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Abstract

Implantable electronic devices are undergoing a miniaturization age, becoming more effi-
cient and yet more powerful as well. Biomedical sensors are used to monitor a multitude 
of physiological parameters, such as glucose levels, blood pressure and neural activity. A 
group of sensors working together in the human body is the main component of a body 
area network, which is a wireless sensor network applied to the human body. In this chap-
ter, applications of wireless biomedical sensors are presented, along with state-of-the-art 
communication and powering mechanisms of these devices. Furthermore, recent integra-
tion methods that allow the sensors to become smaller and more suitable for implantation 
are summarized. For individual sensors to become a body area network (BAN), they must 
form a network and work together. Issues that must be addressed when developing these 
networks are detailed and, finally, mobility methods for implanted sensors are presented.

Keywords: implantable medical devices, sensors, communication, powering, mobility

1. Introduction

Implantable electronic devices are becoming ever smaller and more efficient, which drives 
their suitability for many new applications to levels never seen before. Examples of such 

devices are implantable chemical sensors [1], glucose and oxygen sensors for diabetics [2], 

neural implants [3, 4] and cochlear implants [5]. The constant evolution of these devices is 

paving the way for their large-scale use in the human body. It is not hard to imagine a cluster 

of sensors gathering data from several different locations in the human body, giving birth to 
what is referred to as a body area network (BAN). A BAN is a wireless sensor network (WSN) 

that consists of devices operating in, on or close to the human body [6]. It is composed of a 

small number of devices, equipped with biomedical sensors and wireless communications [7].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



BANs and WSNs share many of the same challenges, but BANs pose a particular set of prob-

lems to be addressed:

• Size constraints imposed by the limited available space inside the body.

• Lossy materials surrounding the implant that heavily attenuate electromagnetic signals 
used for communication, degrading the quality of the link.

• Biocompatibility concerns.

• High power efficiency requirement, due to the limited available energy, whether from bat-
teries or other powering methods [8].

• Communications must be reliable, as they can be conveying urgent information about life-

threatening conditions of the individual.

• Data safety must be guaranteed during communication, as personal and confidential medi-
cal information will be transmitted.

In this chapter, implantable sensors and sensor networks will be studied, starting with examples 

of their applications in the biomedical field and state-of-the-art sensors. Methods that allow the 
devices to communicate with the outside world will be reviewed and discussed, as the sensors 

must transmit data to an external reader, so that it can be accessed by the individual or medical 

personnel. Alternative powering methods that allow the device to have smaller form factors than 

those possible with batteries will be presented. Advances in material science and fabrication 
techniques lead to the integration of electronics with smart materials, thus birthing a new gen-

eration of devices that are more suitable than ever for implantation. These integration efforts will 
be presented in this chapter. As the main interest of this publication is wireless sensor networks, 

networking issues faced by in-body sensors will be presented. Finally, there have been reports 

of self-propelled devices, and the possibility of having sensors capable of moving to different 
places in the human body inspired the authors to present some of these propulsion methods.

2. Applications

The biomedical field has a vast range of devices and techniques capable of aiding medical staff 
to diagnose, manage and treat diseases. This section focuses on sensors, which are responsible 

for gathering data on a given biomedical signal and relaying them to physicians. Since the 

scope of this book is wireless sensor networks, only sensors with wireless capabilities will 

be considered and presented. Examples of applications of sensors in the medical field will be 
presented, along with proposed devices.

2.1. Intraocular pressure

Intraocular pressure (IOP) monitoring is an important tool for medical staff to diagnose and 
control glaucoma. This disease is the second most common cause of blindness, and it is pre-

dicted to affect around 80 million people by 2020 [9]. Different approaches for measuring IOP 
are possible and range from non-invasive devices, such as contact lenses [10, 11] that measure 
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the deformation of the cornea curvature due to the extra pressure, to invasive, implantable 

sensors [12–16] that directly measure the IOP inside the eye. The device presented in Ref. [12] 

is considered by the authors of this chapter to be the state of the art of IOPs. It is a 1.5 mm2 sen-

sor with wireless communication capabilities and a power requirement of only 7 μW, which 

is satisfied by solar energy harvesting.

2.2. Neural activity

Neural activity provides useful data for a number of different applications. It can be used, for 
example, to diagnose neural dysfunctions, such as epilepsy [17], to control prosthetic limbs 

through what is called a brain-machine interface [18], and behavioural studies [19]. Neuron 

action potentials can be measured from deep brain tissues through implantable needles [20], 

or from the surface of the cortex [17, 21–23], which reduces cortical scarring and allows for 

chronical and stable measurements [21]. There are even examples of devices used to record 

the electrical activity of neuron in the peripheral nervous system [18]. The state of the art in 

implantable neural sensors is considered to be the device presented in Ref. [21]. It is a radio 

frequency (RF) wirelessly powered, 42.25 mm2, 64-channel sensor with a 1 Mbps data rate, 
consuming only 225 μW. A smaller device consuming 120 μW is available in Ref. [18], but its 

single-channel topology puts it at a disadvantage.

2.3. Bladder pressure

Bladder pressure monitoring is an important tool for the diagnosis of bladder dysfunctions. 

As some symptoms may only be induced in normal daily activities, such as walking, they can-

not be registered in an acute measurement at the hospital. Implantable, chronic reading is nec-

essary, preferably with no discomfort to the patient. Examples of such devices are presented 

in Ref. [24–27]. In Ref. [27], a 40 mm2 sensor consuming 16 μW, with sound wave power 

transfer capabilities and LC resonance-based communication, is presented and considered to 

be the state of the art in this field.

2.4. Glucose

Glucose monitoring is traditionally done by the patient himself, usually by pricking the fingertip 
and drawing a small blood sample. Unfortunately, this method is not comfortable for the patient 

and is only capable of getting a measurement in given points of time. Implantable alternatives are 
being researched and have already been presented [28, 29]. These allow for continuous glucose-

level monitoring and can be used to trigger alarms or even to automatically control implantable 

insulin pumps, thus improving the patient’s quality of life. In Ref. [28], a needle implantable  

0.5 × 0.5 × 5 mm3 wireless sensor with light powering and communication is presented.

2.5. Blood pressure

High blood pressure is the main cause for morbidity and mortality worldwide [30]. It is 

responsible for a higher risk of cardiovascular diseases, heart problems, strokes and aneu-

risms. Being such a critical vital parameter, continuous monitoring can prove important to the 

medical staff when it comes to diagnosing conditions. Implantable wireless blood pressure 
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sensors have been proposed in Ref. [30–33]. Blood pressure can also be useful to control vas-

cular graft degradation through blood flow measurements, and a sensor capable of perform-

ing this task is presented in Ref. [34]. The state of the art is considered to be the vascular graft 

blood pressure sensor presented in Ref. [34]. This sensor has a 2.67 mm2 chip with two coils 

that hold it in place inside a vascular graft. Pressure is digitized and backscattered, with the 
device consuming only 21.6 μW and with a sensitivity of 0.176 mmHg.

2.6. pH

The pH of a solution plays an important role in chemical processes that it undergoes, there-

fore affecting several physiological parameters and functions. pH can be used to identify 
microbial presence in tumours and monitor wound healing [35]. In Refs. [36, 37], a sensor is 

used to monitor gastroesophageal reflux disease (GERD) by measuring pH in the oesopha-

gus. In Ref. [38], oral pH is measured to control the pathogenesis of dental caries. The device 

presented in Ref. [35] is the state of the art of implantable pH sensors. It integrates carbon 

nanotube-based sensors, which do not require a reference electrode, with an RFID tag that 

modulates data into an externally provided carrier. It is capable of accurately detecting pH 

levels between 2 and 12 during 120 days.

2.7. Intracranial pressure

Intracranial pressure is a vital biomedical parameter when it comes to the management of trau-

matic brain injuries. Current methods require catheters inserted into the cranial cavity, which 

cause patient discomfort and carry a risk of infection and haemorrhage [19, 39]. Minimally, 
invasive techniques based on wireless sensors have been presented in Refs. [39–42]. Chen et al. 

presented, in Ref. [39], passive sensors with volumes down to 1 × 1 × 0.5 mm3. Pressure ranges 

from 0 to 100 mmHg were registered, with wireless and batteryless operation.

2.8. Electromyography

Electromyography (EMG) measures the electrical potentials present in muscle, and this data 
can be useful for the diagnosis of illnesses and injuries, functional electrical stimulation, and 

to control prosthetic limbs. EMG sensors with wireless capabilities have been presented in 
Refs. [43, 44]. The sensor presented in Ref. [44] is an EMG and electrocardiogram (ECG) moni-
tor with four analog channels, a chip that consumes 19 μW (when sampling from one channel) 

and communicates at a data rate of 200 kbps with a power consumption of 160 μW. It includes 
RF power transfer and thermoelectric energy harvesting powering modules, giving the device 

versatility.

2.9. Electrocardiogram

Electrocardiogram (ECG) measurements allow physicians to have a closer look at the patients’ 

heart, and it can be used to detect arrhythmias and heart attacks (myocardial infarctions), for 
example. Wireless ECG monitors have been proposed in Refs. [44, 45]. The device presented 
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in Ref. [45] is notable for its extremely low power consumption of 64 nW, which raises the bar 

in terms of power budgets. Nevertheless, it does not allow for continuous monitoring, as it 

only stores abnormal events into the memory for posterior wireless relaying. For continuous 

monitoring, the previously discussed device of Ref. [44] is considered the state of the art.

3. Communications

Promising and viable communication strategies have been reported, such as intra-body com-

munication (IBC) [46, 47] and ultrasound (US) [48]. The first consists on using biological tissue 
of the system’s host as a conductive medium for electrical signals conveying data. The sec-

ond is based on ultrasounds, a mechanical wave of frequencies above 20 kHz, which suffers 
low tissue absorption. Radio frequency (RF) is the most widely implemented communica-

tion method; therefore, this section will focus on sensors with RF wireless communications. 

Passive and active RF communication methods will be presented, with examples of devices 

resorting to them.

3.1. Passive RF communication (PRFC)

This communication method relies on the resonant frequency of a pair of coupled coils, one 

in the wireless implant and the other in an external device. The sensor is attached to the 
implant’s coil, and a change in the parameter to which the sensor is sensitive to translates 

into a varying impedance of the coil. Consequently, the resonant frequency of the coupled 

coils will shift as the parameter of interest, for example, IOP, varies. Generally, this approach 

requires no power from the implant [13, 14, 32, 33, 39, 40], as the external reader is responsible 

to detect the impedance change in the implant’s coil and, from it, calculate the sensed param-

eter’s value. This allows for smaller implants, as power budget is reduced and no processing 

electronics are required. In a BAN perspective, this communication method can be applied 

in situations where on-body readers are a possibility (e.g. intraocular pressure monitoring 

where the external reader is placed in a pair of glasses worn by the patient).

3.2. Active RF communication (ARFC)

Implantable sensors described in this subsection communicate with the outside world resort-

ing to an on-board antenna and an RF signal, at the expense of power. In Ref. [30], the authors 

resorted to capacitive coupling, in contrast to the more common inductive coupling. This 

method consists of using the host’s biological tissue as a dielectric between two sets of metal-

lic plates, one on the sensor and another on a reader, which can be body-worn or implantable. 

Operation frequencies must be kept as low as possible, since the tissue becomes more conduc-

tive as frequency increases.

Inductive coupling communication is performed between two coils and has the advantage 

of being more efficient than far-field communication. On the other hand, a precise alignment 
between coils is necessary, under the penalty of drastically losing efficiency. Additionally, the 
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distance between coils must be kept as small as possible, unlike far field, which can be used at 
long ranges. The choice between one of these two powering methods must be made considering 

the available space, power budget and radiation safety guidelines. From the examples provided, 

no connection can be made between the choice of inductive coupling or far-field communication 
and the application of the sensor.

The choice between passive and active communication technologies is one that cannot be 

taken lightly when designing and developing an implantable sensor. Considering BANs, 

if wearable or large implantable relays are available near the implanted sensors, and the 

latter have severe volume limitations, passive communication can be a viable option, as the 
relays can support the bulky batteries or wireless power transfer (WPT) components, and 

the implanted sensor can use an oscillator to modulate the data into the relay’s RF signal 

and backscatter it. In applications where the sensor has available space for computing capa-

bilities, inductive links can be employed. With this, the sensor can process larger amounts 

of data, such as multiple channels. When long-distance operation is desirable, e.g. when no 

on-body or implantable relays are desirable, far-field communication is the best option, as 
it removes those constraints.

4. Powering

Sensor miniaturization is a desired goal; therefore, a compromise must be made between bat-

tery size, and consequently the size of the device itself, and its autonomy, bearing in mind that 

battery replacement may require an invasive surgical procedure, which could potentially lead 
to health complications [49, 50]. The urge to research for new and reliable powering solutions 

for implantable devices to increase their lifespan and reduce their volume is evident, and the 

interest in this field is proven by the amount of publications made available over the previous 
years. Figure 1 contains a diagram representation of the different types of device powering 
that will be discussed in this section.

4.1. Energy harvesting

Energy harvesting techniques consist of harvesting useful amounts of energy from the ambi-

ent environment in order to power a device or charge a battery, having potential to provide 
power to biomedical devices since they could yield unlimited energy, drastically increasing 

the devices’ lifespan. However, harvesting useful amounts of energy from the environment 

can be proven challenging, as the amount of available energy is volatile and often very lim-

ited, which imposes the need of special power management circuitry [49, 51]. Despite of the 

aforementioned limitations, research in the field of energy harvesting is of high interest due 
to the constant reduction of the power demands of electronic circuits [52].

Several energy harvesting techniques have been proposed by researchers, and special atten-

tion is given to thermoelectric generators, biomechanical energy, solar power, biofuel and RF 

energy harvesters.
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4.1.1. Thermoelectric generators

Thermoelectric generators are solid-state devices that convert the thermal energy from 

temperature gradients into electrical energy [53]. These are appealing power sources for 

implantable devices, as they possess high reliability, are compact and do not require mov-

ing parts [54]. Such generators are based on the Seebeck effect, which states that an electrical 
voltage is generated across a metal or semiconductor when it is exposed to a temperature 

gradient [55].

4.1.2. Biomechanical energy harvesters

Biomechanical energy is generally abundant in the human body. It is generated by breath-

ing, muscle stretching, body weight during motion and heart beats. The conversion between 

energy types is achieved resorting to a transduction mechanism, with electromagnetic and 

piezoelectric mechanisms being the most common. Biomechanical energy harvesters usu-

ally fall into two categories: vibrational or force-driven. Vibrational harvesters use inertial 

energy of a given mass, while force-driven ones rely on direct application of mechanical 

force [49].

Figure 1. Implantable device powering methods.

Recent Advances on Implantable Wireless Sensor Networks
http://dx.doi.org/10.5772/intechopen.70180

107



This generator’s feasibility for implantable medical devices was also studied. It was implanted 

on the right ventricular wall of a dog’s heart and produced 80 mJ of energy after 30 minutes 
of operation [56].

4.1.3. Solar power

Solar cells were found to be capable of powering implantable devices. Even when implanted 

below a skin layer, these cells can harvest some power, as a small amount of light is able to pen-

etrate the skin, in particular near-infrared light [57]. An absorption of around 10% of the inci-
dent power per millimetre of the skin occurs for a wavelength of 632.8 nm and 11.5% for 904 nm 
[58]. Nevertheless, large size, low efficiency and tissue heating are the major drawbacks of these 
systems [59]. Solar power harvesting cells have been developed in Refs. [12, 60], and they are 

capable of generating 1.1 μW/mm2 in the eye and 34 μW/mm2 below the skin, respectively.

4.1.4. Biofuel

Biofuel cells transform biochemical energy into electric energy by making use of electrochem-

ical reactions. Oxidation and reduction reactions occur in the anode and cathode of the biofuel 

cell, generating a flow of electrons that generates power that a device can be used to power 
itself. Advantage of this technology is, for example, the biocompatibility between the fuel cell 

and the human body. On the other hand, low harvested power levels can pose a limitation 

as well as the anode and cathode degradation over time. Examples of reviews of implantable 

biofuel cells in living animals are available in Refs. [61, 62].

4.1.5. RF energy harvesting

RF energy harvesting consists on harnessing electromagnetic waves that exist in the environ-

ment, generated by communication towers, for example. These waves have the potential to 

provide power for electronic devices. The quantity of available radiation, the efficiency of 
the power conversion system and the size constraints of the device will dictate whether this 

method suffices in powering a given application. Even though technological advances are 
constantly being made, the size constraint of implantable medical devices and the typical 

ambient RF power densities cause some uncertainty about the suitability of this device pow-

ering method, as power levels below 1 μW can be recovered [51].

4.2. Wireless power transfer

The previously studied energy harvesting techniques suitable for implantation generate small 

power outputs. Consequently, the use of a dedicated power emitter for charging the devices 
has to be considered. Pertinent technologies such as the use of optical energy, ultrasounds or 

RF waves emerge as alternatives.

4.2.1. Optical link

Optical waves have been suggested to power medical implants, as they do not interfere 

with nearby communication systems like RF waves do. In Ref. [63], an array of silicon 
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diodes with an area of 2.1 cm2, implanted 1–3 mm under the skin, was used for transcutane-

ous power transmission. Using near-infrared irradiation at 810 nm with a power density of 
22 mW/cm2, the charging of a lithium battery capable of powering a commercial pacemaker 
for 24 hours was reported, while the temperature rise on the skin during light irradiation 

was 1.4°C.

4.2.2. Ultrasonic link

Ultrasonic waves, akin to optical waves, do not interfere with nearby electromagnetic 

fields and communication devices. They induce a vibration in the tissue, and the result-
ing kinetic energy is converted to electrical energy through a transducer, e.g. a piezo-

electric transducer [49]. Ultrasonic power transmission has some disadvantages that limit 

its application to implantable medical devices. This transmission is very sensitive to the 

contact between the transmitter and the tissue, as an impedance mismatch between these 
elements or a misalignment between transmitter and receiver can severely reduce trans-

mission efficiency [64].

4.2.3. Radio frequency link

Electromagnetic radiation, more specifically RF, is adequate to transport energy over long 
distances and presents one of the highest miniaturization potentials [65]. Additionally, its 

absorption by biological tissues does not induce damage, as long as the specific absorption 
rate (SAR) is not exceeded.

One of the most common methods of power transmission to medical devices bases itself on 

inductive coupling, as it has the lowest absorption rate by body tissue at lower frequencies. 

This method has been previously used to power cochlear implants, total artificial hearts and 
neural implants, among others [66–69]. Despite its popularity, this method has some draw-

backs, such as coil decoupling due to misalignment, since it requires rigorous positioning of 

transmitter and receiver coils [70–72]. Moreover, the range of inductive coupling complies 
with exponential decay, a near-field phenomenon, meaning that the external coil must be 
close to the implant. These limitations can be overcome by establishing links in the middle 

(see Ref. [73]) or far field, resorting to antennas. Although energy transportation is less effi-

cient, it allows for greater distances between the power source and the target than the previ-

ous inductive methods [74].

5. Integration

Most of today’s implantable electronic devices, such as the ones so far reviewed in this chap-

ter, rely on silicon microelectronics. The evolution of fabrication techniques and microelec-

tronics has translated into a reduced size of implantable electronics. Nowadays, there is an 

urge to further miniaturize them to make them easier to implant and less traumatic for the 

patient. Efforts made towards this goal over the past few years will be reported through 
examples of success cases.
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Chen et al. [39] have designed a wireless pressure monitoring sensor with dimensions down 

to 1 × 1 × 0.1 mm3. A 2.5 × 2.5 × 0.1 mm3 device was used to validate the design in vivo. A reso-

nant circuit composed of an inductive antenna and a pressure-sensitive capacitor is the heart 

of the sensor. An applied pressure changes the resonant frequency of the LC circuit, and the 

frequency shift is detected by an external reader, which then converts it into pressure values.

Mostafalu et al. [75] created threads with different properties to act as sensors, microfluid-

ics and electronics. Hydrophobic threads were used as microfluidic channels, while threads 
infused with materials such as carbon nanotubes were used as electrodes for sensing pH, 

glucose and so on. Conventional electronics were present in a different layer, and these estab-

lished communication links and processed the electrodes’ signal. Fabric devices were tested 

in pH and strain sensing, in vivo, having been successful. This research has the potential to 

lead to the creation of smart sutures and bandages.

The examples above serve to demonstrate how fabrication technology enables devices to 

become smaller than ever, while still packing enough features to perform their given tasks.

5.1. Biodegradable and stretchable sensors

In the past few years, new materials for implantable sensors have been proposed, studied and 

validated, namely, stretchable and biodegradable materials [76–80]. Biodegradable materi-

als allow for transient sensors that can, for example, be implanted after a surgery to monitor 

wound healing and bacterial activity, and after a predefined period, the device would start to 
degrade inside the human body. The by-products of this process would then be eliminated 

naturally by the organism. This would mitigate the need for implant retrieval surgeries, along 

with all associated negative aspects, e.g. patient discomfort, risk of infection, surgery room 

scheduling and so on.

Kang et al. [41] demonstrated an ICP sensor in a rat, fabricated with a polymer (PLGA) and 

either a magnesium or a silicon foil. Continuous monitoring of ICP was achieved during 3 

days, after which the materials composing the sensor were reabsorbed into the body.

Luo et al. [81] fabricated a pressure sensor based on a variable capacitor and a coil. The 

biodegradation of this device was documented by the authors. During the first 21 hours of 
immersion in a saline solution, the resonant frequency of the sensor changed, as if it was sta-

bilizing itself in the system. In the following 86 hours, the resonant frequency stayed constant, 

showing stability of the device, thus being the optimal operation period of the sensor. After 

this, the quality of the sensor starts to degrade until it is unusable.

A transient device capable of managing bacteria growth in a region of the body, possibly a 

surgery or implant site, has been proposed in Ref. [80]. Using magnesium for an inductive 

coil, a silicon resistor and silk encapsulation, a heater was produced. An external RF field 
would power the resistor, which would heat up by 5°C and prevent bacteria proliferation in 

that location. The longevity of the device is controlled by the silk’s crystallinity.

Biodegradable batteries have also been achieved (see Ref. [78]). These were capable of powering 

a LED and a 58 MHz wireless signal generator.
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Finally, stretchable electronics are also becoming a reality [79]. A sensor that can be bent and 

twisted without losing its properties is an important step in implantable devices, as patient 

discomfort would be greatly reduced. Devices, such as electronic eyeball cameras and copla-

nar waveguides, have been demonstrated.

The evolution of integration techniques and material science is of paramount importance 

for the medical sensor area. Smaller devices with the same powerful capabilities are in high 

demand, allowing for new applications and the improvement of current ones. Bendable and 

stretchable sensors can be a positive step in patient comfort and device reliability, reducing 

the negative response from the human body. Finally, biodegradable sensors have an enor-

mous potential, as they can be used to monitor a parameter for a limited period of time, after 

which it is simply absorbed by the human body without any harm, eliminating the need for 

a retrieval surgery.

6. Networking issues

The increase of implantable sensor solutions for the medical field brings the necessity of such 
sensors to work together to collect and relay measurements of biomedical parameters. The 

most used communication method for implants is based on electromagnetic radiation. Due to 

the conductive nature of biological tissue, it suffers great attenuation, as tissues absorb energy 
and dissipate it as heat. Experimental path loss models were presented in Ref. [82] for in-body 

to in-body, in-body to on-body and in-body to off-body communications between 2.36 and 
2.5 GHz. This work is a proof of the challenges that lossy biological tissue presents to sensor 

development and networking.

Networking solutions of implanted sensors must consider SAR limits and temperature 

increase of tissues to guarantee patient safety. According to Ref. [83], the high quality of 

service (QoS) required for biomedical systems can only be achieved in such a propagation 

medium if performance-enhancing techniques, such as adaptive coding and modulation and 

link diversity, are adapted from miniature wireless electronics to implantable sensors.

In Ref. [7], three networking methods for on- and in-body sensors are presented. Of these, the 

use of on-body beacons shows good promise. The beacons would be responsible for forward-

ing data between sensors and relaying it to base stations, thus reducing the power dissipation 

inside the human body. Since the beacons can be larger than implantable sensors, these can 

also be used as power sources or controllers for the sensors, as their power budget can be 

significantly higher. In Ref. [84], the authors agree with the previous statement, and they pres-

ent a study of QoS and power consumption variation of BAN nodes with different on-body 
beacon placements.

BANs pose yet another challenge for engineers. As the human body is a flexible, moving 
environment, the relative position of the network’s nodes can change frequently, thus alter-

ing signal attenuation in communication links. For example, a wearable, on-body relaying 
node, such as a smartwatch, changes its position relatively to the in-body sensors all the time 
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during normal day-to-day activity of the wearer. The same concept applies to in-body sen-

sors placed in moving organs and members or even in the bloodstream. Ramachandran et al. 

[85] proposed a medium access control (MAC) protocol based on human activity, which they 
named HAMAC, that aims to work around the previously mentioned problems by adjusting 
the timing of communication between nodes and from nodes to relays.

In 2012, the IEEE has published standard IEEE 802.15.6. It addresses the communication pro-

tocol for BANs for medical applications (see Ref. [6]). Works around this standard have been 

found, such as the one found in Ref. [86], which aims to improve it by adding an ultrawide-

band channel model.

Alternatives to RF networking have also been studied. Santagati et al. [48, 87] proposed a 

MAC protocol for US communications, ultrasonic wideband (UsWB). It aims to establish 
intra-body communication between BAN nodes without the previously mentioned setbacks 

of RF radiation. UsWB was reported to be resistant to the multipath caused by the multitude 

and inhomogeneity of tissues in the propagation medium, i.e. the human body, thus making 

it a viable alternative to RF-based communications.

6.1. Security concerns

When sensors transmit data to one another or to the outside world, sensitive medical informa-

tion is therein contained. The theft of such data by a third party is a serious danger and must 

be prevented. In the case of sensors or actuators within the body network that receive instruc-

tions from a controller, the possibility of having an attacker sends commands to these devices 
must be completely eliminated to guarantee the safety of the patient. Furthermore, an attacker 
must not be able to modify the content of the data being exchanged in the network without 

the receiver noticing the change, thus guaranteeing the integrity of the communication.

Steps towards the protection and encryption of transmitted data have been taken and reported. 
In Ref. [88], the authors proposed a method to share secret data inside a network by using 

ECG as a decryption key. Only an external reader with access to real-time ECG of the patient 

would be able to read the data, and given the random nature of the ECG wave, this safety 

method presents great potential. Nevertheless, it must not be forgotten that implantable sen-

sors have limited power budgets; therefore, this encryption must be lightweight. In Ref. [89], 

the same authors have improved upon this method by using characteristic parameters of 

ECG signals, the P, Q, R, S and T peaks, and generate random binary sequences with the time 

intervals between these peaks. This approach was reported to have low latency and to benefit 
of the same randomness of ECG signals as the previously reported one.

7. Node mobility

In recent years, propulsion methods for small implantable devices, or robots, have been 

proposed. Having sensors capable of moving in body fluids has medical interest, as it can 
allow one device to perform measurements and diagnostic in an area wider than ever before. 
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Minimally invasive surgery or targeted drug delivery could also be performed with steerable 
devices.

In Ref. [90], a 3 × 4 mm2 wireless implantable device is presented. Its propulsion method is 

based on magnetohydrodynamics (MHD). It requires a constant magnetic field of around 0.1 T, 
which can be achieved with a permanent magnet. The device applies currents in the mA 

order of magnitude through the medium’s conductive fluid, and a force is generated in the 
magnetic field. The device then experiences an equal and opposite force that propels it. Power 
is provided by a 1.86 GHz WPT system, which also carries movement commands modulated 

into the power carrier. The device can controllably move at a speed of 5.3 mm/sec in salt water.

Hsieh et al. [91] developed a remote-controlled device with a propulsion mechanism based 

on gas pressure from electrolytic bubbles generated on the surrounding fluid. It can move at 
a rate of 0.3 mm/s, at around 200 μW power consumption. Electrolysis electrodes are present 
all around the device, so it is possible to define where the electrolysis will occur and, conse-

quently, steer the device. It is powered by a 10 MHz inductive coupling link which also carries 
commands to control movement direction and speed. The receiving coil and electrodes are 

integrated in the locomotive chip, which has a total area of 21.2 mm2. Despite the slower speed 

of this device, especially comparatively to the one reported in Ref. [90], this approach does not 

require external components such as permanent magnets.

This section presented propulsion mechanisms for wireless devices operating in a liquid 

medium. The reported WPT, communication and steering capabilities of these devices are an 

important stepping stone towards fully autonomous or remote-controlled sensors and actua-

tors integrating a BAN that are capable of navigating, for example, through the bloodstream, 

digestive tract or bladder. Simultaneously, they would be performing measurements, relay-

ing them to the outside world and performing microsurgery or drug delivery at the required 

locations.

8. Conclusion

BANs comprised of implantable sensors are becoming closer and closer to being a common tool 

in the medical field. This would mean a significant improvement on healthcare for patients, as 
close monitoring of critical parameters can be done full-time and without constraints. Several 

powering methods that allow these devices to be as small as possible and to operate indefi-

nitely are available and maturing. The same applies for communication methods, which tend 

to be less power consuming, and there were even reported completely passive methods that 

can be used in situations where extremely small devices are required. Still in the topic of com-

munications, security issues and networking difficulties have been raised, with efforts to miti-
gate them being presented. Integration techniques that allow the fabrication of sensors with 

more host-friendly materials have been detailed, with biodegradable and stretchable materi-

als being a topic of high interest in the past few years. Finally, mobility mechanisms that allow 

for controllable exploratory sensors have also been shown, and these pave the way for large 

area monitoring by a single sensor, adding to their versatility and capabilities. In conclusion, 
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the evolution of biomedical sensors is leading the way to completely functional and tailored 

BANs that in the near future will prove to be indispensable tools for health monitoring in both 

the hospital environment and daily life of patients.
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