

uniformly distributed, the search is terminated once k sample points are found rather than

exhaustively searching all cells in r. When points are spatially skewed, a larger r is needed

to find k sample points, and even that value of r may be insufficient to interpolate all

portions of the result. For the more spatially uniform Random and Cambridge data sets,

the runtime results were clustered by k, meaning the search was most often terminated by

k and for the spatially skewed data set of Japan, the results were clustered by r, indicating

that in many areas k points were not found within r. In contrast to ST Shell where an

increase in sample points resulted in an increase in runtime, for ST ak-Shell an increase in

observations per window results in a decrease in runtime.

Depending on the desirability of minimizing RMSE or runtime, specific values of r and

k can be chosen for each data set. In general, the more sensors the better as an increase in

sensors resulting in both a decrease in runtime and RMSE.

Our performance tests show that snapshot queries using ST ak-Shell run in under 2.5

seconds per window; the configuration for this result is that the ST search radius is 48 cells

around a cell to be interpolated, a query window consists of 32 time units, roughly 256K

observations are available, using the Cambridge and Random sensor distribution data sets.

In comparison to related work [95, 96] on stream-based ST interpolation, our work is

expected to be over four orders of magnitude faster for a similar number of sensor

observations and size of prediction grid.

4.6 Conclusion

This chapter examined the use of the STI-SQO framework to process massive

asynchronous observation streams from mobile sensors using ST interpolation over sliding

windows to represent continuous phenomena. Performance evaluation was conducted using

the Fukushima nuclear event in March 2011 as an example of a dynamic phenomenon for
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the test data set. It was found that ST-IDW can be used to generate 500× 500 pixel

spatio-temporal snapshots in less than 2.5 seconds with 256K tuples per window. This

finding confirms the hypothesis as the 100,000 tuples/s throughput target is achieved and

the near real-time target of representations generated in 1-3 seconds.

The challenges of asynchronous sensing, mobile sensing, capturing the ST continuity of

the phenomenon, and high data throughput are addressed by the contributions of the

approach. Asynchronous sensing is addressed using windows to group tuples and ST-IDW

with an ST anisotropy ratio to weight observations by location in space and time. The

challenge of mobile sensors is addressed by using ST-IDW which has O(n) time complexity,

even when observation locations change, and an ST grid index that keeps track of

observation locations and disregards sensor identity. The ST continuity of a phenomenon

over a window is captured using a single snapshot at a user-specified Interpolation Center

(IC) or a movie query consisting of multiple snapshots. High data throughput is achieved

by using a DSE with an in-memory index and the ST ak-Shell algorithm which performs

faster as the amount of data in a window increases. We address the resource consuming

identification of nearby tuples in both space and time during ST-IDW execution with the

contribution of the ST grid index and two shell-based search templates: the cylindrical, ST

Cylindrical Shell Template (CST) and the concentric, ST Nested Shell Template (NST).

The NST allows quickly determining the nearby tuples using ST, concentric search and is

employed by ST ak-Shell to search the ST cuboid of the ST grid index. The ST grid index

consists of time subblocks as the smallest temporal partition of the ST grid index and

make it possible to achieve three tasks: a.) searching proportionally in both space and in

time using Isotropic Time Cells (ITCs) with the NST used by ST ak-Shell., b.) discarding

outdated tuples with each window slide, and c.) reusing the ST grid index between

consecutive windows in sliding window queries.

The STI-SQO framework has demonstrated it’s ability to perform near real-time ST

interpolation of massive numbers of sensor observation streams.
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CHAPTER 5

A STREAM QUERY OPERATOR FRAMEWORK FOR EVALUATING

PREDICATES OVER CONTINUOUS SPATIO-TEMPORAL FIELDS

5.1 Motivation

Consider the Fukushima Daiichi nuclear disaster scenario described in Chapter 3, where

the distribution of radiation is a continuously evolving ST phenomenon. While being able

to monitor near real-time representation of the entire continuous phenomenon is useful in

many applications, users are often interested in only being alerted when hazardous

threshold conditions are breached.

Therefore, analysis operators that continuously re-evaluate over such a phenomenon are

desirable. An analysis operator can be a simple threshold operator in which a user specifies

a condition, i.e., whether the user is interested in values of the phenomenon that are above,

below, or equal to this threshold, and the values satisfying the condition are selected for

the user. For example, consider Query 5.1 which retrieves the caesium-137 values satisfying

the condition of being greater than 1 Bq/m3 (Becquerel/m3) at each point within the

boundary of Japan. The result should be retrieved as a stream of new rasters called

hazardous_radiation_deposition.

Mathematically defined, a threshold operator is a logical predicate [37]. A predicate is a

function that evaluates a value to either true or false depending on whether the value

makes the condition true or false. For instance, a predicate over a field representation of

ST phenomenon is a unary field operator and the Boolean proposition is applied to each

element of a field’s domain, r = Pprop(f).
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Query 5.1. Example predicate query

SET @Grid = -- Points in the raster grid --
SET @Japan = -- Polygon of Japan --
SET @IC = 5 min
SET @Condition = x > 1

SELECT
RASTER(@Grid ,

PREDICATE(
ST -IDW(@Grid , sensors.loc , sensors.val , @IC),
@Condition ))
AS hazardous_radiation_deposition

FROM
sensors WINDOW 5min SLIDE 1min

WHERE
sensor_type = radiation

AND INSIDE(sensors.loc , @Japan );

5.2 Problem Statement

The main problem with predicate stream queries over ST phenomenon is that users are

interested in expressing such a queries in terms of a predicate over an ST phenomenon, but

only streams of discrete sensor observations are available. This also implies that the user is

more interested in retrieving entire query result regions of the ST phenomenon instead of

filtered candidate tuples that fulfill the condition of the raw streams.

Figure 5.1. Evolving predicates result regions over time
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Assuming that an appropriate data model language and query language are available to

express predicates over ST fields as in [90], the problem remains that the stream query can

only be executed over the individual, discrete sensor streams.

Continuous phenomena have several dimensions: time, space and values. Thus,

predicates can be expressed over the individual dimensions or combination of the

dimensions. In this chapter we solely focus on the evaluation of predicates over values.

Such a predicate can be thought of as “find all values that meet a certain condition and

return a subfield for each query window.”

5.2.1 Challenges

• Limiting the ST Interpolation to Predicate Result Region(s)

The runtime for IDW increases linearly with the number of cells interpolated, and

reducing the number of cells interpolated also reduces the computational time.

Existing interpolation algorithms [85, 80, 149] only focus on interpolating entire

raster cells as these approaches are unable to limit interpolation to cells that satisfy a

predicate, since they are not designed as predicate evaluation algorithms.

• Accurately Identifying Predicate Regions

A method is needed to accurately extract predicate result regions. An approach that

interpolates an entire raster first using all sample data and extracts the raster cells

that satisfy the predicate produces accurate results in our context. In this context,

we define the baseline as an approach that interpolates an entire raster first using all

available sample data and extracts the raster cells that satisfy the predicate. This

approach produces the most accurate results in our context (i.e., the best that can

be achieved given a stream of samples), however, also at the potentially highest

computational cost. However, any approach that targets results regions directly and

avoids interpolating unnecessary cells should produce result regions that are similarly

accurate.
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• Continuous Evolution of Phenomena

Phenomena continuously evolve over time and space, and so does the result of a value

predicate as shown in Figure 5.1. When evaluating the predicate result, changes in

values and topology need to be captured in the raster representation. Changes to the

phenomenon require interpolation to detect that the phenomenon has changed, and

those areas need to be interpolated.

• Coordinating Parallel Phenomenon Interpolation Operators

Predicate evaluation requires coordinating multiple ST interpolation operators so

that duplication of effort can be eliminated (e.g., two operators actually do evaluate

the same result region). Additionally, if any search or traversal strategy is used, the

status of each grid cell must be accessible by all operators to prevent unnecessary

interpolation of grid cells.

5.2.2 Naïve Algorithm Establishing the Baseline

The Naïve algorithm establishes a baseline for result quality ad run-time. It represents a

straightforward method of evaluating a value predicate over a ST continuous phenomenon.

It assumes that first a continuous representation of the phenomenon is generated by

interpolating a raster for the query window, and that then the value predicate is evaluated

over all raster cells. The choice of an evaluation strategy depends on the percentage of the

field that is part of the predicate result: if a large part of the entire field evaluates to true,

the Naïve algorithm is a reasonably efficient strategy to evaluate the predicate. However, if

only a small percentage of the field qualifies for the predicate the Naïve algorithm has

estimated many cells that are not part of the query result. It is more efficient to identify

these qualifying regions and restrict the ST predicate evaluation to the result subfields.

We focus on algorithms that perform predicate evaluation over a limited area and for

the remainder of this chapter and compare the studied algorithms with the Naïve baseline

in the performance section found in Section 5.8.
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5.3 Related Work

The problem of continuously evaluating predicates over continuous phenomena has only

been addressed in a limited fashion in prior work.

5.3.1 Evaluating Spatio-Temporal Predicates over Continuous Phenomena

Currently, stream query predicate operators are available only over raw ST

streams [14, 32, 39, 48, 50, 65, 71, 77, 105, 106, 110, 109, 119, 175] and there is limited

support for ST continuity of phenomena provided by the Nile-PDT system [7, 8]. Nile-PDT

identifies candidate phenomena from sensors having similar values and uses a polygon to

connect the sensors detecting a phenomenon. In the Nile-PDT system [7, 8] a confidence

function is used to choose which sensors to join with and whether sensors are part of the

same or different phenomena, but there is no assessment of the accuracy of the phenomena

regions, in the form of polygons, detected. For predicates over ST streams, delivering

accurate query results during load shedding, such as k-Nearest Neighbors (kNN) queries for

moving objects, is investigated to assess the similarity of the results [106, 119, 8]. The work

in this dissertation is the first work to address efficient and accurate stream query

processing of predicates over continuous phenomena in near real-time.

5.3.2 Spatio-Temporal Predicates over Moving Object Data Streams

Moving objects observed via near real-time location update streams are common

scenarios for DSEs. Predicates are posed over those trajectories, and are categorized into

range queries (e.g., “which cars crossed region A in the last 10 min”), kNN queries (e.g.,

“which are the five nearest cars to landmark A”), or Aggregate Nearest Neighbor (ANN)

queries (e.g., “for a set of cars and a set of landmarks, what is the distance to the nearest

landmark to each car in the last window”) [39].

Contributions with regard to predicate operator implementations for moving object

streams have been made in the research DSEs Place [105, 110], SINA [108], Nile [66],

108



CAPE [141], and others. In moving object data streams, spatial predicates are evaluated

trajectories of individual objects, that is, queries such as “which are the current kNN

neighbors of the police car” are evaluated. Thus, collocated objects need to be identified

quickly. These stream queries are also supported often by a shared, in-memory spatial grid

index [56, 108, 105, 110, 106] since grid indices have better behavior under such high

update load and the implicated insertion and deletion from the spatial index per window.

Additionally, if the trajectory of an object is of interest, information of individual

objects’ locations needs to be maintained for queries over time across stream query

windows, which is not the case with moving sensors for continuous phenomena. Building

pipelined query operators and plans that can be parallelized and evaluated incrementally

has been one of the major challenges [39]. However, tracking individual objects across

windows is a fundamentally different task than spatially interpolating all sample points

within a window, and then evaluating a value predicate on this summary.

5.4 Hypothesis

Our hypothesis is that a stream query operator framework for predicate evaluation over

continuous ST phenomena with cumulative areas predicate result regions between 40% and

10% of the entire representation area, using a predicate evaluation algorithm that localizes

predicate evaluation to the areas that satisfy the predicate, reduces runtime by over 50% to

over 70%, and has similar accuracy to the Naïve baseline. Additionally, a localized

predicate evaluation algorithm achieves near real-time performance in continuously

evaluating the predicate over a sensor observation stream with a rate of 100,000 tuples/s,

and achieves this runtime performance without sacrificing accuracy of the predicate result

regions. The hypothesis is tested by implementing a prototype of the predicate evaluation

stream query operator framework that contains the various, proposed localized algorithms

for evaluating value predicates over ST fields and is assessed for runtime performance and

accuracy of results.

109



5.5 Contributions

In order to evaluate value predicates over continuous phenomenon in near real-time, we

propose the STP-SQO framework with the following contributions:

• We introduce the STP-SQO framework for efficiently and accurately evaluating

predicates for high-throughput streams of sensor observations of ST continuous

phenomena. The STP-SQO framework consists of several stream query operators

that aim to interpolate the predicate accurately and at the same time limit the

interpolation to the predicate result regions.

• We propose two Region Growing Predicate Evaluation Algorithms that

restrict predicate evaluation to result regions surrounding stream tuples that satisfy

the predicate. The Breadth-First Region Growing ST Predicate Evaluation

Algorithm and Scan Line Region Growing ST Predicate Evaluation

Algorithm start evaluation based on an initial set of grid cells that contain one or

more tuples satisfying the predicate. Around each cell, the connected predicate result

region is grown cell by cell using iteratively expanding search until completely

surrounded by cells that do not satisfy the predicate.

• We present the Tile-based Predicate Evaluation Algorithm that partitions the

prediction grid into tiles, each consisting of multiple grid cells, and performs predicate

evaluation in batches using entire tiles. If a tile contains a tuple that satisfies the

predicate, then all cells in the tile and all eight neighboring tiles are interpolated;

thus, the tile approach is a greedy interpolation algorithm. The tile approach trades

interpolating more cells for not having to keep track of a parallel, iteratively

expanding search that is cell-based as done in the two region growing approaches.

• We introduce the Phenomenon-Aware Predicate Evaluation Algorithm as an

incremental predicate evaluation strategy, i.e., an algorithm that ‘learns’ from the
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past window result. The evaluation of a new query window starts with the result of

the previous window and makes incremental updates to determine which cells will be

elements of the predicate result, and which not. The Phenomenon-Aware

interpolation operator exploits knowledge of the cells satisfying the predicate from

previous window in order to determine the next set of cells to interpolate.

• To coordinate ST predicate evaluation operators, we introduce the ST Predicate

Region Evaluation Manager Operator to coordinate and share state among

parallel ST Predicate Region Evaluator Operators. The ST Predicate Region

Evaluation Manager Operator keeps track of which cells have been queued and

visited during expanding search (Region Growing algorithms), interpolated (Region

Growing and Phenomenon-Aware algorithms), and classified as satisfying the

predicate (Phenomenon-Aware algorithm).

5.6 Approach

In this section, we describe the operators and algorithms of the proposed ST Predicate

Stream Query Operator Framework (STP-SQO framework). Pseudocode for the proposed

operators and algorithms is located in Appendix C.

5.6.1 ST Predicate Stream Query Operator Framework Overview

The STP-SQO framework, shown in Figure 5.2, consists of the following operators:

• Stream Split Operator

The Stream Split Operator splits and clones the incoming sensor update stream to

two output queues to be consumed by two operators: the ST grid index and the Seed

Filter operator. Since neither of these consumer operators modifies the tuples, tuples

in the input stream are copied by reference to save memory.
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Figure 5.2. Stream operators for predicate evaluation

• Seed Filter Operator

The Seed Filter Operator identifies regions likely to satisfy the predicate by filtering

its input stream to select the set of tuples in a window that satisfy the predicate

condition. This set of tuples that satisfies the predicate is then mapped to grid cells.

The set of unique grid cells containing at least one tuple that satisfies the predicate is

called the seed cells.

• Sliding Spatio-Temporal Grid Index Manager Operator

The ST grid index Manager coordinates the indexing of all stream tuples and is

described in Chapter 3. The ST grid index contains all the sensor observations and is

shared between all parallel ST Predicate Region Evaluator Operator clones.

• ST Predicate Region Evaluation Manager Operator

The ST Predicate Region Evaluation Manager operator coordinates the parallel ST

Predicate Region Evaluator operators, keeps track of the regions being processed by

each ST Predicate Region Evaluator operator clone, and coordinates access to the ST

grid index.
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• ST Predicate Region Evaluator Operator

The Predicate Region Evaluation Operator uses the seed points to identify predicate

regions to interpolate with ST interpolation using ST-IDW (see Chapter 3 for

ST-IDW). Only interpolated cells which satisfy the predicate or where no data were

found are put on the output queue.

• Predicate Result Assemble Operator

The Predicate Result Assemble Operator sorts and arranges an output raster per

window based on the interpolated tuples that satisfy the predicate. The raster

contains all predicted values that satisfy the predicate, a code for all cells were no

tuples were found within the configured interpolation radius, and a code for all cells

where the predicted value does not satisfy the predicate.

5.6.2 Rationale for Predicate Evaluation

In order to justify an approach for predicate evaluation using ST interpolation, we

discuss four alternative result types for evaluating predicate queries over ST field described

in detail below.

1. Predicate Result as Raw Seed Points

The simplest option is to evaluate the predicate on the raw stream of sensor

observations. The tuples passing the predicate condition of the filter are termed seed

points. If only the seed points are returned, then no information about the value of

the phenomenon at ST points outside the seed points is provided to the user. It is

left to the user to perform external analysis to assess the boundary and ST continuity

of the phenomenon, a task which will prove difficult to do correctly as shown in

options 2 and 3.

2. Predicate Result based on Hull Constructed from Seed Points

Let us assume that the user is interested not in the individual seed points but instead

the region satisfying the predicate. The bounding polygon of a set of points is called
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a hull, that may either be a concave hull [111] or, more commonly, a convex

hull [134]. A hull is created for a set of points, so if multiple regions satisfying the

predicate are desired, the data points must first be partitioned using clustering [69].

A hull is then created for each cluster of points. With asynchronous, mobile sensors,

creating a meaningful hull is a challenging problem unto itself. Assuming the set of

seed points is not empty or equal to the set of observations in a window, a hull may

over or underestimate the area of the phenomenon that satisfies the predicate and

omit features including holes and separation between nearby regions. Additionally, a

polygon of a hull captures the boundary of the set of seed points and does not

capture values within the region.

3. Predicate Result based on ST Snapshot Generated from Seed Points

The user may be interested in the field restricted to the region(s) satisfying the

predicate, that is, a new field is returned instead of region objects as in option 2.

However, issues arise if we attempt to represent the field using only the set of seed

points. When the set of seed points is not equal to the set of points in a window, the

estimated values at corresponding locations in representations either generated from

the seed points or the entire points in a window may differ. Having only seed points

means that there are not sample points available that show where the predicate is not

satisfied. Performing ST interpolation from the seed points may overestimate the size

region satisfying the predicate, by omitting holes and separation of regions, and

interpolate values that differer from corresponding values calculated from the

complete set of sample points.

4. Predicate Result based on Complete ST Snapshot

The final approach is to use all observations for interpolation and apply the predicate

to the interpolated result. Using all data points and ST interpolation means that

more sample points are available to capture the ST behavior of the phenomenon
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within a window and produce a snapshot at the IC. This alternative produces the

most accurate representation of the predicate query result. The Naïve baseline uses

this approach.

Thus, option 4, performing interpolation using the observation points, is necessary to

most accurately capture the result of a predicate operator over the phenomenon. Using

only the seed points for interpolation may omit sample points that help determine where

holes and boundaries exist.

While option 4 produces the most accurate results, we seek a faster algorithm or

algorithms than the Naïve baseline that produce the same accuracy.

5.6.3 Limiting Interpolation to Cells that Satisfy the Predicate

A value predicate applied to a geographic phenomenon typically retrieves features. For

example, the predicate ptemperature>200 applied to a temperature field (above 200 ◦C) could

identify fires within an observation region. Characteristically for such features, the sets of

cells forming each feature in which the predicate evaluates to true are spatially and

temporally contiguous. This fact can be exploited within an evaluation algorithm by

identifying seed cells, i.e., grid cells having observations, which satisfy the predicate, and

expanding seed cells to the surrounding region satisfying the predicate. By expanding seeds

spatially and temporally, ST interpolation algorithms can potentially reduce the search for

grid cells that need to be checked against the predicate and target interpolation to the cells

likely to satisfy the predicate.

5.6.3.1 Selection of Seed for Predicate Result Regions using a Seed Filter

Operator

First, seeds of predicate result regions are identified by the Seed Filter Operator. It

selects all tuples, which satisfy the predicate, and are termed seed tuples. Each seed tuple

identified is mapped by location to its corresponding cell in the output grid, termed seed
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cell. Since there may be multiple seed tuples that map to a single seed cell, in our proposed

approach a hashmap keyed on the (x, y) seed cell location is used to maintain the set of

unique seed cells. The insertion order of cells into the set of seeds cells follows the random

order of tuples in the stream.

Although tuples within a cell may meet the predicate condition, it is not clear whether

the entire cell, once interpolated, will meet the predicate condition. Whether a cell is part

of the predicate result can only be determined after using all available tuples in that cell,

and potentially some surrounding cells, during ST interpolation. Organizing seed cells is a

crucial step towards efficient predicate evaluation. As mentioned, seed cells tend to be

spatially clustered; however, the incoming order of potentially millions of sensor updates is

random and ordered by time. Filtering tuples based on the predicate condition creates seed

cells in random order. One option is to use a data structure that organizes seed cells within

a query window spatially so that clusters of cells can be derived more easily.

The predicate evaluation algorithm used has implications for additional processing of

seed cells to be performed by the Seed Filter operator. Thus, the Seed Filter operator is

extended and specialized by each of the predicate evaluation algorithms presented in the

following sections.

5.6.4 Seed-Based Predicate Evaluation Algorithm Alternative 1: Region

Growing

The first proposed algorithms for expanding seed cells to full predicate results are two

algorithms for region-growing. Seed-based region-growing algorithms are common for

image segmentation in the domain of image processing, in which the values of grid cells are

evaluated using a predicate [1, 42, 98, 150]. Similar to predicate evaluation, region-growing

algorithms traverse a grid, starting from a set of seed points, and test cells based on their

value. The difference for predicate evaluation over ST streams of continuous, dynamic

phenomena, is that grid cells first need to be interpolated before the value can be tested
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using the predicate. Further, all data are stored in main memory, processing is done in

parallel, and performance demands are near real-time.

We will discuss two different region-growing algorithms we propose: Breadth-First (BF)

and Scan Line (SL) and the processes of seed selection and seed expansion, performed by

specializations of the Seed Filter Operator and ST Predicate Region Evaluator Operator,

respectively.

Seed Selection: A tuple’s (x, y) coordinate values are converted to integer (x, y) cell

coordinate values (center of the cell), and a new pair 〈x, y〉 containing the new seed

coordinates is added to the queue of seeds. The seed represents a grid cell containing

at least one value satisfying the threshold predicate. If the coordinate already exists

in the set, the new pair is not added. A hashmap is used, allowing insertion of new

coordinates in constant time, given an appropriate hash function.

Seed Expansion: Seeds are grown into regions of cells satisfying the predicate using a

specialization of the ST Predicate Region Evaluator based on a breadth-first

expansion. Each operator clone performs seed expansion in parallel as follows: it

fetches a seed cell from the seed queue, and interpolates the seed cell’s value based on

all available samples points in the ST grid index for the cell. If the interpolated value

of the seed cell satisfies the predicate, the cell is expanded. When a cell is expanded,

its four neighboring cells (north, east, south, and west) are added to the seed’s own

“candidate cell” queue for this region. Before each cell is added to the queue, the

operator checks the shared operator state, held by the ST Predicate Region

Evaluation Manager, to determine whether the cell has already been queued for

expansion in any of the other operator threads.

Region growing continues as long as the predicate is satisfied by the interpolated cell

as shown in Figure 5.3. Next, the candidate cell queue is processed until empty. The

cell at the head of the queue is fetched; the cell is interpolated, if it has not already
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Figure 5.4. Breadth-First Region Growing ST Interpolation Operator

been by another operator clone; if it satisfied the predicate, it is expanded. The

algorithm fetches the next seed once the internal candidate cell list is empty, and

terminates when the queue of candidate cells and seeds are both empty.

The BF region growing algorithm is a breadth-first search without the termination

condition of finding a particular item. Instead, the requirement is that the predicate

be satisfied for a cell in order for its neighbors to be added to the queue. The

traversal order of the BF region growing algorithm for a predicate result region is

shown in Figure 5.3.

Seed expansion operators are candidates for operator cloning, as all seed expansion

operators fetch seed cells from the same queue, but maintain their own internal cell

candidate queues (see Figure 5.4).

5.6.4.1 Scan Line Algorithm

The Scan Line (SL) algorithm is an alternative seed-based region growing algorithm; it

can be visualized as starting from a seed cell and traversing a line in a raster to find

relevant neighbors. In image processing, each cell’s values are known. This is not true for

our filter based predicate evaluation process, in which cells have to be interpolated before

they can be tested.
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Seed Selection: Identical to BF (Section 5.6.4)

Seed Expansion: The basic idea of the SL is to grow regions line by line and in one

direction at a time as shown in Figure 5.5. The algorithm for the Scan Line

specialization of the ST Predicate Region Evaluator Operator proceeds as follows.

First, fetch a seed from the seed queue and interpolate the value for the seed cell. If

the seed satisfies the predicate, expand the region by interpolating the cell to the

right of the seed. Continue to interpolate all cells in the current row to the right as

long as the predicate continues to be satisfied. When the predicate is not satisfied,

the boundary of the grid is reached, or a cell has already been marked as queued,

switch to interpolating moving left in the current row beginning with the cell left of

the seed cell. Once the set of contiguous set cells satisfying the predicate surrounding

a seed in the current row have been interpolated, a span is generated to capture all

cells to interpolate for the vertically adjacent rows. This span is one cell wider to

both the left and right than the set of contiguous cells from the current row. The

spans are then added to a span queue to iteratively expand the search vertically as

well as to wrap around into concavities of a result region. If so, visit the next cell to

the right. Once a cell with a value that does not meet the predicate is encountered,

the algorithm jumps to one of the lines that are vertically adjacent (upper or lower)

and continues. Again, the algorithm tests all cells until it reaches both the right and

left limits of the row, and then again jumps vertically. This is repeated until the

connected set of cells satisfying a predicate around a seed is is fully interpolated.

Compared to the basic BF algorithm, which searches in four directions, we mark the

cells satisfying the threshold by traversing line sections, focusing most effort in

searching to the right rather than equally in four directions.
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Figure 5.5. Scan Line Spans During Region Growing for a Concave Region

5.6.5 Seed-Based Predicate Evaluation Algorithm Alternative 2: Tile

Expansion

If a grid is very large or has a high resolution, using a breadth-first traversal for region

growing to identify cells satisfying the predicate, performed in parallel by multiple operator

clones expanding sometimes competing, overlapping regions, can lead to substantial

computational effort.

In order to limit the steps of region growing, we explored using larger tiles as a basic

test object to expand. A tile is a set of cells with equal width and height (e.g., 2× 2 or

4× 4 cells). The entire observation region is partitioned into equal-sized tiles, and if a

candidate tuple is found in a tile, all cells of this tile are selected as candidates for ST

interpolation. Overall the purpose of tile expansion is to evaluate all (and likely more) grid

cells that, after interpolation, will be an element of the predicate result. Tile expansion is a

rough, but fast estimate of such cells. At some point, interpolating all cells is more efficient

than a tile-based approach.

Tile expansion consists of an initial seed tile selection phase, and a seed expansion

phase. Seed tiles are tiles with cells that contain seed tuples; expanded tiles are all
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neighboring tiles of seed tiles. The motivation for tile expansion is as follows: assume a

seed tuple ts exists in a corner cell ci of tile Tj. It is possible that ts will influence the

interpolated value of grid cell cn, which is a neighbor cell of ci but located outside of tile Tj.

Cell cn might not have seed tuples itself. Therefore, seed tiles need to be expanded, queuing

the eight neighboring tiles for interpolation. Another consideration is tile size. If the tile

size is large, the percentage of irrelevant cells being interpolated likely is larger. Choosing a

small tile size, however, will increase the memory and computational cost for the

algorithm. Further, a dependency between tile size and chosen interpolation radius for the

ST interpolation method exists. If the interpolation radius r = 16 (i.e., 16 cells in distance

from center cell), choosing a tile size that is a factor of 16 (power of 2) is advantageous (e.g.,

1, 2, 4, 8 or 16) as a whole number of tiles fit within the radius. If an interpolation radius

r = 17 were used instead, choosing tile size 16 would mean that a buffer of 2 tiles around

each seed tile would be needed to guarantee that all cells were interpolated, interpolating

all cells within a buffer of 32 cells around the tile instead of the needed 17 cells.

The steps of tile expansion are as follows:

Seed selection: During the filtering of incoming streams, tuples are tested based on their

value, and a passing tuple’s (x, y) coordinate values are converted to tile coordinates.

A new coordinate pair containing the tile coordinates is added to the set of seed tiles.

If the tile already exists in the set, the new pair is not added. As with the

breadth-first region-growing approach, a hash map is used to index tiles and prevent

duplicates. Tile identification is run as a single thread, and runs through all

candidate tuples for a query window. The result is a set of unique tiles.

Expansion of seed tiles: Next, a new set of expanded tiles is created. The algorithm

iterates through the set of seed tiles and each seed tile is added to the set of

expanded tiles along with all tiles within a square defined by the interpolation radius

around the perimeter of the tile. The seed tile expansion guarantees that all cells

that potentially have an interpolated value satisfying the predicate, since they are
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neighboring tiles within the interpolation radius of seed cells, will be interpolated.

However, this ‘overshooting’ of cell selection comes at the cost of queuing cells that

likely will not satisfy the predicate.

Conversion of expanded tiles to cells: The set of expanded tiles is converted into

individual grid cells, which are queued to be processed in parallel by the ST

Predicate Region Evaluators. In all cases the complexity for this is O(x ∗ ( r
s
)2) where

x is the number of expanded tiles, r is the interpolation radius, and s is the number

of tiles in a distance of r. In the worst case, where r = 1, s = 1, and the grid contains

m cells and each tile is 1× 1, the complexity is O(m).

For the tile based approach, seed selection, expansion of seed tiles, and the conversion

of expanded tiles to cells are all handled in the Seed Filter. All cells in the expanded seed

tiles are evaluated whether or not they satisfy the predicate using the ST Predicate Region

Evaluator.

5.6.6 Discussion of Seed-Based Approaches

Overall, the performance of the proposed algorithms depends on the following aspects:

1) indexing of raw tuples, 2) filtering, 3) seed selection, and 4) seed expansion with

interpolation (either by region growing or tile expansion), and 5) interpolation. The cost

for indexing raw tuples and filtering is O(n) where n is the number of tuples. The cost for

seed expansion in the region-growing approach has the following behavior: grid cells are

arranged in a graph, in which each seed cell has four direct neighbors, which are visited. In

the worst case, the entire observation region is part of the predicate result, and every edge

in the graph has to be traversed. In BF, all four neighbors are checked for each cell. In SL,

often only a single neighbor is checked, but in both cases in the worst case all cells are

interpolated.

The time complexity for seed expansion using BF and SL is O(|E|), where the number

of edges in the graph is |E| = 2mn−m− n, m and n being the width and height of the
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grid. For SL, only one-quarter of the edges are traversed. The space complexity for both

algorithms is O(|V |), where |V | = mn is the number of cells in the grid. Overall, the cost

for each algorithm is determined by the interpolation cost and grid size, and depends

linearly on the number of tuples and number of cells in the grid.

5.7 Phenomenon-Aware Predicate Evaluation

We observe that predicate operators over dynamic phenomena that deliver predicate

results continuously capture the incremental change of the phenomenon over time and

space. For predicate evaluation, this indicates that we can exploit knowledge from a

previous query window wi−1 during evaluation of the current window wi and thus limit the

search for cells that are elements of the predicate result set. In the related work, this type

of evaluation is named incremental stream query evaluation [57], i.e., the result of a new

query window is built based on the result of the previous window, and new incoming tuples

are individually added while outdated tuples are deducted, and the result is computed.

This avoids re-computing the entire result from scratch.

T T T T T T
T T T T T T

T T T T T T T T T T
T T T T T T T T T T
T T T T T T T T T T

T T T T T T T T T
T T T T T T T
T T T T T T

T
T  Predicate True

Predicate False

Figure 5.6. Classified cells satisfying the predicate from query window wi−1
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Seed Cell

Expanded Tile

Figure 5.7. Classified tiles satisfying the predicate from query window wi−1

5.7.1 Rationale

The Phenomenon-Aware predicate evaluation approach is an extension of the Tile-based

algorithm (Section 5.6.5), classifying the predicate result from query window wi−1 by tile.

Tiles are classified based on whether they contain the Interior, Boundary, or Exterior of

the result from wi−1. In essence, the objective of tile classification is to minimize tile

expansion in wi for areas that satisfied the predicate in wi−1. An example of a classified

predicate query result by tile for wi−1 is shown in Figure 5.7 and depicts the following

classes of tiles:

Interior: An Interior tile contains only cells that fulfilled the predicate in wi−1.

Interior tiles contain cells that are most likely also part of the predicate result for

window wi.

Boundary: A Boundary tile contains both cells that fulfilled the predicate during wi−1

and cells that did not fulfill the predicate in the previous window. Boundary tiles

capture areas that are most likely to change from query window wi−1 to wi.
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Exterior: Tiles that contain only cells that did not fulfill the predicate in wi−1 are termed

Exterior tiles. Exterior tiles might still be of the same types in window wi, but

new regions might emerge.

Based on the tile classification, a strategy for tile expansion is selected: Interior tiles

do not need to be expanded, Boundary tiles are expanded in certain cases, and Exterior

tiles are only expanded if they contain new seeds. In principle, the algorithm only considers

tiles with ‘change’ potential through expansion and testing of the surrounding region,

prunes areas that do not qualify, and re-interpolates updated values for cells that satisfy

the predicate. If small tile sizes are used, e.g. 1× 1, an additional step is needed that

reclassifies all Interior tiles that are adjacent to an Exterior tile as Boundary tiles.

5.7.2 Tile Classification and Expansion Overview

The process of classification of the result from wi−1 and expansion for wi is depicted in

Figure 5.8. The figures shows Interior tile A, Exterior tile B, and Boundary tile C. The

process of expansion for each tile is summarized below.

Exterior Tile

Interior Tile

Boundary Tile

Seed Cell

Expanded Tile

A

B

C

Figure 5.8. Expanded tiles around seeds in query window wi
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Interior e.g., tile A

• All cells in the tile satisfied the predicate in wi−1

• Do not expand if there is a new seed for wi

Exterior e.g., tile B

• No cells in the tile satisfied the predicate in wi−1

• Expand if there is a new seed for wi

Boundary e.g., tile C

• Contains at least one cell that did and once cell that did not satisfy predicate in

wi−1

• Expand if there is a new seed for wi

5.7.3 Classifying Tiles

The Phenomenon-Aware predicate evaluation algorithm receives the following input: a)

a queue of all interpolated cells of window wi−1, including cells that are not part of the

result set but were interpolated nevertheless, b) a tile mask in which each tile is marked as

being in one of four states: No Data, Interior, Boundary, or Exterior, and c) a queue of

all seed tuples for wi.

Tile classifier: Initially, all tiles are in the state No Data. First, the operator consumes a

queue element of its input queue, i.e., all interpolated cells from wi−1. Based on a

cell’s location, the appropriate tile is identified, and based on the cell’s value the tile

is reclassified as Interior (if the cell’s value fulfills the predicate), or Exterior (if

the cell’s value does not meet the predicate). If a cell arrives that does not meet the

predicate but falls into a tile that has already been classified as Interior or the cell

satisfies the predicate and falls into a tile already classified as Exterior, the tile is
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Interpolated Cell

Figure 5.9. Cells to perform predicate evaluation on for query window wi

reclassified as Boundary tile. After the cell queue is empty, all tiles are tagged

Interior, Boundary, Exterior, or No Data. No Data tiles are possible since the

predicate result set is a subset of the entire region (see Figure 5.7).

5.7.4 Detailed Expansion Procedure of Tiles by Types

In the next step, the queue of new seed tuples, which arrived during wi is processed,

and the tiles are reclassified (see Figure 5.8, red dots). If a seed is identified within an

Interior tile, the tile status does not change since all cells of the tiles will be interpolated

in any case (Figure 5.8, tile A). If a new seed is located within a Boundary tile, the

Boundary tile is marked for expansion (Figure 5.8, tile C). The new seed indicates that the

predicate result region may have grown within this tile, thus neighboring tiles should be

considered. If a seed falls into an Exterior tile, the Exterior tile is marked for expansion

and handled like an initial seed tile (expanding to neighboring tiles) (Figure 5.8, tile B). If

a seed falls into a No Data tile, the tile is reclassified as Exterior, and marked for

expansion as Exterior/Expand.
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At the end of this phase, all tiles are marked as Interior, Boundary/NotExpand,

Boundary/Expand, Exterior/Expand, Exterior, and No Data. At this time the Exterior

and No Data tiles are pruned and not further considered. The cells of the Interior and

Boundary/NotExpand tiles are inserted directly into the output queue for cell interpolation.

Boundary/Expand and Exterior/Expand tiles are expanded first to their neighboring tiles;

cells of all expanded tiles are then inserted into the output queue for the ST interpolation

operator. The cells to be interpolated are shown in Figure 5.9.

5.8 Performance Evaluation

In this section, we evaluate the performance of the different proposed algorithms for

predicate evaluation, and compare them to the baseline naïve approach.

5.8.1 Experimental Setup

Since sensor data streams of high density, both spatially and temporally, are not

available (yet) for the system we envision, we simulated sensors moving along a dense

(Cambridge) and a sparse street network (roughly one third of Japan around the 2011

Fukushima nuclear incident). The discussed algorithms and operators of the STP-SQO

framework were implemented as stream query operators assuming a DSE environment.

Test are performed using the same data sets as described in Section 4.2.1. The accuracy of

the tested configurations is evaluated in Section 5.8.3 and the runtime of the configurations

is evaluated in the remainder of the section.

5.8.1.1 Implementation and Run-time Environment

The algorithms are implemented in Java in a limited DSE environment; operators are

connected via queues, and work in a pipelined fashion, but we do not consider any of the

other DSE components (e.g., adaptive resource optimization, etc.). The experiments were

run on a Mac Pro (Model MacPro6.1) with a 3.5 GHz Intel Xeon E5 (6 physical processing

cores and 12 virtual cores), 16 GB DDR3 ECC memory at 1867 MHz, and Mac OS X
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10.9.4 (13E28) (64 bit), and Java 1.7.0_60 (64 bit). Tests were run with the heap size

configured to an initial and maximum size of 4 GB in order to buffer the entire input

stream in memory. The pipelined stream query execution was run as follows: one indexing

thread, one seed selection and expansion thread, and eight interpolation threads. Timing

was done using mutual exclusion between the indexing and seed expansion operators,

where applicable, to give consistent timing results, although they normally would run in

parallel. Total runtime was calculated as:

Runtime = Slowest(AV G(timeindex), AV G(timeseed)) + AV G(Slowest(IDW1 . . . IDW8)).

5.8.2 Parameter Selection

For the following tests a sliding window with a length and slide of 4 ticks, referred to as

a tumbling window, was used. Tests were run with ten iterations of five consecutive

windows over both the Cambridge and Japan simulated sensor observation stream data sets

described in Section 4.2.1. Sensor populations between 32K and 256K were used and each

sensor had a 25% probability of updating for a particular tick (i.e., on average each sensor

updates at one point in the window). A ST snapshot for each window was constructed

using a 512× 512 grid and an IC at the end of the query window. ST interpolation was

performed using the ST Shell Approach (ST Shell) and ST Adaptive k-Shell (ST ak-Shell)

algorithms for ST-IDW described in detail in Section 3.6.4. A radius r = 16 was used for

ST Shell and ST ak-Shell and for ST ak-Shell k = 4 was used. The size of the predicate

result area was quantified as the proportion of number of cells of predicate result compared

to number of cells of the entire observation region. Snapshots from three points in the ST

evolution of the phenomenon, with corresponding predicate result areas small (10%),

medium (28%), and large (38%), were used to assess the performance of the algorithms.

5.8.3 Accuracy of Predicate Result Regions

In order to investigate the accuracy of each predicate algorithm, the set of cells

satisfying the predicate in the interpolated result is compared with the cells that satisfy the
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predicate in the ground truth. This dissimilarity between the two sets is calculated using

the Jaccard distance. The Jaccard distance (shown in Equation 5.1) is related to the

Jaccard index [74], which computes the similarity of two sets by dividing the number of

cells in the intersection by the number of cells in the union of the two sets (shown in

Equation 5.2). Jaccard distance values range between 0 and 1 with 0 indicating that the

two sets are equal (most similar) and 1 that the two sets are disjoint (least similar).

Dj(A,B) = 1− J(A,B) (5.1)

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(5.2)

The Jaccard distance was computed for for all tested configurations and is shown for

the Cambridge (see Figure 5.10) and Japan (see Figure 5.11) data sets for the medium and

large phenomenon sizes. The results show that accuracy of the detected area improves,

shown by a decrease in the Jaccard distance, as the size of the predicate result area

increases. For the same phenomenon size, the predicate results for the Cambridge street

network were more accurate than the Japan street network, aided by the more even

distribution of sensors over space in the Cambridge data set. For the medium sized

predicate result using ST ak-Shell resulted in better accuracy than using ST Shell while for

the large predicate result ST Shell had marginally better accuracy than ST ak-Shell. Since

the Region Growing, Tile-based, and Naïve are all guaranteed to evaluate the entire

predicate region, the variation in their accuracy is depended on the random subset of

sample points in each window. The the results of the Phenomenon-Aware approach lie

within this variation, confirming that none of the algorithms sacrifice accuracy for the

configurations and data sets tested.
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Figure 5.10. Predicate result accuracy summary: Cambridge data set with medium and
large predicate result sizes
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Figure 5.11. Predicate result accuracy summary: Japan with medium and large predicate
result sizes
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5.8.4 Naïve vs. Region Growing Algorithms

First, we compare the performance of the Naïve method to the region growing

algorithms, i.e., BF and SL (Figures 5.12 and 5.13). In the Naïve method all cells of the

entire observation region are interpolated and predicate evaluation is performed after

interpolation. The region growing algorithms start by filtering tuples and expanding seed

cells. We tested the Naïve and region growing algorithms in combination with the ST

ak-Shell (Figure 5.12) and ST Shell algorithms (lower 3 graphs) for ST-IDW interpolation

using the three different phenomenon sizes (small, medium, large). The results for ST Shell

show that both BF and SL have almost identical performance as expected; they are

significantly faster and scale much better with increasing number of observations compared

to Naïve. The interesting observation is that SL performs significantly faster than BF

when combined with the ST ak-Shell algorithm. This is due to exploiting the high-speed

caching as a linear traversal during interpolation results in most of the data needed to

interpolate the current grid cells was already loaded into the cache hierarchy when

interpolating the previous cell.

Overall, the region growing algorithms perform better than Naïve for ST ak-Shell. We

also observe that the runtime initially decreases with increasing number of observations

since the search can be reduced to fewer cells in ST ak-Shell. However, the performance

decreased again once the set of observation reaches about 128K samples/window as

expected. Comparing ST ak-Shell and ST Shell, the ST ak-Shell version is significantly

faster than ST Shell (e.g., runtime between 0.14-0.2s for ST ak-Shell/SL, medium result

size compared to 0.8-2s for ST Shell/SL, medium result size).

5.8.5 Tile Expansion

We tested the performance behavior of the Tile-based algorithm. This algorithm is

expected to behave more greedily and faster in identifying areas that are part of the

predicate result instead of exploring the region cell by cell. Tile sizes tested were
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Figure 5.12. Region growing using ST ak-Shell runtime
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Figure 5.13. Region growing using ST Shell runtime
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S1 = 2× 2, S2 = 4× 4, S3 = 8× 8, and S4 = 16× 16. The tile expansion approach only

uses the seeds from the current window, and is thus uninformed of the previous state of the

phenomenon, while the Phenomenon-Aware algorithm (Section 5.7) is informed about the

extent of the phenomenon gleaned from the last interpolation step (the comparison is

discussed in Section 5.8.6). The results for tile size impact are shown in Figure 5.14. As

expected, the Tile-based algorithm with tile size 2 performs best if the predicate result is

small, and worst if the predicate result size reaches 38% of the overall region. Tile size 16

shows slower performance than other methods in most cases. Tile sizes 4 and 8 show good

performance on average. A tile size of 4 is the best choice for consistently good performance

for ST ak-Shell for both Cambridge and Japan and all three phenomenon sizes.

5.8.6 Runtime Comparison of all Predicate Evaluation Algorithms

Figure 5.15 shows a comparison of all tested predicate evaluation algorithms: Region

growing (BF and SL), Tile-based (uninformed), Phenomenon-Aware (informed), and Naïve.

For tile expansion methods, the graphs for the same tile size have the same color (e.g., tile

size 16 is green for both informed and uninformed), the informed tile sizes are dashed lines,

while the uninformed tiles method results are solid lines. We show results for the

Cambridge and Japan data sets. The difference between the data sets is that Cambridge is

sampled via a dense road network, which results in spatially uniform sampling, while the

Japan region has sampling skewed towards the a sparse road network.

For the ST Shell tests (lower two graphs of Figure 5.15), results confirm that the Naïve

method has the longest runtime, while the region growing methods have the best

performance compared to the tile-based and the Naïve approaches, over both Cambridge

and Japan. The Tile-based approach behaves almost identically for tile sizes 2, 4, and 8,

with a large tile size (16) decidedly slower than smaller tiles sizes. A tile size of 2× 2 was

the fastest for the small predicate area and 4× 4 was fastest for the medium and large

predicate areas. For ST ak-Shell (top two graphs of Figure 5.15), we can see that SL
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Figure 5.14. Tile-based expansion
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Figure 5.15. Runtime comparison of all predicate evaluation algorithms

outperforms all other methods by a large margin. The results also show that the informed,

phenomenon-aware tile based approach is consistently more efficient than the uninformed

tile approach for tiles size 2, 4 and 8, but worse in performance for tile size 16. We

conclude that incremental query evaluation for predicates over ST fields is beneficial using

the Phenomenon-Aware over the Tile-based algorithm. However, using SL in combination

with ST ak-Shell resulted in the lowest runtime for the configurations tested. SL is

advantageous as by performing region growing line by line and in one direction at a time,
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using a linear traversal of the ST grid and exploiting locality while still guaranteeing that

the entire predicate result region will be interpolated and accurately extracted.

5.9 Summary

In this chapter, we proposed and evaluated the STP-SQO framework to efficiently and

accurately evaluate value predicates over ST fields observed by over 250,000 asynchronous,

mobile sensors. The STP-SQO framework work is based on the assumption that it is more

efficient to find seeds of regions that are part of the predicate result and expand them into

the complete predicate result regions instead of interpolating the entire continuous

phenomenon first and filtering all cells based on the predicate condition. We proposed

different seed expansion algorithms (BF and SL region growing, and Tile-based expansion)

and explored the impact of using the knowledge of the previous query window result in the

Phenomenon-Aware algorithm. Our analysis and performance results show that the SL

region growing algorithm outperforms all other tested algorithms regardless of data size or

specific characteristics of the data set.

The Phenomenon-aware tile expansion algorithm performed better than the

(uninformed) Tile-based approach for using tile sizes 2× 2, 4× 4, and 8× 8 for the

medium-sided predicate area. The predicate results were validated by comparing the

output of each method to the baseline Naïve approach. Assessment of the accuracy of the

predicate result snapshots shows that while all tested predicate evaluation algorithms

perform faster than the Naïve approach, this increase in performance comes without a

trade-off in accuracy over the baseline Naïve approach. Though the SL was the fastest

among the proposed predicate evaluation algorithms for the predicate result regions tested,

additional analysis is needed to determine the best predicate evaluation algorithm for even

larger predicate result sizes (e.g., 50%, 75%, and 100% of the raster) and shapes of the

predicate result regions.
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The STP-SQO framework is able to efficiently evaluate value predicates in near

real-time on ST fields observed by massive numbers of sensor observation streams and

represented using ST snapshots.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation we have investigated the problem of providing support for near

real-time representation and analysis of continuous ST phenomena observed by large

numbers of mobile and asynchronous sensors for continuous queries using a DSE.

6.1 Contributions and Major Findings

We have proposed and evaluated two stream query operator frameworks: the STI-SQO

framework for representing and the STP-SQO framework for analyzing ST fields. The

frameworks provide scalable, stream-based query operators for use in a DSE for near

real-time representation and analysis of continuous phenomena observed by massive

numbers of asynchronously sampling, mobile sensors. Additionally, the frameworks

demonstrate the suitability of DSEs, extended with stream-based algorithms for geospatial

operations on fields, for scenarios requiring near real-time representation and analysis of ST

phenomena as we will explain in the major findings in Section 6.1.2. This section highlights

the contributions and discusses the primary findings of this thesis.

6.1.1 Contributions

The following are the contributions of this thesis:

• ST Interpolation Stream Query Operator Framework

We proposed the scalable ST Interpolation Stream Query Operator Framework

(STI-SQO framework) that transforms a high-throughput stream of sensor

observations into representations of continuous spatio-temporal phenomena in near

real-time. The transformation of sensor observation streams in a query window into

ST snapshots is performed as a stream query that is evaluated via a framework of

tightly-collaborating, novel stream query operators.
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• Sliding Spatio-Temporal Grid Index

A key component of STI-SQO framework is an in-memory, Sliding Spatio-Temporal

Grid Index (ST grid index), conceptually visualized as an ST cuboid, that enables

efficient search in space and time for tuples during ST interpolation. The ST grid

index supports an isotropic view of space and time facilitated by an ST anisotropy

ratio, the introduction of Isotropic Time Cells (ITCs), and a mapping between ITCs

and time blocks through the use of time subblocks. The ITCs are centered about the

Interpolation Center (IC), enabling the ability to search, emanating from the center

of each raster cell, for proximate observations in space and time. Additionally, the ST

grid index is designed to be efficiently reused between windows, able to quickly

identify the outdated portion of the ST grid index by using time blocks and clear

tuples so that portion may be refilled with the newest data added to the window.

• ST Interpolation Algorithms

For the stream query operator framework, two ST-IDW algorithms for near real-time

ST Interpolation Operators with a throughput of over 100,000 tuples/s are

introduced. The ST Shell algorithm uses all observations within a spatio-temporal

shell around each cell in the output grid and within the temporal bounds of the

window. In the ST ak-Shell method, the observations used for a particular

predicated cell are determined using an iteratively expanding ST search for a lower

bound of k points within a maximum ST radius r.

The ST-IDW algorithms support any arrangement of sensor observations in a ST

point cloud, allowing both asynchronous and mobile sensors. The reusable Cylindrical

Shell Template and Nested Shell Template, for ST Shell and ST ak-Shell, respectively,

are introduced as templates for searching the index for nearby tuples to each cell

interpolated. We introduce an ST anisotropy ratio to merge spatial distance and

temporal difference between and into a combined ST distance weight.
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• Data Skew Adaptive kNN-based ST-IDW Interpolation

The deployment of massive numbers of sensors, many of them moving, can lead to

data skew over space and time. To deal with this type of skew adaptively, we

introduce the dynamic ST ak-Shell operator. This operator locates a bounded

number (k) of sample points within a bounded search radius (r) during an iteratively

expanding ST search using the ST grid index and Nested Shell Template (NST) that

terminates when k is reached. The ST ak-Shell operator is able to adapt to data

density, with k serving as the termination condition when data are dense and r when

data are sparse.

• Support for Flexible Query Result Presentations for Stream Queries over

ST Continuous Phenomena

We introduced the concept of the IC as a user-defined time stamp within a query

window at which a ST snapshot of the continuous phenomenon is constructed using

ST interpolation. The snapshot represents the predicted state of the phenomenon at

that instant based on the observations from the entire window that are in spatial and

temporal proximity to each prediction location. Thus, the user can control the time

instant at which a ST snapshot is generated within each window. Further, we

introduced two types of stream query result representations for ST continuous

phenomena, that are either a single summary ST snapshot at the IC or a window

movie composed of multiple snapshots showing an animation of the ST phenomena

over a window.

• Stream Query Operator Framework for Evaluating Value Predicates over

ST Phenomena

We introduce ST Predicate Stream Query Operator Framework (STP-SQO

framework) with different algorithms for evaluating value predicate queries over the

ST phenomena accurately in near real-time. This novel approach evaluates the
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predicates over the representation of a continuous phenomenon and returns result

regions instead of filtering the raw sensor data stream and returning raw

observations. Overall, we introduce and evaluated three different approaches for

predicate evaluation: Region Growing Predicate Evaluation, Tile-based Predicate

Evaluation, and Phenomenon-Aware Predicate Evaluation performed in parallel by

the ST Predicate Region Evaluator Operators.

• Region Growing ST Predicate Evaluation Algorithms

We proposed two algorithms for Region Growing Predicate Evaluation, the

Breadth-First Region Growing ST Predicate Evaluation Algorithm and Scan Line

Region Growing ST Predicate Evaluation Algorithm, that restrict predicate evaluation

to result regions surrounding the grid cells containing stream tuples that satisfy the

predicate, called seed cells. Around each seed cell, the connected predicate result

region is grown cell by cell using iteratively expanding search until completely

surrounded by cells that do not satisfy the predicate. The Breadth-First Region

Growing algorithm grows predicate result regions using a breadth-first traversal and

the Scan Line Region Growing algorithm expands predicate result regions one line at

at time.

• Tile-based Predicate Evaluation Algorithm

We presented the Tile-based Predicate Evaluation Algorithm that partitions the

prediction grid into tiles, each consisting of multiple grid cells, and performs predicate

evaluation in batches using entire tiles. If a tile contains a tuple that satisfies the

predicate, then all cells in the tile and all eight neighboring tiles are interpolated;

thus, the tile approach is a greedy interpolation algorithm. The tile approach trades

interpolating more cells for not having to keep track of a parallel, iteratively

expanding search that is cell-based as done in the two region growing approaches.
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• Phenomenon-Aware Predicate Evaluation Algorithm

We introduced the Phenomenon-Aware Predicate Evaluation Algorithm as an

incremental predicate evaluation strategy, i.e. an algorithm that ‘learns’ from the

past window result. The evaluation of a new query window starts with classifying the

result of the previous window by tile and makes incremental updates to determine

which cells will be elements of the predicate result, and which not. The

Phenomenon-Aware interpolation operator exploits knowledge of the cells satisfying

the predicate from previous window in order to determine the next set of cells to

interpolate.

• ST Predicate Region Evaluation Manager Operator

To coordinate ST predicate evaluation operators, we introduced the ST Predicate

Region Evaluation Manager Operator to coordinate the parallel ST Predicate Region

Evaluator Operators. The ST Predicate Region Evaluation Manager Operator keeps

track of which cells have been queued and visited during expanding search (Region

Growing algorithms), interpolated (Region Growing and Phenomenon-Aware

algorithms), and classified as satisfying the predicate(Phenomenon-Aware algorithm).

6.1.2 Major Findings

The hypotheses posed in Chapter 3 and Chapter 5 were verified though evaluation of a

prototype implementation of the proposed stream query operator framework and assessed

with regard to accuracy and runtime performance using real-world and simulated data

streams and confirmed with the the following findings.

• Using the ST ak-Shell algorithm, STI-SQO framework was able to generate 500× 500

sized ST snapshots in less than 2.5 seconds with an NRMSE under 0.19 (19%) for

over 250,000 observation from mobile, asynchronous sensors on an urban street

network. In reconstructing a dynamic,ST phenomenon from sample points using

interpolation, some error between the predicted and observed behavior is expected; a
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lower is preferable as it means the prediction is more accurate. Thus, the proposed

ST Interpolation Stream Query Operator Framework achieves the processing

throughput target of 100,000 tuples/s and demonstrated the suitability of DSEs for

near real-time representation of continuous ST phenomena with appropriate stream

query operator framework support.

• Testing the introduced ST Predicate Stream Query Operator Framework showed that

it analyzed value predicates over ST fields accurately, compared to the baseline

approach. Using the Scan Line algorithm for the ST Predicate Region Evaluator

Operator with in the ST Predicate Stream Query Operator Framework and using ST

ak-Shell based ST-IDW interpolation, predicate evaluation takes around 0.2 seconds

for both urban and rural street networks. Hereby, 250,000 sensor observations per

window from mobile, asynchronous sensors were used; predicate results took up on

average 28% of a result raster that had a resolution over 500× 500 cells. The Scan

Line algorithm, which grows regions from seed cells line by line, was the fastest

predicate evaluation algorithm for all tested configurations. These results confirm

that the STP-SQO framework is able to accurately and efficiently evaluate value

predicates on ST fields observed by massive numbers of sensor observation streams

and represented using ST snapshots.

• The performance of these frameworks demonstrates the suitability of DSEs for

efficiently and accurately representing and analyzing continuous phenomena observed

by over 250,000 asynchronous, mobile sensor streams in near real-time using the

STI-SQO framework and STP-SQO framework.

• While this thesis investigated the configuration of the STI-SQO framework

parameters r, k, p, a, and IC for the ST Shell and ST ak-Shell stream-based

algorithms for ST-IDW using different sampling arrangements and numbers of

sensors, in a real world setting, both the ST phenomenon and ST distribution of
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sensor observations may change over time, depending on the phenomenon. As such,

the parameters r, k, p, and a of the STI-SQO framework need to be adapted to meet

both runtime and accuracy requirements. This leads to future work of how these

parameter can automatically be determined on-the-fly during the continuous stream

query. Similarly, methods need to be included that assess the accuracy of the output

rasters continuously.

• This thesis investigated stream-based predicate evaluation algorithms for value

predicates over ST fields represented as raster snapshots, and predicate results sized

less than 40% of the area were investigated. For predicates covering a large area of

the output, e.g. 95%, it is expected that SL will perform slower than the Naïve

algorithm as the results showed that the difference in time between SL and Naïve

diminished as the predicate result size increased. The size of a predicate result may

change over time during a stream query, meaning that the optimal predicate

evaluation algorithm needs to be continuously adapted.

6.2 Future Work

This thesis presented stream query operator frameworks for representing ST fields and

evaluating predicates over the values of ST fields in real-time. This work has led to the

discovery of several opportunities for future research directions.

6.2.1 Automatic Accuracy Assessment and Parameter Optimization

In an emergency scenario, one would desire to have the most accurate and timely

information in order to best respond. This means that the transformation of ST sensor

observation streams into ST representations, and analysis of ST fields, needs to meet both

application-specific accuracy and real-time constraints. While in the experiments

conducted in Chapter 4 and Chapter 5 the ground truth was known, in a real-world setting

the ground truth is often unknown and only sensor observations are available.
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6.2.1.1 Automatic Accuracy Assessment

For a real-time sensing environment, a method to automatically assess the accuracy of

the representation using only the sensor observations is necessary. Cross validation is one

technique to address this question. To perform cross validation, a portion of the sensor

observations in a window are set aside to be used at the end of a query window for

validation and the remaining sample points are used for ST interpolation. Then the

difference between the predicted values from interpolation and the values of the validation

points are calculated. Since the observed points do not line up directly with raster cells or

the IC, a naïve option to address this is to calculate a value for each validation point using

the same ST interpolation parameters.

Though this option seems intuitive, issues assessing the accuracy can arise if the

distribution of sensor observations used for validation is not representative of the prediction

locations (i.e., raster cell centers) of the representation. For example, if sensing is

performed by moving vehicles on a street network, then all validation points will also be on

the street network. Additionally, other observations might also be collected by the same

sensor, and the sensor might introduce a particular type of error. Consider the example

where sensors move at 15 m/s (≈35 mph), have a sample rate of 5 s, and sample on a street

network. This means that for a chosen validation point observation by a sensor, as long as

that sensor was operational for the duration of the window, then at least one other sample

point will exist within 75 m and 5 s from the validation point. Since sampling by all sensors

is constrained to the street network, it’s even possible that observations from other sensors

fall within this range and may be even closer. Thus, a configuration may score well during

validation while in reality in areas outside the street network it’s performing poorly.

A robust validation procedure is needed that can assess the accuracy of the

representation generated when sensor movement is constrained to movement along a street

network.
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6.2.1.2 Automatic Parameter Optimization

Once the accuracy of a representation can be assessed in near real-time, then the

automatic optimization of parameters to achieve accuracy and runtime requirements can be

investigated. In principle, automatic parameter optimization consists of a method to score

and rank performance of configurations and a method to explore alternative configurations.

In order to score and rank performance of configurations of the STI-SQO framework, a

cost function is needed that calculates a single numeric score or multi-dimensional vector

for a configuration based on the performance with respect to different performance metrics.

Candidates performance metrics for participation in a cost function include runtime,

accuracy (e.g., RMSE), throughput, a measure of the area interpolated (e.g., the number of

raster cells interpolated). Additionally, specification of the area a user is interested in could

be incorporated into the cost function in order to target interpolation optimization to the

regions a user is most interested in. The cost function combines and weights chosen

parameters in order to calculate the magnitude of the cost of a configuration used for a

window.

Using the cost function, the performance of different configurations of the STI-SQO

framework can be ranked and the optimal configuration can be selected. The

configurations of the STI-SQO framework are defined by ST-IDW algorithm, r, k, p, a, IC,

number of sensors, number of cell interpolators, window length, window slide, resolution of

representation, and predicate evaluation methods in the case of predicate queries.

Additionally, if a raster were to be divided into segments consisting of multiple raster cells,

the optimal parameter configuration for a segment (local) may differ from the globally

optimal configuration and yield better cost optimization. For example areas a user is not

interested in can be pruned which reduces runtime and the best parameters for other areas

can be used. The challenge becomes how to do this efficiently as all configuration and

segmentations of STI-SQO framework cannot be tested at the same time while still

achieving near real-time performance.
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In order to be performed in near real-time in a DSE, this approach to parameter

optimization would have to be encapsulated into algorithms for stream query operators.

The result would be a DSE framework for ST interpolation that can automatically

optimize itself to give the best possible results according to a user’s parameterized

requirements that produces ST snapshots with known accuracy.

6.2.2 Predicates over Multiple Fields

This thesis explored efficiently and accurately evaluating predicates over ST fields,

specifically for threshold queries on interpolated values for ST fields materialized as rasters.

Users are interested in using predicates to analyze multiple fields at the same time in a

single query. For instance, a query can be the extraction of a subfield related to the area of

a winter storm where wind speed is over 35 mph, snowfall rate is over 0.5 inches per hour,

and visibility is less than 1/4 mile. Such a query would take three different fields as input

(i.e., wind speed, snowfall rate, and visibility) and output the subfield of each field over the

area where the individual predicates are true and then the spatial intersection of these

three predicates over the same space and time.

Algorithms are needed to efficiently evaluate such predicates over multiple fields. A

naïve approach would evaluate each predicate on its respective field individually and

perform a spatial intersection of the result. While this approach would produce valid

results, limiting the area over which predicate evaluation needs to be performed can lead to

gain in run-time performance. For example, with a conjunction over the predicates p1, p2,

and p3 with corresponding result areas of a1,a2,a3 of a larger area a, we can restrict the

computation as follows: p1 is evaluated over a to produce a1. Then, for the evaluation of p2

the area of predicate evaluation can be restricted to a1 to produce a1 ∩ a2 to be used as

input for p3 which produces a1 ∩ a2 ∩ a3 as the final result.

Another option is to rank and order the predicate evaluation based on the most

selective predicate being executed first. A predicate with highest selectivity, i.e. produces
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the smallest area, has the ability to minimize the number of cells over which predicate

evaluation is performed. However, this does not guarantee a reduction in runtime.

Runtime of interpolation algorithms is impacted by the number of sample points and for

local interpolation algorithms the time to compute each cell is impacted by the distribution

of sample points. Furthermore, different fields may require different interpolation

parameter configurations to produce the most accurate results which also impacts runtime.

Thus, while a predicate result region ai may have the smallest area, it may not have the

lowest runtime since it is impacted by the number and distribution of sensors and

identifying the optimal predicate ordering is more challenging. Additionally, techniques

developed for efficiently evaluating predicates over multiple fields are likely generalizable to

support multiple predicates over each field, such as ptemperature>28◦F ∧ ptemperature<35◦F .

Thus, many challenges related to developing algorithms and operators that support

multiple queries and representations of ST fields in a stream query operator framework

remain as directions for future research.
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APPENDIX A

ACRONYMS

ADT Abstract Data Type.

ANN Aggregate Nearest Neighbor.

BF Breadth-First.

CPU Central Processing Unit.

CQL Continuous Query Language.

CST Cylindrical Shell Template.

DAG Directed, Acyclic Graph.

DBMS Database Management System.

DSE Data Stream Engine.

ESTDM Event oriented Spatio-Temporal Data Model.

GIS Geographic Information System.

GPS Global Positioning System.

GPU Graphics Processing Unit.

IC Interpolation Center.

IDW Inverse Distance Weighting.

ITC Isotropic Time Cell.
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K K = 1024.

kNN k-Nearest Neighbors.

NN Nearest Neighbors.

NRMSE Normalized Root Mean Square Error.

NST Nested Shell Template.

RDBMS Relational Database Management System.

RMSE Root Mean Square Error.

SDBMS Spatial Database Management System.

SL Scan Line.

SQL Structured Query Language.

ST Spatio-Temporal.

ST ak-Shell ST Adaptive k-Shell.

ST field Spatio-Temporal Field.

ST grid index Sliding Spatio-Temporal Grid Index.

ST Shell ST Shell Approach.

ST-DBMS Spatio-Temporal Database Management System.

ST-IDW Spatio-Temporal Inverse Distance Weighting.

STI-SQO framework ST Interpolation Stream Query Operator Framework.

STP-SQO framework ST Predicate Stream Query Operator Framework.
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TIN Triangulated Irregular Network.

VOC Volatile Organic Compounds.
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APPENDIX B

PSEUDOCODE FOR STI-SQO FRAMEWORK

Algorithm 1 Index Loader
1: inputTuples← a queue of ST sensor observation tuples from the InputAdapter
2: inputT imeBlocks← a queue of empty time blocks from IndexRecycler
3: outputT imeBlocks← a queue filled time blocks to IndexManager
4: currentT imeBlock ← inputT imeBlocks.dequeue();
5: while true do
6: tuple← inputTuples.dequeue()
7: while true do
8: if Timestamp of tuple is in currentT imeBlock then
9: Insert tuple in ST grid index contained in currentT imeBlock

10: break
11: else
12: . Output the current time block and set currentT imeBlock equal to the

next time block
13: outputT imeBlocks.enqueue(currentT imeBlock)
14: currentT imeBlock ← inputT imeBlocks.dequeue()

Algorithm 2 Index Manager
1: inputT imeBlocks← a queue of filled time blocks from IndexLoader
2: outputT imeBlocks← a queue of expired time blocks to the IndexRecycler
3: recyclerOutput← a queue of time blocks cleared by the IndexRecycler
4: Initialize stGridIndex as 1D array of subblocks
5: Initialize recyclerOutput with desired number of TimeBlocks
6: while true do
7: nextT imeBlock ← inputT imeBlocks.dequeue()
8: Wait for InterpolationManager to finish
9: if stGridIndex contains a full window then

10: expiredT imeBlock ← oldest time block in stGridIndex
11: outputT imeBlocks.enqueue(expiredT imeBlock)

12: Add nextT imeBlock to stGridIndex
13: if stGridIndex contains a full window then
14: Tell InterpolationManager to begin interpolation for the next window
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Algorithm 3 Interpolation Manager
1: numCellInterpolators← the number of cell interpolators
2: outputCellsToInterpolators
3: windowStart← start of current window from IndexManager
4: while true do
5: Wait for all GridCellInterpolators to finish
6: Tell IndexManager that interpolation is finished
7: Wait for GridIndex to have all time blocks in window
8: for all GridCells with time == InterpolationCenter + windowStart do
9: Enqueue each grid cell in outputCellsToInterpolators

10: for n in [0, numCellInterpolators) do
11: Enqueue windowEndMarker in outputCellsToInterpolators

12: Start all GridCellInterpolators
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Algorithm 4 Grid Cell Interpolator (Abstract Class)
1: interpolationCenter
2: anisotropyRatio
3: inputCellsToInterpolate
4: outputInterpolatedCells
5: stGrid← stGridIndex
6: while true do
7: Wait for start message from InterpolationManager
8: while true do
9: cellToInterpolate← inputCellsToInterpolate.dequeue()

10: if cellToInterpolate is not windowEndMarker then
11: InterpolatedGridCell← interpolateGridCell(cellToInterpolate)
12: outputInterpolatedCells.enqueue(InterpolatedGridCell)
13: else
14: break
15: Tell InterpolationManager finished interpolating window
16: function stDistanceBetween(gridCell, tuple, snapshotT ime)
17: spatialDist←
18: haversineDistInDeg(gridCell.lat(), gridCell.lon(), tuple.x(), tuple.y())
19: studyDiag ← diagonal of study area in degrees
20: gridDiag ← diagonal of output grid in grid cells
21: temporalDist← 1/anisotropyRatio
22: temporalDist← temporalDistance ∗ (studyDiag/gridDiag)
23: temporalDist← temporalDistance ∗ (gridCell.time− tuple.time)
24: return sqrt(spatialDist ∗ spatialDist + temporalDist ∗ temporalDist)

25: function updateCalc(gridCelli, tupleList)
26: for all tuple in tupleList do
27: tupleCount← tupleCount + 1
28: distance← stDistanceBetween(gridCelli, tuple, snapshotT ime)
29: weightedDistance← distance ̂ p
30: numerator ← numerator + weightedDistance× tuple.getV alue()
31: denominator ← denominator + weightedDistance
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Algorithm 5 Subclass of Grid Cell Interpolator: ST Shell
1: function InterpolateGridCell(gridCell)
2: x← gridCell.getX()
3: y ← gridCell.getX()
4: numerator ← 0
5: denominator ← 0
6: tupleCount← 0
7: u← noDataCode
8: stGrid← stGridIndex
9: for all cell c in CST do

10: updateCalc(gridCell, stGrid.getTuplesInWindow(x + c.x, y + c.y))
11: updateCalc(gridCell, stGrid.getTuplesInWindow(x− c.x, y + c.y))
12: updateCalc(gridCell, stGrid.getTuplesInWindow(x− c.x, y − c.y))
13: updateCalc(gridCell, stGrid.getTuplesInWindow(x + c.x, y − c.y))

14: if tupleCount > 0 and denominator! = 0 then
15: u← numerator/denominator

16: gridCell.setV alue(u)
17: return gridCell

Algorithm 6 Subclass of Grid Cell Interpolator: ST ak-Shell
1: function InterpolateGridCell(gridCell)
2: x← gridCell.getX()
3: y ← gridCell.getX()
4: t← snapshotT ime
5: numerator ← 0
6: denominator ← 0
7: tupleCount← 0
8: u← noDataCode
9: for all Shell s in NST do

10: for all Cell c in s.list do
11: for all Eight +/- sign combinations c.x, c.y, and c.t do
12: x2← ±c.x + x
13: y2← ±c.y + y
14: t2← ±c.t + t
15: tuples←stGrid.getTuplesInIsoTimeCell(x2, y2, t2)
16: updateCalc(gridCell, tuples)
17: if tupleCount >= k then
18: break
19: if tupleCount > 0 and denominator! = 0 then
20: u← numerator/denominator

21: gridCell.setV alue(u)
22: return gridCell

173



APPENDIX C

PSEUDOCODE FOR STP-SQO FRAMEWORK

Algorithm 7 Naïve
1: outputInterpolatedCells← stream of all interpolated raster cells
2: output← stream output queue for filtered cells
3: while true do
4: cellToTest← outputInterpolatedCells.dequeue()
5: if cellToTest is windowEndMarker or cellToTest satisfies predicate then
6: output.put(cellToTest)

Algorithm 8 Tile-based
1: windowTuples← tuples in window
2: predicate← value predicate
3: seedTuples← filter(windowTuples, predicate)
4: seedCells← set of cells having seeds
5: seedT iles← set of tiles having seed cells
6: cellsToInterpolate← set of all cells contained within seedTiles
7: output← stream output queue for filtered cells
8:
9: for all cell in CellsToInterpolate do

10: InterpolatedGridCell← interpolateGridCell(cellToInterpolate)
11: if InterpolatedGridCell satisfies predicate then
12: output.put(InterpolatedGridCell)
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Algorithm 9 Phenomenon-Aware
1: windowTuples← tuples in window
2: predicate← value predicate
3: interpolatedCells← interpolated cells from previous window
4: seedTuples← filter(windowTuples, predicate)
5: seedCells← set of cells having seeds
6: seedT iles← set of tiles having seed cells
7: interiorT iles←
8: exteriorT iles←
9: boundaryT iles←

10: noDataT iles←
11: tilesToNotExpand← (interiorT iles ∪ boundaryT iles) ∩ seedT iles
12: tilesToExpand← (ExteriorT iles ∪ noDataT iles) ∩ seedT iles
13: expandedT iles← expand(tilesToExpand)
14: tilesToInterpolate← tilesToNotExpand ∪ expandedT iles
15: cellsToInterpolate← set of all cells in tilesToInterpolate
16:
17: for all cell in CellsToInterpolate do
18: InterpolatedGridCell← interpolateGridCell(cellToInterpolate)
19: if InterpolatedGridCell satisfies predicate then
20: output.put(InterpolatedGridCell)

Algorithm 10 Region Growing (Abstract Class)
1: width← width of output grid
2: height← height of output grid
3: windowTuples← tuples in window
4: output← stream output queue
5: predicate← value predicate
6: seedTuples← filter(windowTuples, predicate)
7: seedCells← set of cells having seeds
8: queueMask array(width ∗ height)← false
9:

10: for all seedCell in seedCells do
11: growRegion(seedCell, output)
12:
13: function growRegion(seedCell, output)
14: function hasAlreadyBeenQueued(gridCell)
15: index← gridCell.x ∗ width + gridCell.y
16: return queueMask[index]

17: function setAlreadyBeenQueued(gridCell)
18: index← gridCell.x ∗ width + gridCell.y
19: queueMask[index]← true
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Algorithm 11 Subclass of Region Growing: Breadth-First Region Growing
1: function growRegion(seedCell, output)
2: if hasAlreadyBeenQueued(seedCell) then
3: return
4: setHasAlreadyBeenQueued(seedCell)
5: regionQueue← new Queue
6: regionQueue.enqueue(seedCell)
7: while regionQueue is not empty do
8: cellToInterpolate← regionQueue.dequeue()
9: value← interpolateGridCell(cellToInterpolate)

10: if value satisfies predicate then
11: output.put(cell and value)
12: neighboringCells← NSEW neighbors of cellToInterpolate
13: for all neighbor in neighboringCells do
14: if ¬ hasAlreadyBeenQueued(neighbor) then
15: setHasAlreadyBeenQueued(neighbor)
16: regionQueue.enqueue(neighbor)
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Algorithm 12 Subclass of Region Growing: ScanLine Region Growing
1: function growRegion(seedCell, output)
2: if hasAlreadyBeenQueued(seedCell) then
3: return
4: setHasAlreadyBeenQueued(seedCell)
5: regionQueue← new Queue, spanQueue← new Queue, isSeed ← true
6: spanQueue.enqueue(generateSpan(seedCell.y,seedCell.x,seedCell.x))
7: while spanQueue is not empty do
8: span← spanQueue.dequeue()
9: leftIndex← NULL, rightIndex← NULL

10: cellsInSpan← all cells in span from span.l to span.r
11: regionQueue.enqueue(cellsInSpan)
12: while regionQueue is not empty do . Move right
13: cellToInterpolate← regionQueue.dequeue()
14: value← interpolateGridCell(cellToInterpolate)
15: if value satisfies predicate then
16: output.put(cell and value)
17: rightIndex← cellToInterpolate.x
18: if leftIndex is NULL then leftIndex← cellToInterpolate.x

19: nextCell← right neighbor of cellToInterpolate
20: if ¬ hasAlreadyBeenQueued(nextCell) then
21: regionQueue.enqueue(nextCell)
22: setHasAlreadyBeenQueued(nextCell)
23: else
24: if isSeed then return
25: isSeed← false
26: nextCell← left neighbor of span.l . Prepare to Move left
27: if ¬ hasAlreadyBeenQueued(nextCell) then
28: regionQueue.enqueue(nextCell)
29: while regionQueue is not empty do . Move left
30: cellToInterpolate← regionQueue.dequeue()
31: value← interpolateGridCell(cellToInterpolate)
32: if value satisfies predicate then
33: output.put(cell and value)
34: leftIndex← cellToInterpolate.x
35: if rightIndex is NULL then rightIndex← cellToInterpolate.x

36: nextCell← left neighbor of cellToInterpolate
37: if ¬ hasAlreadyBeenQueued(neighbor) then
38: regionQueue.enqueue(nextCell)
39: setHasAlreadyBeenQueued(nextCell)
40: if leftIndex is not NULL then
41: spanQueue.enqueue(generateSpan(y + 1, leftIndex, rightIndex + 1))
42: spanQueue.enqueue(generateSpan(y − 1, leftIndex, rightIndex + 1))
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Algorithm 13 Scan Line Span
1: function generateSpan(y,leftIndex,rightIndex)
2: spanStarted← false
3: spanLeft, spanRight
4: for i from leftIndex to rightIndex do
5: if ¬ hasAlreadyBeenQueued(gridCell(i,y)) then
6: if ¬ spanStarted then
7: spanStarted← true
8: spanLeft← i

9: spanRight← i
10: setHasAlreadyBeenQueued(gridCell(i,y))

return span(y, spanLeft , spanRight)
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