28 research outputs found

    Midfield RF Signal Detector

    Get PDF
    This project is part of a Master’s thesis which looks at alternative ways to measure blood glucose. The Master’s thesis uses mid-field signals in order to match impedance and therefore lose less power as they travel through flesh. The goal of this senior project is to build a receiver for those signals and give accurate RSSI (received signal strength indicator) measurements. Mid-fields were originally explored by Stanford professor Dr. Ada Poon [3] who used the signaling technique to recharge the batteries of deeply implanted devices. Devices implanted near the surface of the skin were able to have their batteries recharged using inductive coupling but when devices were implanted deeper in the body, the drop in energy before the signals reached the devices made wireless recharging impractical. Using inductive coils to transmit energy is a near field application and the near field coupling decays as as from the source [1]. Far field transmission is called radiative mode when it is used for far field power transfer, and the power decays as, which can be used when the implant is much smaller than its distance from the source. Dr. Poon discovered how to match impedances with flesh which allowed signals to travel farther without attenuation. These signals are called mid-field signals and occupy a position between near field and far field signals. Poon et al showed that in the midfield power transfer combines inductive and radiative modes [2] and shows much less attenuation as it travels through the body. The project described in this report is part of the larger glucose sensor project but because the glucose sensor system may be patented in the future, details of the work will not be described here. The glucose sensor system needs to sense the strength of a 1.6GHz mid-field wave at some point in the system and developing a sensor to receive and measure RSSI is what is described in this project

    Key Considerations for Power Management in Active Implantable Medical Devices

    Get PDF
    Within the rapidly advancing field of active implantable medical devices, power management is a major consideration. Devices that provide life critical (or avoiding life threatening) function require a dependable, always-on power source, for example pacemakers. There is then a trade-off with battery lifetime as to whether such devices employ a primary cell or rechargeable battery. With new applications requiring multi-module implants, there is now also a need for transmitting within the body from one device to another. This paper outlines the key considerations and the process to define and optimise the power management strategy. We then apply this to a case study application – developing an implanted, multi-module closed-loop neuromodulation device for the treatment of focal epilepsy

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    A theoretical and numerical approach for selecting miniaturized antenna topologies on magneto-dielectric substrates

    Get PDF
    An increasing interest is arising in developing miniaturized antennas in the microwave range. However, even when the adopted antennas dimensions are small compared with the wavelength, radiation performances have to be preserved to keep the system-operating conditions. For this purpose, magneto-dielectric materials are currently exploited as promising substrates, which allows us to reduce antenna dimensions by exploiting both relative permittivity and permeability. In this paper, we address generic antennas in resonant conditions and we develop a general theoretical approach, not based on simplified equivalent models, to establish topologies most suitable for exploiting high permeability and/or high-permittivity substrates, for miniaturization purposes. A novel definition of the region pertaining to the antenna near-field and of the associated field strength is proposed. It is then showed that radiation efficiency and bandwidth can be preserved only by a selected combinations of antenna topologies and substrate characteristics. Indeed, by the proposed independent approach, we confirm that non-dispersive magneto-dielectric materials with relative permeability greater than unit, can be efficiently adopted only by antennas that are mainly represented by equivalent magnetic sources. Conversely, if equivalent electric sources are involved, the antenna performances are significantly degraded. The theoretical results are validated by full-wave numerical simulations of reference topologies

    Maximum Energy Efficiency Operation of Series-Series Resonant Wireless Power Transfer Systems Using On-Off Keying Modulation

    Get PDF
    Maximum energy efficiency in wireless power transfer (WPT) systems can be achieved through the use of magnetic resonance technique at a certain load resistance value. However, practical load resistance is not constant. Previously, a switched mode dc-dc converter was used in the receiver circuit to emulate an equivalent load resistance for maximum energy efficiency. In this paper, a new approach based on the On-Off Keying is proposed to achieve the high energy efficiency operation over a wide range of load power without using an impedance-matching dc-dc power converter. This simple and effective method has reduced average switching frequency and switching losses. It can be applied to any series-series resonant WPT system designed to operate at a constant output voltage. Practical measurements have confirmed the validity of the proposal

    Power Link Optimization for a Neurostimulator in Nasal Cavity

    Get PDF
    This paper examines system optimization for wirelessly powering a small implant embedded in tissue. For a given small receiver in a multilayer tissue model, the transmitter is abstracted as a sheet of tangential current density for which the optimal distribution is analytically found. This proposes a new design methodology for wireless power transfer systems. That is, from the optimal current distribution, the maximum achievable efficiency is derived first. Next, various design parameters are determined to achieve the target efficiency. Based on this design methodology, a centimeter-sized neurostimulator inside the nasal cavity is demonstrated. For this centimeter-sized implant, the optimal distribution resembles that of a coil source and the optimal frequency is around 15 MHz. While the existing solution showed an efficiency of about 0.3 percent, the proposed system could enhance the efficiency fivefold

    A non-resonant kinetic energy harvester for bioimplantable applications

    Get PDF
    A linear non-resonant kinetic energy harvester for implantable devices is presented. The design contains a metal platform with permanent magnets, two stators with three-dimensional helical coils for increased power generation, ball bearings, and a polydimethylsiloxane (PDMS) package for biocompatibility. Mechanical excitation of this device within the body due to daily activities leads to a relative motion between the platform and stators, resulting in electromagnetic induction. Initial prototypes without packaging have been fabricated and characterized on a linear shaker. Dynamic tests showed that the friction force acting on the platform is on the order of 0.6 mN. The resistance and the inductance of the coils were measured to be 2.2 and 0.4 mu H, respectively. A peak open circuit voltage of 1.05 mV was generated per stator at a platform speed of 5.8 cm/s. Further development of this device offers potential for recharging the batteries of implantable biomedical devices within the body.No sponso

    Recent Advances on Implantable Wireless Sensor Networks

    Get PDF
    Implantable electronic devices are undergoing a miniaturization age, becoming more efficient and yet more powerful as well. Biomedical sensors are used to monitor a multitude of physiological parameters, such as glucose levels, blood pressure and neural activity. A group of sensors working together in the human body is the main component of a body area network, which is a wireless sensor network applied to the human body. In this chapter, applications of wireless biomedical sensors are presented, along with state-of-the-art communication and powering mechanisms of these devices. Furthermore, recent integration methods that allow the sensors to become smaller and more suitable for implantation are summarized. For individual sensors to become a body area network (BAN), they must form a network and work together. Issues that must be addressed when developing these networks are detailed and, finally, mobility methods for implanted sensors are presented
    corecore