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Similarity or distance measures between data objects are applied frequently in many 

fields or domains such as geography, environmental science, biology, economics, 

computer science, linguistics, logic, business analytics, and statistics, among others. One 

area where similarity measures are particularly important is in the analysis of 

spatiotemporal event sequences and associated environs or settings. This dissertation 

focuses on developing a framework of modeling, representation, and new similarity 

measure construction for sequences of spatiotemporal events and corresponding settings, 

which can be applied to different event data types and used in different areas of data 

science. 

The first core part of this dissertation presents a matrix-based spatiotemporal event 

sequence representation that unifies punctual and interval-based representation of events. 

This framework supports different event data types and provides support for data mining 

and sequence classification and clustering. The similarity measure is based on the modified 

Jaccard index with temporal order constraints and accommodates different event data 

types. This approach is demonstrated through simulated data examples and the 



 

 

performance of the similarity measures is evaluated with a k-nearest neighbor algorithm 

(k-NN) classification test on synthetic datasets. These similarity measures are incorporated 

into a clustering method and successfully demonstrate the usefulness in a case study 

analysis of event sequences extracted from space time series of a water quality monitoring 

system. 

This dissertation further proposes a new similarity measure for event setting 

sequences, which involve the space and time in which events occur. While similarity 

measures for spatiotemporal event sequences have been studied, the settings and setting 

sequences have not yet been considered. While modeling event setting sequences, spatial 

and temporal scales are considered to define the bounds of the setting and incorporate 

dynamic variables along with static variables. Using a matrix-based representation and an 

extended Jaccard index, new similarity measures are developed to allow for the use of all 

variable data types. With these similarity measures coupled with other multivariate 

statistical analysis approaches, results from a case study involving setting sequences and 

pollution event sequences associated with the same monitoring stations, support the 

hypothesis that more similar spatial-temporal settings or setting sequences may generate 

more similar events or event sequences. 

To test the scalability of STES similarity measure in a larger dataset and an 

extended application in different fields, this dissertation compares and contrasts the 

prospective space-time scan statistic with the STES similarity approach for identifying 

COVID-19 hotspots. The COVID-19 pandemic has highlighted the importance of 

detecting hotspots or clusters of COVID-19 to provide decision makers at various levels 

with better information for managing distribution of human and technical resources as the 



 

 

outbreak in the USA continues to grow. The prospective space-time scan statistic has been 

used to help identify emerging disease clusters yet results from this approach can encounter 

strategic limitations imposed by the spatial constraints of the scanning window. The STES-

based approach adapted for this pandemic context computes the similarity of evolving 

normalized COVID-19 daily cases by county and clusters these to identify counties with 

similarly evolving COVID-19 case histories. This dissertation analyzes the spread of 

COVID-19 within the continental US through four periods beginning from late January 

2020 using the COVID-19 datasets maintained by John Hopkins University, Center for 

Systems Science and Engineering (CSSE). Results of the two approaches can complement 

with each other and taken together can aid in tracking the progression of the pandemic. 

Overall, the dissertation highlights the importance of developing similarity 

measures for analyzing spatiotemporal event sequences and associated settings, which can 

be applied to different event data types and used for data mining, sequence classification, 

and clustering.  
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CHAPTER 1 

INTRODUCTION 

 

The analysis of spatial-temporal data important to many fields, including 

environmental science, transportation, climate, ecology, and economics. Spatial-temporal 

data can be extracted and represented by event sequences or trajectory data, which can be 

further used to identify meaningful patterns and relationships between different events or 

event sequences. Several spatial-temporal analyses rely on the development of efficient 

and effective similarity measures to compare and cluster the event sequences or 

trajectories. In addition, the analysis of corresponding event settings, which are places and 

related influencing factors in which events occur, can facilitate insights into how events 

evolve. Similarity measures between sequences of event settings provides contextual 

information that allows researchers to compare and analyze the similarity of different event 

sequences in a standardized and quantitative way. The combination of event sequence 

similarity and setting similarity metrics offers an expanded approach for variety of fields 

where researchers need to analyze event sequences that occur in space and time, such as 

sociology, criminology, and public health, along with ecology, biology, and many others. 

 

1.1.  Motivation 

Wireless sensor networks (WSN) and other traditional well-established monitoring 

systems in many fields have been generating large volumes of time series data, and thus 

there is an increased need for more efficient processing and management of such data.  

Examples include habitat monitoring (Mainwaring et al., 2002), environmental monitoring 



2 

 

for air pollution, water quality, and weather forecasting (Nittel, 2009; Oliveira and 

Rodrigues, 2011; Othman and Shazali, 2012), active volcano monitoring (Werner-Allen et 

al., 2006), security monitoring (Bartariya and Rastogi, 2016), spatiotemporal risk 

assessment through monitoring urban hazard events (Wang et al., 2016b), and near real 

time disaster monitoring (Hu, 2016), etc. The information in a time series is not all of equal 

value.  Assuming a time series represents some underlying process, various changes in the 

time series can indicate changes of state or effectively “events” that signal some 

information worthy of greater attention (Beard et al., 2008; Beard et al., 2011; Fu, 2011; 

Rude and Beard, 2012). Extracting “events” from time series thus corresponds to the 

identification of important changes of state (Andrienko et al., 2010). When the sensor 

systems are distributed in space, the set of time series and events from the sensor locations 

can convey information on changes of state in a spatiotemporal process.  

All events inherently have the context of location and time, or spatial and temporal 

attributes. Many events of interest, particularly abnormal events, such as fraud transactions 

in banking activities, earthquakes, outbreaks of diseases, air and water pollution, and forest 

fires, have tremendous impact on our everyday lives, the environment in which we live, 

and many require critical decision making by various organizations, communities, and 

business sectors. Many events interact with each other and show certain spatiotemporal 

patterns which may lead us to better understand the mechanisms behind them. Therefore, 

it is very important for scientists to be able to quickly and efficiently detect events, event 

patterns and their relationships that are critical in specific domains.  

The challenges created by massive event data volumes of different sources and 

complex relations between events, require quick, efficient and effective approaches for 
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knowledge discovery. In addition, in many domains, pattern-based knowledge or 

spatiotemporal context information is explicitly needed. Research in spatial epidemiology, 

for example, has been increasing rapidly in the past twenty years with the introduction of 

spatial and spatiotemporal hierarchical models (Banerjee et al., 2014; Elliot et al., 2000; 

Elliott and Wartenberg, 2004). By monitoring epidemic outbreaks based on reported 

disease data and characterization of disease spread patterns, spatial epidemiology can 

provide epidemic spread characterization and alerts to the public. Big data analytics tools 

for real time processing systems are increasingly needed across a wide range of domains 

(Dutta and Jayapal, 2015). Event-based analytics contribute to analysis and refinement of 

hypotheses about what happens in a specific time period or in a specific region. Quick and 

flexible detection of event data and event sequence analysis are of special interest to many 

users and experienced analysts as they provide information for further aggregation, 

visualization, and analysis. Event or event sequence pattern-based knowledge can serve as 

a strong basis for decision making. 

Spatiotemporal event sequences (STES) are temporally ordered events of one or 

different types distributed over space. Awareness of the similarities between these event 

sequences can be important for many fields and organizations because many situations, 

operations, and activities are rich in different events that follow a sequential or certain 

order. With the appropriate methods and tools, we can compute pairwise similarities 

between event sequences and detect some patterns or rules of interest or importance in 

event datasets so that we can make certain predictions or recommendations for business 

operations and environmental monitoring based on detected similar event sequences. 

Examples of event sequence-based data can be found in medical records, traffic incident 
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data, historical and biographical data, administrative process data (Vrotsou and Forsell, 

2011), telecommunications data, web access data (Mannila and Salmenkivi, 2001),  and 

environmental monitoring data (Cardell-Oliver et al., 2004; Padhy et al., 2005). 

While discovering patterns from event sequences is important, there are many 

application domains that require understanding the event settings or contextual factors. For 

instance, spatial context strongly influences the transport disadvantage that in turn affects 

social exclusion and well-being (Delbosc and Currie, 2011). In a travel behavior research, 

spatial context is strongly related to the household travel patterns in an international scale 

(Timmermans et al., 2003). A person’s health-related problems are strongly affected by 

different types of spatial context, such as environmental exposures (Cutter, 1996; Roux 

and Mair, 2010), social environment (characteristics of communities and neighborhoods) 

(Roux and Mair, 2010; Sampson, 2003), and ease of access to health services (Yang et al., 

2006). Spatial context greatly influences the potential of getting a disease, the adoption of 

healthy lifestyle, and the ease of access to medical services for disease diagnosis and 

treatment. Consideration of the spatial event settings and different types of contextual 

variables is of particular importance in ecology and environmental  application areas 

(Vanderbilt et al., 2015).  Therefore, it is also important to further study the representations 

and similarity measures of event settings when comparing the similarity or distance 

measures between spatiotemporal event sequences.  

We are also motivated by a case study on investigation and monitoring of impaired 

coastal water quality conditions. Impaired water quality can be viewed as episodic events 

triggered by the occurrence of heavy rainfall, harmful algal blooms, wastewater treatment 

facility malfunctions, etc. These episodic events in impaired water quality can in turn 
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trigger management events such as closures of shellfish growing areas and posting of beach 

advisories. The case study setting for this thesis is aimed at improving our understanding 

of the spatial and temporal dynamics of fecal pollution events in Maine coastal waters. The 

relationship between fecal pollution and other spatiotemporal events along the coastal 

region is not well understood. We envision an integrated conceptual framework and 

eventually a pipeline for extracting event sequence data from time series whether as 

incoming data streams from WSN or other mobile devices or from historical databases. 

While identification of specific events as higher-level abstractions of time series is useful, 

the central data object of interest in this research is a spatial temporal event sequence.  

 

1.2.   Research Setting and Problems of Interest 

1.2.1.    Research Setting 

Spatiotemporal event sequences (STES), as understood for this thesis, are temporally 

ordered events of one or more different event types collected from fixed locations in space 

as illustrated in Figure 1.1. Wireless sensor network (WSN) or other monitoring systems 

with sensors deployed regularly or irregularly in geographic space provide the problem 

setting. Each WSN node or platform can have many sensors measuring different variables 

and producing a time series on each variable, which we refer to as a space-time series. 

Abstracting these space-time series to event sequences leads to on-going production of 

STES at each monitoring station. Collectively we can imagine the STES at monitoring 

stations forming a field of event sequences of a type related to each observed variable. This 

conceptualization of STES differs from other types of event sequences such as genomic 

sequences (Darling et al., 2004), industrial process monitoring sequences (Maurya et al., 

2007), patient symptom sequences (Tao et al., 2012) or consumer purchasing sequences 
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(Prinzie and Van den Poel, 2011) in that STES  derive from specific fixed geospatial 

locations.  

Within this setting, we can view an individual STES or the collection of STES across 

a set of monitoring stations as reflecting an evolving underlying process (Yang et al., 2014).  

  

 

 

 

In other words, an STES is viewed as a data abstraction representing a realization of a 

process. For example, we could say a precipitation event sequence observed at station S1 

(Figure 1.1) represents a local realization of a meteorological process.  

Extending Tobler’s first law of geography, often interpreted as values near-by in 

space being more similar than values which are more distant, this thesis proposes to 

examine the following general scientific questions: Are processes that are occurring near-

by in space more similar than those occurring at a distance? and Are processes that occur 

in similar spatial settings more similar than those that occur in less similar spatial settings?  

We propose to investigate these questions of process similarity through an examination of 

STES similarity. To this end, the thesis proposes to develop a suite of analytical approaches 

for similarity assessment of STES that takes into consideration the temporal, thematic, and 

Figure 1.1. Thesis problem setting. (A) An example of fixed locations of interest or 

observation sites distributed along the coast. (B) An example of a spatiotemporal event 

sequence extracted from a spatial time series of precipitation with the threshold of ≥1.0 

inch/24hr. Red bars stand for individual events. The sequence consists of the events along 

with the interval spacing between events. 

A 

B 
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spatial dimensions of the STES.  Direct questions to be examined are: Do STES (obtained 

from monitoring stations) that are closer in space tend to be more similar temporally and 

thematically? Do STES (obtained from monitoring stations) that have similar spatial 

setting, or a similar collection of contextual parameters tend to be more similar than STES 

from less similar spatial settings? 

 

1.2.2    Problems of Interest 

This study is not just about events in isolation which are of interest but the sequence 

and pattern of their occurrences (the interval spacing between events) in conjunction with 

their patterns of occurrence in space. We seek to discover and understand patterns in these 

event sequences. This study considers the problem of comparing the similarity between 

sequences of events obtained at fixed spatial locations such as the situation in WSN. The 

goal of the study is to develop a suite of analytical approaches for similarity assessment of 

spatial temporal event sequences and corresponding spatial event setting parameters that 

supports discovery of process interactions.  

In this dissertation, we propose a new similarity measure for spatial-temporal event 

sequences and investigate its scalability and effectiveness in comparison to other existing 

methods. Additionally, we explore the development of similarity measures for 

spatiotemporal setting sequences and conduct a case study to compare its performance with 

event sequence similarity. 

We propose to first examine the temporal and thematic similarity between STES at 

locations as depicted in Figure 1.1. Since each sequence is associated with a location, the 

similarity metric provides the basis for similarity assessment across locations. i.e., we have 
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a measure of how similar location S1 is to S2 in terms of their sequences as illustrated in 

Figure 1.2. While we might expect event sequences, generated from locations that are close 

in space, to be similar, we also want to consider and test the possibility that event sequence 

similarity may not be just a function of spatial proximity but of spatial setting similarity.  

We address spatial similarity further through development of a spatial setting similarity 

metric (Figure 1.2). We investigate the spatial setting similarity of monitoring stations in 

terms of both static and dynamic variables. The variables for consideration are domain 

dependent. For a water quality monitoring application, for example, the static spatial setting 

variables of interest could include land cover, topography, and soils. What constitutes a 

spatial setting has scale implications. A setting is envisioned as some area of influence 

around a monitoring station with different sizes, or configurations of these settings 

dependent on the analysis domain and objective. 

 

 

 

 

Figure 1.2. Illustration of different types of similarity measures covered in Chapter 3 and 4. 

Chapter 3 sets up basis for examining the temporal and thematic similarity between event 

sequences for fixed locations (S1, S2, …, Sn). Chapter 4 examines the similarity between 

spatial settings or contextual parameters of corresponding fixed locations.  
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There has been substantial research on methods for measuring similarity between 

event sequences (Gundersen, 2012; Mannila and Moen, 1999; Mannila and Ronkainen, 

1997; Obweger et al., 2010; Wongsuphasawat et al., 2012). However, to date, this event 

sequence analysis research has not addressed event sequence similarity in a spatial setting 

without considering contextual factors. In addition, there exist many important issues that 

need to be solved in current available similarity measures for event sequences such as high 

computational expense, difficulty of handling different types of events occurring at the 

same timestamp within one sequence, and consideration of both point and interval events. 

This thesis aims to address these gaps.  

The identified problem setting also differs from previous event sequence similarity 

research.  The context for most sequence similarity problems has generally been posed as 

a database query problem where a target event sequence is compared against a (potentially 

very large) database of event sequences to find the closest match or k matches. For the 

problem setting of this thesis, we assume a set of STES associated with some geographic 

region and the problem is to determine measures of similarity between this fixed set. We 

propose a matrix data structure for this problem setting as a fast and efficient method for 

computing STES similarity. We adopt a matrix structure for first computing the temporal 

and thematic similarity between STES. Similarly, a matrix data structure will be applied to 

compute a multivariate similarity measure for spatial setting similarity. In a third extension 

of the matrix structure, we propose to apply it to a multivariate sequence setting. 

With the development of these similarity measures, the thesis aims to address the 

following research questions:  
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1. Given a set of STES composed of either point events or interval events, how 

similar are these sequences in space and time?  

2. Given a set of Event Settings represented by a group of static variables and the 

other group of dynamic variables over time, how similar are these sequences of 

Event Settings in space? 

3. Are similar STES correlated with similar sequences of spatial settings? 

4. How well are these similarity measures for STES and sequences of spatial 

settings fit into existing clustering methods (or classification and data mining, 

etc.)? And, can these results from clustering methods be validated with ground 

truth dataset? 

 

1.3.   Research Contributions 

The main purpose of this dissertation research is to develop more effective and more 

efficient similarity measures of ST-event sequences and corresponding spatial settings. The 

expected contributions are as follows: 

1. Novel approaches of measuring similarities suitable for STES of both point and 

interval events with the option of considering quantitative levels of individual 

events and filling the gap for investigating the similarities between STES of 

different types of events. 

2. Efficient and faster matrix-based similarity measures for STES of different types 

of events compared to existing similarity measures. 

3. Proposed the concept of “Setting Sequences” or “Sequences of Spatial-temporal 

Settings”: Setting sequences refer to the ordered list of event settings that events 

occur over time, corresponding to STES. Setting sequences can be used to 
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analyze the context in which events occur and can provide insights into how the 

environment influences events. 

4. Formalization of how to quantify spatial setting or contextual variables of 

corresponding STES of interest and set-up of guidelines for selecting parameters 

of spatial settings. 

5. Expected better or complementary results of classification and clustering 

analysis from STES datasets of real world compared with using existing 

methods. 

6. Novel approach of combining similarity measures of both STES of interest and 

corresponding spatial context for knowledge discovery from STES datasets. 

1.4.   Intended Audience 

The intended audience of this dissertation primarily includes researchers, application 

system developers, environmentalists, and decision makers from business sectors and 

government organizations who are interested in studying spatiotemporal information from 

event sequences.  

The audience also covers researchers from the fields of computer science whose 

research focus on semantics, formal spatial models, and computational algorithms. 

 

1.5.   Organization of the Remaining Chapters 

The remaining chapters of this dissertation are organized as follows. Chapter 2 gives 

a brief review and background information on events and event sequences and in particular 

emphasizes sequence similarity measures and roles of corresponding spatial context and 

setting. Chapter 3 defines primitive ST-events in a spatiotemporal setting, demonstrates 
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how to construct spatiotemporal event sequences (STES) from spatial time series, and 

develops a generic method to compute similarity between STES of different types of 

events. This chapter also set up a solid foundation for calculating similarity between STES 

from different data types.  Chapter 4 extends the sequence similarity measures from 

Chapter 3 to address spatial settings and contextual variables in a quantitative sense for 

event sequences and proposes a similarity measure for event setting sequences that 

incorporates dynamic variables alongside static variables. This chapter also aligns the 

similarity metric development with a case study involving setting sequences and pollution 

event sequences associated with the same monitoring stations. This case study supports the 

hypothesis that more similar spatial-temporal settings or setting sequences may generate 

more similar events or event sequences.  Chapter 5 explores the scalability and extended 

application of STES similarity measures developed in Chapter 3 through a case study of 

COVID-19 surveillance based on clustering results and evaluates its advantages with a 

well-established space-time scan statistic approach. Chapter 6 summarizes the studies 

conducted in this dissertation and discusses some future directions.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter reviews state of the art in areas starting with basic concepts related to 

events, event sequences, event patterns, and event processing or event-based analytics.  It 

introduces concepts of events, settings, contexts, and their sequences. It further reviews 

related work on similarity measures between sequences and their applications.  

 

2.1.   Event, Setting and Context 

The following event concepts and terms are synthesized from the literature and presented 

here to clarify terms used throughout the remainder of the thesis. 

Concepts of event: There exist many definitions for events in different domains 

and events have been defined and described in numerous research papers. By the definition 

in the Merriam-Webster dictionary, an event is an occurrence, “something that happens or 

a noteworthy happening”. Within the area of computer science, events and their properties 

have been defined differently by different researchers. Some researchers (Gehani et al., 

1992) consider events as happening “instantaneously at specific points in time.” An event 

can be defined as anything that happened or is contemplated as happening with a significant 

change of state (Luckham and Schulte, 2011) or some detectable condition (Gunderson 

2012). Luckham et al. have also defined an event as an object that is a record of an activity 

or an occurrence of significance in a system (Luckham, 2016; Luckham, 2001; Luckham 

and Frasca, 1998). Chandy & Schulte (2010) define events as any occurrences over space 

and time. For example, disease outbreaks in a region, earthquakes and value changes in 

sensors at monitoring stations can be considered as events. In addition, events can be 
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defined as either real or abstract, i.e. not occurring  in a physical world and only modeled, 

imagined or simulated as virtual events (Luckham and Schulte, 2011). In an event-based 

system, (Obweger 2009) defines an event as any notable state change. Any event by its 

nature has space and time dimensions either explicitly or implicitly. In this thesis we take 

the definition of an event as a significant change of status specified by the users or experts 

in a specific domain. 

Events are assumed to have attributes or properties which can include an assigned 

event type or a more detailed set of information that describes the state change. An event 

type is a class of event objects (Luckham and Schulte, 2011). (Luckham and Schulte, 2011; 

Luckham, 2001). Event type classifies the structure and properties of an event. It 

emphasizes the essential factors that uniquely identify the occurrence of an event of that 

type (Paschke and Boley, 2009).  An event instance (also known as event object, event 

individual, and raw event) is a concrete instantiation of an event type. Event instances can 

have attributes of a timestamp or duration, spatial location, as well as attributes specific to 

the event type. 

Spatial-Temporal Events: Spatial-temporal events are events that occur in a 

particular location and time. These events are described using spatial and temporal 

attributes, such as latitude, longitude, altitude, time, and duration. Spatial-temporal events 

can be used to represent various phenomena such as weather patterns, disease outbreaks, 

and transportation routes. 

Primitive event: A primitive event (also known as simple event or atomic event) 

is defined as an instantaneous and significant occurrence of a thing, emphasizing the 

indivisible property as a lowest level of event. A primitive or simple event is an event that 
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is not viewed as summarizing, representing, or denoting a set of other events (Luckham 

and Schulte, 2011). 

Complex event and composite event: A complex event can be defined as an event 

that summarizes, represents, or denotes a set of other events (Luckham and Schulte, 2011). 

A complex event is composed or derived from atomic or other complex events, and the 

included events are called components (Paschke and Boley, 2009). A composite event is 

derived from a complex event that is created by combining base events using a specific set 

of event algebra or constructors like disjunctions, conjunctions, sequences. So, a composite 

event is also known as a compound event. 

 Event sequence: There are many definitions of event sequences or “sequences of 

events”. Event sequences can refer to either sequences of event instances or sequences of 

event types depending on the specific context. In this thesis we borrow an event sequence 

definition from (Moen, 2000), as an ordered collection of events from a finite set of event 

types, with each event of the sequence having an occurrence time.  An event sequence can 

thus be denoted as (𝑒𝑖, 𝑡𝑖), where 𝑖 = 1, . . . , 𝑛, and for each i, 𝑒𝑖  ∈  𝐸 is an event type and 

ti is the occurrence time. Event sequences can be analyzed using various techniques such 

as pattern mining and clustering to identify patterns and trends. In this thesis we consider 

sequences of event instances of the same type unless otherwise specified. 

Event Settings: An event setting is a type of geographic context that describes the 

physical and social environment in which an event takes place (Worboys, 2005; Worboys 

and Hornsby, 2004). Event settings can be described using various attributes such as 

location, time, and social environment. Event settings can influence the perception and 
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interpretation of events and can be used to provide additional context and meaning to 

events. According to there are three key components that define an event setting:  

Spatial extent: This refers to the physical boundaries of the setting, which can range 

from very small (e.g., a single room) to very large (e.g., a city or region). 

Temporal extent: This refers to the duration of the event setting, which can range 

from a few seconds (e.g., a car accident) to many years (e.g., the lifespan of a city). 

Social context: This refers to the social and cultural factors that shape the event 

setting, including the people, institutions, and practices that are present in the setting. 

Worboys and Hornsby argue that understanding event settings is important for a 

range of applications in GIScience, including emergency response, urban planning, and 

cultural heritage management. By analyzing the spatial and temporal characteristics of 

event settings, researchers can gain insights into how people interact with their 

environment and how events are shaped by social and cultural factors.  

Contextual Factors or Contexts: Contextual factors refer to the various factors 

that influence the perception and interpretation of events. Contextual factors can include 

social, cultural, and historical factors that shape the way events are perceived and 

understood. Contextual factors can be used to provide additional context and meaning to 

events and can help to explain why events occur. 

 

2.2.   Event detection and pattern discovery  

Primitive or simple event extraction or detection can be grouped into three categories 

according to different event abstraction functions: 1) threshold-based approaches (Abadi 

et al., 2016) in which an event is regarded to occur when sensor readings exceed some 
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predefined thresholds, 2) pattern-based approaches (Hogenboom et al., 2016) in which an 

event is represented as spatiotemporal patterns and event detection is performed using 

pattern matching techniques; and 3) learning-based approaches (Wang et al., 2016a) in 

which selected modeling methods are used to model spatiotemporal dependencies of sensor 

data and make probabilistic inference about events.  

 Event pattern discovery is the process of identifying novel relationships between 

events. These relationships can be temporal, spatial, and causal, etc. Event pattern 

discovery has been used to identify sequences of event types in a specific domain (Hasan 

et al., 2015). 

 

2.3.   Similarity between event sequences 

Similarity is an important concept in many research areas including biology, computer 

science, linguistics, logic, mathematics, philosophy and statistics (Moen, 2000). Similarity 

or distance measures between data objects form a basic building block for several 

computational tasks such as clustering, classification, and anomaly detection. Across 

difference fields, similarity or distance measures have a wide variety of definitions. A 

similarity metric measures how alike two data objects or sequences are, based on features 

of the objects.  Different similarity measures can reflect different facets of the data and no 

single similarity measure can capture all dimensions of the data or serve all purposes. 

Similarity is typically measured in the range 0 to 1 [0, 1] with 1 indicating complete 

similarity and 0 indicating complete dissimilarity.  Similarity measures are often defined 

in measures of distance where a high degree of similarity means a short separation distance, 
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and vice versa.  These distances measures are expected to satisfy a set of mathematical 

conditions: 

Given a set of objects 𝑂 for all 𝑎, 𝑏, 𝑐 belonging to 𝑂  

Not negative: 𝑑(𝑎, 𝑏)  ≥  0 and 𝑑(𝑎, 𝑏)  =  0 if and only if  𝑎 = 𝑏 

Symmetric:  𝑑(𝑎, 𝑏)  =  𝑑(𝑏, 𝑎) 

Triangle inequality: 𝑑(𝑎, 𝑐)  ≤  𝑑(𝑎, 𝑏)  +  𝑑(𝑏, 𝑐) 

 

The main interest of this thesis is similarity metrics for event sequences. Substantial 

research exists on sequence similarity measures, but these measures depend very much on 

the type of sequence. Measures have been defined for numeric sequences and time series 

(Berndt and Clifford, 1994; Goldin and Kanellakis, 1995; Guralnik and Srivastava, 1999), 

text sequences (Levenshtein, 1966) and biological sequences (Smith and Waterman, 1981) 

but event sequences are notably different. 

Event sequences are a common form of data that can contain important knowledge to 

be discovered. Using event sequences is practical in many applications or scenarios, 

particularly those that aim to detect patterns in the occurrence of events or to retrieve past 

event sequences that are similar to a current one (Lupiani et al., 2013). A similarity measure 

is important for a variety of reasoning tasks used by many applications and data mining 

algorithms. Measuring similarity or distance between event sequences is a basic task for 

knowledge discovery from these temporally ordered or sequential event-based data in 

many domains. In the following sections, we review three main similarity measures for 

sequences that have been adapted to or apply to event sequences. 
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2.3.1.  Jaccard similarity  

To find the similarity measure between objects is to compare some metrics 

associated with these objects. The Jaccard similarity measure, originally proposed by Paul 

Jaccard (Jaccard, 1912; Leskovec et al., 2014; Niwattanakul et al., 2013) is one of the oldest 

similarity measures but one which still gets wide usage. This measure concerns the 

similarity between sets by looking at the relative size of their intersection. A set here refers 

to the mathematic term, which has no order and only a collection of elements, such as 

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. The sets  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and {{𝑒, 𝑏, 𝑑, 𝑐, 𝑎} are equivalent. The Jaccard 

similarity between two sets 𝑆1 and 𝑆2 is the ratio of the size of their intersection to the size 

of their union, which is given below: 

𝑠𝑖𝑚(𝑆1, 𝑆2) =
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
                                                                                 

Where, two vertical bars for a set represent the cardinality of the set, such as |S1|, |S2| which 

calculates the number of elements in S1 and S2. The intersection between two sets S1 and 

S2 denoted by S1∩S2 reveals all common items in both sets S1 and S2. The union between 

two sets S1 and S2 denoted by S1∪S2 means all elements in either set. So, the Jaccard 

similarity is the similarity between finite sample sets and can be defined as the cardinality 

of the intersection of two sets divided by the cardinality of their union. Calculation of the 

Jaccard similarity for the following sets is shown below. 

 Two sets:  𝑆1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

 𝑆2 = {𝑏, 𝑑, 𝑖, 𝑗} 

 Jaccard similarity: 

  𝑠𝑖𝑚(𝑆1, 𝑆2) =
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
=

2

10
= 0.2 

For this thesis we adapt the Jaccard measure to incorporate temporal alignment. 
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2.3.2. Edit distance  

Edit distance was first developed for comparing similarity or distance between 

strings. It refers to the total number of editing operations needed to transform from one 

string into another string. The lower the number, the more similar the strings are. Some 

examples of developing and using edit distance can be seen in the early works such as 

Hamming distance (Hamming, 1950), Levenshtein distance (Levenshtein, 1966), Jaro-

Winkler distance (Jacobs and Walczak, 1983), and Longest Common Subsequence (LCSS) 

distance (André-Jönsson and Badal, 1997). The edit distance measure was first extended 

to  a similarity measure between event sequences with the lowest cost of three types of 

editing operations: insert, delete and move (Mannila and Moen, 1999; Mannila and 

Ronkainen, 1997). The move operation was included to incorporate the occurrence time of 

the events.  As noted by Wongsuphasawat et al. (2012) this approach allows only 

monotonic mapping, which means that the matched events in the target and candidate 

sequences must be in similar order. 

2.3.3. Explicit Event Sequence Similarity Measures 

Several measures for event sequence similarity have been presented in the 

literature. Most of the event sequence similarity research has focused on querying for 

similar event sequences.  In this context, the assumption is that collected event sequences 

are stored in a database, a query or target event sequence is supplied, and the task is to find 

all similar event sequences to the target sequence within the database.   

Match and Mismatch (M&M) measure is an explicit event sequence similarity 

measure. The first version of this measure called M&M measure v.1 was initially 

developed by Wongsuphasawat and Shneiderman (2009), to calculate similarity scores 
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between a query event sequence and stored event sequences in the database based on the 

number and time difference of matched and mismatched events. To overcome some 

limitations in M&M measure v.1, an improved version called M&M measure v.2 was 

developed (Wongsuphasawat et al., 2012).  This second version improves the matching 

algorithm with dynamic programming instead of the Hungarian Algorithm. In addition, it 

considers more types of differences in event similarity measures including the number of 

missing events, the number of extra events, and the number of swaps. Also following the 

idea of M&M measure, Vrotsou (2010) and Vrotsou and Forsell (2011) proposed and 

discussed nine measures to cover several aspects regarding similarity of event sequences, 

which confirms the theoretical applicability of these measures and provides a solid basis 

for further evaluation in practical applicability. With the context of complex events, 

Obweger et al. (2010) proposed approaches for both single event and event sequence based 

similarity measures.  Single-event similarity is obtained based on event attribute values 

through the relative positioning of two events in an n-dimensional space. Therefore, the 

similarity between two individual events is calculated from weighted attribute-level 

similarities. The proposed event-sequence similarity is computed considering individual 

event-level similarities, order, and relative and absolute temporal structures.  

2.4.    Spatial context  

In this research, we want to associate the spatial context with occurrences of events and 

event sequences. Context can be defined in many ways, most often with location as the 

most important emphasis, namely spatial context. Context is defined as "location and the 

identity of nearby people and objects." (Jiang and Yao, 2007). A broader definition is 

“context is any information that can be used to characterize the situation of an entity, where 
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entity means a person, place, or object, which is relevant to the interaction between a user 

and an application, including the user and the applications themselves.” (Dey, 2001).  

Spatial context is an important factor in many domains and applications. For instance, 

spatial context strongly influences the transport disadvantage that in turn affects social 

exclusion and well-being (Delbosc and Currie, 2011). In a travel behavior research, spatial 

context is strongly related to the household travel patterns in an international scale 

(Timmermans et al., 2003). A person’s health-related problems are strongly affected by 

different types of spatial context, such as environmental exposures (Cutter, 1996; Roux 

and Mair, 2010), social environment (characteristics of communities and neighborhoods) 

(Roux and Mair, 2010; Sampson, 2003), and ease of access to health services (Yang et al., 

2006). Spatial context greatly influences the potential of getting a disease, the adoption of 

healthy lifestyle, and the ease of access to medical services for disease diagnosis and 

treatment. An early psychological behavior research study indicates that decision behavior 

is affected by spatial context or spatially varied factors (Wolpert, 1964). A farming 

population was selected to study the effect of spatial context in decision processes because 

the outcomes of decision behavior are easily observable over the landscape. The decision 

making in farming is dispersed spatially among many farmers due to the uneven diffusion 

of market and technical information. With the strong emphasis and integration of spatial 

context, a new area of ecological studies called spatial ecology emerged (Gripenberg and 

Roslin, 2007; Tilman and Kareiva, 2018). 

Spatial context is also very important in recognition of objects in images. In a content-

based image retrieval experiment, incorporating the spatial context models dramatically 

reduced the misclassification and increased the accuracy of material detection by 13% 
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(Singhal et al., 2003). In order to better recognize or identify defined objects ( e.g. cars, 

rivers, sky) in an image, combining the naturally classified texture or colors as spatial 

context greatly improved detection accuracy (Heitz and Koller, 2008).  

Context, especially spatial context in this research, plays an important role when 

measuring the similarity of two entities or event sequences. Very little research effort has 

been focused on this area. In one study, the authors explored the effect of context on 

existing similarity measurement approaches in the geospatial domain (Keßler, 2007; 

Keßler et al., 2007). They defined context for similarity measurement as “ A similarity 

measurement’s context is any information that helps to specify the similarity of two entities 

more precisely concerning the current situation. This information must be represented in 

the same way as the knowledge base under consideration, and it must be capturable at 

maintainable cost.”  In combining a generic set of characteristics of context into similarity 

measurement, they also pointed out that developers in specific domains should focus on 

parameters that influence an application-specific context model considering the impact, 

representation and capture. Therefore, problems still remain for practical formalization and 

applications in specific domains or systems, for which we propose more practical methods 

in this research and assessment with a case study. 

2.5.    Discovery of spatiotemporal event patterns 

In this section, we present various methods from different perspectives to find novel 

and relatively general relationships or associations among many different spatiotemporal 

event types where the relationships or associations among these event types are not known 

in advance or not explicitly represented in the data. We especially focus on the event 

sequence-based knowledge discovery. 
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2.5.1. Spatial and spatiotemporal analysis approach 

Spatial analysis combining conventional geostatistics and modeling can be used to 

discover knowledge of spatiotemporal patterns of various phenomena or complex events 

occurring in nature or human society. Extracting interesting and useful patterns from spatial 

or spatiotemporal datasets is more difficult than discovering patterns from conventional 

numeric and categorical data due to the complexity of spatial data types, spatial 

relationships, spatial autocorrelation, and nonlinearity (Shekhar et al., 2011), which spatial 

analysis approaches must consider. The Event-based SpatioTemporal Data Model 

(ESTDM) was first proposed to explicitly represent change over space relative to time 

(Peuquet and Duan, 1995). ESTDM has set up a foundation for facilitating procedures for 

answering queries relating to temporal relationships, as well as analytical tasks for 

comparing different event sequences. 

As one important spatial analysis approach, spatial scan statistics have been widely 

applied to event-based data analysis in many domains. The space-time permutation model 

(STPM) in scan statistics, a spatiotemporal clustering method, was successfully applied to 

analyze historical fire event sequence datasets from 1969 to 2008 for hotspots detection 

with different spatial context in Canton Ticino, Switzerland (Orozco et al., 2012). It was 

also used to detect active fire events in the state of Florida (US) identified by MODIS 

(Moderate Resolution Imaging Spectroradiometer) during the period 2003–06 (Tonini et 

al., 2009). STPM was effectively applied to early detection of events of disease outbreaks 

with only case numbers (Kulldorff et al., 2005b). It was further evaluated using daily 

analyses of hospital emergency department visits in New York City and identified four of 
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the five strongest potential event signals associated to citywide outbreaks due to rotavirus, 

norovirus, and influenza.  

We also apply this STPM model in spatial scan statistics to our case study and 

compare the results with this method to those based on the approaches developed in this 

thesis. 

 

2.5.2. Machine learning centered data mining 

Machine learning centered data mining is a powerful approach for mining 

spatiotemporal patterns. Existing approaches for pattern mining use state-of-the-art 

approaches from machine learning to extract complex events and detect patterns in the 

form of association rules or sequential rules. More options from machine learning 

approaches provide appropriate selection for solving a specific problem. The combination 

of Support Vector Machine (SVM) with Conditional Random Field (CRF) has been 

successfully used to identify spatiotemporal activity patterns of animal movements 

(Behmann et al., 2016). 

Different algorithms have been developed and integrated in machine learning 

systems to solve some specific event prediction problems. For instance, timeweaver, a 

generic algorithm based machine learning was developed to predict rare events from 

historical sequences of events by identifying predictive temporal and sequential patterns 

(Weiss and Hirsh, 1998). An episode can be defined as a subset of events that occur within 

time intervals of a given size in a given partial order, based on which we can produce rules 

or event patterns for describing or predicting the behavior of entire event sequence or a 

system. An efficient algorithm was developed for the discovery of all frequent episodes 
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from a given class of episodes, and was evaluated with promising experimental results 

(Mannila et al., 1995). It is difficult to differentiate anomalous event sequences from 

normal network traffic. An application was built to enhance domain knowledge with 

machine learning techniques to create rules for intrusion detection (Sinclair et al., 1999). 

In this application, genetic algorithms and decision trees were used to automatically 

generate rules for classifying network connections.  

Automatic integration of a set of rules or event sequence patterns into Complex 

Event Processing (CEP) system is a recent trend. Contributing to this work, a Sequence 

Clustering-based Automated Rule Generation (SCARG) was proposed to automatically 

generate rules by mining decision-making history of domain experts based on event 

sequence clustering and probabilistic graphical modeling (Lee and Jung, 2017). This 

model-based system can make self-adaptive CEP system possible by combining the rule 

generation method and the existing dynamic CEP systems, which is verified by a case study 

of an automated stock trading system. As a branch of machine learning, a deep learning 

method of a neural network has been used to predict events of interest. For example, in 

order to predict purchasing intent in an ecommerce setting, with the input event data 

comprising categories, quantities and unique instances, multi-layer recurrent neural 

networks were established to automatically capture both session-local and dataset-global 

event dependencies and relationships for user sessions of any length (Sheil et al., 2018).  

Integrating the similarity measures of event sequences and spatial context into 

machine learning systems is expected to improve the capacity and efficiency of event 

sequence-based data analysis. No or little work has been found from current publications. 

We incorporate the similarity measures developed in this research into some selected 



30 

 

machine learning algorithms to test the availability and verify the effectiveness with a case 

study of coastal fecal pollution. 
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CHAPTER 3 

A UNIFYING FRAMEWORK FOR ANALYSIS OF SPATIAL-TEMPORAL 

EVENT SEQUENCE SIMILARITY AND ITS APPLICATIONS 

 

The draft in this chapter is the reformatted version from the published research paper: 

Xu, F.; Beard, K. A Unifying Framework for Analysis of Spatial-Temporal Event 

Sequence Similarity and Its Applications. ISPRS Int. J. Geo-Inf. 2021, 10, 594. 

https://doi.org/10.3390/ijgi10090594 

 

Chapter Abstract 

Measures of similarity or differences between data objects are applied frequently 

in geography, biology, computer science, linguistics, logic, business analytics, and 

statistics, among other fields. This work focuses on event sequence similarity among event 

sequences extracted from time series observed at spatially deployed monitoring locations 

with the aim of enhancing the under-standing of process similarity over time and geospatial 

locations. We present a framework for a novel matrix-based spatiotemporal event sequence 

representation that unifies punctual and interval-based representation of events. This 

unified representation of spatiotemporal event sequences (STES) supports different event 

data types and provides support for data mining and sequence classification and clustering. 

The similarity measure is based on the Jaccard index with temporal order constraints and 

accommodates different event data types. The approach is demonstrated through simulated 

data examples and the performance of the similarity measures is evaluated with a k-nearest 

neighbor algorithm (k-NN) classification test on synthetic datasets. As a case study, we 

demonstrate the use of these similarity measures in a spatiotemporal analysis of event 

sequences extracted from space time series of a water quality monitoring system. 

https://doi.org/10.3390/ijgi10090594
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Keywords: spatiotemporal event sequences (STES); matrix representation; similarity 

measures; time locked Jaccard similarity; K-NN/1-NN 

 

3.1. Introduction 

Wireless sensor networks (WSN) or other monitoring systems, deployed regularly or 

irregularly in geographic space, have become commonly used for environmental data 

collection and monitoring. Each monitoring station or node can have one or more sensors 

producing time series on variables of interest for monitoring. Within this setting, we may 

be interested in the similarity among the time series observed across a set of monitoring 

stations. For example, we might want to ask, how similar are water quality monitoring 

variables within an estuary or across different estuaries? Several prior studies have 

researched time series similarity measures but time series can contain substantial data 

redundancy making similarity computations inefficient and expensive (Bollobas et al., 

1997; Fu, 2011). Converting time series to event sequences can reduce the data volume 

while retaining key information (Du et al., 2016; Shurkhovetskyy et al., 2018; Yeh et al., 

2018). In this paper we report on development of an approach for measuring the similarity 

among event sequences associated with monitoring stations distributed within some 

geographic space. We refer to these as spatiotemporal event sequences (STES) because of 

the pertinence of their distribution in space. The approach aims to address two basic 

questions. Firstly, how similar are event sequences within a defined geospatial region? 

Secondly, within the region, do event sequences that are closer in space tend to be more 

similar? Answers to these questions can contribute to insights on patterns in spatial 

processes that can be helpful for environmental monitoring. 



37 

 

Figure 3.1A illustrates an instance of an STES as a set of temporally ordered events 

observed at a fixed location in space. An STES differs from other types of event sequences 

such as genomic sequences (Darling et al., 2004), industrial process monitoring sequences 

(Maurya et al., 2007), patient symptom sequences (Tao et al., 2012), political event 

sequences (Stehle and Peuquet, 2015), or consumer purchasing sequences (Prinzie and Van 

den Poel, 2011) in that STES derive from time series observed at fixed geospatial locations 

and each sequence consists of events of the same type (e.g., high temperature events, heavy 

precipitation events, impaired water quality events, drought events). 

Converting time series to event sequences leads to on-going production of STES at 

each monitoring station as illustrated in Figure 3.1B. An individual STES conceptually 

represents a realization of a process at the location and the set of STES deployed in a region 

conceptually forms a field of event sequences representing an evolving underlying process 

(Yang et al., 2014). As an example, a precipitation event sequence observed at station S1 

(Figure 3.1A) represents a local realization of a meteorological process. Through similarity  

 

Figure 3.1. The STES problem setting. (A) An example of fixed locations of interest or 
observation sites distributed along the coast. (B) An example of a spatiotemporal event 
sequence extracted from a space-time series of precipitation with the threshold of ≥1.0 
inch/24 h. Red bars represent events. 



38 

 

measures among event sequences in geographic space we can extend Tobler’s First Law 

of Geography, which states that “everything is related to everything else, but near things 

are more related than distant things”, to an assessment of process similarity in space. 

Related work on several similarity measures can be found for event sequences, but not 

directly STES as we define them. Edit distance is a measure of similarity first developed 

for comparing strings (a type of sequence). It refers to the total number of editing operations 

needed to transform one string into another string. The lower the number, the more similar 

the strings. Some examples of edit distance include Hamming distance (Hamming, 1950), 

Levenshtein distance (Levenshtein, 1966), Jaro–Winkler distance (Jacobs and Walczak, 

1983), and Longest Common Subsequence (LCSS) distance (André-Jönsson and Badal, 

1997). The edit distance measure was first extended to measure event sequence similarity 

using the lowest cost of three types of editing operations: insert, delete and move (Mannila 

and Moen, 1999; Mannila and Ronkainen, 1997). The move operation was included to 

incorporate the occurrence time of the events. As noted by Wongsuphasawat et al. (2012) 

this approach allows only monotonic mapping, which means that the matched events in the 

target and candidate sequences must be in similar order. The Jaccard similarity coefficient 

is a classic measure of similarity between two sets that continues to be applied in several 

application domains, for example in comparing biological sequence data (Chung et al., 

2019; Vorontsov et al., 2013) and in web usage mining (Luu et al., 2020). More recent 

event sequence similarity measures have been proposed to take into consideration temporal 

order and temporal duration in addition to assessing event type similarity (Obweger et al., 

2010). While most similarity metrics treat events as points in time, Kotsifakos et al. (2013) 

and Mirbagheri and Hamilton (2020) propose approaches for interval based event sequence 

similarity (Andrienko et al., 2010; Mirbagheri and Hamilton, 2020). Their event 

representation includes an event label and start and end time, and the event sequence is a 
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list of these arranged in ascending order. Their concept of similarity between two event 

sequences includes the presence of event intervals with the same labels, the order of 

occurrences of the event intervals, the duration of the event intervals, and the temporal 

relations among the event intervals. To our knowledge, none of the currently available 

similarity measures for event sequences address both time stamped and interval based 

events and consider the spatial dimension. Our event sequence similarity approach builds 

on the Jaccard index and integrates interval and time stamped events. 

The paper is organized as follows. Section 2, Materials and Methods, describes the 

process of eventization and generation of STES, the proposed methods for transforming 

STES to matrices based on various measurement characteristics, and the development of 

similarity measures for different levels of event representation (qualitative vs. 

quantitative), as applied to entire sequences or user defined moving windows. Section 3, 

Results and Discussion, demonstrates construction of STES similarity matrices and 

implementation of the similarity measures on synthetic mini datasets, further evaluates the 

performance of the similarity measures on execution speed and classification accuracy and 

provides a real-world application on classification of the Maine coastal regions based on 

cluster analysis of precipitation event sequences. Finally, Section 4 concludes this study, 

considering the remaining issues and future work. 

3.2. Materials and Methods 

3.2.1. Eventization and Spatiotemporal Event Sequences (STES) 

Jassby and Powel (1990) describe an event as a short-term, yet substantial, 

discontinuity in the underlying behavior of a time series (Jassby and Powell, 1990). 

Eventization is the process of event identification from observations or measured raw data 

according to user definitions applied in a specific domain. In this paper it refers to the 
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process of event identification from space-time series and formation of timestamped, 

ordered event sequences. Briefly, primitive or simple event extraction (Rude and Beard, 

2012) or detection can be grouped into three categories: (1) threshold-based approaches 

(Abadi et al., 2016) in which an event is regarded to occur when observations exceed some 

predefined thresholds, (2) pattern-based approaches (Hogenboom et al., 2016) in which an 

event is represented as a spatiotemporal pattern and event detection is performed using 

pattern matching techniques; and (3) learning-based approaches (Wang et al., 2016a) in 

which selected modeling methods are used to model spatiotemporal dependencies of sensor 

data and make probabilistic inference about events. 

In environmental applications, we are interested in the spatiotemporal context of the 

sequences. The expressions of space and time components capture different granularities. 

Temporal entities have two types of time expression, timestamps and time intervals 

(Shahar, 1997). Timestamps can express different granularities as in what time, what date, 

what day of the week, what week, and what year, etc. Time intervals can also be of different 

granularities, such as seconds, minutes, hours, days, months, seasons, and years. Given 

these two temporal concepts, we identify two general types of STES: timestamped and 

interval events as illustrated in Figure 3.2. 

 

Figure 3.2. Graphical illustration of spatiotemporal event sequences (STES). (A) An example of 
spatiotemporal timestamped event sequences where rows represent locations each with 20-time 
units. (B) An example of interval event sequences for 5 locations and 20-time units. 



41 

 

For eventization, we need to consider the level of measurement of an observed time 

series variable. A real valued level of measurement may for example be retained in an event 

representation (as illustrated in Figure 3.3A). Alternatively, an observed real value at a time 

stamp may be transformed to an ordinal or binary value (as illustrated in Figure 3.3D). 

Interval events can be divided into as many timestamps as determined by an event 

definition and user defined granularity, within which the full range of observed values 

satisfying the event definition may be retained (see Figure 3.3B, C). Alternatively, all 

observed values within an interval that satisfy an event definition may be transformed to 

ordinal or binary values (as illustrated in Figure 3.3E, F). 

 

Figure 3.3. Graphical illustration of spatiotemporal event sequences (STES) with consideration for 
level of measurement and variation within a single event. STES in (A–C) are extracted from space-
time series with interval/ratio values, and (D–F) are extracted as ordinal values from space-time 
series. (A, D) are punctual event sequences. (B, E) are interval event sequences with no internal 
variation over the interval. (C, F) are interval event sequences with bounded variation within the 
interval consistent with an event definition. H, M and L represent high, medium and low, 
respectively. 
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3.2.2. Matrix Representation of STES 

For a regularly sampled time series, the set of timestamps 𝑇 forms a discrete set, with 

observations spaced at uniform time intervals. Given 𝑠 locations and 𝑡 timestamps, a space-

time series dataset can be represented with a 𝑠 × 𝑡 matrix where locations correspond to 

rows and timestamps to columns and ν represents an observed variable. 

 

 

 

G0-Timestamps represent the finest temporal granularity as described by Shahar 

(1997), here corresponding to the time series sampling rate. Each value potentially 

corresponds to a status change, which could define a timestamped event or the start or end 

of an interval event. As noted above, events are identified based on different user defined 

functions such as threshold based, pattern-based, or learning based (Yin et al., 2009). For 

simplicity, in the following definitions, we assume use of a threshold, but the approach is 

generalizable to other event detection approaches (Guralnik and Srivastava, 1999). A 

temporal granularity in integer unit Gi scaled from G0 (e.g., hour to day, day to week) is 

specified by a user based on application domain considerations. At each observation 

location s, an event sequence is formed at the Gi scale after eventization. The event 

sequences for all locations form an initial STES matrix. In the eventization process, the 

dimension can be further reduced through removing rows and columns without events in 

                                  G0-Timestamps (1, 2, 3, …, t) 

Spatial locations (1, 2, 3, …, s) 

(

 
 

𝑣11, 𝑣12, 𝑣13,… , 𝑣1𝑡
𝑣21, 𝑣22, 𝑣23,… , 𝑣2𝑡
𝑣31, 𝑣32, 𝑣33,… , 𝑣3𝑡

…
 𝑣𝑠1, 𝑣𝑠2, 𝑣𝑠3,… , 𝑣𝑠𝑡)

 
 

 

     

(1) 
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locations across all Gi-timestamps or Gi-timestamps across all locations. Following this 

data reduction, we may have n locations and Gi granularity of 𝑚 timestamps, in which the 

STES are represented as 𝑛 × 𝑚 matrix (𝑛 ≤ 𝑠 and 𝑚 ≤ 𝑡). 

                                    Gi Timestamps (1, 2, 3, …, m) 

Spatial locations (1, 2, 3, …, n) 

(

 
 

𝑒11, 𝑒12, 𝑒13,… , 𝑒1𝑚
𝑒21, 𝑒22, 𝑒23,… , 𝑒2𝑚
𝑒31, 𝑒32, 𝑒33,… , 𝑒3𝑚

…
 𝑒𝑛1, 𝑒𝑛2, 𝑒𝑛3,… , 𝑒𝑛𝑚)

 
 

 
(1) 

 

We identify four different cases corresponding to timestamped versus interval events 

and qualitative versus quantitative. For the case of nominal values, appearance of a user 

specified nominal category or label at a timestamp indicates the occurrence of an event. 

For this case the event value is defined as follows: 

𝑒𝑖𝑗 =

{
 
 

 
 
𝑛𝑎    𝑖𝑓 𝑣𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎                              

 1      𝑖𝑓 𝑣𝑖𝑗 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑜𝑟                                

 𝑖𝑓 𝑣𝑖𝑗 = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒     

 0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      
                                            

  

𝑖 = 1, 2, 3, … , 𝑛; 𝑗 = 1,2,3, … ,𝑚  

(2) 

 

where all timestamped observations (𝑣𝑖𝑗) are ordinal, interval or ratio values, the 

corresponding event value eij may retain the original observation value or be subjected to 

some data transformation such as logarithm, percentage or normalization. Given a 

threshold for defining an event instance, sequences in this case can be represented as 

follows: 
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𝑒𝑖𝑗 =

{
 
 

 
 

𝑛𝑎      𝑖𝑓 𝑣𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

0      𝑖𝑓 𝑣𝑖𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑           

 𝑣𝑖𝑗  𝑜𝑟 𝑣′𝑖𝑗      𝑖𝑓 𝑣𝑖𝑗 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

  𝑣′𝑖𝑗  𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑣𝑖𝑗  
                                            

  

𝑖 = 1, 2, 3, … , 𝑛; 𝑗 = 1,2,3, … ,𝑚 

(3) 

 

An interval event occurs when the defining event conditions persist for more than one 

G1 timestamp. As long as we determine the smallest temporal granularity in a specific study 

or system, we can represent an interval event sequence through the same timestamped 

event matrix as described above. The case for interval events with categorical values can 

be defined according to Equation (5): 

𝑒𝑖𝑗,𝑒𝑖𝑗+1,… , 𝑒𝑖𝑗+∆𝑡 

=

{
 
 

 
 

𝑛𝑎   𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎                    

1   𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                              

      𝑜𝑟, 𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 = 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑛𝑜𝑚𝑖𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 

∆𝑡 ≥ 1                                                                               
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           

                                                                       

 

𝑖 = 1, 2, 3, … , 𝑛; 𝑗 = 1,2,3, … ,𝑚 

(4) 

The case for interval events with ordinal or interval/ratio values can be defined 

according to Equation (6): 

𝑒𝑖𝑗,𝑒𝑖𝑗+1,… , 𝑒𝑖𝑗+∆𝑡 =

{
 
 
 
 

 
 
 
 
𝑛𝑎   𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎                               

0   𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                         

𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡  𝑜𝑟  𝑣
′
𝑖𝑗,𝑣

′
𝑖𝑗+1,… , 𝑣

′
𝑖𝑗+∆𝑡                               

𝑖𝑓 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                

     𝑣′𝑖𝑗,𝑣
′
𝑖𝑗+1,… , 𝑣

′
𝑖𝑗+∆𝑡: 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑣𝑖𝑗,𝑣𝑖𝑗+1,… , 𝑣𝑖𝑗+∆𝑡 

∆𝑡 ≥ 1                                                                                       
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                     

                                                                  

  

𝑖 = 1, 2, 3, … , 𝑛; 𝑗 = 1,2,3, … ,𝑚 

(5) 
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For all interval events with no internal variation within the interval, i.e., with a constant 

event class level, the defined interval events are as described in Equation (6): 

 

𝑒𝑖𝑗 = 𝑒𝑖𝑗+1 = ⋯ = 𝑒𝑖𝑗+∆𝑡  

from 𝑣𝑖𝑗 = 𝑣𝑖𝑗+1 = ⋯ = 𝑣𝑖𝑗+∆𝑡  𝑜𝑟  𝑣
′
𝑖𝑗 = 𝑣′𝑖𝑗+1 = ⋯ = 𝑣′𝑖𝑗+∆𝑡   

 

 
 
3.2.3. Development of Similarity Measures for Spatiotemporal Event Sequences 

 
The matrix framework presented above provides a flexible method to investigate 

sequence similarity over space for the same time windows. In this context, we consider the 

event sequence similarity as the level of co-occurring timestamped events for a certain time 

period for two or more locations. We can vary the selection of a time window based on the 

sampling frequency of the observation data and a target event granularity (e.g., drought 

events which may be defined as over 10 days of no rain need a larger time window relative 

to heavy precipitation events). We present similarity measures for five situations: (a) binary 

timestamped events (no consideration of variable class levels or magnitude), (b) 

timestamped events with variable class levels or magnitude, (c) interval events considering 

time overlaps only, (d) interval events with constant nominal or ordinal labels and time 

overlaps, and (e) interval events with a range of real values and time overlaps. 

We follow the concept of Jaccard similarity (Jaccard, 1901) but consider the order of 

individual event elements within each event sequence. The intersection between two sets 

of spatiotemporal event sequences means the common events must “co-occur” in both 

sequences, and the union refers to all events in either sequence. The measure of co-

occurrence is demonstrated by the following example: 
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Given the two spatiotemporal timestamped event sequences with 10 timestamps, we 

compute the similarity between the two spatiotemporal event sequences as: 

𝑠𝑖𝑚(𝑒𝑠1, 𝑒𝑠2) =
|𝑒𝑠1∩𝑒𝑠2|

|𝑒𝑠1∪𝑒𝑠2|
=

5

10
= 0.5   

where, 𝑒𝑠1, 𝑒𝑠2 are two spatiotemporal event sequences from two locations S1, S2; t1, t2, 

…, t10 are 10 timestamps. The intersection between two event sequences is the number of 

co-occurring events between them. We discuss this similarity measure in more detail for 

five different situations in the following sections. 

 

3.2.3.1 Similarity Measures between Event Sequences without Considering Event 

Magnitude 

First, we compute the level of pairwise co-occurrence between two event sequences 

𝑒𝑠1 and 𝑒𝑠2, 𝑐𝑜_𝑜𝑐𝑐𝑢𝑟(𝑒𝑠1, 𝑒𝑠2), by simply counting the number of punctual events with 

the same occurrence time appearing in both 𝑒𝑠1 and 𝑒𝑠2. So, the global (long duration) 

similarity between event sequences can be calculated as below: 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑙𝑎𝑙(𝑒𝑠1, 𝑒𝑠2) =
𝑐𝑜_𝑜𝑐𝑐𝑢𝑟(𝑒𝑠1,𝑒𝑠2)

|𝑒𝑠1∪𝑒𝑠2|  
  (6) 

 

where 𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑙𝑎𝑙(𝑒𝑠1, 𝑒𝑠2)—global similarity between event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2, 

meaning overall similarity between two event sequences over a long user specified 
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duration, 𝑐𝑜_𝑜𝑐𝑐𝑢𝑟(𝑒𝑠1, 𝑒𝑠2)—co-occurring number of events between 

sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2, 

|𝑒𝑠1 ∪ 𝑒𝑠2|—cardinality of the union of two event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2. 

In contrast to global similarity, we introduce a user defined local comparison temporal 

window (ctw) (equivalent to a moving window), for which local (short duration) similarity 

is calculated as: 

𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙(𝑒𝑠1_𝑐𝑡𝑤𝑖,  𝑒𝑠2_𝑐𝑡𝑤𝑖) =
𝑐𝑜_𝑜𝑐𝑐𝑢𝑟(𝑒𝑠1_𝑐𝑡𝑤𝑖, 𝑒𝑠2_𝑐𝑡𝑤𝑖)

|𝑒𝑠1_𝑐𝑡𝑤𝑖∪𝑒𝑠2_𝑐𝑡𝑤𝑖| 
  (7) 

where, 𝑖 = 1, 2, 3, … , 𝑘; 𝑘 =  
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑐𝑡𝑤 
, the number of time window 

chunks in an event sequence; |𝑒𝑠1_𝑐𝑡𝑤𝑖 ∪ 𝑒𝑠2_𝑐𝑡𝑤𝑖|, cardinality of the union of two 

corresponding subsequences of two event sequences in the same 𝑐𝑡𝑤. For each pair of 

spatiotemporal event sequences, we have 𝑘 local similarities in an ordered list, represented 

as (𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,
1  𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,

2  𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,
3 … , 𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙 

𝑘 ). 

 

3.2.3.2. Similarity Measures between Event Sequences Considering Event Magnitude 

We first find all co-occurrence time points between two event sequences 𝑒𝑠1 and 𝑒𝑠2, 

and then we calculate the similarity between two individual events at the co-occurrence 

timestamp based on their level of measurement. We have two similarity calculation 

situations. First, if event values are interval or ratio level, the global similarity can be 

calculated as below: 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑙𝑎𝑙(𝑒𝑠1, 𝑒𝑠2) =
∑ (1−𝐴𝑏𝑠(𝑙𝑒𝑣(𝑒𝑠1𝑗)−𝑙𝑒𝑣(𝑒𝑠2𝑗)))
𝐶
𝑗=1

|𝑒𝑠1∪ 𝑒𝑠2|  
   (8) 

Second, if event levels are ordinal attribute based, the formula becomes: 
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𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑙𝑎𝑙(𝑒𝑠1, 𝑒𝑠2) =
∑ (1−

𝐴𝑏𝑠(𝑙𝑒𝑣(𝑒𝑠1𝑗)−𝑙𝑒𝑣(𝑒𝑠2𝑗))

𝑛−1
)𝐶

𝑗=1

|𝑒𝑠1∪ 𝑒𝑠2|  
  (9) 

where, 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑙𝑎𝑙(𝑒𝑠1, 𝑒𝑠2)—global similarity between event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2 

𝑒𝑠1𝑗, 𝑒𝑠2𝑗 —the event levels of two corresponding co-occurring events in 𝑒𝑠1 and 𝑒𝑠2 at 

timestamp 𝑗, inherited from original measurements, 

𝑙𝑒𝑣(𝑒𝑠1𝑗), 𝑙𝑒𝑣(𝑒𝑠2𝑗)—the relative event levels of two corresponding co-occurring events 

in 𝑒𝑠1 and 𝑒𝑠2 at timestamp 𝑗, respectively: 

𝑙𝑒𝑣(𝑒𝑠1𝑗) =
𝑒𝑠1𝑗

𝑒𝑠1𝑗+𝑒𝑠2𝑗
 and 𝑙𝑒𝑣(𝑒𝑠2𝑗) =

𝑒𝑠2𝑗

𝑒𝑠1𝑗+𝑒𝑠2𝑗
  

where, 

𝐶—the total number of co-occurring timestamps, 

𝐴𝑏𝑠(𝑙𝑒𝑣(𝑒𝑠1𝑗) − 𝑙𝑒𝑣(𝑒𝑠2𝑗))—absolute value of difference between relative event levels 

of two corresponding co-occurring events in 𝑒𝑠1 and 𝑒𝑠2 at time stamp 𝑗, 

|𝑒𝑠1 ∪ 𝑒𝑠2|—cardinality of the union of two event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2, 

n—the number of ordinal attribute-based event levels. 

Similarly, we can characterize the local similarity between event sequences by the 

following Equation (11) for interval/ratio attribute-based events and (12) for ordinal 

attribute-based events: 

𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙(𝑒𝑠1_𝑐𝑡𝑤𝑖,  𝑒𝑠2_𝑐𝑡𝑤𝑖) =

∑ (1−𝐴𝑏𝑠(𝑙𝑒𝑣( 𝑒𝑠1𝑐𝑡𝑤𝑖𝑗)−𝑙𝑒𝑣( 𝑒𝑠2𝑐𝑡𝑤𝑖𝑗))) 
𝑐
𝑗=1

| 𝑒𝑠1𝑐𝑡𝑤𝑖  ∪  𝑒𝑠2𝑐𝑡𝑤𝑖| 
  

(10) 

and 
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𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙(𝑒𝑠1_𝑐𝑡𝑤𝑖,  𝑒𝑠2_𝑐𝑡𝑤𝑖) =
∑ (1−

𝐴𝑏𝑠(𝑙𝑒𝑣( 𝑒𝑠1𝑐𝑡𝑤𝑖𝑗
)−𝑙𝑒𝑣( 𝑒𝑠2𝑐𝑡𝑤𝑖𝑗

)

𝑛−1
)𝐶

𝑗=1

| 𝑒𝑠1𝑐𝑡𝑤𝑖𝑗  ∪  𝑒𝑠2𝑐𝑡𝑤𝑖𝑗| 
   (11) 

where, 𝑖 = 1, 2, 3, … , 𝑘;  𝑘 =  
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑐𝑡𝑤
, 𝑐 is the number of co-

occurring time points in 𝑐𝑡𝑤, | 𝑒𝑠1𝑐𝑡𝑤𝑖𝑗 ∪  𝑒𝑠2𝑐𝑡𝑤𝑖𝑗|, cardinality of the union of two 

corresponding subsequences of two event sequences in the same 𝑐𝑡𝑤. As before for each 

pair of spatiotemporal event sequences, we have 𝑘 local similarities in an ordered list, 

represented as (𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,
1  𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,

2  𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙,
3 … , 𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑙 

𝑘 ). 

We note that the approaches for measuring sequence similarity as described above 

apply also to interval event sequences. We simply transform interval event sequences to 

punctual event vectors to form a matrix. 

 

3.3. Results and Discussion 

3.3.1. Implementation Examples 

In this section we use simulated precipitation and temperature datasets to demonstrate 

the transformation of raw space- time series observations to event sequence matrices based 

on the event definitions described in the previous section. We calculate global and local 

pairwise event sequence similarities according to the steps described above. The 

transformation to STES matrices and the similarity measure calculations have been 

developed as R functions (see the link for software availability). The first two experiments 

cover timestamped events based on simulated precipitation measurements for 5 locations 

and 20 timestamps as shown in Table 3.1. We note that these timestamps could apply to 

different temporal granularities, but some minimum granularity is considered a punctual 

timestamp. 



50 

 

Table 3.1. Simulated precipitation measurements in 5 locations with 20 timestamps. 

 

 

Situation 1. We define precipitation ≥ 1 inch as events from the dataset in Table 3.1 and 

based on Equation (3) we transform the measurements to a matrix of binary punctual 

events: 

      

In an alternate view of this matrix seen in Figure 3.4. we show local comparative 

temporal windows based on 4 timestamps, i.e., 𝑐𝑡𝑤 = 4:  

 

Figure 3.4. A schematic view of the punctual event matrix of Situation 1 with 5 local 
comparison temporal windows. Blocking 2 columns in yellow is intended to improve visual 
separation of the local windows. 
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The pairwise global similarity and local similarity between event sequences were 

calculated based on Equations (7) and (8). Here, 𝑐𝑡𝑤 = 4, so we have 5 chunks of 

subsequences for each original event sequence. The pairwise similarity measures between 

event sequences of 5 locations is shown in Figure 3.5. 

 

Figure 3.5. Output matrix of local similarity with five temporal windows and global 
similarity between five spatiotemporal event sequences from Situation 1. 

 

By intuition, the event sequences in locations s2 and s3 are more similar than other 

pairs with only one mismatch, which is reflected in the global similarity matrix with the 

highest score of 0.91. The lowest similarity score is between s1 and s4 event sequences 

with only two co-occurring events. The rest of the similarity scores for other pairwise 

comparisons reflect their closeness in terms of co-occurrences. 

Situation 2. We again extract precipitation ≥ 1 inch-events from the dataset in Table 3.1 

but now consider the magnitude of the precipitation ≥ 1 inch by retaining the original 
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observation values. Based on the transformation rules described in Equation (4) we obtain 

the event matrix with event levels as follows: 

 

              
The alternate view of this event matrix is shown in Figure 3.6. Where Equations (9) 

and (11) are used to calculate the global and local similarity respectively: 

 

Figure 3.6. A schematic view of the punctual event matrix of Situation 2 while 
considering varying event levels with 5 temporal comparison windows. Blocking 2 
columns in yellow is for better visual separation of 5 local windows. 

 

From the similarity matrix in Figure 3.7 we can see the change of similarity scores 

from the results shown in Figure 3.5 that do not take event magnitude into consideration. 

While all scores in Figure 3.7 decrease compared to Figure 3.5, the overall rankings of 

these scores are the same. This indicates that refinement of event levels and additional 

attributes of events incorporated into the similarity measure can affect the similarity values 

but rankings between event sequences remain stable. 
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Figure 3.7. Output matrix including local similarity with five temporal windows and global 
similarity with consideration of events with variable class levels between five spatiotemporal event 
sequences from Situation 2. 

The following examples for interval events are based on the temperature graph for five 

locations shown in Figure 3.8. 

Situation 3. Here we identify interval events ≥ 10 ℃ from high frequency temperature 

measurements at 5 locations. Assume that a minimum temporal granularity is specified 

(e.g., day, hour) such that we can obtain the measurements at all time points (t1, t2, …, 

t20) as in the dataset shown in Table 3.2. Using Equation (5), we obtain interval events as 

a sequence of contiguous 1s in a binary event matrix. 

 

Figure 3.8. Simulated temperature trend in 5 locations over 20 time units. Notice that the red 
dashed horizontal line is the applied threshold value of 10℃. 
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Table 3.2. Extracted temperature measurements at 20 time points from continuous data. 

 

 

The sequence of contiguous 1’s represents interval events, but these are processed as 

punctual events in the event sequence matrix: 

 

 

The alternative view of the interval event matrix in the example of Situation 3 can be 

seen in Figure 3.9. In this figure, we also assume that the comparative temporal window 

has 10 timestamps, i.e., ctw = 10 such that we have only 2 subsequences. 

 

Figure 3.9. A schematic view of the interval event matrix of Situation 3 with binary events and 
with two temporal windows separated by a red vertical line. Notice that the chunks blocked with 
blue color in horizontal orientation represent interval events. 
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The pairwise global similarity and local similarity between event sequences is 

calculated with the Formulas (7) and (8). Here, 𝑐𝑡𝑤 = 10, so we have 2 chunks of 

subsequences for each original event sequence. The pairwise similarity matrices between 

event sequences for the 5 locations is shown in Figure 3.10. 

 

Figure 3.10. Output matrix of local similarity with two temporal windows and global similarity 
between five spatiotemporal event sequences from Situation 3. 

 

The event sequences for locations s2 and s3 in Figure 3.10 are more similar than other 

pairs with only one mismatch at one timepoint, which is reflected in the global similarity 

matrix with the highest score of 0.88. The lowest similarity is between s1 and s4 event 

sequences with only four co-occurring timepoints and a relatively long union of events. 

The rest of the similarity scores reasonably reflect their actual closeness. 
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Situation 4. For the interval events of Situation 3 with the consideration of event level, 

i.e., the variation of event values within the interval, we obtain a matrix of interval events 

based on Equation (7) as below: 

The sequence of contiguous values represents interval events, but these are processed 

as punctual events in the event sequence matrix: 

 

 

The alternative view of the interval event matrix in the example of Situation 4 is 

represented in Figure 3.11. In this figure, we assume that the comparative temporal window 

has 10 timestamps, i.e., ctw = 10. 

 

 

Figure 3.11. A schematic view of the interval event matrix of Situation 4 with consideration of 
event level and variation between starting and ending time points with 2 temporal comparison 
windows. Notice that the chunks blocked with colors in the horizontal orientation represent interval 
events. 
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The pairwise global similarity and local similarity between event sequences is 

calculated with Equations (9) and (11) for this situation. Here, 𝑐𝑡𝑤 = 10, so we have 2 

chunks of subsequences for each original event sequence. The pairwise similarity matrices 

between event sequences of 5 locations is shown in Figure 3.12. 

 

Figure 3.12. Output matrix of global similarity and local similarity with two temporal windows 
considering events with ratio level values between five spatiotemporal event sequences from 
Situation 4. 

 

This situation considers the internal variation within an interval event along with co-

occurrences. We can compare the similarity scores in Figure 3.12 with those in Figure 3.10. 

Like Situation 2, the overall similarity values decrease compared to the situations without 

considering event magnitude. We can see here the event sequences at locations s2 and s3 

in Figure 3.12 are still more similar than other pairs with slight variations of event values 
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between co-occurring timepoints, which can be reflected in the global similarity matrix 

with the highest score of 0.81. The lowest similarity (0.29) remains between s1 and s4 as 

in Situation 3. The rest of the similarity scores for other pairwise comparisons also 

reasonably reflect an intuitive sequence closeness. 

A special case in Situation 4. If the temperature measurements are recorded as an average 

value for every four days as shown in Table 3.3. 

Table 3.3. Simulated averaged temperature measurements for every 4 time units in 5 locations. 

 

 

We can transform this dataset to a matrix of interval events with event levels based on 

Equation (6) as shown in the matrix below: 

 

 

The alternative view of the interval event matrix for this example of average 

temperature can be seen in Figure 3.13. In this figure, we also assume that the comparative 

temporal window has 10 timestamps, i.e., ctw = 10. 
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Figure 3.13. A schematic view of the interval event matrix of Situation 4 with consideration of 
event level and no variation between starting and ending time points with 2 temporal comparison 
windows. Notice that the chunks blocked with colors in the horizontal orientation represent interval 
events. 

 

The pairwise global similarity and local similarity between event sequences can be 

calculated with Equations (9) and (11). Here, ctw = 10, so we have 2 chunks of 

subsequences for each original event sequence. The pairwise similarity matrices between 

event sequences of 5 locations is shown in Figure 3.14. 

 

Figure 3.14. Output matrix of local similarity with two temporal windows and global similarity 
considering event magnitude between five spatiotemporal event sequences based on the special 
case of Situation 4. 
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Intuitively we can see the event sequences between locations s1 and s2, and between 

locations s3 and s4 in Figure 3.14 are more similar than other pairs with all co-occurring 

events of similar value at most timepoints, which can be reflected in the global similarity 

matrix with the highest score of 0.91 and 0.90. The lowest similarity is 0.51 between s4 

and s5 event sequences with three co-occurring events of different significance and two 

mismatched events. 

 

3.3.2. Performance Evaluation 

In this section we present our experimental evaluation of the accuracy and speed of 

different similarity measures with some synthetic datasets. In the first experiment, we 

compared the speed for computing similarity matrices using the small dataset used in this 

section. For the second, we used K-nearest neighbor (k-NN) classification with different 

similarity measures for comparing classification accuracy and efficiency. 

 

3.3.2.1. Execution Speed for a Binary Event Matrix 

The purpose of this experiment is to assess processing times for the timestamp locked 

Jaccard based similarity described in this paper (STES.sim1, see the software availability 

link). We compared STES.sim1 with generic edit distance in R (EditD Dynamic), and two 

functions of Edit Distance and original Jaccard similarity from the R package Rstringdist. 

The dataset contains 20 timestamps and 5 locations so we can generate a 5 × 5 similarity 

matrix. Microbenchmarks (Bershad et al., 1992) in R was used to record the time elapsed 

for each similarity algorithm in the same similarity matrix generation function in R. The 

result indicated that STES.sim1 outperformed edit distance by a factor of 10 (Table 3.4). 
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3.3.2.2. Accuracy Evaluation with Synthetic Datasets Using 1-NN Classifier 

K-NN is a conventional non-parametric classifier, used widely as the baseline 

Table 3.4. Evaluation of different similarity measures with STES similarity matrix on example 
data for 100 times (unit: microseconds). 

Algorithm Min lq Mean Median uq Max n_eval 

STES.sim1 503 549 676 587 657 2328 100 

EditD Dynamic 4904 5250 5942 5474 6319 12,467 100 

EditD_Rstringdist 2064 2280 2591 2408 2625 5501 100 

Jaccard_Rstringdis

t 
1863 2021 2651 2167 2556 8504 100 

 

classifier for solving many classification problems (Peterson et al., 2005; Prasath et al., 

2017). It is based on measuring the distances or similarities between a test data set and each 

of the training data to decide the final classification output. When proposing a new distance 

or similarity measure, 1-NN accuracy was strongly recommended for testing (Wang et al., 

2013). Note that this does not exclude the additional other trainings and tests with different 

K values. Here, however, the 1-NN test has the advantage of having no parameters and 

allowing comparisons between similarity measures. 

Synthetic dataset 1: This dataset contains 100 event sequences (records) with 50 

timestamped fields of binary values (0, 1) representing whether the event occurred or not. 

The test uses 3 different event distribution patterns (groups or classes) labeled by A, B and 

C. The sample function in R with the prob argument was used to control density and order 

of event occurrences. The first pattern (Label A) is characterized with the first 20 

timestamps having a higher probability (0.8) of event occurrence and the remainder with 

lower probability (0.2). In the second pattern (Label B) the subsequence of higher 
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probability of event occurrence is placed in the middle, and in the third pattern (Label C), 

the higher probability occurrence region is placed at the end. The event data structure of 

these three patterns and the observation number of each pattern are graphically depicted in 

Figure 3.15. 

 

Figure 3.15. Schematic event sequence data structure for synthetic dataset 1 with three different 
mono-categorical event (0, 1) distribution. 

We should note that the binary data (0, 1) can represent either two categories or actual 

values of 0 and 1. Therefore, both category-based and value-based similarity measures can 

be applied to this dataset. In this evaluation experiment, the category-based measures 

include Edit Distance and time-restricted Jaccard Distance for category data (trJacDist-cat) 

developed in this paper, and the value-based distance measures are Euclidean, Manhattan, 

Minkowski, and Cosine Distance. When running 1-NN classification test, the dataset with 

three patterns is first randomized and then divided into 70% training and 30% test set for 

the experimental setup. Hence, there are 70 training event sequences and 30 test sequences 

on which classification was performed. The effectiveness of a similarity measure in this 

experiment is evaluated with accuracy for classifying three patterns of event sequences 

(Label A, B, and C) and time for completing the task. To capture the fluctuation of time 

used for each task due to internal computer operation system, we run each 1-NN test for 

each similarity measure 15 times to compute the error bars. 
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Using seven similarity measures carried out with 1-NN classification for the dataset 

mentioned above, Figure 3.16 shows the comparison of accuracy and time elapsed to 

complete the given task. The effectiveness of different similarity measures can be seen by 

comparing the accuracy and time required to complete the task. While the same accuracy 

can be achieved with trJacDist/trJacDist-cat and Edit Distance for classifying this small 

dataset, the time required with trJacDist measure is about 5 times less than Edit Distance 

measure. Euclidean, Manhattan and Minkowski Distance algorithms show a time 

advantage over trJacDist/trJacDist-cat, but slightly lower accuracy. We note that Cosine 

Distance has similar accuracy but a slightly better time performance. 

 

Figure 3.16. The bar graph for accuracy and times for 1-NN using seven different similarity 
measures applied on synthetic dataset 1 with three classes. Note: error bars are based on 15 times 
of computation for the same task. 

Synthetic dataset 2: This dataset contains 100 records (event sequences) with 128 

timestamped fields of real values. As shown in Figure 3.17, there are three types of patterns 

in this dataset: sine, box, and ramp-cliff, each function of which has high level of white 

noise as the background noise. We excluded the Edit distance in this test as it is 

inappropriate for real valued data. We compared trJacDist with Euclidean, Manhattan, 

Minkowski, and Cosine distance-based similarity measures for evaluating the efficiency 
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and accuracy of classification with 1-NN classifier. The dataset was also randomized and 

then split into 70% training and 30% test sub-datasets when running 1-NN classification. 

From the results shown in Figure 3.18 we can see that while trJacDist shows a time 

disadvantage against these methods it shares the same accuracy with Euclidean, Manhattan, 

and Cosine distance. 

 

Figure 3.17. Schematic sequence data structure of three types of events (sine, box, and ramp-cliff) 
with real values for synthetic dataset 2. 

 

 

Figure 3.18. The bar graph for accuracy and times for 1-NN using five different similarity measures 
applied on synthetic dataset 2 with three classes. Note: error bars are based on 15 times of 
computation for the same task. 
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3.3.3. Application Example 

We examined the feasibility of the proposed framework in the real-world application 

of monitoring precipitation events obtained from observation stations distributed along the 

Maine coast. Here we demonstrate the specific steps of eventization and similarity 

measures developed in this study and we address the question: Do STES that are closer in 

space show higher similarity measures? 

The Maine Department of Marine Resources (DMR) manages the shellfish growing 

areas in coastal Maine based on the fecal pollution situations observed from more than 

2000 monitoring stations. Precipitation events can trigger high levels of fecal coliform in 

shore waters and are thus of concern. Grouping of similar stations in terms of heavy rain 

or high precipitation events is useful for allocating the limited labor pool for long term 

water sampling. We used the similarity measures developed in this study to conduct 

clustering analysis with the high precipitation event sequences (>=1 in daily) of selected 

monitoring stations for 5 years. 

Considering the daily precipitation is very close between nearby monitoring stations 

we selected 43 monitoring stations for this experiment in the shellfish growing areas that 

are well distributed along the Maine coast (Figure 3.19). With daily precipitation data of 5 

years, we have an initial 43 × 1826 matrix of precipitation raw data (Table A.1). 

The dimensions of the raw data matrix is reduced through the eventization steps 

developed in this research. In this specific example, we extracted event sequences of either 

>=1″ or >=2″ precipitation for each monitoring station. Based on Equation (3) we 

computed the data in Table A.1 with R script (STS.eventize1.R) and created the event 

sequence matrix of 43 × 192 (>=1″ precipitation) (Table A.2) or 43 × 52 (>=2″ 

precipitation) (Table A.3). Taking >=1″ precipitation event sequences as an example 
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(Table A.2) and using the STES similarity measure (STES.sim1.R) from this paper, we 

created the similarity matrix of 43 × 43 (Table A.4) between selected test 

 

Figure 3.19. Experimental sites along the Maine coast. 

 

monitoring stations. We transformed these similarity data into distance data to conduct 

hierarchical clustering analysis (Ros and Guillaume, 2019) using the hclust R function with 

linkage method Ward.D2. 

Figure 3.20 shows the clustering results from using STES similarity on event 

sequences of >=1 in precipitation during 5 years in 43 locations (monitoring stations) as a 

heatmap and distance-based cluster dendrogram. 
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Figure 3.20. STES similarity-based heat map and STES distance based hierarchical clustering 
between monitoring stations along ME coast in >1 in precipitation events in 5 years (2010–2014). 

The results show the emergence of five clusters (groupings of event sequences that are 

most similar). The heatmap and cluster dendrogram indicate that these clusters are in fact 

spatial clusters indicating that for this case, sequences that are close in space tend to be 

more similar. These results can provide decision makers with more information for 

arranging the labor within each region (cluster) along the Maine coast to collect water 

samples for fecal coliform measurements from selected stations. 

 

3.4 Conclusions 

In this paper, we have demonstrated a matrix-based representation of spatiotemporal 

event sequences for unifying punctual and interval events. These similarity measures along 

with the univariate spatiotemporal event matrices for event data storage discussed above 



68 

 

provide a novel method and an alternative foundation for further event sequence pattern 

discovery. A comparison of event sequence similarity is important for detecting co-

occurrence patterns and investigating the influence of event sequences of interest. We 

assume that similar event sequences indicate a similar process structure and potential 

shared causal mechanisms. 

Based on the analysis of sequence properties for four situations and one special case 

that consider event co-occurrences and event levels, we have proposed corresponding 

similarity measures for pairwise comparisons for punctual and interval events and for 

whole or long duration sequences or their subsequences. The experimental results with 

simulated datasets showed that these similarity scores between spatiotemporal event 

sequences reasonably represent perceived closeness. 

A comparative evaluation against other similarity algorithms shows the same or better 

accuracy results. Our method shows a time disadvantage against the real valued methods 

but a substantial time advantage over the qualitative Edit Distance. Overall, our approach 

has the advantages of flexibility in that it can accommodate both qualitative and 

quantitative event values as well as both punctual and interval events. 

We recognize some limitations in the current research. This research establishes a 

framework of matrix representations and similarity development for univariate event 

sequences of different types. It does not yet handle similarity assessment for multivariate 

event sequences. Such an extension requires some modification of the matrix 

representation and similarity measures which will be addressed in future work. In the 

current work we demonstrate fixed matrix sizes which can be chunked into smaller 

subsequence sets for local versus global similarity computations. For future work, an 
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extension that addresses streaming events from monitoring stations would be a useful 

addition. The addition of temporal logic operations and extensions to consider lagged 

sequence alignment similarity rather than the time locked case are other considerations for 

future work. Furthermore, we have not tested the current methods on big data. Future work 

will focus on the evaluation extensive real datasets from environmental monitoring or other 

domains. Currently our STES representation includes the intervals between event 

occurrences. For sequences in which event occurrences may be sparse with long 

intervening intervals we are considering approaches for sparse matrices. Lastly, we also 

consider extensions to detect complex events of interest, and incorporation of our methods 

into Complex Event Processing (CEP) systems. 
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CHAPTER 4 

A NOVEL SIMILARITY MEASURE OF SPATIOTEMPORAL EVENT 

SETTING SEQUENCES: METHOD DEVELOPMENT AND CASE STUDY 

  

The content in this chapter is the reformatted version of the published research paper: 

 

Xu, F.; Beard, K. A Novel Similarity Measure of Spatiotemporal Event Setting 

Sequences: Method Development and Case Study. Geographies 2023, 3, 303-320. 

https://doi.org/10.3390/geographies3020016 

 

 

 

Chapter Abstract 

Examining the similarity of event environments or surroundings—more precisely, 

settings—provides additional insight in analyzing event sequences, as it provides 

information about the context and potential common factors that may have influenced 

them. This article proposes a new similarity measure for event setting sequences, which 

involve the space and time in which events occur. While similarity measures for 

spatiotemporal event sequences have been studied, the settings and setting sequences have 

not yet been studied. While modeling event setting sequences, we consider spatial and 

temporal scales to define the bounds of the setting and incorporate dynamic variables 

alongside static variables. Using a matrix-based representation and an extended Jaccard 

index, we developed new similarity measures that allow for the use of all variable data 

types. We successfully used these similarity measures coupled with other multivariate 

statistical analysis approaches in a case study involving setting sequences and pollution 

event sequences associated with the same monitoring stations, which validate the 

hypothesis that more similar spatial-temporal settings or setting sequences may generate 

https://doi.org/10.3390/geographies3020016
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more similar events or event sequences. In conclusion, the developed similarity measures 

have wide application beyond the case study to other disciplinary contexts and 

geographical settings. They offer researchers a powerful tool for understanding different 

factors and their dynamics corresponding to occurrences of spatiotemporal event 

sequences. 

Keywords: event sequence; spatial context; similarity measure; Jaccard index; cluster 

analysis 

 

4.1. Introduction 

An event setting, or more explicitly a spatiotemporal event setting, can be defined 

as a space and its collective influencing factors which are related to the occurrence of an 

event or sequence of events at a specific time and location. It can refer to the physical 

location, such as a specific venue or building, or to the overall atmosphere and environs or 

surroundings of an event. Similarity measures between events and event sequences have 

been well studied (Guralnik and Srivastava, 1999; Lupiani et al., 2013; Mannila and 

Ronkainen, 1997; Moen, 2000; Obweger et al., 2010; Wongsuphasawat et al., 2012; Xu 

and Beard, 2021). Assessing similarity between event settings adds another dimension to 

event sequence analysis in that it offers context and information on potential shared 

influencing factors. We hypothesize that the occurrences of at least some types of events 

and event sequences are likely to be related to the spatiotemporal settings from which they 

arise. In other words, spatiotemporal differentials in environmental settings contribute to 

variations in levels and patterns of event occurrences and event sequences. 

While, as noted above, event sequence similarity has been well researched, no such 

similarity measures for event sequence settings have been found in the literature to date. 
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This paper addresses this gap by developing similarity measures for event sequence 

settings. In (Xu and Beard, 2021), we established similarity measures for comparing event 

sequences and demonstrated their potential applications. In this study, we question whether 

similar patterns of event sequences reflect similarity in the spatiotemporal settings of the 

event sequences. A working hypothesis is that more similar spatial settings may generate 

more similar event sequences. 

Measures of similarity among event sequence settings have several potential 

applications in real world contexts. First, in predicting future events or phenomena, 

similarity measures can be used to identify patterns in the spatial-temporal settings of past 

events or phenomena, which can help predict the likelihood of similar events occurring in 

the future. For example, a similarity measure could be used to predict the likelihood of a 

hurricane occurring in a particular region based on the spatial-temporal settings of past 

hurricanes in the region. Second, for better understanding the spread of diseases or other 

public health concerns, similarity measures can identify patterns in the spatial-temporal 

settings of disease outbreaks or other public health concerns. Such information can help 

public health officials understand how diseases or other health concerns spread and take 

steps to prevent or mitigate their impact. In analyzing the impact of climate change, 

similarity measures can identify patterns in the spatial-temporal settings of natural disasters 

or other events that may be influenced by climate change. Setting similarity information in 

this context can help policymakers and researchers understand the potential impacts of 

climate change and take steps to mitigate those impacts. In analyzing the distribution of 

resources or services, similarity measures can help identify patterns in the spatial-temporal 

settings of resource distribution or service delivery, which can help policymakers and 
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service providers understand where resources or services are most needed and how to 

allocate them effectively. Similarity measures can also help identify patterns in the spatial-

temporal settings of human activities, such as economic development or land use planning, 

among other areas covering the natural and social sciences. 

To develop an event sequence setting similarity metric, we propose to characterize 

the environs where a time series has been observed, and, by extension, event sequences 

have been derived. How to describe and determine what constitutes such environs raises 

various challenges for conceptualizing such a space. Recent geographical research has 

pointed to the need for more careful and critical evaluations of our conceptualizations of 

space (Malpas, 2012; Paasi, 2004; Simandan, 2020), advocating for concepts that avoid 

predetermined hierarchies or boundaries. The concept of ‘site’ (Marston et al., 2005; 

Schatzki, 2002; Woodward et al., 2012) is one such option. Site has been presented as an 

organizationally autonomous, subject-independent ‘event-space’ where something occurs. 

It has a processual focus of differentiated and differentiating forces at work that contribute 

to its assembly. The authors clearly state that a site is not a fixed space in the sense of a 

setting, context, or place for action but dynamic, unbounded, and subject to compositional 

variation. This process-focused view of site has much conceptual appeal as a dynamic 

generative source of events. While recognizing the value and applicability of this site 

concept, in order to proceed with a similarity comparison among a set of environs, we 

revert to a need for some bounding constraints. The term setting has received less attention 

but appears in (Worboys and Hornsby, 2004) with reference to events. They present events 

as situated within a setting which may be spatial, temporal, or spatiotemporal. The setting 

is assumed to have extent in either or both space and time, and an appropriate scale. What 
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constitutes a setting, scale, and an appropriate scale yields yet more conceptual turmoil. 

Recent reflections on scale (Marston et al., 2005; Moore, 2008; Paasi, 2004) suggest 

attention to processes or practices that are differentially scaled rather than delimited 

extents. We return to this issue in Section 2. 

Context is another term that could apply to an environ. Context has numerous 

definitions, many with location as the emphasis, namely spatial context. Context has been 

described as the “location and the identity of nearby people and objects.” (Jiang and Yao, 

2007). Contexts can include factors such as the natural environment, climate, culture, 

economic conditions, and population characteristics. Spatial-temporal context can refer to 

the historical and cultural background of a place, as well as the relationships and 

interactions that have occurred within that place over time. Context is an important factor 

in many domains and applications. In computer science, context has referred to any 

information available for characterizing the situation of an entity, where entity could be a 

person, place, or object, which is related to the interaction between a user and an application 

(Brézillon and Gonzalez, 2014; Dey, 2001; Loke, 2006). In geography, it has referred to 

physical and social conditions that exist in a particular place and time (Gong and Hassink, 

2020; Sunley, 1996; Weber and Kwan, 2003; Zolnik, 2009). In human geography, the 

importance of contexts has given rise to an epistemological framework of situated 

knowledge (Simandan, 2019), which argues that our knowledge is contextualized by 

geographical location among other influences we may or may not be aware of. 

Spatial context strongly influences the transport disadvantage that in turn affects 

social exclusion and well-being (Delbosc and Currie, 2011). In travel behavior research, 

spatial context was shown to be strongly related to household travel patterns at an 
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international scale (Timmermans et al., 2003). A person’s health-related problems can be 

strongly affected by different types of spatial context, such as environmental exposures 

(Cutter, 1996; Roux and Mair, 2010), social environment (characteristics of communities 

and neighborhoods) (Roux and Mair, 2010; Sampson, 2003), and ease of access to health 

services (Yang et al., 2006). Spatial context greatly influences the potential of getting a 

disease, the adoption of healthy lifestyle, and the ease of access to medical services for 

disease diagnosis and treatment. An early psychological behavior research study indicates 

that decision behavior is affected by spatial context or spatially varied factors (Wolpert, 

1964). A farming population was selected to study the effect of spatial context in decision 

processes because the outcomes of decision behavior are easily observable over the 

landscape. The decision making in farming is dispersed spatially among many farmers due 

to the uneven diffusion of market and technical information. With the strong emphasis and 

integration of spatial context, a new area of ecological studies, called spatial ecology, has 

emerged (Gripenberg and Roslin, 2007; Tilman and Kareiva, 2018). 

Spatial context is also very important in recognition of objects in images. In a 

content-based image retrieval experiment, incorporating spatial context models 

dramatically reduced the misclassification and increased the accuracy of material detection 

by 13% (Singhal et al., 2003). In order to better recognize or identify defined objects (e.g., 

cars, rivers, sky) in an image, combining the naturally classified texture or colors as spatial 

context greatly improved detection accuracy (Heitz and Koller, 2008). 

Spatial context plays an important role when measuring the similarity of two 

entities or event sequences. The effect of context on existing similarity measurement 

approaches has been reported on in the geospatial domain (Keßler, 2007; Keßler et al., 
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2007). This work focuses on quantifying the impact of changing contexts on similarity 

measures, thus recognizing the potential influence of context on similarity measures 

embedded in that context. This paper focuses on measures of similarity for spatial settings 

with the expectation that setting similarity is likely influencing the similarity of event 

sequences observed within a setting. 

In general, spatial-temporal contexts describe the general or broader context in 

which an event or phenomenon occurs. We distinguish spatial-temporal settings as 

referring to a specific location and time frame in which an event or phenomenon occurs. 

There is no fixed or natural scale (Levin, 1992) for such a setting, which may be as broad 

as a particular region or as specific as a particular location within a region. It can also refer 

to a specific point in time, or a specific time interval. 

In this study, we develop similarity measures between individual spatiotemporal 

settings and sequences of spatiotemporal settings, which may affect or drive the formation 

of event sequence patterns. Spatiotemporal settings are characterized by a collection of 

parametric factors within the environs where events or event sequences are situated, with 

an emphasis on location, time, and circumstances. We discuss the concepts of classification 

and scale of spatiotemporal settings, followed by representation and variable selection for 

assessing spatiotemporal setting similarity. We then develop a matrix-based approach for 

computing similarity measures between spatiotemporal settings at a certain time point or 

period and sequences of spatiotemporal settings over serial times, which we evaluate 

through a case study. The developed similarity measure serves as an index that combines 

a set of quantitative and qualitative factors. The measures have broad application beyond 

ecological and environmental event settings, to social, cultural and health related contexts. 
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4.2. Materials and Methods 

4.2.1. Model for Event Sequence Settings 

As noted above, a conceptual challenge for modeling an event sequence setting lies 

in the spatial and temporal specification of the setting. The event sequence similarity 

measure described by Xu and Beard (Xu and Beard, 2021) assume time series and derived 

events sequences are observed at fixed point locations. Clearly, influences on a time series, 

and, by extension, a derived event sequence, extend beyond a point location, but a projected 

extent will be application and scale dependent, the scale dependence here being a function 

of pertinent event generating processes. As (Marston et al., 2005) note, the space of a site 

is something that emerges through unfolding event relations. Thus, we assume that the 

space of an event setting will vary based on the observed process, local environmental 

circumstances, and monitoring practices and have scale implications for variable selection. 

As with most analyses, spatial and temporal scales must be considered in 

identifying and characterizing spatiotemporal event sequence settings. As a basis for 

modeling sequences of spatiotemporal event settings, we first model an event-situated 

setting at a specific temporal scale or time point with different spatial scales. Figure 4.1 

illustrates the potential for different spatial boundaries for a setting. Where a boundary is 

placed has implications for the set of influencing factors. With changes in spatial scale, the 

influencing factors for a setting may vary and may be both static and dynamic. 

To account for the dynamic aspects of setting as relating to an event sequence at a 

location, we conceptualize the setting as a sequence, i.e., a sequence of settings at ordered 

time points, as illustrated in Figure 4.2. The measurement of spatial pattern and 

heterogeneity is dependent on the scale at which the measurements are made. In this study, 
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we do not consider interactions between scales. For a specific application context, we 

assume that we have determined the pertinent set of static and dynamic variables for 

representing all event settings at one spatial scale. For a set of monitored locations 

generating spatiotemporal event sequences as discussed in (Xu and Beard, 2021), we 

specify corresponding sequences of spatiotemporal event settings. Figure 4.2 graphically 

illustrates these conceptual sequences of spatiotemporal event settings with n dynamic and 

m static representative variables. 

 

Figure 4.1. Schematic representation of an event-situated setting considering different 
spatial scales for the setting. Influencing factors with different weights are shown only at 
Scale 1. More, fewer, or different sets of factors may apply at another scale. 

 

4.2.2. Matrix Representation of Sequences of Spatiotemporal Settings 

For a given application context, we assume we have determined the major variables 

which strongly or satisfactorily represent the spatial settings for a set of sensor locations or 
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Figure 4.2. Schematic illustration of sequences of spatial-temporal settings with t time 

points and s locations. 

 

monitoring stations where event sequences are observed. Given 𝑠 locations or monitoring 

stations and 𝑡 temporal points, we conceptually associate an event sequence with a setting 

sequence. We then represent these sequences of spatiotemporal event settings with a 𝑠 × 𝑡 

matrix, as schematically illustrated in Figure 4.3. 

Figure 4.3. Schematic matrix representation of sequences of spatial-temporal settings with 
t time points and s locations. λst—a setting at location s and time t. 
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For each setting λ with n dynamic (ν) and m static variables (𝜌), i.e., 
 
𝜆: 𝜈1, 𝜈2, …… , 𝜌𝑚,  
 

Figure 4.3 can be expanded to Figure 4.4 to become the variables-based matrix 

representation of the sequences of spatiotemporal event settings. 

Figure 4.4. Matrix representation of sequences of spatiotemporal event settings with s 
locations and t time points. 

 

4.2.3. Similarity Measures of Spatial Settings 

4.2.3.1. Pairwise Similarity between Individual Spatial Settings 

Pairwise similarity between individual settings is fundamental to further develop 

similarity measures between sequences of spatiotemporal settings based on certain criteria. 

In a study of environmental settings, for example, pairwise similarity can be used to 

measure the similarity between two or more settings based on factors such as temperature, 

humidity, rainfall, and other environmental variables. By calculating pairwise similarity 

scores, we can gain insights into how different or how similar settings relate to each other 

and identify patterns that may be useful in predicting future outcomes. 

In this study, we develop a new pairwise similarity measure between spatial settings 

based on the modifications of the Jaccard index described in (Xu and Beard, 2021). The 

original Jaccard index is a similarity measure commonly used in the context of sets or 

binary vectors, where each element can either be present or absent (Choi et al., 2010). To 
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adapt the Jaccard index for measuring the similarity between spatial settings associated 

with thematic events, we need to determine a set of common features, including static and 

dynamic variables, representing each spatial setting. Considering the number of common 

features for a pair of settings, we have two major considerations, (1) the magnitude or 

quantitative level of each element from both settings, and (2) that the values of the dynamic 

variables or elements should be measured at the same timestamps or time intervals. 

We first identify the co-existing dynamic variables between two representative 

dynamic variable sets 𝑙𝑑1 and 𝑙𝑑2, and the co-existing static variables between two 

representative static variable sets 𝑙𝑠1 and 𝑙𝑠2 of two spatial settings, setting 1 and 2. We 

calculate the relative ratios of individual common variables, and then sum them by dynamic 

and static variables. The modified Jaccard similarity between two spatial settings at time k 

can be expressed as the sum of relative ratios of all common features/variables divided by 

the total number of unique features/variables in both sets/settings as in Equation (1): 

 

𝑠𝑖𝑚𝑘(𝑙1, 𝑙2) =
𝑆𝑑𝑘12 + 𝑆𝑠12

|𝑙𝑑1 ∪ 𝑙𝑑2| + |𝑙𝑠1 ∪ 𝑙𝑠2|
=
𝑆𝑑𝑘12 + 𝑆𝑠12
𝑁𝑑 + 𝑁𝑠  

               (12) 

 
where 

𝑙1-set 1 representing spatial setting 1, including the subset 1 of dynamic variables 

(𝑙𝑑1 ) and the subset 2 of static variables (𝑙𝑠1), 

𝑙2-set 2 representing spatial setting 2, including the subset 1 of dynamic variables 

(𝑙𝑑2 ) and the subset 2 of static variables (𝑙𝑠1), 

𝑆𝑑𝑘12—sum of relative ratios of common dynamic variables between two settings 

at time k, 
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 𝑆𝑠12—sum of relative ratios of common dynamic variables between two settings, 

assuming no changes over time during the experiment, 

𝑁𝑑 = |𝑙𝑑1 ∪ 𝑙𝑑2|—cardinality of union set of 𝑙𝑑1 and 𝑙𝑑2, 

𝑁𝑠 = |𝑙𝑠1 ∪ 𝑙𝑠2|—cardinality of union set of 𝑙𝑠1 and 𝑙𝑠2. 

We have two similarity calculation situations dependent on variable types. First, if 

variable values are interval, ratio, binary and categorical, the pairwise similarity at time k 

can be calculated using Equations (2) and (3). Note that the categorical data can be 

converted to binary data format based on the number of categories. 

If not considering weights or relative importance of individual elements/variables: 

𝑠𝑖𝑚𝑘(𝑙1, 𝑙2) =
∑ (1−𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖)−𝑙𝑒𝑣(𝑑𝑘2𝑖)))+∑ (1−𝐴𝑏𝑠(𝑙𝑒𝑣(𝑠1𝑗)−𝑙𝑒𝑣(𝑠2𝑗)))

𝐶𝑠12
𝑗=1

𝐶𝑘𝑑12
𝑖=1

𝑁𝑑+𝑁𝑠  
  

   

(13) 

 
If considering weights or relative importance of individual elements/variables: 

𝑠𝑖𝑚𝑘(𝑙1, 𝑙2) =
𝑐𝑘𝑑12∑ 𝜔𝑖 (1 − 𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑑𝑘2𝑖)))

𝐶𝑘𝑑12
𝑖=1

𝑁𝑑

+
𝑐𝑠12∑ 𝜔𝑗 (1 − 𝐴𝑏𝑠 (𝑙𝑒𝑣(𝑠1𝑗) − 𝑙𝑒𝑣(𝑠2𝑗)))

𝐶𝑠12
𝑗=1

𝑁𝑠  
 

(14) 

Second, if variables are ordinal valued, the similarity can be calculated using 

Equations (4) and (5): 

 If not considering weights or relative importance of individual elements/variables: 

 

 
 
 
If considering weights or relative importance of individual elements/variables: 

𝑠𝑖𝑚𝑘(𝑙1, 𝑙2) =

∑ (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑑𝑘2𝑖))

𝑛𝑖 − 1
) + ∑ (1 −

𝐴𝑏𝑠(𝑙𝑒𝑣(𝑠1𝑖) − 𝑙𝑒𝑣(𝑠2𝑖))
𝑚𝑗 − 1

)𝐶𝑠12
𝑗=1

𝐶𝑘𝑑12
𝑖=1

𝑁𝑑 + 𝑁𝑠  
 

 
    

(15) 
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where 

𝑐𝑘𝑑12 —the number of common dynamic variables between two settings at 

timestamp k, 

𝑐𝑠12 – the number of common static variables between two settings, 

𝜔𝑖, 𝜔𝑗—weights or relative importance of dynamic and static independent variables 

to response variable, 

𝑛𝑖 , 𝑚𝑗—ordinal levels of dynamic variable i and static variable j, respectively, 

𝑙𝑒𝑣(𝑑𝑘1𝑖), 𝑙𝑒𝑣(𝑑𝑘2𝑖)—the relative levels or magnitudes of two corresponding co-

occurring elements in two dynamic subsets 𝑙𝑑1 and 𝑙𝑑2 at timestamp k, respectively: 

 

 

𝜔𝑖, 𝜔𝑗— weights or relative importance of dynamic and static independent 

variables to response variable, 

𝑙𝑒𝑣(𝑠1𝑖), 𝑙𝑒𝑣(𝑠2𝑖)— the relative levels or magnitudes of two corresponding co-

occurring elements in two static subsets 𝑙𝑠1 and 𝑙𝑠2, respectively: 

𝑙𝑒𝑣(𝑠1𝑖) =
𝑠1𝑖

𝑠1𝑖+𝑠2𝑖
 and 𝑙𝑒𝑣(𝑠2𝑖) =

𝑠2𝑖

𝑠1𝑖+𝑠2𝑖
  (18) 

 
2.3.2. Pairwise similarity between sequences of spatial settings 

Sequences of a spatial setting refer to the different configurations of the setting or 

a physical space that occur over time due to the changes of the dynamic variables while 

𝑠𝑖𝑚𝑘(𝑙1, 𝑙2) =

𝑐𝑘𝑑12 ∑ 𝜔𝑖 (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑑𝑘2𝑖))

𝑛𝑖 − 1
)𝐶𝑘𝑑12

𝑖=1

𝑁𝑑   

+

𝑐𝑠12∑ 𝜔𝑗 (1 −
𝐴𝑏𝑠 (𝑙𝑒𝑣(𝑠1𝑖) − 𝑙𝑒𝑣(𝑠2𝑗))

𝑚𝑗 − 1
)𝐶𝑠12

𝑗=1

𝑁𝑠  
 

(16) 

𝑙𝑒𝑣(𝑑𝑘1𝑖) =
𝑑𝑘1𝑖

𝑑𝑘1𝑖+𝑑𝑘2𝑖
  and 𝑙𝑒𝑣(𝑑𝑘2𝑖) =

𝑑𝑘2𝑖

𝑑𝑘1𝑖+𝑑𝑘2𝑖  
 (17) 
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static variables are assumed stable during the study timeframe of interest. We can extend 

the modified Jaccard index-like pairwise similarity measure between individual settings, 

to calculate the pairwise similarity between sequences of spatial settings if the data from 

different locations are collected in equal time intervals or in the same order. Assuming we 

have determined the granularity of time intervals or certain sequential order and the total 

number of timestamps, T, the similarity between two sequences of spatial settings from 

two locations (S1 and S2) can be expressed as Equation (8): 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙(𝑆1, 𝑆2) =
∑ 𝑠𝑖𝑚𝑘(𝑙1, 𝑙2)
𝑇
𝑘=1

𝑇
 

                                      =
∑ (𝑆𝑑𝑘12 + 𝑆𝑠12)
𝑇
𝑘=1

𝑇(𝑁𝑑 + 𝑁𝑠 )
 

                                                  =
∑ 𝑆𝑑𝑘12
𝑇
𝑘=1

𝑇(𝑁𝑑 +𝑁𝑠)
+

∑ 𝑆𝑠12
𝑇
𝑖=1

𝑇(𝑁𝑑 +𝑁𝑠)
 

                                            =
∑ 𝑆𝑑𝑘12
𝑇
𝑘=1

𝑇(𝑁𝑑 + 𝑁𝑠)
+

𝑆𝑠12
𝑁𝑑 +𝑁𝑠 

 

(19) 

 

 

In dealing with the sequences of spatial settings, we also need to consider the data 

types and the weights or relative importance of explanatory variables to response variables 

(events or event sequences of interests). So, we also have four situations in which 

calculating the similarity between these setting sequences from different locations. 

1) Variable type: interval, ratio, binary and categorical; not considering the weights of 

individual variables: 

2) Variable type: interval, ratio, binary and categorical; considering the weights of 

individual variables: 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙(𝑆1, 𝑆2)                                                                                     

=
∑ ∑ (1 − 𝐴𝑏𝑠(𝑙𝑒𝑣(𝑙𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑙𝑑𝑘2𝑖)))

𝐶𝑘𝑑12
𝑖=1

𝑇
𝑘=1

𝑇(𝑁𝑑 + 𝑁𝑠)

+
∑ (1 − 𝐴𝑏𝑠 (𝑙𝑒𝑣(𝑙𝑠1𝑗) − 𝑙𝑒𝑣(𝑙𝑠2𝑗)))
𝐶𝑠12
𝑗=1

𝑁𝑑 + 𝑁𝑠 
                 

(20) 
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𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙(𝑆1, 𝑆2) =
𝑐𝑘𝑑12 ∑ ∑ 𝜔𝑖 (1 − 𝐴𝑏𝑠(𝑙𝑒𝑣(𝑙𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑙𝑑𝑘2𝑖)))

𝐶𝑘𝑑12
𝑖=1

𝑇
𝑘=1

𝑁𝑑

+ 
𝑇 ∗ 𝑐𝑠12∑ 𝜔𝑗 (1 − 𝐴𝑏𝑠 (𝑙𝑒𝑣(𝑠1𝑗) − 𝑙𝑒𝑣(𝑠2𝑗)))

𝐶𝑠12
𝑗=1

𝑁𝑠  
 

(21) 

3) Variable type: ordinal; not considering the weights of individual variables: 

𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙(𝑆1, 𝑆2) =

∑ ∑ (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑑𝑘2𝑖))

𝑛𝑖 − 1
)𝐶𝑘𝑑12

𝑖=1
𝑇
𝑘=1

𝑇(𝑁𝑑 + 𝑁𝑠)

+

∑ (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑠1𝑖) − 𝑙𝑒𝑣(𝑠2𝑖))

𝑚𝑗 − 1
)𝐶𝑠12

𝑗=1

𝑁𝑑 + 𝑁𝑠 
 

(22) 

4) Variable type: ordinal; considering the weights of individual variables: 

 𝑠𝑖𝑚𝑔𝑙𝑜𝑏𝑎𝑙(𝑆1, 𝑆2) =

𝑐𝑘𝑑12 ∑ ∑ 𝜔𝑖 (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑑𝑘1𝑖) − 𝑙𝑒𝑣(𝑑𝑘2𝑖))

𝑛𝑖 − 1
)𝐶𝑘𝑑12

𝑖=1
𝑇
𝑘=1

𝑁𝑑

+ 

𝑇 ∗ 𝑐𝑠12∑ 𝜔𝑗 (1 −
𝐴𝑏𝑠(𝑙𝑒𝑣(𝑠1𝑖) − 𝑙𝑒𝑣(𝑠2𝑖))

𝑚𝑗 − 1
)𝐶𝑠12

𝑗=1

𝑁𝑠  
                

(23) 

 

4.2.4. Setting Similarity Analysis Workflow 

To estimate similarity levels between event settings, a critical step is to effectively 

select and quantify the major attributes representing these settings where events or event 

sequences occur. As introduced above, the variables can be static, dynamic, or both, 

potentially covering a wide range of environmental variables. The selection of variables in 

developing similarity measures will be domain dependent and should be statistically 

discriminant. In a water quality monitoring application, for example, the static spatial 

setting variables of interest could include land cover, topography, and soils, and dynamic 

variables could be weather related. Figure 4.5 shows the steps for implementing similarity 

assessment between event settings or sequences of event settings in a specific domain. 
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          Figure 4.5. Spatial-temporal setting similarity analysis flowchart. 

 

Define a thematic event and identify sequences of spatiotemporal events: 

assume that we focused on an event or event sequences related research in a specific 

domain and identified a series of sequences of spatiotemporal events and completed 

similarity analysis between these sequences. 

Identify relevant spatial settings and spatial features or variables: select 

potential dynamic and static variables representing spatial settings, which are deemed 

relevant to event occurrences based on domain knowledge. In studying air pollution events, 

for example, we could include data on such variables as wind direction, wind speed, sites 

of local manufactures, major pollution sources, concentration of major pollutants, and 
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transportation density. A correlation matrix for these initial selected variables can be used 

to eliminate redundant information. 

Collect spatial data and preprocess it: collect sufficient data on pre-selected static 

and dynamic variables intuitively correlated to occurrences of thematic events. 

Preprocessing or preparation of the collected data mainly includes normal distribution 

check, normalization, standardization of measurement units, and binarization of categorical 

data. 

Analyze relative importance/weight of preliminarily selected variables: to 

improve the computation speed and accurate representation of similarity measures we 

should identify those variables most relevant to the events of interest and reduce the 

number. To determine which variables are most important to the thematic events and for 

the similarity measures, we can conduct relative weight analysis (RWA) (Chao et al., 2008; 

Tonidandel and LeBreton, 2015; Tonidandel et al., 2009) and partial least squares 

regression (PLSR) (Ali et al., 2018). 

Calculate pairwise similarities between spatial setting sequences: Once the 

most relevant features or variables are identified, we can use the similarity measures 

developed in this study to compute the pairwise similarity between spatial settings and 

sequences of spatial-temporal settings and form the similarity matrix. 

Validate the similarity measure: with the similarity matrix of spatial setting 

sequences, we can further conduct clustering analysis to group event sequences associated 

with locations or stations, and then conduct the comparison analysis with clusters of event 

sequences as ground truth. The other approach is to compare the results with other methods.  
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4.3. Case study: Setting Similarity of Coastal Monitoring Stations for Fecal Pollution 

To demonstrate the use of our proposed method above, we determined the pairwise 

similarities of 16 monitoring stations along the Maine coast with the selected setting 

attributes for costal fecal pollution event sequences. The Maine Department of Marine 

Resources (DMR) manages the shellfish growing areas in coastal Maine based on the fecal 

pollution situations observed from more than 2000 monitoring stations. Fecal coliform is a 

type of bacteria that is found in the intestines and feces of warm-blooded animals, including 

humans. It is used as an indicator of fecal contamination of water (Noble et al., 2003). 

Monitoring fecal coliform levels in coastal waters is important because it can help identify 

sources of contamination and provide an early warning of contamination, enabling faster 

responses. Maine DMR typically collects water samples at these monitoring stations 

(>2000) at regular intervals and analyzes them for fecal coliform levels. Grouping 

monitoring stations as similar spatial settings of fecal pollution events can provide several 

benefits and advantages. First, it can provide useful information for early detection of 

pollution events at similar stations (Dong et al., 2015; Prasad et al., 2015). Second, cluster 

analysis of monitoring stations across a wider area can help to identify trends and patterns 

in fecal coliform levels and pollution events, which can inform efforts to improve water 

quality. Third, followed by the previous two benefits, it will help to optimize resource 

allocation and prioritize monitoring efforts based on areas of higher pollution risk, which 

can help to reduce costs and increase efficiency in monitoring and management activities. 

Fourth, it can help to make more informed decisions about pollution control measures, such 

as beach closures or water treatment. Lastly, it also helps to increase public awareness of 
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coastal water quality issues and the need for responsible use and management of marine 

resources. 

4.3.1. Experimental Site and Design 

4.3.1.1. Site and Variables 

In this case study, we selected 16 monitoring stations along the Maine coast, with 

the following DMR assigned location IDs: WE020.00, WE028.00, WG008.10, WG027.00, 

WG038.00, WM003.00, WN057.00, WN077.20, WQ023.00, WR011.00, WS027.00, 

WS051.00, WT015.00, WT018.00, WT024.00, WV019.00, as shown on the map (Figure 

4.6). Multiple factors related to fecal coliform concentration around these monitoring 

stations contribute to characterizing the corresponding spatial settings for fecal pollution 

events. Some studies have shown that shoreline, basin hydrology, and marine environment 

affect the retention, survival, and distribution of fecal coliform (Hughes, 2003). Based on 

data availability, we selected a combination of basin characteristics as static variables and 

some marine environmental factors as dynamic variables. Their abbreviations and 

description are shown in Table 4.1. 

 

4.3.1.2. Data Collection 

We used the geolocations of the 16 selected monitoring stations to delineate the 

corresponding basins with StreamStats v4.13.0 (https://streamstats.usgs.gov/ss/,  the access 

date: 25 February 2023) and download all associated basin characteristics data. For the 

static variables described in Table 4.1, the data were extracted as shown in Table B.1. We 

obtained marine environment related variables and fecal coliform measurements from 

Maine DMR (Table B.2)). 

https://streamstats.usgs.gov/ss/
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4.3.1.3. Methods 

We used partial least squares regression (PLSR) analysis (Tonidandel and 

LeBreton, 2015; Tonidandel et al., 2009) to obtain the relative importance of all variables 

against the fecal coliform scores. We used the similarity measure developed in this study 

to achieve the similarity matrix of spatial setting sequences, and used the method developed 

in (Xu and Beard, 2021) to obtain the similarity matrix of the corresponding fecal pollution 

event sequences with the same locked timestamps. After converting the similarity matrices 

of both setting and event sequences to the distance matrices, we performed a cluster 

analysis (Kettenring, 2006). 

 

Figure 4.6. Selected monitoring stations/locations on the Maine coast for depicting 
spatiotemporal settings of fecal pollution event sequences. 
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Table 4.2. Relative weights of 39 selected variables with signs. 

 

4.3.2. Relative Weights and Selection of Representative Variables for Spatial Settings 

The results of the partial least squares regression analysis on 39 variables revealed 

that some variables are more important than others in predicting the fecal coliform levels 

Negative Variables Relative Importance Positive Variables Relative Importance 

Salinity −34.696 COASTDIST 7.252 

STATSGOA −7.763 BKSF 7.217 

BKW −5.725 STORNWI 6.092 

ELEV −3.630 RainCum72 4.256 

STORAGE −1.069 LC11DEV 3.789 

Tide.HF. −0.817 BSLDEM10M 3.200 

Wind.NW. −0.790 Tide.HE. 1.455 

BKA −0.778 RainCum96 1.389 

Tide.H. −0.771 ELEVMAX 1.298 

LC11IMP −0.472 Wind.CL. 1.121 

Wind.S. −0.373 RainCum48 1.082 

BKD −0.372 RainCum24 0.878 

Wind.N. −0.247 DRNAREA 0.871 

Tide.E. −0.218 Wind.NE. 0.654 

Pop_Dnsity −0.186 PCTSNDGRV 0.399 

Wind.E. −0.109 SANDGRAVAP 0.393 

Wind.SW. −0.106 Tide.F. 0.325 

Wind.SE. −0.095 Tide.LE. 0.042 

Wind.W. −0.056 SANDGRAVAF 0.004 

Tide.L. −0.015   
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(Table 4.2 and Figure 4.7). The signs associated with each variable provide insight into the 

direction of their impact on the fecal coliform levels. Salinity has the highest relative 

importance and the strongest negative influence on the fecal coliform. On the other hand, 

shortest distance from the coastline to the basin centroid (COASTDIST), bank-full 

streamflow (BKSF), and percentage of storage (combined water bodies and wetlands) from 

the National Wetlands Inventory (STORNWI) have the highest positive influence on the 

fecal coliform levels. 

 

Figure 4.7. Bar chart of relative importance of 39 selected static and dynamic explanatory 
variables for fecal coliform bacterial measurements. 

 

To reduce the number of variables for calculating similarity in the formula 

developed in this study, we selected the variables with higher weights. In this case study, 

we selected those variables with absolute values of relative importance greater than 1. We 

then re-ran PLSR with these selected variables against corresponding fecal coliform levels. 

The relative importance of these variables from the second round PLSR is shown in Table 

4.3 and Figure 4.8, which can be used as relative weights for calculating similarities 

between spatial setting sequences when considering contribution from these individual 

variables. 
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Table 4.3. Relative weights of 16 selected variables with signs. 
 

 

Figure 4.8. Bar chart of relative importance of 16 selected static and dynamic variables 
against fecal coliform bacterial measurements. 

 

4.3.3. Clustering Analysis of Spatial Setting Sequences and Fecal Pollution Event 

Sequences 

We computed all pairwise similarities between spatial setting sequences using the 

method of this study using the 16 selected variables in the previous section for 16 rain-

Negative Variables 
Relative 

Importance 
Positive Variables 

Relative 

Importance 

Salinity −33.900 BKSF 8.500 

STATSGOA −11.500 STORNWI 6.500 

ELEV −8.700 COASTDIST 6.200 

BKW −6.700 RainCum72 4.200 

STORAGE −1.100 BSLDEM10M 3.700 

  ELEVMAX 3.000 

  Tide.HE. 1.400 

  RainCum96 1.400 

  LC11DEV 1.100 

  Wind.CL. 1.100 

  RainCum48 1.100 
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storm-involved timestamps. The clustering analysis of spatial setting sequences labeled 

with monitoring stations yields interesting insights into the underlying patterns and 

structures of the data of these selected static and dynamic variables (Figure 4.9). The result 

indicates that there are 3~4 distinct clusters within the data, with each cluster representing 

a unique pattern of spatial setting sequences with similar characteristics. Figure 4.9 shows 

some geographically proximate spatial setting sequences in the same or connected clusters, 

but not all due to the diverse contributions of different static and dynamic variables. These 

clusters provide valuable information about the types of spatial setting sequences, which 

we next relate to clusters of fecal pollution event sequences. 

 

Figure 4.9. Clusters of 16 spatial setting sequences labeled with monitoring stations. 

 

We generated a similarity matrix between fecal pollution event sequences also 

labeled with monitoring stations and the corresponding setting sequences at the same time 

frame (16 days). With the conversion to the distance matrix, we implemented the clustering 
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analysis and the similarity heatmap, and the clustering result is shown in Figure 4.10. Three 

major clusters are clearly identified. 

Figure 4.10. Similarity-based heat map and distance based hierarchical clustering 

between 16 monitoring stations for fecal pollution event sequences. 

 

4.3.4. Cross Analysis between Clusters of Setting Sequences and Clusters of Event 

Sequences 

Cross-analysis between clusters of spatial settings and clusters of events sequences 

can provide insights into the causes and effects of pollution events in coastal waters. We 

put the clustering results above from both setting sequences and event sequences side by 

side to build the cross-comparison and cross mapping graphs (Figure 4.11 and 4.12). By 

examining components of the major clusters of setting sequences and pollution event 

sequences, we find cases of at least two stations within one major cluster among the event 

sequence clusters that were also grouped in the same major cluster of setting sequence 

clusters. We found 11 out of 16 monitoring stations showing this pattern. Specifically, 

WS027.00, WT015.00, WT024.00, and WR011.00 in event sequence Cluster E1 are also 

in setting sequence Cluster S2; WG008.10 and WE020.00 in Cluster E2 are also in Cluster 
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S1; WQ023.00 and WV019.00 in Cluster E2 are also in Cluster S2; and WG027.00, 

WG038.00, and WM003.00 in Cluster E3 are also in Cluster S1. This cross-analysis 

between clusters of spatial settings and event sequences can help to improve our 

understanding of the complex interactions between environmental factors and basin 

characteristics and identify drivers for fecal coliform pollution events in coastal marine 

water.  

  

 

Figure 4.11. Cross analysis between clusters of setting sequences and clusters of event 

sequences. 



101 

 

 

Figure 4.12. Cross mapping between clusters of setting sequences and clusters of event 

sequences. 

 

4.4. Discussion 

We developed similarity measures through modeling spatial setting sequences. The 

model uses a matrix representation of spatiotemporal event settings and considers both 

static and dynamic variables. To measure the similarity between spatial settings, the 

Jaccard index is modified based on the variables’ magnitude and the time interval at which 

dynamic variables are measured. Pairwise similarity between individual spatial settings is 

crucial for developing similarity measures between sequences of spatiotemporal settings 

based on specific criteria. The pairwise similarity measure can help to identify patterns and 

predict future outcomes of corresponding event sequences. 



102 

 

The model’s matrix representation of sequences of spatiotemporal settings can be 

used to represent a set of sensor locations or monitoring stations where event sequences 

are observed. The matrix representation has the flexibility to include n dynamic and m 

static variables that represent all event settings at one spatial scale. The modified Jaccard 

index measures the similarity between individual spatial settings and forms the basis for 

similarity measures between sequences of spatiotemporal settings. The modified Jaccard 

similarity between two spatial setting sequences considers the relative ratios of common 

features/variables. These measures provide information on the differences or similarity of 

spatial settings, which in turn contribute to the analysis of event sequences arising from 

these settings. 

Through the case study, we demonstrated how to model the spatial-temporal setting 

sequences and provide a useful framework for understanding and characterizing spatial 

setting sequences corresponding to event sequences. The model’s focus on defining the 

bounds of a setting and considering both static and dynamic variables allow for a 

comprehensive understanding of associated event sequences. The pairwise similarity 

measure helps identify patterns in event settings or setting sequences to comprehensively 

understand better the occurrences of events and event sequences. The similarity measures 

developed in this paper, and the framework incorporating static and dynamic variables to 

represent settings, will provide useful tools for a range of applications, from environmental 

settings to predictive modeling. 

One potential application of similarity measures for event sequence settings is in 

the field of disaster management. By analyzing the spatial-temporal settings of past 

disasters, emergency responders can better predict the likelihood and potential impact of 
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future disasters and allocate resources more effectively. For example, if a particular region 

is prone to frequent flooding, similarity measures can be used to identify patterns in the 

spatial-temporal settings of past floods and help emergency responders anticipate and 

prepare for future floods in that region. (Castellarin et al., 2001) studied the relationship 

between hydrological similarity measures and regional flooding frequency. The authors 

studied the similarity measures between catchments in the distribution of rainfall extremes 

and the extent of the impervious portion of the catchment. Similarly, our setting sequence 

similarity measures could be used to compare the frequency distribution of rainfall 

extremes and the extent of imperviousness across catchments. This could help identify 

catchments that have similar characteristics in terms of their rainfall and land use and may 

also be suitable for pooling together in regional flooding frequency analysis. (Kamarinas 

et al., 2016) found that land cover/land use change (LCLUC) and sediment runoff affected 

by forestry practices and livestock grazing is temporally related to the water quality. We 

can potentially extend our similarity measures to this study to compare the temporal 

patterns of land disturbance and water quality variables (total suspended solids (TSS), 

turbidity, and visual clarity). This could help identify whether changes in land disturbance 

are related to changes in water quality over time, and whether there are any spatial 

relationships between land disturbance and water quality. In addition, as mentioned in this 

research, there exist nonlinear changes in land disturbance and sediment runoff; our novel 

approach on similarity between setting sequences can be easily plugged in to study these 

nonlinear ecosystem dynamics. 

Overall, the use of similarity measures for event setting sequences has a wide range 

of potential applications in various fields, including disaster management, urban planning, 
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transportation planning, and cultural heritage management. By analyzing the 

spatiotemporal context of events and their surrounding environmental factors, researchers 

and practitioners can gain a deeper understanding of the underlying mechanisms that drive 

those corresponding events and event sequences and use that knowledge to make more 

informed decisions about the management and planning of future events and activities. 

 

4.5. Conclusions 

In conclusion, modeling spatiotemporal event sequences requires careful 

consideration of spatial and temporal scales to define the bounds of the setting. The 

dynamic aspects of the setting should also be accounted for by conceptualizing the setting 

as a sequence. A matrix representation of sequences of spatiotemporal event settings can 

be developed for each setting with both dynamic and static variables. Pairwise similarity 

between individual settings and sequences of spatial settings can be calculated based on 

modifications of the Jaccard index, using a set of spatial features that represent each spatial 

setting. 

With a careful consideration of spatial and temporal scales to define the bounds of 

the setting, we developed a modeling approach that incorporates dynamic variables or 

features in addition to static variables. Using a matrix-based representation of 

spatiotemporal setting sequences, we developed new similarity measures that include 

quantitative levels of individual elements within the sequence and comparison with locked 

timestamps or order. These similarity measures allow for the use of all variable data types 

in the equations. Overall, these similarity measures, along with the matrix-based 
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representation of spatiotemporal event setting sequences incorporating both static and 

dynamic variables, provide a novel method in support of event sequence analysis. 

Future research could investigate the potential of using the proposed similarity 

measures to analyze the dynamics of complex systems, such as ecological or economic 

systems, where events and their settings or contexts can be critical factors in understanding 

the system behavior. By examining the similarity of event settings, researchers could gain 

insight into how different factors interact with each other over time and across different 

spatial scales, which could inform better decision-making in a wide range of fields, from 

urban planning to disaster management. 
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CHAPTER 5 

SCALABILITY AND EXTENDED APPLICATION OF SPATIOTEMPORAL 

EVENT SEQUENCE SIMILARITY MEASURES: COMPARISON WITH 

PROSPECTIVE SPACE-TIME SCAN STATISTICS IN CLUSTERING 

 

The content in this chapter is the reformatted version of the published research paper:  

 

Xu, F. and Beard, K.  2021.  A comparison of prospective space-time scan statistics and 

spatiotemporal event sequence based clustering for COVID-19 surveillance. PloS One 

16(6), e0252990. https://doi.org/10.1371/journal.pone.0252990  

  

Chapter Abstract 

The outbreak of the COVID-19 disease was first reported in Wuhan, China, in 

December 2019. Cases in the United States began appearing in late January.  On March 

11, the World Health Organization (WHO) declared a pandemic. By mid-March COVID-

19 cases were spreading across the US with several hotspots appearing by April. Health 

officials point to the importance of surveillance of COVID-19 to better inform decision 

makers at various levels and efficiently manage distribution of human and technical 

resources to areas of need. The prospective space-time scan statistic has been used to help 

identify emerging COVID-19 disease clusters, but results from this approach can encounter 

strategic limitations imposed by constraints of the scanning window. This paper presents a 

different approach to COVID-19 surveillance based on a spatiotemporal event sequence 

(STES) similarity. In this STES based approach, adapted for this pandemic context we 

compute the similarity of evolving daily COVID-19 incidence rates by county and then 

cluster these sequences to identify counties with similarly trending COVID-19 case loads.  

We analyze four study periods and compare the sequence similarity-based clusters to 

https://doi.org/10.1371/journal.pone.0252990


111 

 

prospective space-time scan statistic-based clusters. The sequence similarity-based clusters 

provide an alternate surveillance perspective by identifying locations that may not be 

spatially proximate but share a similar disease progression pattern. Results of the two 

approaches taken together can aid in tracking the progression of the pandemic to aid local 

or regional public health responses and policy actions taken to control or moderate the 

disease spread.  

 

5.1.   Introduction 

The first reported case of Coronavirus disease 2019 (COVID-19) appeared in the 

US in Washington State in January 2020. Cases then began to appear around the country,  

creating an outbreak more severe than that experienced in the city of Wuhan, China, where 

the initial outbreak occurred (Huang et al., 2020),  as well as in many European countries 

(Danon et al.; Saglietto et al., 2020). By mid-March 2020 the outbreak had spread to many 

states and by late April over one million confirmed cases had been reported in the US.  

To anticipate and detect outbreaks, the World Health Organization (WHO), many 

national and local health departments, academic or other non-profit organizations 

continuously collected information about occurrences of COVID-19. Incidence cases were 

cumulatively added to different online repositories (Alamo et al.; Latif et al., 2020; 

Moorthy et al., 2020). Quick detection of emerging geographical clusters or space-time 

clusters of COVID-19 can aid public health agencies in prioritizing spatial locations for 

allocation of different kinds of medical resources including testing kits and applying 

efficient and publicly acceptable interventions. Versions of  space-time scan statistics have 
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been widely used to identify significant clusters of various diseases (Khan et al., 2017; 

Kulldorff, 1997; 1999; 2001; Kulldorff et al., 2005a) as well as in the current COVID-19 

crisis (Desjardins et al., 2020; Qi et al., 2020). Space-time scan statistics use circular or 

elliptical scanning windows of a series of sizes in combination with varying time intervals 

to systematically scan a study area to detect clusters of disease cases. The Poisson based 

space-time scan statistic evaluates each scan window for numbers of cases and tests for 

locations exceeding the number of expected cases under a Poisson distribution. 

The prospective Poisson space-time scan statistic has been successfully used for 

space-time surveillance of different epidemic diseases. As Kulldorff et al. proposed 

(Kulldorff, 2001; Kulldorff et al., 2005a), this method focuses on detecting emerging 

clusters that start at any time during the study period and remain identifiable at the current 

time (i.e., active or alive), which is the major difference compared to the retrospective 

space-time scan statistic. Jones et al. used this method to detect twelve “live” or emerging 

statistically significant (p-value ≤ 0.05) clusters of shigellosis in the city of Chicago (Jones 

et al., 2006), the results of which  helped local health departments to prioritize the 

assignment and investigation of shigellosis cases. The prospective Poisson space-time scan 

statistic has also been utilized to identify emerging clusters in other diseases such as thyroid 

cancer among men in New Mexico (1973-1992) (Kulldorff, 2001), syndromic surveillance 

(Yih et al., 2010), measles (Yin et al., 2007), and dengue fever (Duczmal et al., 2011). 

More recently, it has been used to detect “active” clusters of COVID-19 confirmed cases 

in the United States (Desjardins et al., 2020; Hohl et al., 2020). 

While the prospective space-time scan statistic is a good option for detecting 

emerging space-time clusters of infectious diseases, there remain some limitations. The 
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effectiveness of the circular scan window decreases as the shape of emerging clusters 

becomes more irregular. Detected clusters may contain locations without confirmed cases 

or with low relative risk due to the artifact of the scanning process (Desjardins et al., 2020; 

Kulldorff et al., 2005a; Li et al., 2019), although this limitation can be minimized by 

reporting the individual relative risk for the included locations in each cluster . For the 

Poisson model, the results depend on accurate data on the population at risk, which may be 

hard to obtain. Furthermore, the prospective space-time scan statistic as an exploratory 

method,  should be followed with other  surveillance measures and more detailed 

investigation of transmission dynamics and pathogenic mechanics of COVID-19 to better 

understand  detected emerging clusters (Desjardins et al., 2020).  

While the prospective space-time scan statistic has demonstrated value for COVID-

19 surveillance, the objective of  this study was to demonstrate  a different but 

complementary view of COVID-19 outbreak patterns. The space time scan statistic detects 

hotspots but does not inform about locations that may be spatially disparate yet may be 

exhibiting highly similar patterns in disease case count evolution. To capture this dynamic, 

we employed an event sequence similarity metric on the sequences of daily COVID 

incidence rates by county. This event sequence similarity metric was then used to cluster 

counties exhibiting similarly evolving COVID -19 case histories. The resulting 

identification of locations exhibiting similar evolutionary patterns in the disease provides 

another aid for public health responses and understanding of disease dynamics. In the 

remainder of this paper, we describe this event sequence similarity metric as applied to 

COVID-19 daily incidence rates and compare it with results of the prospective Poisson 

space-time scan statistic.  We use four time periods to illustrate progression of COVID-19 
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outbreaks through the lens of prospective space-time scan statistic generated clusters and 

event sequence similarity clusters. The two approaches provide different but 

complementary aids to COVID-19 surveillance.  One tells us of emerging spatial hotspots, 

the other tells us of collections of locations that for some reasons have statistically similar 

evolving COVID-19 incidence patterns.  

 

5.2.   Materials and Methods 

5.2.1.   Data Acquisition and Processing 

We accessed COVID-19 raw daily global collection data from the GitHub repository 

(https://github.com/CSSEGISandData/COVID-19) created and maintained by the Johns 

Hopkins University Center for Systems Science and Engineering (JHU CCSE) (Dong et 

al., 2020). The specific time series dataset for this research contains FIPS codes, state 

names, geolocations, and confirmed cumulative cases, starting from January 22, 2020 

through selected ending dates. JH CCSE continues to semi-automatically or automatically 

update their site daily (https://raw.githubusercontent.com/CSSEGISandData/COVID-

19/master/csse_covid_19_data/).  

County level population data for the USA were obtained from the national US 

Census with estimates for 2019. The ESRI ™ shapefiles of US states and counties used for 

Geographic Information System (GIS) mapping were downloaded from the TIGER 

geography portal (US Census Bureau) (https://www.census.gov/cgi-

bin/geo/shapefiles/index.php).  

https://github.com/CSSEGISandData/COVID-19
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
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We focused the analysis on the 48 contiguous states and Washington D. C.. The 

dataset was cleaned by filtering out the records without “FIPS” codes and names of 

counties, and with “FIPS” > 8000 (assigned with “Out of AL”, “Out of AK”, …, “Out of 

WY”). We combined the cleaned COVID-19 dataset with the U.S. census data at the county 

level through the “FIPS” codes and double checked the correctness of the spatial 

information (Latitude and Longitude). Because the COVID-19 dataset only contains 

cumulative case counts, we obtained the daily confirmed cases by subtracting the previous 

day’s number from the current day’s reported cumulative cases. The daily incidence rate 

for each county was obtained as daily confirmed cases divided by county population and 

multiplied by 10,000. We chose the data from the first wave of the COVID-19 pandemic 

in the US in 2020 for this study.  The entire duration of the first wave is further divided 

into four analysis periods considering the incubation time for the disease mostly ranging 

from 1-14 days with the average of 5 days (He et al., 2020) and the slow case increment at 

the beginning time in January and February, 2020. The four analysis periods each start 

from January 22 and cover roughly 2-4 week separations corresponding to an early period 

1) March 13, and spiking periods 2) March 31, 3) April 19 and 4) May 20.   

5.2.2.   Prospective Poisson space-time scan statistic 

We used the prospective Poisson space–time scan statistic as implemented in SaTScan 

(http://www.satscan.org/) to detect clusters of COVID-19 cases that remained active at the 

end of each study period. The space–time scan statistic (STSS) is briefly introduced here, 

and more details can be obtained from (Desjardins et al., 2020; Kulldorff, 2001; Kulldorff 

et al., 2005a; Kulldorff et al., 2007). With spatial scan statistics we can identify the 

locations of clusters of cases. A cluster can be defined as a set of points or regions, at a 

http://www.satscan.org/
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user defined granularity, with either high or low rates of incidence. For this study, the focus 

was high rates of COVID-19 incidence. Conceptually the STSS uses a cylinder as the 

scanning window, where the circular base of the cylinder captures the spatial dimension 

while the height represents a temporal interval. To identify space-time clusters at the 

county level, the center of the circular base is co-located with the centroid of each county.  

As the scan progresses, the radius of the circular base and the height of the cylinder changes 

from lower bounds to spatial and temporal upper limits.  Similar to (Desjardins et al., 2020) 

we set the maximum scanning window base to include up to 10 percent of the total 

population to avoid the potential of extremely large clusters (ie. covering a quarter of the 

country) especially as may occur at the beginning stage of the epidemic, and the upper 

temporal bound to 50% of the entire study period. As each cylinder moves over the study 

area, it covers a different set of cases for different time intervals, which can be considered 

as potential emerging space-time cluster candidates. We set the cluster’s duration to a 

minimum of 2 days and required at least 5 incidents or confirmed cases of COVID-19 as 

described in (Desjardins et al., 2020).  

The age structure of a population will influence the incidence of disease, and deaths 

from COVID-19 are several times higher in older age groups as noted by others [12]. 

However, we were unable to access age and sex data at this time for cases in this study, so 

we could not adjust for age and sex. Assuming that COVID-19 incidence follows a Poisson 

distribution according to the county population, e.g. the assumed population at risk 

(Kulldorff, 2001), the likelihood ratio test statistic and the relative risk for each scan 

cylinder was calculated based on the description in (Desjardins et al., 2020; Kulldorff, 

1997; 1999; 2001). The cylinder with the maximum likelihood ratio identifies the location 
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with the most likely elevated risk for COVID-19. We used Standard Monte Carlo 

simulations (999) in the SaTScan setting to calculate the statistical significance of detected 

clusters with a p-value equal or less than 0.05 being considered statistically significant. 

SaTScan computes the relative risk (RR) for each cluster and individual counties. The RR 

for a county within a cluster can be calculated as in [18]:  

𝑅𝑅𝑐𝑡𝑦 =
𝑐/𝑒

(𝐶 − 𝑐)(𝐶 − 𝑒)
 

Where, c is the total number of cases in a county, C is the total number of observed cases 

in the conterminous US, and e is the expected number of cases in a county calculated as 

𝑒 = 𝑝𝑐𝑡𝑦 ∗
𝐶

𝑃
 (𝑝𝑐𝑡𝑦 is the population in a county, 𝑃 is the total population). We used ESRI 

ArcGIS 10.6 (www.esri.com) GIS software to create cartographic representations for these 

detected emerging clusters at the county level. 

5.2.3.   Event sequence similarity-based cluster analysis 

Our event sequence similarity approach focuses on the temporal evolution of events 

occurring at fixed locations. In this study, an event corresponds to the COVID-19 daily 

incidence rate for a county and a COVID-19 event sequence for a county is the sequence 

of daily incidence rates covering a specific study period.  We compute the similarity of 

these county level COVID-19 event sequences using a time ordered Jaccard measure 

(Ayub et al., 2018, pp. 1-6; Jaccard, 1901; Sun et al., 2017).  Briefly, this measure uses all 

co-occurrence time points between two event sequences 𝑒𝑠1 and 𝑒𝑠2, and calculates the 

similarity between two events at the co-occurrence timestamp based on their level of 

http://www.esri.com/
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measurement. The similarity between two counties’ COVID-19 event sequences is 

calculated as below: 

𝑠𝑖𝑚 𝑐𝑜𝑢𝑛𝑡𝑦(𝑒𝑠1, 𝑒𝑠2) =
∑ (1 − 𝐴𝑏𝑠(𝑙𝑒𝑣(𝑒𝑠1𝑗) − 𝑙𝑒𝑣(𝑒𝑠2𝑗)))
𝐶
𝑗=1

|𝑒𝑠1 ∪  𝑒𝑠2|  
 

where, 

 𝑠𝑖𝑚𝑐𝑜𝑢𝑛𝑡𝑦(𝑒𝑠1, 𝑒𝑠2) –  Similarity between county level event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2, 

𝑒𝑠1𝑗, 𝑒𝑠2𝑗 – the event values for two corresponding co-occurring events in 𝑒𝑠1 and 𝑒𝑠2 at 

timestamp 𝑗. 

𝑙𝑒𝑣(𝑒𝑠1𝑗), 𝑙𝑒𝑣(𝑒𝑠2𝑗) – the relative event levels of two corresponding co-occurring events 

in 𝑒𝑠1 and 𝑒𝑠2 at timestamp 𝑗, respectively:  

𝑙𝑒𝑣(𝑒𝑠1𝑗) =
𝑒𝑠1𝑗

𝑒𝑠1𝑗+𝑒𝑠2𝑗
 and 𝑙𝑒𝑣(𝑒𝑠2𝑗) =

𝑒𝑠2𝑗

𝑒𝑠1𝑗+𝑒𝑠2𝑗
 

𝐶 – the total number of co-occurring timestamps, 

𝐴𝑏𝑠(𝑙𝑒𝑣(𝑒𝑠1𝑗) − 𝑙𝑒𝑣(𝑒𝑠2𝑗)) –  absolute value of difference between relative event levels 

of two corresponding co-occurring events in 𝑒𝑠1 and 𝑒𝑠2 at timestamp 𝑗, 

|𝑒𝑠1 ∪ 𝑒𝑠2| –  Cardinality of the union of two event sequences 𝑒𝑠1 𝑎𝑛𝑑 𝑒𝑠2. 

  

We then used the computed COVID-19 event sequence similarity measures 

between counties as the metric for hierarchical clustering (Ros and Guillaume, 2019). All 

similarity computations and clustering tasks were implemented in R. The hierarchical 
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clustering was performed using the hclust R function with the linkage method of Ward.D2. 

The optimal number of clusters was evaluated using the elbow method (Gustriansyah et 

al., 2020; Syakur et al., 2018; Zambelli, 2016). This method supports selection of the 

number of clusters at which the total within-cluster sum of square (WSS) no longer 

improves. In a plot of number of clusters versus WSS, the optimal cluster number is 

visually associated with the point at which the WSS value flattens. 

 

5.2.4.   Comparison of Prospective Space time Scan and Event Sequence Similarity-

based clusters 

To support comparison of the two methods we used the counties identified in the 

prospective Space time scan statistics as having relative risk > 1 as the counties for analysis 

with the sequence similarity metric.  All other counties not included in this set were labeled 

as OC meaning outside clusters.  We include them in Figures, 5.3, 5.6, and 5.9 in the graphs 

of incidences curves for each study period to show their temporal incidence pattern as a 

baseline. 

5.3.   Results 

5.3.1.    Space-time clusters and sequence similarity-based clusters at county level: 

Study period 1 (1/22-3/13/2020) 

In this early period, COVID-19 was just appearing in the US with the first case 

reported in Snohomish County Washington on January 19. For this period, the prospective 

space-time scan statistic identified 11 statistically significant (p-value < 0.05) clusters 

shown graphically in Figure 5.1 and summarized in Table 5.1.  These clusters, aside from 
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one in California and two in New York, are generally quite large and counties within them 

with RR > 1 are few and generally spatially dispersed.  Because of the generally large size 

of these clusters, identifying the spatial specificity of an outbreak is limited.   

Table 5.1. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-

3/13/2020 at the county level. 

      Duration  Radius Observed Expected Relative   Population #County #County 

Cluster 

Start 

Date 

End 

Date (Days) (Km)   Cases Cases 

Risk 

(RR) 

p-

value at Risk  (total)  (RR>1) 

1 3/10 3/13 4 806.37 389 38 12.28 <0.001 888,297 238 14 

2 3/7 3/13 7 0.00 139 15 10 <0.001 189,707 1 1 

3 3/10 3/13 4 551.69 66 18 3.83 <0.001 167,447 404 16 

4 3/9 3/13 5 364.08 42 10 4.29 <0.001 87,766 262 16 

5 3/12 3/13 2 32.48 102 47 2.21 <0.001 1,267,395 9 6 

6 3/12 3/13 2 91.08 10 0 29.12 <0.001 7,438 35 3 

7 3/5 3/13 9 49.70 93 42 2.25 <0.001 790,544 3 3 

8 3/9 3/13 5 178.04 9 0 26.67 <0.001 2,607 94 3 

9 3/10 3/13 4 224.18 12 1 14.16 <0.001 15,926 104 3 

10 3/10 3/13 4 253.24 12 1 10.51 <0.001 8,832 64 3 

11 3/7 3/13 7 264.34 88 47 1.91 <0.001 824,139 36 12 

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson 

model 

 

Based on the elbow evaluation method, 8 event sequence similarity-based clusters 

were defined for this period (Figure 5.2). Figure 5.3 shows the map representation of these 

clusters along with their temporal profiles. Members of Cluster 3 that include counties in 

Washington State, California and New York show the earliest onset and the fastest case 

accumulation. Members of Cluster 5 show an early onset that initially tracks Cluster 3 but 
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Figure 5.1. COVID-19 space-time scan hotspots in the United States at the county level 

from 1/22/-3/13/2020. 

 

then abruptly flattens and then decreases in early March. Members of this cluster include 

3 counties in California and one in Minnesota. Cluster 2 members show a delayed 

occurrence in cases but an extremely fast case accumulation over a few days. The 8 

members of this cluster are generally in isolated rural settings in Colorado, Oklahoma, 

Wyoming, South Dakota, Wisconsin, Louisiana and Indiana. Members of Cluster 6 showed 

initiation of cases at approximately the same time as Cluster 2 but levelled off quickly at a 

lower incidence rate. The cluster containing counties in New York suggests initial points 

of entry and situations conducive to rapid acceleration of cases such as high density or tight 

knit communities. A pairwise comparison of cluster numbers for the 1st study period from  
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these two approaches can be found in Table C.1. 

 

Figure 5.2. Elbow method evaluation and hierarchical clustering results for the 1st period. 

Notice that the numberings and colors of STES clusters match with those of corresponding 

clusters on the map and the temporal trend graph in Figure 5.3. 
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Figure 5.3. Sequence similarity-based COVID-19 clusters along with average temporal 

trends at the county level through 3/13/2020. This map includes the counties with higher 

relative risk (RR>1) contained in all the clusters detected by scan statistics in Figure 5.1. 

The average temporal trends of cumulative cases for STES clusters 1-8 on the map appear 

at the bottom right. Notice that the colors of STES clusters match with correspondingly 

colored dots on the map and with the colors of the STES cluster curves on the graph. OC 

includes all counties not included in the clusters. 

 

5.3.2.    Space-time clusters and sequence similarity-based clusters at county level: 

Study period 2 (1/22-3/31/2020) 

Results from the prospective space-time scan statistics analysis for the second study 

period (through March 31) identified twenty-four space-time clusters of COVID-19 as 

statistically significant (Figure 5.4 and Table 5.2). This period shows a growing emergence 

of spatial clusters across the US, but generally more consolidated clusters as the number of 

cases grow. The space-time clusters are smaller than in the first period and several detected 

clusters contain a single county (cluster radius = 0). This period shows a shift toward more 

clusters appearing in the interior US relative to the coasts.  
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Table 5.2. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-

3/31/2020 at the county level. 

      Duration  Radius Observed Expected Relative   Population #County #County 

Cluster 

Start 

Date 

End 

Date (Days) (Km)   Cases Cases 

Risk 

(RR) 

p-

value at Risk  (total)  (RR>1) 

1 3/22 3/31 13 89.28 82,928 10,049 14.35 <0.001 6,395,723 22 22 

2 3/22 3/31 10 43.08 5,887 1,526 3.95 <0.001 1,074,213 3 3 

3 3/20 3/31 12 73.70 3,152 487 6.57 <0.001 292,363 8 8 

4 3/27 3/31 5 0.00 3,078 1,012 3.08 <0.001 2,201,911 1 1 

5 3/24 3/31 8 73.96 680 68 9.97 <0.001 39,490 20 18 

6 3/26 3/31 6 60.42 2,587 1,102 2.37 <0.001 1,370,768 2 2 

7 3/24 3/31 8 62.27 2,041 846 2.43 <0.001 1,345,457 4 4 

8 3/19 3/31 13 95.88 190 11 17.17 <0.001 5,083 4 3 

9 3/30 3/31 2 307.75 1,528 729 2.11 <0.001 1,822,585 262 82 

10 3/16 3/31 16 82.42 313 54 5.78 <0.001 28,677 5 5 

11 3/20 3/31 12 146.72 214 38 5.6 <0.001 20,460 9 4 

12 3/29 3/31 3 325.81 4,574 3,543 1.3 <0.001 6,684,959 257 75 

13 3/27 3/31 5 210.38 787 448 1.76 <0.001 647,610 43 10 

14 3/30 3/31 2 0.00 1,190 789 1.51 <0.001 3,855,599 1 1 

15 3/25 3/31 7 50.46 206 72 2.88 <0.001 57,714 5 2 

16 3/23 3/31 9 49.14 84 14 5.86 <0.001 5,999 5 4 

17 3/30 3/31 2 240.79 344 179 1.92 <0.001 528,991 11 3 

18 3/29 3/31 3 0.00 27 2 11.75 <0.001 1,412 1 1 

19 3/14 3/31 18 36.13 105 44 2.4 <0.001 20,986 2 2 

20 3/22 3/31 10 42.64 35 8 4.27 <0.001 3,227 4 4 

21 3/30 3/31 2 0.00 244 152 1.61 <0.001 991,866 1 1 

22 3/24 3/31 8 54.38 22 4 5.76 <0.001 1,899 8 5 

23 3/27 3/31 5 139.67 101 50 2.02 <0.001 49,538 2 2 

24 3/11 3/31 21 188.69 48 17 2.85 <0.001 6,210 45 16 

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model 
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Figure 5.4. COVID-19 space-time scan statistic detected hotspots in the United States at 

county level through 3/31/2020. 

  

 For this second study period the sequence similarity clustering resulted in 8 clusters 

based on the elbow method evaluation (Figure 5.5). Figure 5.6 shows the map of these 

clusters and their temporal signatures. For this period, only three clusters deviate from the 

outside cluster (OC) set pattern.  Cluster 7 shows the most rapid increase in cases. Members 

of this cluster include Miami, San Jose, Los Angeles area counties, Chicago, Detroit, New 

Orleans and New York metropolitan counties. Members of Cluster 8 show a slower and 

less rapid increase in cases. Some of these members appear in a group across New Jersey 

and Pennsylvania, around Baltimore, Denver and Seattle. Cluster 4 follows a similar 

trajectory with some concentrations around New Orleans, Columbus Georgia, and 

Indianapolis.  Members of this cluster also appear in more isolated rural settings in Arizona, 

Oklahoma and South Dakota. A pairwise comparison of cluster numbers for the 2nd study 

period from these two approaches can be found in Table C.2.  
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Figure 5.5. Elbow method evaluation and hierarchical clustering results for the 2nd 

period. Notice that the numberings and colors of STES clusters match with those of 

corresponding clusters on the map and the temporal trend graph in Figure 5.6. 
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Figure 5.6. Sequence similarity-based COVID-19 clusters along with average 

temporal trends at county level during 1/22/2020-3/31/2020. This map includes the 

counties with higher relative risk (RR>1) contained in all the clusters detected by scan 

statistics in Figure 5.3. The average temporal trends of cumulative cases for STES clusters 

1-8 on the map appear at the bottom right. Notice that the colors of STES clusters match 

with correspondingly colored dots on the map and with the colors of the STES cluster 

curves on the graph. OC includes all counties not included in the clusters.  

 

5.3.3.    Space-time clusters and sequence similarity-based clusters at county level: 

Study period 3 (1/22-4/19/2020) 

  For the third study period, the prospective space-time cluster statistic detected 47 

statistically significant clusters (p≤0.05) as shown in Figure 5.7. Associated cluster 

characteristics are shown in Table 5.3. In this period more clusters are emerging in the 

southern US, with additional new pockets in Montana and a cluster covering Nebraska and 

South Dakota. Metropolitan New York remains an active cluster and a more condensed 
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Mid-Atlantic coast cluster has emerged. We see additional consolidation in the size of 

clusters with 25 appearing as a single county.  

Table 5.3. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-

4/19/2020 at the county level. 

            

      Duration  Radius Observed Expected Relative   Population #County #County 

Cluster 

Start 

Date 

End 

Date (Days) (Km)   Cases Cases 

Risk 

(RR) 

p-

value at Risk  (total)  (RR>1) 

1 3/21 4/19 30 112.67 317,283 50,808 10.07 <0.001 10,183,190 29 29 

2 3/25 4/19 26 73.70 13,048 2,223 5.96 <0.001 468,407 8 8 

3 3/27 4/19 24 43.08 22,215 7,189 3.15 <0.001 1,680,202 3 3 

4 4/16 4/19 4 0.00 1,670 20 83.28 <0.001 19,232 1 1 

5 4/4 4/19 16 0.00 15,161 6,360 2.41 <0.001 2,838,481 1 1 

6 3/31 4/19 20 77.77 2,949 441 6.72 <0.001 93,100 22 22 

7 4/6 4/19 14 298.19 40,502 27,081 1.52 <0.001 9,421,799 226 93 

8 4/10 4/19 10 263.00 1,767 341 5.2 <0.001 137,317 85 26 

9 3/30 4/19 21 0.00 8,162 4,404 1.86 <0.001 1,173,224 1 1 

10 3/26 4/19 25 0.00 435 36 12.25 <0.001 7,586 1 1 

11 4/17 4/19 3 0.00 360 29 12.63 <0.001 30,783 1 1 

12 4/1 4/19 19 59.89 1,270 464 2.74 <0.001 116,600 6 5 

13 4/9 4/19 11 162.39 832 271 3.07 <0.001 112,063 5 5 

14 3/20 4/19 31 84.21 760 281 2.71 <0.001 52,008 6 6 

15 3/31 4/19 20 218.29 10,400 8,205 1.27 <0.001 1,932,165 152 77 

16 4/5 4/19 15 169.63 400 104 3.84 <0.001 22,025 36 20 

17 4/9 4/19 11 42.71 309 67 4.58 <0.001 24,501 3 3 

18 4/14 4/19 6 36.59 428 142 3.02 <0.001 97,393 6 6 

19 4/13 4/19 7 41.53 100 6 16.58 <0.001 2,434 2 1 

20 4/9 4/19 11 144.34 2,800 1,943 1.44 <0.001 999,773 20 14 

21 4/14 4/19 6 0.00 109 10 10.73 <0.001 5,683 1 1 

22 3/20 4/19 31 0.00 299 88 3.41 <0.001 16,762 1 1 
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23 4/2 4/19 18 0.00 643 349 1.85 <0.001 94,077 1 1 

24 4/7 4/19 13 70.67 348 179 1.95 <0.001 41,649 17 14 

25 4/15 4/19 5 0.00 123 37 3.35 <0.001 29,216 1 1 

26 4/17 4/19 3 192.58 142 51 2.8 <0.001 50,741 11 6 

27 4/18 4/19 2 37.48 298 152 1.96 <0.001 386,360 2 2 

28 4/3 4/19 17 92.71 301 156 1.93 <0.001 41,584 5 3 

29 4/11 4/19 9 0.00 173 77 2.25 <0.001 41,981 1 1 

30 4/11 4/19 9 0.00 83 24 3.48 <0.001 14,638 1 1 

31 4/15 4/19 5 0.00 41 7 6.16 <0.001 3,595 1 1 

32 4/15 4/19 5 72.81 57 13 4.29 <0.001 10,680 8 5 

33 4/14 4/19 6 0.00 1,019 763 1.34 <0.001 926,455 1 1 

34 4/13 4/19 7 0.00 583 410 1.42 <0.001 336,507 1 1 

35 3/28 4/19 23 50.34 32 5 6.04 <0.001 888 2 2 

36 4/2 4/19 18 68.61 253 149 1.7 <0.001 28,897 10 9 

37 4/12 4/19 8 0.00 59 20 2.96 <0.001 8,797 1 1 

38 4/18 4/19 2 0.00 272 174 1.56 <0.001 1,139,191 1 1 

39 4/17 4/19 3 0.00 37 10 3.74 <0.001 27,699 1 1 

40 3/29 4/19 22 0.00 105 52 2.02 <0.001 9,587 1 1 

41 4/18 4/19 2 0.00 20 3 6.4 <0.001 7,819 1 1 

42 3/23 4/19 28 44.85 112 58 1.94 <0.001 9,320 5 5 

43 4/11 4/19 9 0.00 93 46 2.02 <0.001 17,771 1 1 

44 4/18 4/19 2 0.00 14 2 8.17 0.002 3,531 1 1 

45 4/14 4/19 6 0.00 22 5 4.71 0.003 2,749 1 1 

46 4/18 4/19 2 0.00 53 21 2.49 0.003 31,371 1 1 

47 3/24 4/19 27 0.00 102 55 1.85 0.006 10,847 1 1 

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model 

 

 

Table 5.3. Continued 
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Figure 5.7. COVID-19 space-time scan statistic detected hotspots in the United States at 

county level through 4/19/2020. 

   

  For the third study period, ten sequence similarity-based clusters were selected 

using the elbow method (Figure 5.8). Figure 5.9 shows the map of these clusters and their 

temporal profiles. Cluster 8 shows a distinct early and more rapid accumulation of cases. 

Many members of this cluster were members of Cluster 7 in the previous study period.  

These members include Chicago, Detroit metropolitan area, Miami, Philadelphia, and 

metropolitan New York counties. Some significant missing members in Cluster 8 from the 

previous period Cluster 7 are San Jose, Los Angeles and Las Vegas. Cluster 9 shows a 

group with the next most rapidly developing number of cases. Within this group, some 

members appear concentrated around metropolitan New York, Philadelphia, Baltimore and 

Washington DC, and Denver. Cluster 10, as the third most rapidly merging cluster for this 

period, has members in a halo like pattern around metropolitan New York, Philadelphia 

and New Orleans.  Other members, however, appear in more isolated rural settings in New 



131 

 

Mexico, Utah, and Washington State. This group includes the Hopi, Zuni, Navajo and 

Yakima national reservations. Two other clusters to note in this group are Cluster 7 and 

Cluster 2 which show later initiation times in terms of case accumulation but appear to be 

accelerating at the end of the study period.  Many of these members show a concentration 

in southern Indiana and western Kentucky respectively, with another grouping of Cluster 

7 members appearing in southwestern Georgia on the border with Alabama. A complete 

pairwise comparison of cluster numbers for the 3rd study period from these two approaches 

can be found in Table C.3.  

 

Figure 5.8. Elbow method evaluation and hierarchical clustering results for the 3rd 

period. Notice that the numberings and colors of STES clusters match with those of 

corresponding clusters on the map and the temporal trend graph in Figure 5.9. 
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Figure 5.9. Sequence similarity-based COVID-19 emerging clusters along with 

average temporal trends at county level during 1/22/-4/19/2020. This map includes the 

counties with higher relative risk (RR>) contained in all the clusters detected by scan 

statistics in Figure 5.5. The average temporal trends of cumulative cases for STES clusters 

1-10 on the map appear at the bottom right. Notice that the colors of STES clusters match 

with correspondingly colored dots on the map and with the colors of the STES cluster 

curves on the graph. OC includes all counties not included in the clusters.  

 

5.3.4.    Space-time clusters and sequence similarity-based clusters at county level: 

Study period 4 (1/22-5/20/2020) 

  For the fourth study period ending on May 20, 2020, the prospective space-time 

scan statistic identified 87 statistically significant clusters. Table 5.4 provides the 

characteristics of these 87 active space-time clusters at the end of May 20, 2020. From 

Figure 5.10 we can observe that in this period clusters continued to emerge in southern 

states and more clusters emerge in the mountain west. The previous cluster covering 

Nebraska and South Dakota has expanded into Iowa, North Dakota and Minneapolis. The 
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metropolitan New York cluster has consolidated and the prior period mid-Atlantic cluster 

has consolidated to an emerging cluster around Philadelphia.  

Table 5.4. Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-

5/20/2020 at the county level. 

      Duration  Radius Observed Expected Relative   Population #County #County 

Cluster 

Start 

Date 

End 

Date (Days) (Km)   Cases Cases 

Risk 

(RR) 

p-

value at Risk  (total)  (RR>1) 

1 3/23 5/20 59 126.60 516,153 128,515 5.51 <0.001 15,225,284 35 35 

2 4/7 5/20 44 55.64 77,744 30,138 2.66 <0.001 5,000,478 5 5 

3 4/12 5/20 39 332.91 14,779 3,116 4.78 <0.001 411,108 155 109 

4 4/17 5/20 34 103.56 41,285 18,966 2.21 <0.001 3,575,889 42 25 

5 4/20 5/20 31 215.21 7,183 749 9.63 <0.001 111,251 47 35 

6 3/23 5/20 59 73.70 16,614 5,499 3.04 <0.001 625,641 8 8 

7 3/26 5/20 56 43.08 34,409 18,624 1.87 <0.001 2,253,493 3 3 

8 4/29 5/20 22 0.00 1,336 16 81.34 <0.001 3,508 1 1 

9 4/13 5/20 38 0.00 2,487 206 12.07 <0.001 30,632 1 1 

10 4/9 5/20 42 191.99 5,571 1,339 4.17 <0.001 184,726 6 6 

11 4/15 5/20 36 0.00 1,952 175 11.15 <0.001 25,544 1 1 

12 3/24 5/20 58 77.77 4,684 1,282 3.66 <0.001 134,101 22 22 

13 4/13 5/20 38 0.00 955 36 26.75 <0.001 4,378 1 1 

14 4/15 5/20 36 114.37 3,799 1,339 2.84 <0.001 187,231 21 21 

15 4/23 5/20 28 0.00 598 21 28.96 <0.001 3,038 1 1 

16 5/12 5/20 9 0.00 344 3 114.45 <0.001 1,002 1 1 

17 4/14 5/20 37 36.59 2,623 962 2.73 <0.001 150,923 6 5 

18 4/24 5/20 27 42.39 1,579 458 3.45 <0.001 77,989 7 7 

19 4/30 5/20 21 0.00 1,436 451 3.18 <0.001 134,923 1 1 

20 5/3 5/20 18 0.00 191 4 44.47 <0.001 772 1 1 

21 3/23 5/20 59 47.10 519 87 5.99 <0.001 9,665 2 2 

22 4/28 5/20 23 45.28 436 77 5.66 <0.001 13,095 3 3 

23 5/10 5/20 11 29.09 221 15 14.38 <0.001 3,235 3 3 
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24 5/10 5/20 11 0.00 257 24 10.91 <0.001 7,981 1 1 

25 4/30 5/20 21 0.00 354 56 6.27 <0.001 11,332 1 1 

26 5/6 5/20 15 0.00 994 383 2.6 <0.001 202,613 1 1 

27 4/1 5/20 50 136.56 5,564 3,846 1.45 <0.001 449,669 30 22 

28 5/7 5/20 14 0.00 566 155 3.65 <0.001 71,572 1 1 

29 5/2 5/20 19 31.84 510 133 3.83 <0.001 20,764 4 4 

30 4/19 5/20 32 192.58 305 51 6.02 <0.001 40,867 11 2 

31 3/30 5/20 52 0.00 14,842 12,107 1.23 <0.001 1,575,369 1 1 

32 4/21 5/20 30 0.00 517 144 3.6 <0.001 25,141 1 1 

33 5/11 5/20 10 0.00 248 37 6.71 <0.001 24,329 1 1 

34 5/12 5/20 9 45.71 262 47 5.53 <0.001 32,224 3 1 

35 4/27 5/20 24 0.00 153 16 9.6 <0.001 2,345 1 1 

36 4/29 5/20 22 37.68 576 218 2.65 <0.001 48,225 2 2 

37 4/2 5/20 49 42.71 704 312 2.25 <0.001 36,636 3 3 

38 5/8 5/20 13 0.00 164 24 6.95 <0.001 5,473 1 1 

39 5/19 5/20 2 0.00 2,437 1,721 1.42 <0.001 6,453,712 1 1 

40 5/15 5/20 6 0.00 60 3 21 <0.001 841 1 1 

41 5/6 5/20 15 29.36 112 17 6.41 <0.001 4,070 2 2 

42 5/10 5/20 11 45.67 150 32 4.62 <0.001 8,166 2 2 

43 4/6 5/20 45 30.61 309 116 2.67 <0.001 13,014 3 3 

44 4/18 5/20 33 0.00 519 257 2.02 <0.001 42,288 1 1 

45 5/7 5/20 14 0.00 105 20 5.2 <0.001 5,939 1 1 

46 4/25 5/20 26 99.90 124 29 4.23 <0.001 4,072 15 6 

47 4/20 5/20 31 30.03 288 124 2.33 <0.001 22,341 3 2 

48 3/23 5/20 59 77.39 581 342 1.7 <0.001 39,119 4 2 

49 5/13 5/20 8 106.86 270 121 2.24 <0.001 83,127 2 2 

50 3/29 5/20 53 0.00 291 139 2.1 <0.001 15,029 1 1 

51 4/22 5/20 29 26.90 155 55 2.83 <0.001 8,779 2 2 

52 4/7 5/20 44 46.15 317 165 1.92 <0.001 18,980 6 6 

Table 5.4. Continued 
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53 5/2 5/20 19 0.00 103 33 3.16 <0.001 7,699 1 1 

54 4/1 5/20 50 53.19 83 22 3.7 <0.001 2,198 3 3 

55 4/14 5/20 37 27.39 68 16 4.25 <0.001 1,791 2 2 

56 4/23 5/20 28 0.00 156 65 2.4 <0.001 10,718 1 1 

57 4/13 5/20 38 21.26 248 128 1.93 <0.001 19,711 2 2 

58 4/27 5/20 24 0.00 30 3 10.24 <0.001 323 1 1 

59 5/18 5/20 3 0.00 49 9 5.29 <0.001 15,448 1 1 

60 4/17 5/20 34 0.00 107 39 2.73 <0.001 8,405 1 1 

61 4/18 5/20 33 72.28 534 354 1.51 <0.001 58,978 7 5 

62 4/21 5/20 30 140.99 233 125 1.87 <0.001 26,408 6 4 

63 4/29 5/20 22 0.00 234 126 1.85 <0.001 30,406 1 1 

64 4/22 5/20 29 0.00 115 47 2.43 <0.001 6,538 1 1 

65 5/19 5/20 2 0.00 21 2 12.77 <0.001 4,032 1 1 

66 5/5 5/20 16 92.43 1,039 796 1.3 <0.001 286,527 2 2 

67 4/19 5/20 32 0.00 115 49 2.37 <0.001 10,204 1 1 

68 5/8 5/20 13 0.00 192 101 1.9 <0.001 45,852 1 1 

69 5/12 5/20 9 0.00 30 4 6.87 <0.001 771 1 1 

70 5/17 5/20 4 0.00 123 55 2.23 <0.001 78,471 1 1 

71 4/29 5/20 22 0.00 156 79 1.97 <0.001 17,303 1 1 

72 3/28 5/20 54 50.34 32 6 5.44 <0.001 656 2 2 

73 5/7 5/20 14 80.26 106 46 2.28 <0.001 12,240 5 4 

74 4/14 5/20 37 47.62 115 53 2.15 <0.001 7,305 3 3 

75 4/9 5/20 42 35.79 123 59 2.09 <0.001 6,343 2 2 

76 4/20 5/20 31 0.00 134 68 1.98 <0.001 11,760 1 1 

77 4/28 5/20 23 195.74 281 184 1.53 <0.001 48,676 9 4 

78 4/16 5/20 35 27.34 243 154 1.57 <0.001 22,877 3 2 

79 4/15 5/20 36 0.00 116 59 1.96 <0.001 7,734 1 1 

80 4/9 5/20 42 56.31 478 350 1.36 <0.001 49,008 2 1 

81 5/18 5/20 3 93.41 130 70 1.86 <0.001 180,113 8 2 

82 4/17 5/20 34 0.00 37 11 3.37 <0.001 20,483 1 1 

Table 5.4. Continued 
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83 4/10 5/20 41 30.49 135 76 1.78 <0.001 9,851 2 2 

84 5/14 5/20 7 0.00 125 69 1.82 <0.001 43,779 1 1 

85 5/12 5/20 9 27.78 87 44 1.97 0.004 16,827 2 1 

86 5/3 5/20 18 0.00 20 4 4.6 0.013 670 1 1 

87 5/19 5/20 2 80.43 28 8 3.38 0.019 55,557 12 2 

Note: Space-time clusters were identified using the spatial scan statistic with a Poisson model 

 

 

 
 

Figure 5.10. Prospective space-time scan statistic detected clusters of COVID-19 

incidents during the study period of 1/22/2020-5/20/2020. 

 

 In this fourth period, using the sequence similarity-based clustering we selected 10 

clusters based on the elbow method evaluation (Figure 5.11). Figure 5.12 presents a map 

of these clusters and their temporal signatures. In this period, Cluster 8 which includes 

Miami, Chicago, Detroit, Los Angeles, Philadelphia and New York metropolitan counties 

is the fastest growing in term of cases.  Clusters 7 and 9 start out with similar increases in 

Table 5.4. Continued 
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cases but Cluster 7 members show a levelling off in early May relative to Cluster 9. Cluster 

10 shows a delayed start but steady increase starting in early April.  Cluster 5 shows a 

different trajectory in that it shows a much slower start to case accumulation but then 

exhibits a sharp increase starting in mid-April, increasing more rapidly than Clusters 10 

and 7. Cluster 4 initially falls below the outside cluster “OC” group but then shows a sharp 

jump and more rapid accumulation. More detailed information on pairwise comparison of 

cluster numbers for the 4th study period from these two approaches can be found in Table 

C.4. 

 

Figure 5.11. Elbow method evaluation and hierarchical clustering results for the 4th 

period. Notice that the numberings and colors of STES clusters match with those of 

corresponding clusters on the map and the temporal trend graph in Figure 5.12. 
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Figure 5.12.  Sequence similarity-based COVID-19 clusters along with average 

temporal trends at county level during 1/22/-5/20/2020. This map includes the counties 

with higher relative risk (RR>1) contained in all the clusters detected by scan statistics in 

Figure 5.10. The average temporal trends of cumulative cases for STES clusters 1-10 on 

the map appear at the bottom right. Notice that the colors of STES clusters match with 

correspondingly colored dots on the map and with the colors of the STES cluster curves on 

the graph. OC includes all counties not included in the clusters. 

 

5.4.    Discussion  

For this study we compared two approaches for COVID-19 surveillance.  In 

combination, the two approaches provide complementary views that can offer a more 

comprehensive picture of surveillance information to further aid public health analysis and 

monitoring. The space-time scan statistic identifies emerging clusters as locations where 

the observed number of cases most exceeds the expected number of cases in space-time 

based on the underlying population. This approach provokes questions of why the disease 

is emerging at at such a location during a period of time.  For disease progression, where 

the temporal pattern is equally important, similarity in the sequence of daily incidence rates 
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adds valuable information as it points to locations where the disease is progressing in a 

similar fashion. This view provokes questions of why these sometimes spatially dispersed 

locations are behaving in a similar way.  

An initial working hypothesis for the STES sequence similarity metric in an 

environmental monitoring context was that locations that are spatially close are more likely 

to exhibit similar event sequences.  While this is born out in some instances in this 

pandemic context, we found that in all study periods, similar sequence patterns of COVID-

19 cases can be quite spatially separated.  This result suggests that spatial proximity is not 

always a driver of sequence similarity. It has been reported that socio-economic or 

demographic characteristics could explain the different transmission rates or patterns 

between communities and locations (Dowd et al., 2020). Because members of these 

clusters share similar temporal disease progressions, questions arise as to whether they 

share some similar underlying characteristics such as similar population density, similar 

populations at risk, similar changes in surveillance programs, or possibly similar 

intervention strategies at work.   

Sequence similarity Cluster 3 in the first study period which covers the first 

appearance of COVID-19 in the US shows the earliest and fastest accumulating number of 

cases suggesting initial points of entry. As members of this cluster include Snohomish and 

King counties in Washington State, several California counties in the San Francisco Bay 

area, and Bronx, Kings, Queens, Wassau and New York counties in New York state these 

do align with the known entry points on the east and west coasts.  Seemingly unusual 

members in this cluster are Johnson County Iowa; Kershaw County, South Carolina; 

Williamson, Tennessee; and Douglas, Nebraska. An interesting question is why this last 
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subgroup of locations shares a similar profile with the coastal points of entry. Sequence 

similarity-based Cluster 2 in the first period is another interesting collection which is very 

spatially dispersed. Most of the members are rural communities that include Sheridan 

Wyoming, Davison South Dakota, Jackson Oklahoma, Hancock Indiana, Pitkin Colorado, 

Caddo Louisiana and Pierce Wisconsin. The temporal profile for this group is initially flat 

until mid-March at which point it shows a very rapid accumulation of cases. Such spatially 

dispersed cluster members that exhibit similar behaviours are targets for further 

investigation of potential contextual similarities. Of particular interest from 

epidemiological and health policy perspectives are spatially dispersed cluster members that 

exhibit similar flattening or decreasing patterns as these would be interesting to explore to 

understand if they have similar demographic characteristics or if they shared similar 

intervention measures.  

We note that the sequence similarity clusters suggest some connections which are 

not conveyed by the scan statistic clusters. For example, in the third study period the scan 

statistic results indicate several new clusters. An examination of the sequence similarity 

clusters in this period indicate that several members of Cluster 10 were first nation or tribal 

reservations. In other words, several of the spatially dispersed reservations across the west 

showed a similar onset and progression in COVID-19 cases.  

Another difference between the two approaches is that the sequence similarity-

based clusters starting in the third period begin to show evidence of a spatial diffusion 

effect. For example, members of Cluster 8 with the earliest and fastest accumulating 

sequence similarity often appear to be surrounded by or in close spatial association with 
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the next closest lagging group, Cluster 9. A similar pattern appears between Cluster 8 and 

Cluster 9 members in the fourth study period.  

Recent research has pointed to different continents of origin for the introduction of 

COVID-19 into the US (Gonzalez-Reiche et al., 2020; Worobey et al., 2020). Genomic 

epidemiology research supports the belief that isolates from China primarily seeded the 

original COVID-19 outbreak on the US West Coast and that European isolates seeded the 

pandemic in New York (and the US East Coast) (Deng et al., 2020). Given some 

connectivity suggested by the sequence similarity based approach there may exist 

opportunities for productive combination with phylogenetic tracing and transmission 

pathway studies (Zhang et al., 2020). 

 We recognize that both approaches can be impacted by limitations in data 

collection. Several publications have noted reporting lags although these are most 

problematic with respect to death reports rather than daily reported case counts (Aliprantis 

and Tauber, 2020; Angelopoulos et al., 2020; Casella, 2020; Kogan et al., 2021).  There is 

clearly the potential for inaccuracies in data collection covering many different 

jurisdictions. If for example, reports of new cases are delayed by a day or two from a 

jurisdiction this could potentially change the similarity in the sequences of county daily 

case counts. However, given the length of the study periods here we expect lags of one to 

two days to have minor impact. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

The studies in this dissertation have highlighted the importance of measuring 

similarity or differences between data objects, particularly the sequences of spatiotemporal 

events and associated settings. The importance and application of measuring similarity is 

evident in various fields such as geography, biology, computer science, linguistics, logic, 

business analytics, and statistics. The ability of using appropriate similarity measures to 

compare different event sequences from corresponding event settings and identify patterns 

can provide insight into underlying processes and potentially inform decision-making. In 

spatiotemporal analysis, measuring similarity or differences between events, settings, or 

sequences of events or settings can help enhance the understanding of processes over time 

and geospatial locations. 

 

6.1.   Conclusions 

 

6.1.1.   Matrix-Based STES Representation and Similarity Measure 

This dissertation has developed a novel framework and matrix-based 

spatiotemporal event sequence representation that unifies punctual and interval-based 

representation of events. The dissertation proposed STES similarity measure has been 

demonstrated to be effective in two real-world applications for analyzing spatiotemporal 

event sequences extracted from space-time series of water quality monitoring systems and 

the COVID-19 case progression dataset in USA for 4 months of 2020. The proposed novel 
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similarity measure for spatiotemporal event sequences (STES) has several advantages over 

Edit Distance, which is a commonly used similarity measure for event sequence data. 

First, the STES similarity measure is based on the modified Jaccard index with 

temporal order constraints and is designed specifically for spatiotemporal event sequences 

extracted from space-time series, a common data type in many environmental applications 

among others with spatiotemporal constraints. In contrast, Edit Distance is a more general 

similarity measure for sequence data and does not consider spatiotemporal structures in the 

data.  

Second, the STES similarity measure is suitable for STES of both punctual and 

interval events with the option of considering quantitative levels of individual events and 

filling the gap for investigating similarities between STES of different types of events. 

Third, a unified matrix-based representation of the spatiotemporal event sequence 

followed by the matrix of pairwise similarities offers more efficient and faster operation 

and computation compared to the Edit Distance. This matrix-based representation 

contributes to a flexible toolbox for efficient data mining techniques, such as clustering 

and classification. 

 

6.1.2.   Matrix-Based Representation of Setting Sequences and Similarity Measure 

This dissertation has modeled spatial-temporal event settings and developed a new 

similarity measure for event setting sequences that incorporates dynamic variables 

alongside static variables. This approach considers spatial and temporal scales to define the 

bounds of the setting and uses a matrix-based representation and an extended Jaccard index 

that allows for the use of all variable data types. This approach is successfully applied in a 
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case study involving setting sequences and pollution event sequences associated with the 

same monitoring stations. The working hypothesis evaluated by this study is that more 

similar event sequence settings give rise to more similar event sequences. The case study 

results suggest evidence in favor of this hypothesis. Cluster analysis of similar spatial-

temporal settings or setting sequences, related directly or indirectly to events and event 

sequences of interest, show alignment with clusters of similar event sequences. As spatial 

location plays a major role in the concept of settings the case study results also show 

evidence that STES that are closer in space tend to be more similar. 

 

6.1.3.   Scalability and Its Extended Application of STES Similarity Measure 

This study successfully implemented the new developed STES similarity measure 

to detect hotspots or clusters of COVID-19 in a large dataset of tracking COVID-19 cases 

nationwide at county level. The STES-based approach adapted for this pandemic context 

computes the similarity of evolving normalized COVID-19 daily cases by county and 

clusters them to identify counties with similarly evolving COVID-19 case histories. The 

prospective space-time scan statistic has been used to identify emerging disease clusters, 

but it can encounter strategic limitations imposed by the spatial constraints of the scanning 

window. The two approaches identify different patterns in the disease spread, and their 

results can complement each other and aid in tracking the progression of the pandemic. By 

comparing two different approaches to identifying emerging disease clusters, researchers 

can better track the progression of the pandemic and aid in the development of effective 

public health responses and policy actions. 
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6.2. Future Work 

Future work could focus on expanding the applicability of the proposed similarity 

measures in this study for spatiotemporal event sequences to a broader range of real-world 

applications. The framework presented for a novel matrix-based spatiotemporal event 

sequence representation could be further developed to accommodate even more event data 

types, with a focus on making the approach more robust to noisy or missing data. This 

could be achieved through the integration of machine learning techniques, such as deep 

learning or reinforcement learning, to improve the accuracy and reliability of the similarity 

measures. 

In addition, further research could investigate the potential of using the proposed 

similarity measures to analyze the dynamics of complex systems, such as ecological or 

economic systems, where events and their settings or contexts can be critical factors in 

understanding the system behavior. By examining the similarity of event settings, 

researchers could gain insight into how different factors interact with each other over time 

and across different spatial scales, which could inform better decision-making in a wide 

range of fields, from urban planning to disaster management. 

Furthermore, to extend the use of STES similarity measures to analyze lagged 

events and event sequences, we can incorporate a time lag parameter into the similarity 

calculation. This would allow us to quantify the similarity between events that are 

temporally separated by a fixed lag. One approach to incorporating time lags is to create 

lagged versions of the original event sequence and compute the similarity measures 

between the lagged sequences. For example, to compute the similarity between event 

sequences separated by a lag of one-time step, we can create two lagged sequences, one 
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with all events shifted by one time step, and one with the original events. This approach 

can be extended to analyze event sequences with longer lags by creating additional lagged 

sequences and computing the similarity measures between them. The lagged sequences can 

be created by shifting the events by a fixed number of time steps or by using sliding 

windows of fixed size. Another approach is to use dynamic time warping (DTW), a 

commonly used technique for comparing time series with temporal distortions. DTW can 

be used to align event sequences with different temporal offsets, allowing us to compute 

similarity measures even when events occur at different times in the two sequences. 

Finally, future work could also explore the potential of combining the proposed 

similarity measures with other analytical tools, such as social network analysis or 

geographic information systems (GIS), to gain a more comprehensive understanding of the 

relationships between events, their associated settings or contexts, and the broader social 

and physical environments in which they occur. This could lead to the development of new 

methods for detecting and tracking emerging patterns of behavior or disease spread, and 

for designing more effective interventions to address these issues. 

Overall, all studies conducted in this dissertation demonstrate the importance of 

measuring similarity or differences between event or setting data objects in spatiotemporal 

analysis. The developed similarity measures and frameworks in this dissertation offer 

researchers powerful tools for understanding different factors and their dynamics 

corresponding to occurrences of spatiotemporal event sequences. These similarity 

measures have many potential real-world applications and can inform decision-making in 

various fields, including public health, environmental monitoring, and resource allocation. 

The development of novel similarity measures that can accommodate different event data 
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types and incorporate dynamic variables alongside static variables can provide valuable 

insights into underlying processes and enhance our understanding of spatiotemporal 

phenomena. 
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APPENDICES 

APPENDIX A 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

The following are available online at 

https://www.mdpi.com/article/10.3390/ijgi10090594/s1  

Table A.1. Table S1: Precipitation data of 43 monitoring stations in the Maine coast 

(2010–2014).  

Table A.2. Table S2: Event sequence matrix of 43×192 from eventization based on 

 ≥1″ precipitation.  

Table A.3. Table S3: Event sequence matrix of 43×52 from eventization based on ≥2″ 

precipitation.  

Table A.4. Table S4: Similarity matrix of 43 × 43 from the event sequence matrix of 

Table A.2. 

Software Availability: 

(1) STS.eventize, STS.eventize1, STS.eventize2, and STS.eventize3 (conversion of 

space-time series to event sequences considering either variation of events or not 

based on domain context and user’s requirements), and  

(2) STES.sim1, STES.sim2, STES.sim3, STES.simOr, and STES.simOr2 (Calculation of 

global and local similarities between event sequences based on sequences of 

different event types and generation of global and local similarity matrices as user 

defined local granularity or window size).  

Source code: https://frank888.github.io/STES_similarity.html (accessed on 8 September 

2021). 

https://www.mdpi.com/article/10.3390/ijgi10090594/s1
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APPENDIX B 

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

  

The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/geographies3020016/s1 

Table B.1.  Table S1: Static variables of basin characteristics associated with 16 

monitoring stations. 

Table B.2.  Table S2: Dynamic variables and fecal coliform scores in 16 monitoring 

stations. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.mdpi.com/article/10.3390/geographies3020016/s1


178 

 

APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 5 

 

The following are available online at: 

https://www.mdpi.com/article/10.3390/ijgi10090594/s1  

 

Table C.1.  S1 Table. Comparison of space-time clusters from SaTScan and STES based 

hierarchical clustering with the dataset from 1/23-3-13/2020. This table is merged 

through FIPS of US counties, and also includes other selected output parameters 

from SaTScan such as p-values, LOC_RR (location or county relative risk), 

CLU_RR (cluster relative risk), LOC_LAT (location latitude), LOC_LONG 

(location longitude). https://doi.org/10.1371/journal.pone.0252990.s001 (XLSX) 

Table C.2.  Table. Comparison of space-time clusters from SaTScan and STES based 

hierarchical clustering with the dataset from 1/23-3-31/2020. This table is merged 

through FIPS of US counties, and also includes other selected output parameters 

from SaTScan such as p-values, LOC_RR (location or county relative risk), 

CLU_RR (cluster relative risk), LOC_LAT (location latitude), LOC_LONG 

(location longitude). https://doi.org/10.1371/journal.pone.0252990.s002 (XLSX) 

Table C.3.  S3 Table. Comparison of space-time clusters from SaTScan and STES based 

hierarchical clustering with the dataset from 1/23-4-19/2020. This table is merged 

through FIPS of US counties, and also includes other selected output parameters 

from SaTScan such as p-values, LOC_RR (location or county relative risk), 

https://www.mdpi.com/article/10.3390/ijgi10090594/s1
https://doi.org/10.1371/journal.pone.0252990.s001
https://doi.org/10.1371/journal.pone.0252990.s002
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CLU_RR (cluster relative risk), LOC_LAT (location latitude), LOC_LONG 

(location longitude). https://doi.org/10.1371/journal.pone.0252990.s003 (XLSX)  

Table C.4.  S4 Table. Comparison of space-time clusters from SaTScan and STES based 

hierarchical clustering with the dataset from 1/23-5-20/2020. This table is merged 

through FIPS of US counties, and also includes other selected output parameters 

from SaTScan such as p-values, LOC_RR (location or county relative risk), 

CLU_RR (cluster relative risk), LOC_LAT (location latitude), LOC_LONG 

(location longitude). https://doi.org/10.1371/journal.pone.0252990.s004 (XLSX)  

Table C.5.  S5 Table. The minimal data set underlying the results described in this 

manuscript. https://doi.org/10.1371/journal.pone.0252990.s005 (CSV) 
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