27 research outputs found

    Microwave Characteristics of an Independently Biased 3-stack InGaP/GaAs HBT Configuration

    Get PDF
    This paper investigates various important microwave characteristics of an independently biased 3-stack InGaP/GaAs heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit (MMIC) chip at both small-signal and large-signal operation. By taking the advantage of the independently biased functionality, bias condition for individual transistor can be adjusted flexibly, resulting in the ability of independent control for both small-signal and large-signal performances. It was found that at small-signal operation stability and isolation characteristics of the proposed configuration can be significantly improved by controlling bias condition of the second-stage and the third-stage transistors while at large-signal operation its linearity and power gain can be improved through controlling the bias condition of the first-stage and the third-stage transistors. To demonstrate the benefits of using such an independently biased configuration, a measured optimum large-signal performance at an operation frequency of 1.6 GHz under an optimum bias condition for the high gain, low distortion were obtained as: PAE = 23.5 %, Pout = 12 dBm; Gain = 32.6 dB at IMD3 = -35 dBc. Moreover, to demonstrate the superior advantage of the proposed configuration, its small-signal and large-signal performance were also compared to that of a single stage common-emitter, a conventional 2-stack, an independently biased 2-stack and a conventional 3-stack configuration. The compared results showed that the independently biased 3-stack is the best candidate among the configurations for various wireless communications applications

    DESIGN OF A GAAS DISTRIBUTED AMPLIFIER WITH LC TRAPS BASED BROADBAND LINEARIZATION

    Get PDF
    Increasing the linearity of power amplifiers has been an important area of research because its signal integrity influences the performance of the entire transreceiver system and there are strict regulatory requirements on them. Due to the nonlinear behaviour of power amplifiers, third order intermodulation products are generated close to the desired signals and cannot be removed by filters. Increasing linearity will help bring these distortion products closer to the noise floor. However, it is not an easy task to increase linearity without trading off output power. To maintain the same level of output power generated but with higher linearity, many techniques, each with its own pros and cons, have been implemented to linearize an amplifier. Techniques involving feedback are seriously limited in terms of modulation bandwidth whereas methods such as predistortion and feedforward are very difficult to implement. This project seeks to use a simple method of placing terminations directly to the distributed amplifier (DA), making it a device level linearization technique and can be used in addition to the other system level techniques mentioned earlier. To increase linearity over a broad bandwidth of 0.5 to 3.0 GHz, this work proposes using low impedance terminations (LC traps) at the envelope frequency to the input and output of several distributed amplifiers. This research is novel since this is the first time broadband improvement in linearity has been demonstrated using the LC trap method. Two design iterations were completed (first design iteration has four variants to test the output trap while the second design iteration has three variants to test the input trap). The low impedance terminations are implemented using inductor-capacitor networks that are external to the monolithic microwave integrated circuit (MMIC). Design and layout of the DAs were carried out using Agilentโ€™s Advanced Design System (ADS). Results show that placing the traps at the output of the DA does not truly affect the linearity of the device at lower frequencies but provide an improvement of 1.6 dB and 3.4 dB to the third-order output intercept point (OIP3) at 2.5 GHz and 3.0 GHz, respectively. With traps at the input, measurement results at -5 dBm input power, viii 1.375 V base bias (61 mA total collector current) and 10 MHz two tone spacing show a broadband improvement throughout the band (0.5 GHz to 3.0 GHz) of 3.3 dB to 7.4 dB in OIP3. Furthermore, the OIP3 is increased to 19.2 dB above P1dB. Results show that the improvement in OIP3 comes without lowering gain, return loss or P1dB and without causing any stability problems

    Highly efficient linear CMOS power amplifiers for wireless communications

    Get PDF
    The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.PhDCommittee Chair: Kenney, J. Stevenson; Committee Member: Jongman Kim; Committee Member: Kohl, Paul A.; Committee Member: Kornegay, Kevin T.; Committee Member: Lee, Chang-H

    Monolithic Microwave Integrated Circuits for Wideband SAR System

    Get PDF

    ์ด๋™ํ†ต์‹  ๊ธฐ๊ธฐ์— ์ ํ•ฉํ•œ ์žฌ๊ตฌ์„ฑ์ด ๊ฐ€๋Šฅํ•œ ๋‹ค์ค‘๋Œ€์—ญ ์„ ํ˜• CMOS ์ „๋ ฅ์ฆํญ๊ธฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊ถŒ์˜์šฐ.In this Dissertation, a study on multiband reconfigurable linear CMOS power amplifier (PA) is performed. Since a larger number of frequency bands is allocated for 3G/4G mobile communication standards nowadays, handset PAs are required to support the ever-increasing number of frequency bands. With the advent of high-speed wireless data transmission, handset PAs are also demanded to perform linear power amplification under the wide-band signal condition. Even though the CMOS technology has cost and size benefits, however, designing a watt-level linear CMOS PA is a challenging issue due to low breakdown voltage and nonlinear nature of the CMOS device. To resolve the issues above, this study presents two methods suitable for multiband (MB) linear CMOS PA: a reconfigurable MB matching structure and a linearization technique. The proposed MB structure shares a PA core to reduce the cost and size, and contains the power- and frequency-reconfigurable matching networks as well as the output path-selection function. Thus, it can perform the MB operation requiring multiple frequency bands and target output powers. The reconfiguration mechanism is quantitatively analyzed and experimentally demonstrated. The fabricated tri-band reconfigurable 3G UMTS PA using an InGaP/GaAs heterojunction bipolar transistor (HBT) process for practical handset application showed minimal efficiency degradation of less than 2% by multi-banding, compared with a single-band reference PA. For linearization of a CMOS PA, a phase-based linearization technique is presented. Since the PA nonlinearity is determined by the dynamic AM-AM and AM-PM, the two distortions should simultaneously be considered in linearization. Contrary to the previous works which have focused on the correction of AM-AM distortion by providing an envelope-dependent gate-bias, this work proposes an AM-PM linearizer using a varactor and an envelope-reshaping circuit. This linearizer helps the PA recover AM-AM distortion as well. To validate the usefulness of the proposed linearizer, 1.88 GHz and 0.9 GHz stacked-FET PAs using a 0.32-ฮผm silicon-on-insulator (SOI) CMOS process were designed and fabricated. Measurement results showed that the fabricated 1.88 / 0.9 GHz linear CMOS PAs achieved linear efficiencies (meeting โ€“39 dBc W-CDMA ACLR) of higher than 44 / 49%. Furthermore, a single-chain MB linear CMOS PA was implemented based on the proposed MB reconfiguration and linearization techniques. The fabricated MB PA, which has two outputs and covers five popular uplink UMTS/LTE bands (Band 1/2/4/5/8: 824 ~ 1980 MHz), showed minimal efficiency degradation (< 3.3%) compared to the single-band dedicated CMOS PA with W-CDMA efficiencies in excess of 40.7%. Finally, the signal-bandwidth limiting effect of the envelope-based linear CMOS PA is discussed and a solution is proposed. Due to the time delay during envelope-detection and shaping, a timing mismatch between the incoming RF signal and envelope-reshaped signal occurs, thus resulting in no linearization effect under wide-band signal (LTE 20 MHz or more) conditions. To resolve the problem, a group delay circuit with a compact size is employed and thus the linearization effect of the proposed phase-based linearizer is maintained up to 40 MHz LTE bandwidth.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1 Motivation 1 1.2 Multiband PA Structure 4 1.3 Linearization of CMOS PA 6 1.4 Dissertation Organization 7 1.5 References 9 2. A Multiband Reconfigurable Power Amplifier for 3G UMTS Handset Applications 10 2.1 Introduction 10 2.2 Operation Principle of the Reconfigurable Output Matching Network 12 2.2.1 Power Reconfigurable Network (PRN) 14 2.2.2 Frequency Reconfigurable Network (FRN) 17 2.2.3 Path Selection Network (PSN) 20 2.2.4 Experimental Validation of the PRN and FRN 24 2.3 Fabrication and Measurement of a MB UMTS Reconfigurable PA 26 2.3.1 Design 26 2.3.2 Measurement 31 2.4 Summary 37 2.5 References 38 3. Linearization of CMOS Power Amplifier and Its Multiband Application 41 3.1 Introduction 41 3.2 Linearization of CMOS PAs: Prior Arts 43 3.3 Harmonic Termination 46 3.3.1 Operation Analysis 47 3.3.2 Experimental Validation 52 3.4 Control of Gate Bias Modulation Effect 54 3.4.1 Analysis 54 3.4.2 Experimental Validation 60 3.5 Proposed Linearization #1: Hybrid Bias 67 3.6 Proposed Linearization #2: Phase Injection 71 3.6.1 Motivation 71 3.6.2 Phase (Capacitance) Injection 72 3.7 Linear CMOS PA Design 75 3.7.1 Baseline PA Design 76 3.7.2 Linearizer Design 78 3.7.3 Fabrication 82 3.8 Measurement Results 83 3.8.1 CW Measurement 83 3.8.2 W-CDMA Measurement 84 3.8.3 LTE Measurement 87 3.9 A Single-Chain MB Reconfigurable Linear PA in SOI CMOS 90 3.9.1 MB Linear CMOS PA: Design 90 3.9.2 MB Linear CMOS PA: Measurement 94 3.10 Summary 99 3.11 References 100 4. Linearization of CMOS Power Amplifier Convering Wideband Signal 105 4.1 Introduction 105 4.2 Bandwidth Limitation of Envelope-Based Linearizers 106 4.2.1 Analysis 106 4.2.2 Delay Correction 110 4.2.3 Feedforward Envelope-Detection Structure with a Delay T/L 114 4.3 Group Delay Circuit 117 4.3.1 Positive GDC versus Negative GDC 117 4.3.2 Left-Handed T/L-Based GDC 119 4.4 Fabrication and Measurement 122 4.4.1 GDC Measurement 123 4.4.2 LTE Measurement 124 4.5 Summary 127 4.6 References 128 5. Conclusions 130 5.1 Research Summary 130 5.2 Future Works 132 Abstract in Korean 133 Publications 135Docto

    Monolithic integration of 1.55 micron photodetectors with GaAs electronics for high speed optical communications

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1998.Includes bibliographical references (p. 178-194).Integrated optoelectronics has shown exciting promise for high speed optical communication systems. For better system performance and lower cost, monolithic optoelectronic integrated circuits (OEICs) are highly desirable. A novel optoelectronic integration technology for high performance OEICs was proposed and partially developed and termed Aligned Pillar Bonding (APB) process. The work began with applying GaAs-based Epitaxy-on-Electronics (EoE) technology to integrate matched pairs of 1.55 micron InGaAs photodetectors with high speed GaAs electronics, which requires the direct growth of InGaAs on lattice-mismatched GaAs substrates using molecular beam epitaxy (MBE). A customized OEIC chip was designed and fabricated. Lattice-mismatched MBE growth was studied and InGaAs photodetectors on GaAs were produced using the relaxed buffer growth. However, the device performance and uniformity deteriorated significantly from those on lattice-matched InP substrates, and thus unsuitable for high speed OEICs. Aligned pillar bonding (APB) process was hence proposed. APB integrates lattice mismatched materials using aligned, selective area wafer bonding at reduced temperature. The photonic device structures are grown on their lattice matched substrates under optimal growth condition. These structures are patterned into pillars, aligned and bonded into the designated wells on the electronic chips. Subsequent substrate removal and device fabrication results in high density OEICs. 1.55 micron InGaAs photodetectors on GaAs were demonstrated using reduced temperature Pd-assisted wafer bonding, resulting in superior device performance. While the conventional dry etching techniques are impractical to pattern the desired deep pillars, electron cyclotron resonance (ECR) enhanced reactive ion etching (RIE) of InP using chlorine/helium chemistry has been developed, resulting in fast, deep, smooth, and highly anisotropic etching at room temperature. The etching characteristics have been calibrated for both InP and GaAs. Fast etching of InGaP, InAlAs, AlAs, and GaP has also been demonstrated. The etched pillars were subsequently bonded onto a OEIC chip, and initial study of small area pillar to well bonding was performed. APB allows independent optimization of both photonics and electronics for OEIC integration, inherits the wealth of the existing electronics industry, maintains good planarization and high density, permits low parasitics and high performance, and is naturally compatible with large scale manufacturing.by Hao Wang.Ph.D

    Monolithic integration of etched facet lasers with GaAs VLSI cirucits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 171-177).by Yakov Royter.Ph.D

    InP DHBT Optimization for mm-Wave Power Applications

    Get PDF
    corecore