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Abstract 

In this Dissertation, a study on multiband reconfigurable linear CMOS power 

amplifier (PA) is performed. Since a larger number of frequency bands is allocated 

for 3G/4G mobile communication standards nowadays, handset PAs are required to 

support the ever-increasing number of frequency bands. With the advent of high-

speed wireless data transmission, handset PAs are also demanded to perform linear 

power amplification under the wide-band signal condition. Even though the CMOS 

technology has cost and size benefits, however, designing a watt-level linear 

CMOS PA is a challenging issue due to low breakdown voltage and nonlinear 

nature of the CMOS device. 

To resolve the issues above, this study presents two methods suitable for 

multiband (MB) linear CMOS PA: a reconfigurable MB matching structure and a 

linearization technique. The proposed MB structure shares a PA core to reduce the 

cost and size, and contains the power- and frequency-reconfigurable matching 

networks as well as the output path-selection function. Thus, it can perform the MB 

operation requiring multiple frequency bands and target output powers. The 

reconfiguration mechanism is quantitatively analyzed and experimentally 

demonstrated. The fabricated tri-band reconfigurable 3G UMTS PA using an 

InGaP/GaAs heterojunction bipolar transistor (HBT) process for practical handset 

application showed minimal efficiency degradation of less than 2% by multi-

banding, compared with a single-band reference PA. 

For linearization of a CMOS PA, a phase-based linearization technique is 

presented. Since the PA nonlinearity is determined by the dynamic AM-AM and 

AM-PM, the two distortions should simultaneously be considered in linearization. 

Contrary to the previous works which have focused on the correction of AM-AM 

distortion by providing an envelope-dependent gate-bias, this work proposes an 
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AM-PM linearizer using a varactor and an envelope-reshaping circuit. This 

linearizer helps the PA recover AM-AM distortion as well. To validate the 

usefulness of the proposed linearizer, 1.88 GHz and 0.9 GHz stacked-FET PAs 

using a 0.32-μm silicon-on-insulator (SOI) CMOS process were designed and 

fabricated. Measurement results showed that the fabricated 1.88 / 0.9 GHz linear 

CMOS PAs achieved linear efficiencies (meeting –39 dBc W-CDMA ACLR) of 

higher than 44 / 49%. Furthermore, a single-chain MB linear CMOS PA was 

implemented based on the proposed MB reconfiguration and linearization 

techniques. The fabricated MB PA, which has two outputs and covers five popular 

uplink UMTS/LTE bands (Band 1/2/4/5/8: 824 ~ 1980 MHz), showed minimal 

efficiency degradation (< 3.3%) compared to the single-band dedicated CMOS PA 

with W-CDMA efficiencies in excess of 40.7%. 

Finally, the signal-bandwidth limiting effect of the envelope-based linear 

CMOS PA is discussed and a solution is proposed. Due to the time delay during 

envelope-detection and shaping, a timing mismatch between the incoming RF 

signal and envelope-reshaped signal occurs, thus resulting in no linearization effect 

under wide-band signal (LTE 20 MHz or more) conditions. To resolve the problem, 

a group delay circuit with a compact size is employed and thus the linearization 

effect of the proposed phase-based linearizer is maintained up to 40 MHz LTE 

bandwidth. 

 

 

Keywords: CMOS, linearization, LTE, multiband, power amplifier (PA), 

reconfigurable, silicon-on-insulator (SOI), stacked-FET, W-CDMA. 

Student number: 2004-21475 
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Chapter 1 

Introduction 

1.1 Motivation 

Since the first-generation (1G) analog cellular telecommunication system 

(advanced mobile phone system: AMPS) was developed in early 1980s [1], the 

mobile communication standard has significantly been evolved. In initial evolution 

stages such as the 1G AMPS and second-generation (2G) code-division multiple 

access (CDMA) [2] / global system for mobile communication (GSM) [3] 

deployed before early 2000s, the technology and service provider had been focused 

on providing a reliable voice communication. As the semiconductor technology 

and the demand for wireless internet service have been evolved and increased, the 

mobile standards have pursued to achieve high-speed data-centric communication. 

For the purpose, the signal bandwidth and modulation scheme have been increased 

and more complex in the third-generation (3G) wideband code-division multiple 

access (W-CDMA) [4] and fourth-generation (4G) long term evolution (LTE) [5]. 

To achieve high transmit data-rate in mobile terminals, RF power amplifiers 

(PAs) play a key role, since the signal quality of a transmitter is determined by the 
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PA characteristics. As a mobile communication standard is getting evolved from 

the 3G universal mobile telecommunications system (UMTS) to the 4G LTE, the 

modulation scheme and bandwidth of a signal become more complex and wider. 

For example, the uplink 4G LTE signal employs the 10 ~ 20 MHz bandwidth 

16/64-quadrature-amplitude-modulation (16/64-QAM) scheme, whereas the 3G W-

CDMA uses the 3.84 MHz bandwidth hybrid phase-shift-keying (HPSK) scheme 

which is rather similar to the quadrature PSK (QPSK) of 2G CDMA. As a result, 

the LTE signal has higher peak-to-average power ratio (PAPR) and requires higher 

linearity to reduce bit-error-rate (BER) during demodulation. Due to the reason, the 

operating output power level of a 4G LTE PA should be backed-off to maintain the 

stringent linearity requirement, which further reduces the efficiency [6]. 

The proliferation of worldwide 3G/4G frequency bands demands handset PAs 

to support multiple frequency bands for global roaming [7]. Fig. 1.1 shows the 

 

Figure 1.1:  3G/4G frequency band allocations by region. 
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3G/4G frequency band allocations by region. Even though the 3G UMTS standard 

initially aimed to unite the wide-spread frequency bands into a single-band (UMTS 

Band-1), in reality, it is impossible for each country to completely reallocate the 

occupied frequency bands (called as “frequency re-farming”), because the service 

providers must pay additional/excessive cost to replace the previous systems with 

new one. In terms of phone makers and users, the size of recent smartphones is 

getting smaller and thinner whereas more functions (such as internet, camera, video, 

navigation, fingerprint recognition, and so on) are included. Due to the reason, 

phone makers have demanded PA manufacturers to develop a multiband (MB) PA 

which fulfills multiband coverage while maintaining low cost and small size, which 

makes a challenge in designing MB PAs. 

In terms of process technology, there have been remarkable improvement on 

transistor scaling and integration in CMOS coinciding Moore’s law, as shown in 

Fig. 1.2 [8]. As the CMOS device is scaled down to nanometer, the operating speed 

 

Figure 1.2:  Moore’s law. 
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of a transistor gets further increased and it can thus be employed for the millimeter-

wave circuit as well as the RF circuit. However, down-scaling of CMOS device 

gives rise to low voltage operation, thus limiting its application within small-signal 

circuits. Also, nonlinear nature of CMOS device makes the design of a watt-level 

linear PA very challenging, in particular, for applications using high-level 

modulation scheme. Due to the reason, there have been continuous studies to 

realize a highly linear and efficient watt-level PA using CMOS process to take 

advantage of its cost and size benefits. Even though many researchers have also 

tried to implement the single-chip integration of a radio transceiver in CMOS, it is 

almost impossible due to the fact that the signal leakage and noise from the PA 

directly affects the receive-band sensitivity. Thus, implementing CMOS PAs in a 

separate IC die is a desirable approach. Even though several linearization 

techniques of CMOS PA have been introduced, however, the overall linearity and 

efficiency cannot match those of GaAs heterojunction bipolar transistor (HBT) PAs. 

Based on the motivations above, in this study, multi-banding and linearization 

of CMOS PA are performed to implement a MB reconfigurable linear CMOS PA 

for 3G/4G mobile applications. 

1.2 Multiband PA Structure 

To implement a MB PA, several multi-banding structures have been proposed 

as shown in Fig. 1.3. In initial development stage, multi-banding of a PA was 

achieved by simply consolidating single-band dedicated PAs into a single PA-

module, as shown in Fig. 1.3(a). However, this approach cannot obtain the size and 

cost benefits. Thus, recent researches have focused on “converged-PA” design. The 

converged PA employs reduced number of PA-cores and MB matching networks 

such as the broadband and/or reconfigurable matching networks to reduce the size 

and cost [7], [9]. Contrary to the broadband matching method shown in Fig. 1.3(b), 
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Figure 1.3:  Multiband (MB) PA module topologies. (a) Classical MB PA module

consisting of single-band dedicated PAs. (b) Converged PA using the broadband

matching networks (MNs). (c) Converged PA using the reconfigurable MNs. (d)

Converged PA using a single PA-core and reconfigurable MNs. 

 

the reconfigurable matching technique shown in Fig. 1.3(c) can adaptively 

reconfigure the target output powers as well as the target frequencies by employing 

tunable passive elements such as the voltage-controlled capacitors (varactors) and 

RF switches, thus achieving higher performance at each target band. To avoid 

excessive complexity and power loss in covering too wide bandwidth, the two 
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Figure 1.4:  Linearization of CMOS PA (line/dash: with/without linearization). (a)

AM-AM and AM-PM. (b) Linearity (IMD) and PAE. 

structures in Fig. 1.3(b) and (c) employ two PA cores, each aiming for high-band 

(1.7 ~ 2.0 GHz) and low-band (0.8 ~ 0.9 GHz) UMTS/LTE frequency groups. To 

further reduce the IC die, a single PA-core approach can also be considered as 

shown in Fig. 1.3(d). However, the reconfigurations should also be applied to the 

interstage matching as well as the output matching. Also, high performance tunable 

elements are required to avoid excessive performance degradation. 

1.3 Linearization of CMOS PA 

To overcome the low breakdown voltage and nonlinear nature of CMOS 

device for handset PA applications, several power combining and linearization 

techniques have been researched. Since Aoki et al [10] and Pornpromlikit et al [11] 

successfully demonstrated the performances of transformer-based and stacked-

FET-based PA structures, watt-level power amplification of a CMOS PA does not 

become a challenging issue. Even though several reported works on linearization 

showed some improvement on linearity [12], [13], however, their linear efficiency 

are still not comparable to that of the GaAs HBT PA [14]. Thus, linearization of 

CMOS PA is still an important research topic. Fig. 1.4 illustrates the linearization 
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Figure 1.5:  Scope of this study. 

process of a CMOS PA. Since the AM-AM and AM-PM of a standalone CMOS 

PA show early compression behavior, the maximum linear output power meeting 

the intermodulation distortion (IMD) spec stays in “A” point in Fig. 1.4(b). If an 

effective linearization is applied to the PA, the AM-AM and AM-PM are flattened 

as shown in Fig. 1.4(a), and thus the linear output power is extended to “B” point. 

As a result, the maximum linear power-added efficiency (PAE) is improved 

compared to the result without linearization, as shown in Fig 1.4(b). 

1.4 Dissertation Organization 

In this dissertation, a methodology to realize a MB reconfigurable linear 

CMOS PA is presented for 3G/4G mobile applications. Fig. 1.5 illustrates the 

scope of this study. The contents of this study are sub-divided into three topics. In 

Chapter 2, a reconfigurable matching structure is presented to implement the MB 

function of a PA. The proposed reconfigurable matching networks are 

quantitatively analyzed and their usefulness is experimentally demonstrated.  

In Chapter 3, a linearization technique to improve the linear efficiency of a 
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CMOS PA is presented. The proposed envelope-dependent phase-based linearizer 

corrects not only for the AM-PM but also for the AM-AM distortion. Thus, the 

fabricated silicon-on-insulator (SOI) CMOS stacked-FET linear PA shows very 

high linear efficiency. Moreover, the concept of the single-band linear CMOS PA 

is extended to a MB linear CMOS PA by employing the reconfigurable networks 

described in Chapter 2. Together with the high performance SOI technology and 

linearization method, the implemented MB CMOS PA covers five popular 3G/4G 

frequency bands (Band 1/2/4/5/8: 0.82 ~ 1.98 GHz) using a single-PA core.  

In Chapter 4, the limiting effect of the linearizer under the wideband signal is 

discussed and a solution is presented. The limitation comes from the time delay of 

the linearizer during envelope-detection and injection. By employing a group delay 

circuit with compact size, the linearizer shows its usefulness under wideband 

signals (e.g. LTE 40 MHz bandwidth). Finally, Chapter 5 concludes this study. 
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Chapter 2 

A Multiband Reconfigurable Power 

Amplifier for 3G UMTS Handset 

Applications 

2.1 Introduction 

Since a larger number of frequency bands is allocated for third-generation 

(3G) universal mobile telecommunications system (UMTS) communication 

standards, wideband code-division multiple access (W-CDMA) handsets are 

required to support the ever increasing number of frequency bands. The 

conventional multiband power amplifier (PA) design approach, where a dedicated 

single-band PA is added for each additional frequency band, would result in 

excessive cost and board space for the mobile phones [1]. To solve this issue, 

researchers have recently started to develop reconfigurable PAs that cover several 

frequency bands using a single PA core [2]-[15]. Programmable matching 

networks using varactors as well as semiconductor and MEMS switches have been 

employed to reduce the number of PAs for multiband operation. However, attempts 
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to cover too wide a frequency range using a single PA core results in significant 

efficiency degradation and increased module size due to complicated matching 

networks. For example, the net additional loss of the reconfigurable matching 

network using MEMS switches in [4] can be as large as 0.96 dB at 1.6 GHz, which 

translates to approximately 6.5% power-added-efficiency (PAE) degradation. 

Excessive PAE degradation cannot be easily accepted for data-centric mobile 

terminals due to the thermal concerns and talk time metric. In addition, the large 

circuit size and high actuation voltage requirement using MEMS components 

makes their application to commercial handsets practically difficult. 

Switches for the reconfigurable matching circuit can be avoided if multi-

section matching networks are used to make the PA broadband [12]-[14]. However, 

the efficiency of the PA is degraded due to the sub-optimal impedance trajectory 

across the operating frequency band in addition to the increased loss of the 

matching network. Moreover, the approach of using a single RF input and output 

port for broadband amplifier design will lead to further PAE degradation due to the 

requirement of post-PA distribution switches, whose loss further degrades the 

overall efficiency [2], [3], [5]-[13]. 

A new approach for multiband UMTS reconfigurable PA for practical handset 

applications was introduced in our previous work [15], showing a small PAE 

degradation of 2 ~ 3% compared with the single-band designs. The UMTS transmit 

frequency bands were grouped into low-band (0.7 ~ 0.9 GHz) and high-band (1.4 ~ 

2.5 GHz). The complication in covering too wide frequency range is mitigated in 

this approach by limiting the band reconfigurability within either low- or high-band 

group. The additional losses due to post-PA switches are also avoided by 

expanding the number of output ports in the PA design. Moreover, the proposed 

network does not only reconfigure frequency band, but also linear output power 

according to the selected band. This allows the PA to operate at optimum power 
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Figure 2.1:  Block diagram of the proposed reconfigurable PA. 

and efficiency in the system, by avoiding different power requirements due to 

different post-PA duplexer losses. In this work, the reconfigurable PA performance 

has been further optimized to limit PAE degradation to 2%. Also, included in this 

expanded study are the details of the systematic design methodology for power and 

frequency reconfigurable network together with closed-form design equations. 

2.2  Operation Principle of the Reconfigurable Output 

Matching Network 

The block diagram of the proposed reconfigurable PA is shown in Fig. 2.1. 

The PA has multiple outputs and each output has its “natural” frequency band with 

a corresponding target linear output power. The load impedance at natural 

frequency band and output power is generated by the fixed output matching 

network (FOMN). FOMN is followed by power/frequency reconfigurable network 

(PFRN), which can reconfigure operating frequency and/or target output power by 

the frequency reconfigurable network (FRN) and/or power reconfigurable network 

(PRN), respectively. This allows each path to support up to two different frequency 

bands with two different linear powers. Because only one output path should be 
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active at one time, the unused output paths are deactivated by the path-selection 

network (PSN). PFRN, PSN and FOMN are co-designed with each other to share 

the circuit components, which helps to reduce the overall circuit size and loss. 

The FOMN of each path in Fig. 2.1 is designed to realize optimum load 

impedance at natural frequency band of its path, using a simple L-section matching 

network. It consists of a series transmission line (T/L) with an electrical length, θ, 

and a shunt capacitor, CL, as shown in Fig. 2.2. If the optimum load impedance of 

the FOMN is assumed to be purely real (ZL = Ropt) for simplification, which is a 

valid assumption for low-frequency handset PAs, the closed form formula for θ 

and CL can easily be derived as 

1

0

tan optR

Z
 

 
   

 
   (2.1) 
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    (2.2) 

where Z0 is the characteristic impedance of the T/L and the output port impedance. 

The detailed design method of the PRN, FRN, and PSN is described in the 

subsequent sections. 

 

 

Figure 2.2:  Schematic of the fixed output matching network (FOMN). 
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2.2.1 Power Reconfigurable Network (PRN) 

Depending on the post-PA loss, the target linear output power of some bands 

is lower than the others. To maximize the efficiency at backed-off power level, the 

optimum load impedance should be increased [16]-[19]. This function is provided 

by the PRN. Fig. 2.3 shows a schematic of the proposed PRN along with FOMN. 

The power reconfiguration mechanism is carried out by placing a shunt arm of a 

switch and an inductor (LP) in the middle of a T/L of the FOMN at an electrical 

length, θP. When the output network is not reconfigured with a shunt switch off 

(“as is” state), the FOMN provides the optimum load impedance (ZL = Ropt) at the 

natural frequency band. If the output network is reconfigured (“switch on” state), 

the load impedance is increased according to the backed-off power. If a power 

back-off of PBO-dB is required, the load impedance (ZL) should be changed to M × 

Ropt, where 10/10 BOPM  . This is achieved by adding a compensation trajectory in 

the Smith chart, as shown in Fig. 2.4. As the compensation trajectory requires a 

constant g-circle and then a constant Γ-circle, it can be realized by a shunt inductor, 

LP, and a T/L with an electrical length of θ – θP. Using T/L circuit theory, the two 

design parameters, θP and LP, can be derived as 

 

Figure 2.3:  Schematic of the power reconfigurable network (PRN).  
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Fig. 2.5 shows the calculated electrical line length (θP) and inductive reactance 

(ωLP) as a function of backed-off power level (PBO) for various optimum load 

impedances of the FOMN. 

The effect of series-resistance (RS) of the switch at on-state is not considered 

in this calculation. When the switch is not completely lossless (RS ≠ 0), the effect 

of RS on the PA performance can be represented as the reconfiguration loss. Fig. 

 

Figure 2.4:  Load impedance (ZL) trajectory of the PRN. 
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2.6 shows the calculated reconfiguration loss of the PRN as a function of PBO for 

various RS values. It is worthwhile to note from Fig. 2.6 that the reconfiguration 

loss is a strong function of RS, especially when the power is backed-off. However, 

the RS effect can be neglected when its value is far smaller than ωLP. 

On the other hand, the effect of parasitic capacitance of the switch in the off-

state was ignored in this work due to the low frequency operation (< 2 GHz) and 

the small off-state capacitance (< 400 fF). 

 

Figure 2.5:  Required electrical line length and inductive reactance for power

back-off operation. (a) θP (normalized to θ). (b) ωLP. 

 

 
Figure 2.6:  Reconfiguration loss of the PRN as a function of power back-off

(PBO) for various series-resistances (RS) of the switch at on-state. 
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2.2.2 Frequency Reconfigurable Network (FRN) 

If two frequency bands with the same target linear output power are required 

to share the output path, it can be realized by the FRN. This network consists of an 

additional T/L (θf) and a shunt arm consisting of a series combination of a switch 

and a capacitor (Cf). The FRN is placed at the end of the FOMN, as shown in Fig. 

2.7. When the output network is not reconfigured (“as is” state), the impedance 

generated by the FOMN targets an optimum load impedance (Ropt) at a higher 

frequency (fH). When reconfigured (“switch on” state), the FRN presents Ropt at a 

lower frequency (fL) in conjunction with the FOMN. Fig. 2.8 shows the load-

impedance trajectory describing how Cf and θf move load impedance (ZL) toward 

Ropt at a lower frequency. Once the frequency scaling factor, β = fL / fH, is 

determined, the two design parameters, θf and Cf, can be derived as 
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Figure 2.7:  Schematic of the frequency reconfigurable network (FRN). 
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Fig. 2.9 shows the calculated electrical line length of the supplementary T/L (θf at 

fL) and capacitive reactance (1/ωLCf) as a function of frequency scaling factor (β) 

for various optimum impedances (Ropt).  

For this calculation, the switch is also assumed to be lossless (RS = 0). As in 

the case of the PRN, the on-state switch resistance (RS) can affect the 

reconfiguration loss of the FRN. Fig. 2.10 shows the calculated reconfiguration 

loss of the FRN as a function of β for various RS. It is clear from Fig. 2.10 that the 

loss becomes larger as the frequency difference (1 – β) is increased. When RS is 

much smaller than 1/ωLCf, its effect can be neglected. As in the case of the PRN, 

the effect of parasitic capacitance of the switch in the off-state was ignored. 

 

Figure 2.8:  Load impedance (ZL) trajectory of the FRN. 
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Figure 2.9:  Required electrical line length and capacitive reactance for frequency

back-off operation. (a) θf at fL (normalized to θ at fL). (b) 1/ωLCf. 

 

 

 
Figure 2.10:  Reconfiguration loss of the FRN as a function of frequency scaling

factor (β) for various series-resistances of the switch at on-state (RS). 
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2.2.3 Path Selection Network (PSN) 

Since only one output path should be active at a time, the unused output paths 

should be deactivated. This is achieved by the PSN. The analysis of this network 

starts with the simple case of two output paths and is extended to multiple output 

paths later. Fig. 2.11 shows the schematic of the two-path output network, each 

consisting of a PSN and an FOMN with a unique frequency. The PSN consists of a 

T/L and a shunt switch. Compared to the series-type switch, the shunt-type switch 

can be co-designed with an FRN and a PRN, resulting in lower loss while meeting 

isolation requirements. The electrical length of the T/L (θ’) is designed so that the 

unused path can represent a large impedance (ZD) at the junction with the active 

path when the switch in the unused path is closed. By closing the shunt switch in 

path-1 (sw1) in Fig. 2.11, port-1 is disabled and thus port-2 becomes the active 

output path. To account for a general two-path case where both frequency and 

impedance can be different at each path, it is assumed that FOMN #1 presents Ropt 

at f1, and FOMN #2 presents RA at f2. Also assumed is zero series-resistance of the 

switch at on-state (RS = 0) for the initial design. Since the goal of the design is to 

minimize the impedance change in the active path by presenting a large reactive 

 

Figure 2.11:  Schematic of the path-selection network (PSN) with two outputs. 
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impedance from the unused path (ZD) at the junction, we have imposed the 

following condition: 

ARD jNRZ
S


0  

 (2.11) 

where N is the impedance ratio (N = |ZD| / RA). Under this condition, the electrical 

length of the T/L (θ’) is calculated as 

1

01 0
0

00

tan( )
tan

tan( )S

opt A
R

Aopt

Z R Z NR

Z NRZ R

 







       
       

 (2.12) 

where α = f2 / f1. To simplify (2.12), if the two output paths are assumed to have the 

same operating frequency and load impedance (α = 1 and RA = Ropt), θ’ is derived 

as 
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Fig 2.12 shows the calculated θ’ under various Ropt as a function of required 

impedance ratio (N). Not to affect the impedance of the active path (ZL = jNRA || RA 

 

Figure 2.12:  Required electrical line length (θ’) of the PSN for the case of RA =

Ropt and f1 = f2. 
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≈ RA), θ’ should be chosen to provide N of at least 10 ~ 15. Also, N requirement 

should be larger as the number of output paths is increased. It is worthwhile to note 

that the capacitor-loaded lines help to reduce the physical line lengths (θ + θ’) well 

below the quarter-wavelength as shown in (2.1) and (2.12).  

When the switch is not completely lossless (RS ≠ 0), there is finite signal 

leakage into the unused path, which degrades the overall PAE and degrades the 

isolation between the paths, which may also affect the receive (Rx) band sensitivity 

in some cases [20]. We have repeated the analysis considering the effect of the 

finite series-resistance of the switches (RS). ZD in (2.11) is then calculated to be 

10

01
,1

S

S
optRRD jNRZ

jNZR
RZ

optA 





 
 (2.14) 

where RS1 = RS || Z0. Fig. 2.13 shows ZD trajectories in the Smith chart under 

various RS. As the value of RS is increased, ZD becomes lossy, resulting in power 

leakage into the unused path. If the number of outputs is k and the conditions of α = 

1 and RA = Ropt are assumed, the output power at each path can be illustrated as 

shown in Fig. 2.14. The power loss (PL) and the port-port isolation (ISO) are 

calculated as 

 

Figure 2.13:  Off-impedance (ZD) trajectory of the PSN. 
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  (2.16) 

N is assumed to be much greater than unity in the approximated results in (2.15) 

and (2.16). The PL and ISO are plotted in Fig. 2.15. It can easily be seen from Fig. 

2.15 that RS of the switch is a key factor in determining the PL and ISO. 

 

Figure 2.14:  Power flow of the reconfigurable output network with k-outputs. 
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2.2.4 Experimental Validation of PRN and FRN 

To validate the power- and frequency-reconfiguration capabilities of the 

proposed networks under various power back-off ratios and frequency scaling 

factors, a one-stage PA with PRN and FRN, shown in Figs. 2.3 and 2.7, was 

fabricated and characterized. The fabricated InGaP/GaAs heterojunction bipolar 

transistor (HBT) PA has an emitter area of 4800 μm2 and was implemented on a 

400-μm thick FR4 (εr ~ 4.6, tanδ = 0.025) substrate. For this concept-proof 

experiment, the switch was assumed to be lossless and wire-bonding connection 

was used to represent a “switch on” state. The target output power and operating 

frequency of the PA for natural band are chosen to be 28.2 dBm and 1950 MHz, 

respectively. 3GPP uplink W-CDMA (Rel’99) signal and the supply voltage of 3.5 

V with the quiescent current of 50 mA were used for the measurement. Fig. 2.16 

shows the measured gain, adjacent channel leakage ratio (ACLR) at 5 MHz offset, 

and collector efficiency (CE) of the power reconfigured PA at seven backed-off 

power (PBO) points from 0 to 6 dB (rated linear Pout = 28.2 ~ 22.2 dBm). The 

quiescent current of the power reconfigured PA was adjusted to further enhance the 

 

Figure 2.15:  PL and port-port ISO of the PSN as a function of series-resistance of

the switch at on-state (RS) (solid lines: calculation, dotted lines: approximation). 
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Figure 2.16:  Measured performance of the power reconfigured PA: (a) Gain and

ACLR. (b) Collector efficiency. 

 

 
Figure 2.17:  Measured performance of the frequency reconfigured PA: (a) Gain

and ACLR. (b) Collector efficiency. 

efficiency at the PBO levels. As expected, the PRN allowed CEs to be maintained at 

PBO levels. CE was maintained to be 43% with ACLR of –40 dBc at 6 dB backed-

off power level whereas the CE dropped to 25% without a PRN. 

Fig. 2.17 shows the measured results of the PA with a FRN at six scaled 
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frequency points (β = 0.75 ~ 1.0 or 1460 ~ 1950 MHz), which corresponds to a 

wide fractional bandwidth of 29%. The frequency reconfigured PA maintained 

ACLR of –39 dBc and CE of 46% while the PA without reconfiguration showed 

large efficiency and linearity degradation (40% CE and –26 dBc ACLR at β = 

0.75). This experiment validates the concept and analysis of the proposed PRNs 

and FRNs. The verification of the PSN is included in the subsequent chapter, 

where the measured results of a fully integrated multiband reconfigurable PA 

module are presented. 

2.3   Fabrication and Measurement of a Multiband UMTS 

Reconfigurable Power Amplifier 

2.3.1 Design 

To verify the performance of the proposed reconfigurable network for 

practical UMTS PA application, a fully integrated 5 mm × 6 mm multiband 

reconfigurable PA module was designed and fabricated [21]. Fig. 2.18 shows the 

schematic of the reconfigurable PA module. The PA has two inputs and three 

reconfigurable outputs for most popular tri-band UMTS applications. The complete 

PA module contains two reconfigurable output matching networks (OMNs) and 

two integrated three-stage PA monolithic microwave integrated circuits (MMICs) 

one each for high and low UMTS bands. The prototype PA can cover five popular 

UMTS frequency bands and works with two frequency-band combinations as 

follows: 

 Combination 1: band-1, band-2, and band-5; 

 Combination 2: band-1, band-4, and band-8. 

Combination 1 is the North America-centric band combination with band-1 for 

roaming and Combination 2 is the Europe-centric band combo with band-4 for 

roaming. Both FRN and PRN can be demonstrated together with PSN in this band 
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combination. Details of the frequency and the targeted maximum linear output 

power are summarized in Table 2.1. The high-band output path-1 has a natural 

band (band-1) and has no reconfigurable band. In the case of high-band output 

path-2, band-2 is the natural band and band-4 is the reconfigured band. In the case 

of band-2 and band-4, besides the frequency difference (11%), the difference in the 

linear output power should be accounted for in the PA design. Band-2 requires at 

least 1 dB higher output power than band-4 due to the higher post-PA loss; band-2 

has smaller Tx-Rx separation, which makes Tx insertion loss of the subsequent 

duplexer higher than that for band-4, as shown in Fig. 2.19 [22], [23]. Thus, the 

 

 

Figure 2.18:  Schematic of the multiband reconfigurable PA module: (a) High-

band PA. (b) Low-band PA. 
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PRN has been added in path-2 to reconfigure the output power for band-4. Finally, 

in the case of low-band output, the FRN is inserted to support both band-5 and 

band-8; band-8 is the natural band and band-5 is the frequency reconfigured band. 

TABLE 2.1 

UMTS FREQUENCIES AND TARGET LINEAR OUTPUT POWERS 

Band 
Tx Frequency 

(MHz) 
Rx Frequency 

(MHz) 
Target Pout  

(dBm) 

Band-1 1920 – 1980 2110 – 2170 28.0 

Band-2 1850 – 1910 1930 – 1990 28.5 

Band-4 1710 – 1755 2110 – 2155 27.5 

Band-5 824 – 849 869 – 894 28.2 

Band-8 880 – 915 925 – 960 28.2 

 

 

 

Figure 2.19:  Tx/Rx insertion losses of the band-1 and band-2 duplexers (losses 

were not de-embedded) [22], [23]. 
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The reconfigurable OMNs are implemented using the lumped elements and 

T/Ls on a 370-μm thick seven-layer substrate (εr ~ 4.7, tanδ = 0.02). In Fig. 2.18, 

C1, C2, and C3 are lumped-element capacitors of FOMNs optimized for the natural 

bands, whereas LP and Cf are the lumped-elements for PRN and FRN, respectively, 

as explained in Chapter 2.2. Six capacitors, CB1 ~ CB6, were used for dc blocking 

and CB7 as bypass capacitor. Two bias-lines, lB1 and lB2, are implemented on inner 

layers of the substrate. Switches are realized with PIN diodes, which have a series 

resistance of 1.0 Ω with forward on-current of 1.2 mA and a junction capacitance 

of 400 fF in the “off” state. They are controlled by control voltages, V1 ~ V4, 

according to the required UMTS band combinations. The mapping between control 

voltages and the selected frequency bands are summarized in Table 2.2, where the 

actual dc bias condition is 0 V for the “on” state and floating for the “off” state. 

Even if the PIN diodes at the output (D1, D3, and D4) experience high RF voltage 

swing under high output power, they still remain “off” under the off-state bias 

condition. The large RF voltage swing does not cause any issues to PIN diodes 

since they have a very large reverse breakdown voltage of 50 V. 

The PA MMICs were designed and fabricated using a 2-μm InGaP/GaAs 

HBT process. They are based on a three-stage amplifier design, and the emitter 

area of the pre-stage (Q1 and Q4), driver stage (Q2 and Q5), main stage for high-

TABLE 2.2 

LOGIC TABLE AND OPERATION DESCRIPTION OF PIN DIODES 

VBAND

PIN diode control voltage 
Operation 

V1 V2 V3 V4 

High Off Off On Off HB Out 1 Band-1 

High On Off Off Off HB Out 2 Band-2 

High On On Off Off HB Out 2 Band-4 

Low Off Off Off Off LB Out Band-8 

Low Off Off Off On LB Out Band-5 
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band (Q3), and main stage for low-band (Q6) were designed to be 240 μm2, 1440 

μm2, 5760 μm2, and 6768 μm2, respectively. The low-pass-type input matching 

networks and high-pass-type interstage matching networks were integrated in the 

MMICs. Two shunt capacitors, Cm1 and Cm2, were added at the collectors of Q3 

and Q6, respectively for harmonic termination. The bias circuit was designed 

following our previous work, which is insensitive to temperature and bias voltage 

variations [24], [25]. To enhance the efficiency in the low output power region 

where UMTS PAs are operated most of the time, the PAs were designed to bypass 

main stages below 16 dBm using the patented CoolPAM topology [26]. The die 

size of each PA MMIC is 1.1 mm × 1.08 mm and the photographs of the fabricated 

MMICs are shown in Fig. 2.20. 

 

Figure 2.20:  MMIC die photographs. (a) High-band PA MMIC. (b) Low-band 

PA MMIC. 
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2.3.2 Measurement 

The fabricated 5 mm × 6 mm PA module is shown in Fig. 2.21. The PA 

module works with 3.5-V supply voltage, and the 3GPP uplink W-CDMA signal 

(Rel’99) was used for the measurement. The high- and low-band PA have the same 

bias conditions in which the quiescent currents are 21 mA and 100 mA for low- 

and high-power modes, respectively. Fig. 2.22 shows the measured small-signal S-

parameters of the fabricated PA module. The fabricated PA shows the input return 

loss higher than 10 dB for all the operating Tx frequency bands. Fig. 2.23 shows 

the measured output power vs input power using a continuous wave (CW) signal, 

showing the power linearity. 

The measurement results of power gain, power-added efficiency (PAE), 

ACLR, and error vector magnitude (EVM) are shown in Fig. 2.24 and 2.25 for 

band combination 1 and 2, respectively. In the case of combination 1 (band-1, -2, 

 
Figure 2.21:  Photograph of the fabricated 5 mm × 6 mm PA module. 
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and -5) shown in Fig. 2.24, the PA showed gains of higher than 26.6 dB and 

ACLRs of better than –39 dBc up to the rated maximum output powers (28.0 dBm 

at band-1, 28.5 dBm at band-2, and 28.2 dBm at band-5). PAE at maximum linear 

power meeting –39 dBc ACLR was higher than 39% for all the three bands (39% 

at 28 dBm for band-1, 40.7% at 28.5 dBm for band-2, and 43% at 28.2 dBm for 

band-5). It should be noted in Fig. 2.24 that the band-5 results with frequency 

reconfiguration (V4 is on) show better PAE (2.6% improvement) than that without 

reconfiguration (V4 is off), while maintaining the similar level of linearity. 

 

Figure 2.22:  Measured S-parameters: (a) S11 and S21. (b) S22. 

 

 

 

Figure 2.23:  Measured CW output power as a function of input power. 
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For combination 2 (band-1, -4, and -8) shown in Fig. 2.25, the PA also 

showed linear power gains of higher than 27.8 dB and ACLRs of better than –39.2 

dBc up to the rated linear output powers (28 dBm at band-1, 27.5 dBm at band-4, 

and 28.2 dBm at band-8). PAE at maximum linear power meeting –39 dBc ACLR 

was higher than 38.5% for all the three bands (39% at 28.0 dBm for band-1, 38.5% 

at 27.5 dBm for band-4, and 43.2% at 28.2 dBm for band-8). It should be noted 

from Fig. 2.25 that the band-4 results with power reconfiguration (V2 is on) show 

 

 

Figure 2.24:  Measured W-CDMA results for combination 1: (a) Gain and PAE.

(b) ACLR and EVM. 
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better PAE (3.3% improvement) than that without reconfiguration (V2 is off), while 

maintaining the similar ACLRs. Band-4 showed the lowest PAE since the 

inductance used in PRN was only 2.0 nH and could not satisfy the condition of 

RS<<ωLP to avoid the impact of switch loss. The measured EVMs were less than 

2.3% up to the rated maximum output powers of all the frequency bands. Also, the 

measured port-port isolation was better than 29 dB for high bands. This is 

attributed to the PIN diodes with a small RS of 1.0 Ω. 

 

 

Figure 2.25:  Measured W-CDMA results for combination 2: (a) Gain and PAE.

(b) ACLR and EVM.
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The idle current, which has significant impact on the overall talk time, was 

reduced to 21 mA using the stage-bypass approach. Also, high PAE in the low 

power region (< 16 dBm) helps reduce the average current consumption of the 

handset PA under the actual phone operating conditions [27]. PAE of higher than 

14.5% was measured at Pout = 16 dBm. In order to compare the performance of the 

multiband reconfigurable PA with a single-band PA, a reference PA was also 

fabricated using the same PA die with an FOMN. The reference PA for each band 

showed PAE of 40.5% ~ 43.6% at the rated linear Pout with an ACLR of –39 dBc. 

Thus, the multiband reconfigurable PA showed PAE degradation of less than 2%. 

PAE degradation is attributed due to losses from the switches as well as the bias 

current of PIN diodes. The measured results are summarized in Table 2.3. The total 

estimated losses of the reconfigurable OMN are less than 0.6 dB, out of which 0.2 

dB arises from the reconfiguration, while the loss of the FOMN and bias circuit 

accounts for 0.4 dB. 

The performance of recently reported multiband reconfigurable PAs is 

summarized in Table 2.4 for comparison. The reconfiguration loss (0.2 dB) of this 

work compares favorably with the estimated losses of other reconfigurable PAs 

reported to date (higher than 0.45 dB) [2]-[8], [28]. PAE degradation can further be 

reduced by using lower loss switches such as pseudomorphic HEMTs (pHEMTs) 

and MEMS switches. To the best of our knowledge, this is the first demonstration 

of UMTS reconfigurable PAs meeting the system linearity requirements with 

minimal PAE degradation. 
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TABLE 2.3 

SUMMARIZED MEASUREMENT RESULTS OF THE FABRICATED RECONFIGURABLE PA 

Band 
Pout  

(dBm) 
Gain 
(dB) 

PAE 
(%) 

Ref PA 
PAE*(%) 

ACLR 
(dBc) 

Band-1 28.0 27.8 39 41 –39.2 

Band-2 28.5 26.6 40.7 41.9 –39.1 

Band-4 27.5 28.2 38.5 40.5 –39.5 

Band-5 28.2 28.4 43 43.5 –39 

Band-8 28.2 28.1 43.2 43.6 –39.3 

*PAE of the single-band reference PA 
 

TABLE 2.4 

PERFORMANCE COMPARISON OF RECENTLY REPORTED 
MULTIBAND RECONFIGURABLE PAS 

Ref. 
PA core 
(switch) 

technology

Band  
 coverage 

(GHz) 

Num
of 

outs1

PA 
operation

Pout and PAE 
Rec. 
loss2 
(dB) 

Fukuda 
06 [3] 

GaAs FET 
(MEMS) 

0.9, 1.5 
2.0, 5.0 

1 
Linear 
(CW) 

Pout = 30.5~31 dBm 
PAE = 45~64% 

0.45* 

Zhang 
09 [4] 

GaAs HBT
(MEMS) 

0.9, 1.6 2 
Linear 
(CW) 

Pout >30 dBm  
PAE > 27% 

0.96 

Zhang 
05 [6] 

GaAs HBT
(PIN diode)

0.85~0.95 
1.71~1.95 

1 
Linear 
(CW) 

Pout = 31 dBm  
PAE = 39~42% 

0.45* 

Kim 
11 [9] 

0.18 μm 
CMOS 

(w/o switch)

1.9, 2.3 
2.6, 3.5 

1 
Non- 
linear 

(Class-E)

Pout = 20.5~24.2 dBm 
Drain Eff = 36~48% 

0.8* 

Neo 
06 [10] 

SiGe HBT 
(varactor) 

0.9, 1.8 
1.9, 2.1 

1 
Linear 
(CW) 

Pout = 28 dBm  
Drain Eff = 30~55% 

1.3* 

Fukuda 
10 [5] 

GaAs HBT
(GaAs FET)

0.7~2.5 
(9-bands) 

1 
Linear 

(UMTS)
Pout = 29 dBm  

PAE = 23~33% 
0.95* 

This 
work 
[21] 

GaAs HBT
(PIN diode)

0.84, 0.9 
1.73, 1.88 

1.95 
2 

Linear 
(UMTS)

Pout = 27.5~28.5 dBm  
PAE = 38.5~40.7% 

0.2 

1Number of reconfigurable outputs 
2Estimated reconfiguration loss 

*Post-PA switch loss of 0.35 dB [28] was used to estimate the reconfiguration loss. 
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2.4  Summary 

A design methodology to realize reconfigurable OMN for a multiband UMTS 

PA is presented together with details of closed-form design equations. The analysis 

shows how a PRN and an FRN can be co-designed with a fixed OMN to reduce the 

overall size and loss of the reconfigurable OMN. Proof-of-concept experiment 

using ideal switches demonstrated that the proposed PRN and FRN allows the PA 

efficiencies to be maintained at the reconfigured power levels and frequencies. 

To prove the practicality of the proposed approach, we have designed and 

fabricated a tri-band UMTS reconfigurable PA module in a small form factor of 5 

mm × 6 mm using InGaP heterostructure bipolar transistors and PIN diodes. This 

PA can switch between two band combinations, UMTS bands 1/2/5 and 1/4/8. The 

PA features stage-bypass topology to enhance the low-power efficiency below 16 

dBm and meets all the UMTS linearity requirements with margin (<–39 dBc versus 

system spec of –33 dBc) at the rated linear output power level. The measured PAE 

from the module was better than 38.5% for all the UMTS bands while meeting –39 

dBc ACLR. Compared with a single-band PA with an FOMN, the maximum power 

efficiency was degraded by less than 2%. The efficiency degradation can further be 

reduced by using low-loss switch elements such as pHEMTs and MEMS switches. 

With the strong demand for multiband coverage for global roaming, the 

proposed reconfigurable PA can be a practical solution for UMTS multiband Tx 

applications. Moreover, the proposed PA architecture can be extended to include 

second-generation (2G GSM) and fourth-generation (4G LTE) bands in a single 

reconfigurable PA module. 
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Chapter 3 

Linearization of CMOS Power Ampli-

fier and Its Multiband Application 

3.1 Introduction 

CMOS power amplifier (PA) can play an important role not only for WiFi but 

also for 3G/4G mobile terminals due to the cost and size benefits. However, low 

breakdown voltage and highly nonlinear nature of the CMOS devices make the 

design of a watt-level linear PA very challenging, in particular, for applications 

using high-level modulation schemes. To achieve the required output power level 

for 3G UMTS and 4G LTE handsets, several power combining techniques such as 

the distributed active transformer (DAT), differential cascode using a transmission 

line transformer (TLT), and stacked-FET have been researched and some of them 

have successfully been demonstrated [1]-[7]. To improve the linearity of CMOS 

PAs, various linearization techniques have been proposed such as the capacitance 

compensation, diode-linearizer, multi-gate transistor (MGTR), PA-closed loop 

feedback, adaptive bias, and so on [8]-[19]. However, the overall linearity and 
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efficiency of these works cannot match those of GaAs HBT PAs [20]. 

For modulated signals, PA nonlinearity is determined by the dynamic AM-

AM and AM-PM characteristics. Thus, dynamic-based linearization techniques 

have also been researched to selectively correct for the compressed envelope 

region only of a modulation signal [21], [22]. Since these works have mostly 

focused on the correction of AM-AM distortion at high output power (Pout) using 

the envelope-reshaped bias, they do not correct for AM-PM distortion and, in some 

cases, degrade the linearity at backed-off power levels [23]. Even though the idea 

of using a varactor for AM-PM correction has been introduced in [24], however, 

the method is limited to the quasi-linear region with negligible AM-AM distortion. 

Also, it requires a separate digital signal processor (DSP) chip and digital to analog 

(D/A) converter, which makes the application to the self-contained mobile phone 

PA practically difficult. 

In terms of multiband (MB) PAs for global roaming, multi-banding of CMOS 

PAs should be considered. To achieve this goal, several converged PA structures 

have been proposed [25]-[30]. Due to the practical bandwidth limit, however, most 

of the reported MB converged PAs for handsets employ two PA-cores to cover the 

3G/4G bands from 800 MHz to 2000 MHz [27]-[30]. Even though a single-chain 

MB PA was tried in [26], however, its power-added efficiencies (PAEs) were 

compromised too much (25 ~ 31%) to be used for the power-hungry handset 

applications. Recently, a broad-banding method by employing the reconfigurable 

interstage network as well as the broadband output matching have been introduced 

to minimize the efficiency degradation [31]. However, its operating bandwidth has 

been limited to 0.65 to 1 GHz. 

In this study, a highly linear and efficient MB PA is implemented using a 

silicon-on-insulator (SOI) CMOS technology. For linearization of CMOS PAs, a 

new linearizer based on AM-PM correction is proposed using an envelope-
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reshaped phase (capacitance) injection circuit [32]. The AM-PM linearizer of this 

work also helps recover AM-AM distortion. Combined with the auxiliary 

amplitude injection [21] and hybrid biasing techniques, the 0.9 GHz and 1.88 GHz 

SOI CMOS stacked-FET PAs of this work achieve very high linear PAEs (almost 

state-of-the-art results while maintaining W-CDMA ACLR of –39 dBc). Then, a 

single-core single-chain MB linear CMOS PA is developed using the proposed 

linearizer and reconfigurable networks described in Chapter 2. The single-chain 

MB reconfigurable CMOS PA supports any combination of two bands, one from 

the high-band (HB: 1.7 ~ 2.0 GHz) group and the other from the low-band (LB: 0.8 

~ 0.9 GHz) group. The fabricated PA shows minimal PAE degradation compared 

with the single-band dedicated PA with W-CDMA PAEs in excess of 46% for LB 

and 40.7% for HB [33]. 

This study is organized as follows: In Chapter 3.2, prior arts are discussed. 

Chapter 3.3 and 3.4 deal with the harmonic termination and gate bias modulation 

effect of a stacked-FET amplifier for optimum design of a standalone PA. The 

detailed operation principle, design, and measurement of the proposed linearizer 

are described in Chapter 3.5 ~ 3.8. Finally, the design and measurement result of 

the single-chain MB reconfigurable linear CMOS PA is presented in Chapter 3.9. 

3.2   Linearization of CMOS PAs: Prior Arts 

CMOS PA linearization techniques reported so far can be subdivided into a 

static-level method and a dynamic-level method. The static linearizer has simple 

structure while compromising linearity improvement, and its performance is 

usually characterized using a constant-envelope signal (e.g. single-tone static AM-

AM and AM-PM). On the other hand, the dynamic linearizer strongly corrects for 

the nonlinearity while increasing the circuit complexity, and its performance is 

usually evaluated by non-constant envelope signals (e.g. two-tone dynamic AM-
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Figure 3.1:  Typical characteristics of a common-source CMOS amplifier [23]. (a)

PA input-voltage/output-current transfer function and its derivatives for IMD

estimation. (b) Measured IMD3 for various PA-classes. 

AM and AM-PM). 

In the case of static-level linearization, various linearizers have been proposed. 

In [8], the nonlinear gate-source capacitance (Cgs) of a common-source (CS) 

NMOS amplifier was compensated using a PMOS counterpart. However, this 

method causes the excessive gate-source parasitic capacitance (Cgs.n+Cgs.p), thus 

resulting in power loss and bandwidth limitation. The diode linearizer in [9]-[12] 

boosts the dc gate bias of a CS amplifier and thus it enhances 1-dB compression 

output power (P1dB). However, this method is effective for the PA of which the dc 

gate bias as a function of input power shows compression behavior [9], [10]. Even 

though the AM-PM compensator in [18] and cascode feedback bias [19] showed a 

certain amount of linearity improvement, the resultant performance is still not 

comparable as the GaAs HBT PA [20]. 

As Fager et al [23] analyzed and experimentally demonstrated, the linearity of 

a CMOS PA at high power level can be improved by applying low bias condition, 

which is due to the large-signal transfer function behavior of the transconductance 

(Gm). However, the linearity gets worse at mid power level, as shown in Fig. 3.1. 
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Figure 3.2:  Envelope-reshaped gate biasing [21]. (a) Gate-biasing concept. (b)

Schematic of the common-source (CS) bias circuit. 

To achieve good linearity over a wide power range, a multi-gate transistor (MGTR) 

technique has been proposed [13], [14]. However, it excessively reduces the power 

gain. Therefore, the static bias profile having low bias at high power level (and 

high bias at low power level) can contribute for the PA linearity. 

Contrary to the static linearizer, the dynamic linearizer utilizes the time-

varying envelope signal to provide envelope-dependent voltages to the voltage-

controlled elements to correct for dynamic AM-AM and/or AM-PM distortions. 

Thus, its linearization effect is stronger than the static case. Several researchers 

have revealed the usefulness of the envelope-injection technique for linearity 

improvement [34]-[36]. Koo et al [21] proposed an integrated CS bias circuit 

shown in Fig. 3.2, which showed almost state-of-the-art performance in terms of 

linear efficiency. Even though the method [21] clearly improves the dynamic AM-

AM by providing high gate bias during the envelope-compressed time region only 

as shown in Fig. 3.2(a), however, it may not corrects (or even worse) for the AM-

PM compression. Also, it may cause PAE degradation when the gate bias is over-

driven. Jin et al [22] employed the enveloped-dependent gate bias circuits for a 

common-gate (CG) stage as well as a CS stage of a differential cascode PA. 
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However, the method is not suitable for the single-ended stacked-FET structure. 

There is a previous work on the phase-based dynamic linearizer using a 

varactor for wireless local-area-network (WLAN) PA by Palaskas et al [24]. 

However, in [24], the power range of interest was quasi-linear region (4.5 dB 

power-backed-off from P1dB), where the AM-AM distortion was negligible, leaving 

AM-PM as the only source of distortion to degrade the error vector magnitude 

(EVM) for WLAN application. This method cannot be directly applied to 3G/4G 

handset PAs, which often operate into the gain compressed region, where AM-AM 

and AM-PM distortions are coupled with each other and both affect the PA 

nonlinearity. 

3.3   Harmonic Termination 

To implement a highly linear and efficient CMOS PA, an optimum standalone 

PA design is prerequisite. The standalone PA design of this work is aimed to 

achieve high efficiency while maintaining moderate linearity; thus the proposed 

linearizers (in Chapter 3.5 and 3.6) make the PA further enhance the linear 

 

Figure 3.3:  Schematic of the standalone CMOS PA used in this study. 
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efficiency. Fig. 3.3 shows a schematic of the proposed standalone CMOS PA. It is 

based on a two-stage stacked-FET amplifier, where the driver-stage and main-stage 

have triple stack with a 2-mm gate-width and quadruple stack with a 20-mm gate-

width, respectively [6], [17]. The output matching network (OMN) is realized with 

off-chip components; a transmission line (T/L) and a lumped capacitor. To improve 

the efficiency and linearity of a standalone PA, the harmonic termination and 

control of the gate bias modulation effect are performed in Chapter 3.3 and 3.4, 

respectively. 

3.3.1 Operation Analysis 

To enhance the efficiency of a stacked-FET PA, load impedances of the stacks 

at the harmonic frequencies (2f0, 3f0, ···) as well as the fundamental frequency (f0) 

should be optimized. Since the CMOS FETs have parasitic capacitances (e.g. Cgs, 

Cgd, Cds, and Cdsub), they make the fundamental load impedances locate sub-optimal 

region. To avoid the effect, several techniques such as the shunt-inductive elements 

and the external drain-source Miller capacitors have been adopted [37]. In this 

study, three Miller capacitors (Cm2 ~ Cm4 in Fig. 3.3) are employed to align the 

drain voltage of each stack in-phase. To further enhance the efficiency, the 

harmonic termination is essential since the load impedances at harmonic 

frequencies (especially at 2f0 and 3f0) can provide a condition in the manner that 

the drain voltage and current are not overlapped each other [38]. Thus, the Class-

F/F-1/J PA designs can improve the efficiency [39], [40]. Contrary to the PAs based 

on a CS stage, the stacked-FET PA is required to have optimum harmonic 

impedances at the internal FETs as well as the top FET, because each FET equally 

contributes to adding drain voltage while sharing drain current. To achieve this, the 

harmonic termination should not cause excessive loss and should not disturb the 

fundamental load impedance. Also, the dc supply voltage must be taken into 

account for choosing operation mode due to the limited battery voltage (VDD < 4 V) 
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of mobile devices. 

In designing a watt-level stacked PA, several design parameters (such as the 

size of FET, number of stack, and supply voltage) should carefully be determined. 

Even if Pornpromlikit et al [6] achieved the output power (Pout) of more than a watt 

under high VDD (= 6.5 V) and large load impedance (ZL = 11.5 Ω) conditions, 

however, the supply voltage needs to be limited below 4 V for mobile handset 

applications. This means that the FET size should be larger to handle more drain 

current and avoid high knee voltage, which further lowers ZL. In this work, the FET 

gate-width of 20 mm and VDD = 4 V are chosen, which corresponds to the parasitic 

gate-source capacitance (Cgs) of ~22 pF and ZL = 5~6 Ω. Due to the large parasitic 

capacitance of the k-th FET and the distribution capacitor (Ck) as shown in Fig. 

3.4(a), the load impedances of the (k–1)-th FET at 2f0 and 3f0, ZD,k-1(2) and ZD,k-1(3), 

become lower. For high efficiency operation, one of them should not be small but 

be located in the high efficiency region [31], [39], [40]. Since ZD,k-1(2) is easier to 

move toward the high-efficiency region than ZD,k-1(3) case, the Class-F-1 mode is 

employed in this work. 

Fig. 3.4(b) shows a schematic of the k-th FET in the proposed stacked-FET 

PA. To provide an optimum harmonic impedance at 2f0, a capacitor (CH2) and an 

 

Figure 3.4:  (a) Parasitic capacitances of the k-th FET in a stacked-FET PA. (b)

Double resonance method to obtain an optimum impedance (ZD,k-1) at 2f0. 
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Figure 3.5:  Schematic of the proposed harmonic-optimized PA. 

inductor (LH2) connected in series are added at the gate of a common-gate (CG) 

FET. CH2 and LH2 resonate below the second harmonic frequency (f < 2f0) and thus 

their composite impedance at 2f0, ZG1,k(2) in Fig. 3.4(b), becomes inductive. ZG1,k(2) 

should be slightly inductive for parallel resonance with the following shunt element, 

Ck in Fig. 3.4(b). The second resonance is performed near f ≈ 2f0 by Ck along with 

ZG1,k(2) and thus the resultant impedance, ZG2,k(2) in Fig. 3.4(b), is obtained. Since 

Cgs,k provides low impedance at 2f0 due to large gate-width of Mk, the target 

impedance, ZD,k-1(2) in Fig. 3.4(b), can thus have an optimum harmonic load at 2f0. 

To maintain the optimum load impedance at f0 (ZD,k-1(1)), Ck value in conjunction 

with CH2 and LH2 should be re-optimized. 

Based on the double resonance technique described above, a 0.9 GHz stacked-

FET PA was designed using an SOI CMOS process. Fig. 3.5 shows a schematic of 

the designed PA, where 0.32-μm gate-length 2.5-V NFETs were used. C2 ~ C4 are 

the gate distribution capacitors for stacked-FET PA design and Cm2 ~ Cm4 are the 



 50

Miller capacitors [6], [37]. To completely reject the parasitic effect at f0, the shunt 

inductive elements (dotted series inductors and capacitors in Fig. 3.5) are employed 

in the initial design. Fig. 3.6 shows the simulated harmonic load impedances of the 

PA. By applying the harmonic termination technique, the second-harmonic 

impedances of the intermediate FETs (ZD,1(2), ZD,2(2), and ZD,3(2)) are moved to the 

inductive region where high efficiency is achieved, as shown in Fig. 3.6(b). Since 

C2 is quite larger than C3 and C4, ZD1(2) is less optimized than expected. On the 

 

 

 

Figure 3.6:  Simulated second-harmonic (H2) and third-harmonic (H3) impedan-

ces as a function of input power. (a) H2 without termination. (b) H2 with

termination. (c) H3 without termination. (d) H3 with termination. 
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other hand, there is no considerable change in the third harmonic impedances, as 

shown in Fig. 3.6(c) and 3.6(d). 

Figure 3.7:  Simulated drain voltage and current waveforms. (a) Reference PA

without ① shunt-inductive elements and ② harmonic tuning. (b) Reference PA

with ①. (c) Proposed PA with ① and ②. (d) Class-F mode PA. 
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Fig. 3.7 shows the simulated drain-source voltage (Vds) of each stack and the 

drain voltage/current waveforms of the top FET. To compare the performance of 

the proposed structure with other operation modes, two reference PAs and a Class-

F PA were also simulated. The reference PA without shunt-inductive elements and 

harmonic termination (PA1) showed non-uniform Vds profile among the FETs, 

moderate PAE (67.6%), and drain-efficiency (DE) of 70% at Pout = 32.5 dBm, as 

shown in Fig. 3.7(a). This is due to the fact that the parasitic cancellation by the 

Miller capacitors (Cm2 ~ Cm4) was not completely fulfilled. As described in [37], 

too excessive Miller capacitances for complete parasitic rejection may cause 

stability issue and thus smaller values were employed. In the case of the reference 

PA with shunt-inductive elements (PA2) shown in Fig. 3.7(b), uniform Vds’s and 

improved PAE of 72.9% were achieved at Pout = 33 dBm, which is the maximum 

achievable PAE when the harmonic termination is not considered. However, the 

harmonic-tuned PA (PA3) achieved better PAE/DE (76.4/82.6%) and Vds peaking 

by the optimized harmonic voltages, as shown in Fig. 3.7(c). On the other hand, the 

Class-F PA by shorting ZD,k(2)’s and opening ZD,k(3)’s exhibited poor performance in 

terms of PAE (53.2%) and Pout (30 dBm), as shown in Fig. 3.7(d). Since the 

quadruple-stacked PA works with VDD = 4 V, each FET occupies VDC = 1 V and 

thus the maximum Vds of each FET reaches to 2 V only, resulting in reduced Vds 

swing and Pout [38]. Thus, it is validated that the Class-F-1 is a proper operation 

mode for low-VDD watt-level stacked-FET PA compared to the Class-F mode. 

Fig. 3.8 shows the simulated load-line, gain, and PAE of the designed PA. The 

harmonic-tuned PA exhibits the best performance in terms of voltage swing (Pout) 

and PAE. The impact of the harmonic termination gets larger when designing a PA 

operating at higher frequency (f0 > 1.7 GHz). 

3.3.2 Experimental Validation 

To verify the usefulness of the proposed harmonic termination, a 0.9 GHz 
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stacked-FET PA was implemented and measured. The fabricated SOI CMOS PA 

IC was mounted on a 400-μm thick FR4 PCB (εr ≈ 4.6, tanδ = 0.025) and bond-

wires were used for harmonic termination (LH2’s in Fig. 3.5). The shunt inductive 

elements (in Fig. 3.5) were not used in the implementation. Measurement results 

using CW signal are plotted in Fig. 3.9. The proposed harmonic-tuned PA showed 

maximum PAE of 69% and DE of 74.2% at Pout = 32 dBm. Compared to the 

reference PA without harmonic termination, Pout and PAE / DE were improved by 

 

Figure 3.8:  Harmonic-balance simulation results of the harmonic-tuned PA. (a)

Load-line. (b) Gain and PAE. 

 

 

 

Figure 3.9:  Measured CW results of the 0.9 GHz harmonic-tuned PA. (a) Gain

and PAE. (b) Drain efficiency (DE). 
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1 dB and 3 / 4.2%, respectively. In addition, compared to the re-tuned reference PA 

to obtain identical Pout to the proposed PA, PAE / DE improvements of +6 / 6.6% 

were achieved, thus validating the usefulness of the harmonic termination. 

3.4   Control of the Gate Bias Modulation Effect 

This chapter discusses the gate bias modulation (fluctuation) effect of a 

stacked-FET PA. Since most CMOS PAs employ a common-source (CS) amplifier 

as a first amplification stage, PA linearity and efficiency are strong functions of the 

gate bias of a CS amplifier. When a non-constant envelope signal (e.g. two-tone) is 

used, the nonlinearity of NFET induces baseband-level nonlinear current/voltage 

and thus they work as an effective gate bias combined with the external dc bias. 

Analysis and measurement show that the gate bias modulation should be rejected 

or can be utilized for better linearity under a certain condition. 

3.4.1 Analysis 

PA nonlinearity is characterized as the intermodulation distortion (IMD), and 

it comes from the AM-AM and AM-PM distortions [41]-[44]. Since most of the 

modern handset PAs are operated with non-constant envelope signals, the dynamic 

AM-AM and AM-PM can exhibit different behavior (including dispersions) to the 

static AM-AM and AM-PM. Therefore, it is worthwhile to analyze the difference 

between the static and dynamic behaviors for linear PA design. As described in 

[45]-[49], the IMD asymmetry (memory effect) comes from the second-order 

nonlinearity regarding the impedance termination at baseband / second-harmonic 

frequencies, of which the baseband impedance has more dominant effect. Since the 

gate of a CS amplifier is not frequently terminated at baseband whereas its drain 

node is mostly terminated with a bias-line and a micro-farad-level bypass capacitor 

[50], we have focused on the second-order nonlinearity by the gate-source 
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capacitance (Cgs). 

To analyze the gate impedance termination effect, a quadruple stacked-FET 

PA in Fig. 3.3 was simulated at 1.88 GHz using the two-tone harmonic balance 

 

Figure 3.10:  (a) Input schematic of the output-stage of a stacked-FET CMOS PA.

(b) Typical gate voltage (Vgs) spectrum profile of the CS amplifier under the two-

tone input condition, where VBIAS means the effective gate-bias voltage. 

 

 

Figure 3.11:  Simulated Vgs and VBIAS waveforms for different RG’s at Pout = 28.2

dBm (≈ P0.5dB). 



 56

 

Figure 3.12:  Simulated output two-tone envelope for different RG’s at P0.5dB. An

inductor of 30-nH was used for RG = 0 Ω. 

(tone spacing = 4 MHz). Fig. 3.10(a) shows a simplified input schematic of the 

output-stage, where the gate of a CS amplifier is biased to VG through a resistor, RG. 

When the PA is operated near soft compression region (~P1dB), the gate voltage 

(Vgs) contains many harmonic and intermodulation components as well as the 

fundamental signal components, as shown in Fig. 3.10(b). Once the RF 

components (including in-band signals) of Vgs are completely filtered out, the 

remaining baseband-frequency components, which play a role of “effective” gate 

bias, VBIAS, is extracted. The simulated Vgs and VBIAS waveforms at P0.5dB of the PA 

for the case of RG = 1000, 10, 2, and 0.5 kΩ are plotted in Fig. 3.11. As one can see 

from the result in Fig. 3.11, VBIAS’s of the four cases are not constant to VG but 

fluctuated. Also, the phase of VBIAS for RG = 1000 kΩ case is approximately –180˚ 

with respect to the input two-tone envelope. Due to the VBIAS with opposite phase 

to the input envelope, the transconductance (Gm) of the CS amplifier becomes 

lower at high envelope and higher at low envelope. This bias modulation causes a 

compression of the output envelope and thus it deteriorates IMD. 

Since most handset PAs are operated at RF frequencies, RG of greater than 1 

kΩ is usually considered to be a proper choice to block RF signal. As RG value is 

decreased, however, VBIAS profile is changed; the phase of VBIAS strongly deviated 
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Figure 3.13:  Simplified input equivalent circuit of the output stage to analyze

VBIAS modulation effect at the envelope frequency (ωenv = ω2 – ω1). 

from –180˚ while its fluctuation amplitude is decreased, as shown in Fig. 3.11. This 

phase deviation causes a significant IMD asymmetry, since the upward input 

envelope (↗) is amplified at low VBIAS whereas the downward (↘) input envelope 

is amplified at high VBIAS. To remove VBIAS fluctuation, an RF choke inductor can 

be employed instead of RG. The normalized input and output envelopes of the PA 

as a function of RG are plotted in Fig. 3.12. It should be noted that RG = 2 kΩ shows 

a significant envelope asymmetry between the upward and downward envelopes. 

In the case of RG = 0 Ω, it does not cause the asymmetry and compression, 

compared to the other two cases. 

The effect of RG on VBIAS modulation described above is originated from the 

Cgs nonlinearity of a CS-FET, which is known as one of the major nonlinear 

sources in CMOS PA [8]. The effect can be modeled as an RC network with 

nonlinear current source (Ienv) at envelope (two-tone difference) frequency, as 

shown in Fig. 3.13. The nonlinear current (Ienv) is induced by the second-order 

intermodulation (IM2) of Cgs, which is related to the second-order derivative term 

of Cgs. Thus, the non-constant VBIAS can be represented as 

( ) (1 . ) (2 . ) (3 . )BIAS G DC env env env env env envV V V V V           (3.1) 

where VG(DC) is the dc gate bias voltage, and Venv’s are the envelope frequency and 

its harmonic voltage components. The magnitude and phase of the fundamental 
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Figure 3.14:  (a) Calculated/simulated magnitude and phase of VBIAS as a function

of RG at P0.5dB. (b) Simulated worst IMD3 and IMD asymmetry. 

envelope voltage (Venv(1ω.env)) is calculated as 

EenvG

env
env CjR

I
V




1
     (3.2) 

)(tan)(tan 11
GEenvenvenv RCIV        (3.3) 

where CE = C1 + Cgs and tan–1(Ienv) = –90˚. It should be noted in (3.2) and (3.3) that 

as RG is decreased, the magnitude of Venv is reduced toward zero whereas its phase 

moves toward –90˚, as shown in Fig. 3.11. The calculated magnitude/phase of Venv 

and simulated third-order IMD (IMD3) as a function of RG at P0.5dB are plotted in 

Fig. 3.14. The CS-FET device of this design has a gate-width of 20 mm (which 

corresponds to Cgs ≈ 22 pF) and the matching capacitance of C1 is 9 pF, thus 

resulting in the effective capacitance (CE) of 31 pF. Also, Ienv = –j81 μA was used 

in the calculation. The calculated |Venv| and ∠Venv in Fig. 3.14(a) are almost 

identical to the simulated results. As RG gets smaller, IMD3 in Fig. 3.14(b) is 

getting improved due to smaller |Venv|. On the other hand, in the range of RG = 0.2 ~ 

10 kΩ where the phase is deviated from –180˚ to –90˚, IMD3 asymmetry is 

significantly increased. Since the memory effect is very difficult to be rejected by 

predistortion, RG value of 0.2 ~ 10 kΩ must not be used. 
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Figure 3.15:  (a) Calculated VBIAS phase as a function of RG for various CE’s. (b)

Target RG to achieve VBIAS phase of –175˚ to avoid IMD asymmetry. 

Based on the analysis above, it seems that providing short-circuited gate 

impedance at baseband frequency is the only solution to avoid the bias modulation 

effect and improve the linearity. However, in some cases, the gate bias modulation 

effect can be utilized to suppress the excessive AM-AM expansion near high 

envelope, thus achieving linearity improvement. This is valid only if |Venv| is not 

excessive and ∠Venv does not cause a memory effect. Since IMD asymmetry is 

dependent on RG, there is a reference guide in determining RG value. Fig. 3.15(a) 

shows the phase of Venv as a function of RG for various CE’s. If the phase is –180˚, 

the induced envelope voltage is inversely symmetric to the input two-tone envelope, 

and thus the memory effect arisen from RG is avoided. Assuming that the target 

phase, ∠Venv.T, is lower than –175˚, the target gate resistance (RGT) is calculated 

from (3.3) as 

.tan( 90 ) tan(85 )env T
GT

env E env E

V
R

C C 
    

  .   (3.4) 

The calculated RGT value of this design is ~15 kΩ (CE = 31 pF, fenv = 4 MHz), 

whose criterion is consistent with the result in Fig. 3.15(b). 
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3.4.2 Experimental Validation 

To investigate the gate bias modulation effect in experimental level, two 

stacked-FET CMOS PAs, each for low-band (LB: 0.9 GHz) and high-band (HB: 

1.88 GHz), were fabricated and measured using the 3GPP uplink W-CDMA 

(Rel’99) signal. The purpose of the LB PA is to demonstrate that the gate bias 

 

Figure 3.16:  Measured W-CDMA results of the low-band (0.9 GHz) stacked-FET

CMOS PA for different RG’s at IQ = 77 mA. (a) Gain and PAE. (b) ACLR. 

 

Figure 3.17:  Measured dynamic AM-AM and AM-PM of the 0.9 GHz PA for

different RG’s at IQ = 77 mA and Pout = 27.8 dBm (=P1 in Fig. 3.16(b)). (a) RG = 1

kΩ vs. 0 Ω. (b) RG = 0 Ω vs. 1000 kΩ. 
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modulation effect can be utilized for linearity improvement, whereas it cannot be 

utilized but be rejected for the HB PA. 

A. Bias Modulation of a CS-FET for a Low-Band (0.9 GHz) PA 

First, a 0.9 GHz PA with different RG’s (=1000, 1, 0 kΩ) was measured. Fig. 

3.16 shows the measured gain, PAE, and ACLR of the PA at quiescent current (IQ) 

of 77 mA. In the case of gain and PAE, the three results are almost identical. 

However, the PA showed different ACLR behaviors; the PA with RG = 1000 kΩ 

showed better linearity (<–39 dBc) whereas the other two cases showed worse 

linearity near mid ~ high Pout region, as shown in Fig. 3.16(b). In reality, the gain 

expansion of greater than 2 dB shown in Fig. 3.16(a) is not acceptable, since such a 

large gain deviation cannot achieve high linearity (W-CDMA ACLR < –39 dBc) in 

the mid ~ high Pout region. Nevertheless, the PA with RG = 1000 kΩ achieved good 

linearity in aid of the induced gate envelope voltage (Venv). This explanation is 

validated from the measured dynamic AM-AM and AM-PM. As shown in Fig. 

3.17(a), the PAs with RG = 1 kΩ and 0 Ω show gain and phase expansions, of 

which the gain slope is quite similar to that one in Fig. 3.16(a). It should also be 

noted in Fig. 3.17(a) that the PA with RG = 1 kΩ exhibits more dispersive AM-AM 

behavior than the PA with RG = 0 Ω, thus causing more ACLR (IMD) asymmetry, 

as shown in Fig. 3.11, 3.12 and 3.16(b). On the other hand, the PA with RG = 1000 

kΩ in Fig. 3.17(b) shows quite flat AM-AM and AM-PM than the other cases, 

even with the 2-dB gain expansion shown in Fig. 3.16(a). 

Since the PA with RG = 0 and 1 kΩ shows gain and phase expansions, the 

expansion can be mitigated by providing higher IQ. Measurement showed that the 

PA with RG = 0 Ω requires IQ = 103 mA to achieve ACLR < –39 dBc over the 

entire linear Pout region. The ACLR characteristics as a function of RG’s for 

different IQ are plotted in Fig. 3.18. 

To investigate the memory effect of the PA, maximum linear Pout (meeting 
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ACLR = –39 dBc), ACLR asymmetry, PAE, and idle current (IQ) of the PA are 

plotted in Fig. 3.19. In this measurement, IQ is adjusted for each RG to obtain 

ACLR (worst case between the lower/upper-side ACLRs) < –39 dBc over the 

entire linear Pout region. From the results, three analyses are inferred as follows: 

 

① To avoid ACLR asymmetry and linear PAE degradation, RG of 0.2 ~ 10 kΩ 

must not be used. This is consistent with the simulated result in Fig. 3.14(b). 

 

Figure 3.18:  Measured W-CDMA ACLR of the 0.9 GHz PA at Pout = 27.8 dBm. 

 

 

Figure 3.19:  Measured W-CDMA characteristics of the 0.9 GHz PA meeting

ACLR = –39 / –36 dBc at high Pout. The idle current (IQ) of each RG condition is

adjusted to obtain ACLR < –39 dBc over the entire Pout region. (a) Maximum Pout

and ACLR asymmetry. (b) Maximum PAE and IQ condition. 
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Figure 3.20:  Measured dynamic AM-AM and AM-PM of the 0.9 GHz PA for

different RG’s at IQ / Pout meeting ACLR = –39 dBc. (a) RG = 1 kΩ versus 0 Ω. (b)

RG = 0 Ω versus 1000 kΩ. 

② The PA with RG = 0 Ω shows more linear Pout and thus similar level of 

linear PAE is achieved even with higher IQ (=103 mA), compared to the 

case with RG = 1000 kΩ and IQ = 77 mA. 

③ RG of greater than 20 kΩ shows almost no IMD asymmetry and good 

performance while maintaining low IQ. This resistance is quite similar to 

the criterion RGT ≥13 kΩ from Equation (3.4), where CE = (C1 + Cgs) = (15 

+ 22) = 37 pF and fenv = 3.84 MHz for 0.9 GHz W-CDMA PA. 

 

Fig. 3.20 shows the dynamic AM-AM and AM-PM of the PA for different RG and 

IQ (meeting ACLR = –39 dBc). By providing higher IQ to the PA with RG = 0 Ω, its 

dynamic characteristics is flattened, compared to the result in Fig. 3.17(a). 

B. Bias Modulation of CG-FETs for a Low-Band (0.9 GHz) PA 

In the stacked-FET PA, the CS (bottom) FET performs as a current amplifier 

while the upper (CG) FETs work as current buffers. Even if the gate bias 

modulation of the CS amplifier is dominant, it is worthwhile to investigate the 

modulation effect by the CG-FETs. For this purpose, the gates of CG-FETs are 

terminated at envelope frequency using the small resistors (100 ~ 200 Ω) and large 
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Figure 3.21:  Gate envelope impedance termination of common-gate (CG) FETs. 

To avoid the gate capacitance mismatch of C2 ~ C4 at RF frequency, a resistor with 

low value (100 ~ 200 Ω) and a large capacitor (1 uF) connected in series are used 

for TM2 ~ TM4. 

 

TABLE 3.1 

MEASUREMENT SUMMARY OF THE 0.9 GHZ PA ACCORDING TO  
GATE ENVELOPE IMPEDANCE TERMINATION OF CG-FETS 

 ACLR (dBc) IQ (mA) Pout (dBm) PAE (%) Pout / PAE ↑ 

CS.RG=1M 
(no CG term)

–39 77 27.78 43.5 Reference 

CG2 term –39 83 27.91 43.9 0.13 dB / 0.4% 

CG3 term –39 79 27.85 43.8 0.07 dB / 0.3% 

CG23 term –39 86 27.93 44.0 0.15 dB / 0.5% 

capacitors (1 uF), as shown in Fig. 3.21. Since C4 is smaller than C2 and C3, the 

envelope terminations of CG-FETs are performed for M2 and M3 only. 

The measured results are summarized in Table 3.1. As shown in the table, gate 

termination of CG-FETs at envelope frequency requires higher IQ than the case 

without CG termination, and maximum linear Pout and PAE are slightly increased. 

This means that the CG-FETs also experience the gate bias modulation by the Cgs 
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nonlinearity. The final result with CG-2 and CG-3 termination showed linear Pout / 

PAE improvements of 0.15 dB / 0.5%, compared to the case without CG 

termination. Since the amount of linear PAE improvement is relatively small and a 

large capacitor (micro-farad level) is required, the LB linearized PA presented in 

Chapter 3.7 does not use the CG-termination. 

C. Bias Modulation of a CS-FET for a High-Band (1.88 GHz) PA 

Contrary to the LB (0.9 GHz) PA described above, the HB (1.88 GHz) PA 

showed a significant difference between the cases of low RG and high RG. Fig. 3.22 

 

Figure 3.22:  Measured W-CDMA results of the high-band (1.88 GHz) stacked-

FET CMOS PA for different RG’s at IQ = 91 mA. (a) Gain and PAE. (b) ACLR. (c)

Dynamic AM-AM and AM-PM at Pout = 27.5 dBm (= P2). 
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shows the measured W-CDMA results of the HB PA. The PA with RG = 0 Ω 

showed ACLR = –39 dBc at Pout = 27.5 dBm, whereas the PA with RG = 20 kΩ 

exhibited poor linearity (–31.5 dBc) at the same Pout, which means the maximum 

linear Pout is increased by 2.2 dB by the termination. Maximum linear PAEs at 

output powers meeting –39 dBc ACLR of the two cases are 40.3% and 31.6%, 

respectively. This results obviously show that the gate bias modulation effect of the 

1.88 GHz PA is too excessive to be utilized for linearity improvement, contrary to 

the 0.9 GHz PA. As one can see from the dynamic AM-AM and AM-PM results in 

Fig. 3.22(c), this phenomenon can be inferred as follows: Since the HB PA has 3 ~ 

4-dB smaller power gain than the LB PA, the RF input power drive becomes 

higher, resulting in increase of the nonlinear IM2 current (Ienv in Fig. 3.13). Also, 

CE of the HB PA is smaller than that of the LB PA (31 versus 37 pF), which makes 

Venv increase by a factor of 1.2 from Equation (3.2). Thus, the resultant |Venv| 

becomes larger that the signal envelope is excessively compressed. Without gate 

envelope impedance termination of the 1.88 GHz PA, any linearization technique 

could not improve the RF performance of the PA. 
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3.5   Proposed Linearization #1: Hybrid Bias 

Due to the large-signal nonlinear transconductance (Gm) behavior of a CMOS 

device, the IMD sweet spot of a CS amplifier moves to higher Pout level when the 

bias current (IQ) gets lower, as described in [22], [23]. Thus, the bias point should 

be selected close to deep Class-AB region to maximize linear PAE. However, low 

IQ gives rise to poor linearity in the mid Pout region where AM-AM and AM-PM 

are excessively expanded, as illustrated in Fig. 3.23. This is a dilemma in designing 

a linear CMOS PA. Since the linearity and efficiency of 3G/4G handset PAs cannot 

be compromised, a proper biasing approach, which provides high IQ at mid Pout 

level and low IQ at high-Pout level, is required to obtain good linearity over the 

entire output power regions while maximizing linear PAE. Even if Kousai et al 

[15] implemented a desirable dc bias profile, however, it requires complex PA-

closed loop circuit. 

To resolve the problem, a simple dc bias circuit is proposed. The circuit 

employs two bias circuits having different dc bias profiles, a diode bias and a 

resistor bias, and thus it is called as the “hybrid bias” circuit. Fig. 3.24 shows the 

 

Figure 3.23:  Typical characteristics of the CMOS PA according to bias current

(IQ). (a) IMD3. (b) PAE at maximum linear Pout and ACLR at mid-Pout. 
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schematic and dc gate voltage profile of the hybrid bias circuit. As described in [9]-

[11], the diode bias is capable of boosting dc gate bias as the incident RF power is 

increased above the turn-on level of the diode. On the other hand, the resistor bias 

provides a constant dc gate bias irrespective of RF power level. The hybrid bias 

combines the power-dependent bias characteristics of both diode and resistor biases 

to achieve the bias profile as a function of Pout, as shown in Fig. 3.24(b). It should 

be noted that VGR (resistor bias) should be set higher than VGD (diode bias). Even if 

the circuit topology is similar to [51], however, the work [51] cannot achieve the 

negative slope due to the applied bias condition of VGR < VGD. 

During Pout < P1 (in Fig. 3.24(b)) where the RF voltage swing does not exceed 

the threshold voltage of the diode, the diode is in off-state and the gate dc bias 

voltage is identical to VGR. When Pout is between P1 and P2, the diode is partially 

turned on, and the resultant gate dc bias voltage becomes a combination of VGR and 

VGD. Thus, the gate dc bias voltage is decreased and finally reaches the targeted 

level, VGL, at Pout = P2, where the two bias voltages (by the hybrid bias and 

standalone diode bias) coincide. It is worthwhile to note that VGL is not the same as 

VGD. Finally, when Pout exceeds P2, the incident RF swing further boosts the gate 

bias through the diode action, resulting in the bias voltages higher than VGR. The 

 

Figure 3.24:  (a) Schematic of the proposed hybrid bias circuit. (b) Gate dc

voltage profile by the hybrid bias. 
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Figure 3.25:  Two-tone simulation results of the CMOS PA using the hybrid bias

circuit. (a) Offset voltage (VOFS) dependency. (b) Capacitance (C1) dependency. (c)

Diode size (D1) dependency. (d) Effective gate bias (VBIAS) at time-domain when

the gate envelope impedance is not terminated. 

target rated linear Pout of a PA can be chosen to be P2. The required gate dc voltage 

difference of CS CMOS amplifiers, VGH – VGL in Fig. 3.24(b), is usually less than 

50 mV. 

The target values, VGH – VGL and P2, are mostly determined by the three 

design parameters: VOFS (=VGR – VGD), C1, and D1. To investigate the effects of the 

parameters, a 0.9 GHz two-stage stacked-FET PA, in which the hybrid bias is 

employed for the output-stage, was simulated and the result is plotted in Fig. 3.25. 

As one can see from Figs. 3.25(a) ~ 3.25(c), the target voltage difference (=VGH – 
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Figure 3.26:  Measured characteristics of the CMOS PA using the hybrid bias

circuit. (a) Gain. (b) PAE at maximum linear Pout meeting –39 dBc ACLR and

ACLR at mid Pout. 

VGL) is a strong function of VOFS, and the target Pout (=P2 in Fig. 3.24(b)) can be 

adjusted by resizing D1. The capacitor, C1, can be placed at the drain of D1 to 

reduce the sensitivity from the small capacitance (50 ~ 200 fF) and plays a role of 

adjusting VGH – VGL and P2. The effective gate bias (VBIAS) of the PA without gate 

envelope impedance termination is plotted in Fig. 3.25(d), where the dc component 

of VBIAS is reduced as Pout is increased (note that dc component of “c”-curve in Fig. 

3.25(d) is lower than “a”-curve). Due to the nonlinear Cgs, envelope components of 

VBIAS are nonzero, thus fluctuating VBIAS. Since the diode (D1) is operated at off-

state, the impedance seen to the hybrid bias circuit at envelope frequency is very 

large and thus the circuit causes no IMD asymmetry. 

To demonstrate the usefulness of the hybrid bias, the circuit was employed for 

the main-stage of a 0.9 GHz SOI CMOS stacked-FET PA. D1 and C1 in Fig. 3.24 

were chosen to have a gate-width of 250-μm and capacitance of 100 fF, 

respectively. To mitigate the sensitivity, C1 was connected at the drain of D1 

instead of the gate node. Two bias voltages for the resistor and diode, VGR and VGD, 

were 0.34 V and 0 V (VOFS = 0.34 V), respectively. To compare the result with the 
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PA without hybrid bias, a standalone PA, which has a resistor bias with low ~ high 

IQ’s (45 ~ 110 mA), was also measured. Fig. 3.26 shows the measured W-CDMA 

results. The PA with hybrid bias (IQ = 100 mA) showed a gain deviation of less 

than 1 dB, which is smaller than that of the PA with a resistor bias of IQ = 110 mA 

(1.4 dB). Also, PAE at maximum linear Pout (meeting –39 dBc ACLR) was as high 

as 45.2% while maintaining good ACLR (–43 dBc) at mid Pout. As shown in Fig. 

3.26(b), PAE of the hybrid-biased PA (45.2%) is 2.8% higher than a standalone PA 

with high IQ (42.4%) and comparable to that of the standalone PA with low IQ 

(45.3%). 

The proposed hybrid bias is effective to provide an optimum dc (static) gate 

bias profile according to power level. In subsequent chapter, another effective 

linearization method which is based on dynamic-level correction is presented. 

3.6   Proposed Linearization #2: Phase Injection 

3.6.1 Motivation 

Since the linearization effect of the static-level linearizers (e.g. hybrid bias) is 

not enough for compensating the compressed signal envelope near saturated power 

region, several techniques based on envelope-level correction (e.g. adaptive bias) 

have been proposed for stronger linearity improvement [21], [22]. In [21], the 

compressed peak envelope near gain compression region was successfully 

corrected by providing an envelope-reshaped gate-bias voltage (VBIAS) to a CS 

amplifier, thus improving AM-AM and IMD linearity. However, the amplitude 

injection (AI) technique may not correct (or even worse) for the AM-PM. Thus, it 

is worthwhile to provide further analysis why the AI gives rise to AM-PM 

compression for a stacked-FET PA of this work. 

The capacitance and phase variations of a stacked-FET amplifier by the AI are 

plotted in Fig. 3.27. As shown in Fig. 3.27(a), the average Cgs of a CS amplifier 
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Figure 3.27:  (a) Cgs of a CMOS CS amplifier as a function of gate bias. (b)

Simulated static AM-PM for different gate biases and the expected dynamic AM-

PM by the amplitude injection (AI). 

biased at V2 is larger than that biased at V1 under the same RF voltage swing 

condition. This means that higher VBIAS under large envelope swing results in larger 

Cgs and the phase is further compressed. This can be observed from the single-tone 

harmonic balance simulation result in Fig. 3.27(b), where the static AM-PM curves 

are plotted as the gate bias (Vgs) increases from 0.38 to 0.54 V. Considering that AI 

provides initial VBIAS of 0.38 V (during low ~ mid Pout) and peak VBIAS of 0.54 V (at 

compressed Pout), the expected dynamic AM-PM (dashed curve in red) shows early 

compression compared with the AM-PM with a fixed Vgs of 0.38 V. Moreover, 

even though the AI is provided during the small time-duration of the envelope 

signal, excessive VBIAS causes higher dc current consumption at target Pout, thus 

resulting in PAE degradation. Due to the reason above, a phase-based linearization 

is required to correct for the dynamic AM-PM as well. 

3.6.2 Phase (Capacitance) Injection 

To recover the compressed dynamic AM-PM, a phase injection (PI) method is 

proposed in this work [32]. Fig. 3.28 shows the phase and capacitance variations of 

a shunt varactor to explain the PI mechanism. Since the typical AM-PM of the 
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Figure 3.28:  Operation of the phase injector. (a) Dynamic AM-PM curves with

phase injection. (b) CV and phase (∠S21) of the varactor as a function of VCV. 

CMOS PA shows compressive characteristics as shown in Fig. 3.28(a), the phase 

injector is required to provide positive slope versus the envelope, which requires 

negative capacitance slope. Thus, the voltage across the varactor (VCV) is required 

to track the envelope signal in the opposite direction. The varactor is realized using 

MOS capacitor (n+-implanted source/drain on n-well). During low ~ mid Pout 

region, VCV stays between V0 and V1 in Fig. 3.28(b), where CV is almost constant, 

resulting in little phase injection. When Pout is further increased, VCV decreases 

below V1, reaching V2 at the maximum swing. Due to the reduced capacitance of 

the varactor, positive PI occurs in this region. Thus, the resultant dynamic AM-PM 

of the composite PA is flattened as shown in Fig. 3.28(a). Finally, when the PA 

enters strongly saturation, a limiting circuit prevents VCV from decreasing below V2. 

The schematic of the proposed linear PA with PI is shown in Fig. 3.29. The 

envelope is detected at the power-stage input, and the envelope-reshaped 

capacitance (CV) is generated by the PI circuit. CV is injected to the gate of the 

driver-stage CS transistor. Since the gate-source capacitance of the output-stage 

CS-FET, Cgs.M0, is very large (~22 pF), CV is injected to the driver-stage to avoid 

excessive capacitance loading (=Cgs.M0+CV) of the power-stage. Envelope detection 
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Figure 3.29:  (a) Schematic of the phase injection (PI) circuit. (b) Capacitance

(CV) profile by the PI circuit (assumed two-tone input signal). 

is performed using the common-source (CS) envelope detector (M1, CF, and RF in 

Fig. 3.29(a)). Because the CS detector generates the output envelopes (Vx) in 

opposite phase to the input envelope, Vx is flipped again by the inverter-like 

envelope shaper (M2 and M3). The varactor is initially biased at VCV (= VP1 – VP0 > 

0), and VCV is dynamically decreased according to the amplitude of the input 

envelope, as shown in Fig. 3.29(b). This is achieved by applying the envelope-

reshaped signal (Vy) to the cathode of the varactor. To avoid excessive voltage 

injection near saturation, a diode-connected limiter (M4) is used. 

It is worthwhile to note that the PI also improves AM-AM linearity since the 

dynamic CV correction by the phase injector improves input matching at high 

power levels where AM-AM is compressed. Simulation shows that gain compress- 

ion is reduced from 1.8 dB to 1 dB when the PI is applied. Thus, the AI circuit can 

be employed to work as an auxiliary correction to provide fine adjustment to AM-

AM distortion. The required VBIAS injection range becomes much smaller than that 

without PI [21], resulting in minimal efficiency degradation. The linearization 

effect of the circuit can be limited for wide bandwidth signal if the time delay 



 75

 

Figure 3.30:  (a) Block diagram of the proposed linear CMOS PA. (b)

Capacitance (CV) and gate bias voltage (VBIAS) profiles by the phase and amplitude

injection circuits. (c) Gate DC voltage profile by the hybrid bias circuit. 

between the incoming RF signal and PI/AI signals (CV and VBIAS) cannot be 

adjusted properly. 

3.7   Linear CMOS PA Design 

To demonstrate the performance of the proposed linearization techniques, two 

prototype 1.88 GHz and 0.9 GHz linear CMOS PAs are designed. Fig. 3.30(a) 

shows an overall block diagram of the proposed 1.88 GHz linear CMOS PA. The 

linearizer consists of an envelope-dependent PI circuit and an AI circuit as well as 

a hybrid bias circuit. As described in [21], the AI provides the envelope-reshaped 

gate bias (VBIAS) to the main-stage amplifier to recover the compressed envelope 

magnitude. In this work, the PI circuit and AI circuit are employed to work as main 



 76

and auxiliary linearizers, respectively. The capacitance (CV) and VBIAS profiles by 

the PI and AI circuits are illustrated in Fig. 3.30(b). In addition, this PA contains a 

hybrid bias circuit to set the power-dependent static bias to the driver-stage, as 

shown in Fig. 3.30(c). The design details of the linear PA are explained below. 

3.7.1 Baseline PA Design 

Fig. 3.31 shows a schematic of the proposed linear CMOS PA. The baseline 

PA design is targeted to achieve watt-level Pout together with high PAE. Special 

care was taken to design the power cell and the output matching circuit to achieve 

this goal. The power cell is a quadruple-stacked FET with a gate-width of 20 mm 

so that it can sustain the voltage swing without breakdown when a VDD supply of 4 

V is applied. The optimum load impedance of the quadruple stack is 5 ~ 6 Ω, 

which is realized using the LC-based off-chip output matching network (TL and CL 

in Fig. 3.31(a)). The load impedances presented to the internal FET stacks (M1 ~ 

M3) are determined by the gate distribution capacitors (C2 ~ C4), whose capacitance 

values are determined based on the stacked-FET PA theory [5], [6]. The design 

values are summarized in Fig. 3.31(a). In addition, the harmonic impedance 

termination is important to achieve high PAE. Considering the small DC voltage 

and swing across each FET stack in the quadruple design (VDC = 1 V for each 

stack), we have employed Class-F-1-type harmonic load termination; the even-order 

voltage swing is induced while minimizing even-order current components. In the 

1.88 GHz PA, the second-order harmonic termination described in Chapter 3.3.1 is 

applied to the gates of third and fourth FETs (M3 and M4), even with not shown in 

Fig. 3.31(a). In the case of the 0.9 GHz PA, the gate harmonic termination of CG-

FETs is not performed, because the harmonic impedances of the internal FETs 

(under no harmonic termination) are already located near the high-efficiency region. 

Since the range of the linearity correction using analog methods is limited 

compared with that using digital predistortion (DPD), the bias condition and power 
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drive level of the PA are set to avoid deep saturation and excessive gain 

compression. The target linear gain of the output stage was set to be higher than 12 

dB. The transistor size ratio between the driver and main stages was selected to be 

 

 

 

Figure 3.31:  (a) Schematic of the proposed linear PA for 1.88 GHz operation. (b)

Detailed schematic of the phase and amplitude injection circuits. 
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1:10 (2 mm vs. 20 mm). The idle current (IQ) of the driver-stage was set at a higher 

level (14 mA for 2 mm FET) than the main-stage (80 mA for 20 mm FET). This 

bias condition allows higher efficiencies by reducing the quiescent current of the 

large transistor while avoiding excessive amplitude and phase distortion, which can 

be recovered by the proposed linearizer. The output-stage shows slight AM-AM 

expansion while the driver stage shows almost linear AM-AM characteristics. The 

measured dynamic AM-AM and AM-PM of the baseline PA (before linearization), 

which is presented in Chapter 3.8, shows soft compression characteristics. The 

phase-based linearizer is designed based on the amount of the dynamic AM and 

PM distortions. 

3.7.2 Linearizer Design 

Fig. 3.31(b) shows the detailed schematic of the proposed PI and AI circuits. 

Each injection circuit is composed of a CS envelope detector and an inverter-like 

envelope shaper. The input signal of the detectors is obtained from the gate of the 

main-stage. Two CS transistors, M5 and M9, are biased in deep Class-AB region to 

make Vx and Vy close to VDD1 and VDD2, respectively, during low power region. RF 

and CF are used for filtering RF signal. To block RF signal at the output of the AI 

circuit, an on-chip inductor (LC) is employed. 

Two inverter-like injectors, M6/M7 for PI and M10/M11 for AI, are different in 

terms of FET size and number-of-stack of PFET. Since the varactor and the gate of 

M1 contain capacitances (CV and Cgs.M1), the capacitances should be charged and 

discharged to generate the desirable VCV and VBIAS waveforms. As the gate 

capacitance of M1 (Cgs.M1) is larger than the capacitance of the varactor (CV), the 

FETs in the amplitude injector are designed to have larger gate width for larger 

current capability than those in the phase injector. M10 is a double-stacked PFET 

while M6 is a single. Since the AI circuit is an auxiliary linearizer in this work, the 

required voltage swing of VBIAS is much smaller than that of VCV. A double-stacked 
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PFET provides lower voltage swing. 

To maximize the linear Pout by the linearizer, the variation of VCV and VBIAS as 

a function of Pout should be controlled properly on-chip level, which means that 

excessive increase of VCV and VBIAS should be avoided for stable linearization. To 

this end, the design of limiters (M8 and M12 in Fig. 3.31(b)) is important. The 

diode-connected limiter limits the maximum swing of the envelope-reshaped signal 

within the turn-on voltage of the diode. Simulation result showed that triple-

stacked / single-stacked diode limiters are proper choice for phase / amplitude 

injectors, respectively. The simulated magnitude and phase mismatch of VCV and 

VBIAS are plotted in Fig. 3.32. Under the 4-MHz two-tone spacing condition, the 

phase of VCV/VBIAS is almost in-phase to that of the incoming RF signal. 

The goal of the PI and AI circuits is to provide envelope-reshaped voltages 

(VCV and VBIAS) to the varactor (CV) and common-source FET (M1), respectively. 

However, in reality, the voltages may contain RF components as well as the 

envelope signals due to non-ideal RF-filtering by RC (RF and CF in Fig. 3.31(b)) 

 

Figure 3.32:  Two-tone simulation results of VCV (PI circuit) and VBIAS (AI

circuit). Fundamental term of envelope frequency components is only considered.

(a) Magnitude. (b) Phase mismatch with respect to the incoming RF voltage. 
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and imperfect RF grounding at VDD1/2 nodes by the bonding wires. Thus, it is 

worthwhile to check the RF components of VCV and VBIAS when the PI/AI circuits 

and VDD1/2 are connected through bonding-wires with an inductance of 1 nH (worst 

case). Time-domain simulation shown in Fig. 3.33 reveals that the RF components 

of VCV and VBIAS are effectively rejected due to CB2’s connected in series to CV (and 

LC and Cgs.M1 in Fig. 3.31), which effectively works as a low-pass filter for VCV 

(and VBIAS). To provide the evidence of AM-AM correction by the PI circuit as 

stated in Chapter 3.6, an envelope simulation was performed using a W-CDMA 

signal and the results are plotted in Fig. 3.34. The PI circuit shows AM-AM and 

AM-PM expansions of 0.7 dB and 9˚, respectively, at the bias conditions of VP1 = 

Figure 3.33:  Envelope-reshaped voltages of the PI and AI circuits for the case of
(a) LWB = 0 nH and (b) LWB = 1 nH. 
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Figure 3.34:  Simulated dynamic characteristics of the PI circuit using a W-

CDMA signal. (a) Dynamic AM-AM. (b) Dynamic AM-PM. 

 

 

 

Figure 3.35:  Two-tone simulation results of the designed 1.88 GHz linear PA

with and without linearizer (curved in blue vs. gray). (a) IMD3. (b) PAE. 

1.0 V and VP0 = 0.6 V. 

As demonstrated in Chapter 3.4, the gate envelope impedance termination of a 

CS amplifier is essential for the 1.88 GHz PA to reject the gate bias modulation 

effect. This termination is fulfilled by M11 and LC, since they provide a short-

circuited envelope impedance (from VG0 node) to the gate of a main-stage. Due to 
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Figure 3.36:  Photographs of the fabricated SOI CMOS PA ICs and evaluation

modules. (a) 1.88 GHz PA. (b) 0.9 GHz PA. 

the direct dc path between VG0 and the gate nodes, the hybrid bias circuit is 

employed for the driver-stage instead of the main-stage. 

The two-tone simulation results (tone spacing = 4 MHz) of the designed 1.88 

GHz linear CMOS PA is plotted in Fig. 3.35. Thanks to the proposed linearizer, the 

maximum linear Pout meeting IMD3 of –30 dBc is improved by 1.2 dB and thus the 

linear PAE is enhanced by 5%. 

3.7.3 Fabrication 

The designed PAs were fabricated using an SOI CMOS process (IBM 

CSOI7RF). All the MOSFETs have 0.32-μm gate length with an oxide thickness of 

5.2 nm. Fig. 3.36 shows photographs of the fabricated SOI CMOS PA ICs and test 

modules for 1.88 GHz and 0.9 GHz operations (die size: 1.46 mm × 0.68 mm for 

1.88 GHz PA and 1.54 mm × 0.68 mm for 1.88 GHz PA). The ICs with a thickness 

of 150-μm were mounted on a 400-μm-thick FR4 PCB (εr ≈ 4.6, tanδ = 0.025), 

where LC-based off-chip output matching networks with a loss of 0.33 dB were 
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Figure 3.37:  Measured CW results of the standalone PAs: (a) 1.88 GHz PA. (b)

0.9 GHz PA. 

implemented. To minimize the source degeneration effect, multiple bond-wires 

were down-bonded to PCB ground. 

3.8 Measurement Results 

The implemented PAs work at VDD = 4 V, and the quiescent currents of the 

driver and main stages were 14 and 80 mA for 1.88 GHz PA, respectively. VDD1 

and VDD2 of the PI / AI circuits were biased near 2.0 V. In the case of 0.9 GHz PA, 

no measurable improvement was achieved using the AI and thus the hybrid bias 

circuit was employed for the main-stage. Quiescent currents of the driver and main 

stages of 0.9 GHz PA were 12 mA and 70 mA, respectively. The PAs were tested 

using the continuous wave (CW) signal, W-CDMA signal, and LTE signal. 

3.8.1 CW Measurement 

Since the fabricated PAs exhibited slight efficiency degradation near the 

saturated Pout due to dc power consumption of the linearizer, the standalone PAs 

(linearizer off) were first measured to characterize the performance of the PA core. 

Fig. 3.37 shows the measured gain, PAE, and DE of the 1.88 / 0.9 GHz PAs using 
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Figure 3.38:  Measured 3G W-CDMA results: (a) 1.88 GHz PA. (b) 0.9 GHz PA. 

 

 

 

Figure 3.39:  Measured power spectra of the 0.9 GHz PA at Pout = 29 dBm. 

CW signal. In the case of 1.88 GHz PA shown in Fig. 3.37(a), saturated Pout of 31 

dBm, gain of 24.5 dB, and peak PAE of 53% were achieved. Maximum DE (main-

stage only) was 58.2%. The 0.9 GHz PA showed saturated Pout of 32 dBm, gain of 

28 dB, peak PAE of 59.8%, and maximum DE was 67%, as shown in Fig. 3.37(b). 

3.8.2 W-CDMA Measurement 

The linear PAs were measured using a 3GPP uplink W-CDMA (Rel’99) 

signal with a channel bandwidth of 3.84 MHz and peak-to-average power ratio 

(PAPR) of 3.4 dB. The measured results are plotted in Fig. 3.38, where the 
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Figure 3.40:  Measured dc power consumption of the linearizer using W-CDMA

signal: (a) 1.88 GHz PA. (b) 0.9 GHz PA. 

linearity data is the worst-case ACLRs. In the case of high-band PA shown in Fig. 

3.38(a), four different cases are compared; PI only, AI only, both PI/AI with hybrid 

biasing and no linearization (reference). With both (PI/AI) linearizers, the PA 

shows a gain of 24.5 dB, an ACLR of –39 dBc, and a PAE of 44.3% at Pout = 28.7 

dBm. Compared with the case of no linearization (and AI only), the maximum 

linear Pout, defined by the power meeting –39 dBc ACLR, is increased by 1.1 dB 

(and 1.0 dB) and PAE by 4.4% (and 4.1%). As one can see from Fig. 3.38(a), most 

of the linearization effect comes from the PI, as expected. The addition of hybrid 

bias helps improve ACLR in the max power region while trading off ACLR in the 

mid-power region. More linearization effect of the AI and hybrid biasing is shown 

near the output power meeting –36 dBc ACLR. 

W-CDMA test results of the 0.9 GHz PA are plotted in Fig. 3.38(b), showing 

a gain of 28 dB, an ACLR of –39 dBc, and a PAE of 49.2% at Pout = 29 dBm. The 

maximum linear Pout and PAE are improved by 0.9 dB and 5%, compared to the 

reference PA. In the case of the low-band PA, no measurable improvement was 

achieved using the AI. The hybrid bias contributed to a PAE improvement by ~1% 

while meeting similar ACLR compared to the PA with PI only. Fig. 3.39 shows the 
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Figure 3.41:  Measured 4G LTE results: (a) 1.88 GHz PA. (b) 0.9 GHz PA. 

 

 

Figure 3.42:  Measured dc power consumption of the linearizer using LTE signal:

(a) 1.88 GHz PA. (b) 0.9 GHz PA. 

measured W-CDMA power spectra of the 0.9 GHz PA with and without linearizer 

at Pout = 29 dBm. 

Even though the linear PAE improvement is remarkable, the PI/AI circuits 

consume very low dc power. As shown in Fig. 3.40, the linearizer of 1.88 GHz PA 

(and 0.9 GHz PA) consumed 1% (and 0.6%) of the total dc power. Thus, the PAE 

degradation by the linearizer is less than 0.5% and 0.3% for 1.88 / 0.9 GHz PAs. 
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3.8.3 LTE Measurement 

LTE performance was measured with a 10 MHz bandwidth 16-QAM signal 

(PAPR = 7.5 dB). The signal was obtained from the Agilent Signal Studio (option: 

N7624B) and E4438C signal generator. The results of 1.88 GHz PA is plotted in 

Fig. 3.41(a). The PA showed a PAE of 38.5% at Pout = 27.3 dBm while meeting 

ACLRE-UTRA = –31 dBc. The PAE of the main-stage alone is estimated to be 40.5% 

for 1.88 GHz PA. Since the PAPR of the LTE signal is quite higher than W-

CDMA signal (7.5 dB versus 3.4 dB), the linear Pout is further backed-off and thus 

the PAE improvement is slightly reduced to 3.2%. In the case of 0.9 GHz PA 

shown in Fig. 3.41(b), a linear PAE of 42.9% (meeting –31 dBc ACLR) was 

achieved at Pout = 27.7 dBm, which is 4.1% improvement compared with the case 

without linearizer. The linearizer consumed ~1% of the total dc power, as shown in 

Fig. 3.42, thus resulting in ~0.4% PAE degradation by the linearizer. 

To validate the linearization effect of the proposed linearizer, the dynamic 

AM-AM and AM-PM of 1.88 GHz PA were measured with AI and PI circuits 

separately using the test setup in Fig. 3.43 and the results are plotted in Fig. 3.44. It 

is worthwhile to note that the AI degrades AM-PM linearity and shows limited 

ACLR improvement (~0.9 dB). On the other hand, the proposed PI recovers both 

AM-AM and AM-PM distortion and improves ACLR by 4.2 dB. By employing 

PI/AI/hybrid bias, the ACLR of the PA is improved by 6.4 dB compared with the 

case without linearizer, thus meeting –39 dBc W-CDMA ACLR. 

Table 3.2 summarizes the measured results of the 1.88 / 0.9 GHz PAs, where 

LTE 10 MHz QPSK (PAPR = 6.7 dB) data is also included. The performance of 

recently reported linear CMOS PAs is summarized in Table 3.3. The measured 

efficiency and ACLR are among the best reported from CMOS PAs. 
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Figure 3.43:  Test setup for power and dynamic AM-AM/PM measurements. 

 

 

 

Figure 3.44:  Measured dynamic AM-AM and AM-PM of 1.88 GHz PA at Pout =

28.7 dBm using a W-CDMA signal. 
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TABLE 3.2 

MEASUREMENT SUMMARY OF THE LINEAR CMOS PAS 

Signal 

1.88 GHz PA 0.9 GHz PA 

Pout 

(dBm)

ACLR 

(dBc)

PAE

(%) 

Pout / PAE ↑

(dB / %) 

Pout 

(dBm)

ACLR

(dBc)

PAE

(%)

Pout / PAE ↑ 

(dB, %) 

W-CDMA 28.7 –39 44.3 1.1 / 4.4 29.0 –39 49.2 0.9 / 5.0 

LTE QPSK 28.0 –31 41.2 1.0 / 3.7 28.3 –31 45.4 0.7 / 4.0 

LTE 16-QAM 27.3 –31 38.5 0.9 / 3.2 27.7 –31 42.9 0.8 / 4.1 

“↑” means increments on linear Pout and PAE compared with the case without linearizer. 

 

 

 

TABLE 3.3 

PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART LINEAR CMOS PAS 

Ref 
CMOS 

Technology 
Signal 

Freq 
(GHz)

Pout 
(dBm)

Gain
(dB)

PAE
(%) 

ACLR 
(dBc) 

VDD 
(V) 

[20] GaAs HBT W-CDMA 1.95 28 N/A 44.5 –38 3.4 

[6]* 0.13 μm (SOI) W-CDMA 1.9 28.5 14.6 38.7 –38 6.5 

[8] 0.5 μm W-CDMA 1.75 24 23.9 29 –35 3.3 

[15]† 0.13 μm  W-CDMA 1.88 27.1 28.3 28 –40 3.0 

[17] 0.32 μm (SOI) W-CDMA 0.84 27.1 N/A 47.5 –36 4.0 

[19]† 0.18 μm W-CDMA 1.95 23.5 26 40 –33 3.4 

[21]* 0.18 μm & IPD W-CDMA 1.85 26.8 15.8 43.3 –37 3.5 

[22]* 0.18 μm LTE‡ 1.85 27.8 14.2 41 –31 3.5 

This 

work 

[32] 

0.32 μm (SOI)

W-CDMA 
0.9 29 28 49.2 –39 4.0 

1.88 28.7 24.5 44.3 –39 4.0 

LTE‡ 
0.9 27.7 28 42.9 –31 4.0 

1.88 27.3 24.5 38.5§ –31 4.0 

*Single-stage PAs.      †On-chip output matching.  

‡Uplink LTE 10 MHz-bandwidth 16-QAM (PAPR = 7.5 dB)  

§Estimated PAE of the main-stage amplifier only is 40.5%. 
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Figure 3.45:  Block diagram of the proposed multiband (MB) linear CMOS PA. 

3.9  A Single-Chain Multiband (MB) Reconfigurable 

Linear Power Amplifier in SOI CMOS 

Based on the MB reconfigurable matching structure and linearization 

technique described above, a single-chain MB linear CMOS PA is implemented. 

The details of the design, fabrication, and measurement results are presented below. 

3.9.1 MB Linear CMOS PA: Design 

Fig. 3.45 shows a block diagram of the proposed MB linear CMOS PA [33]. It 

consists of a reconfigurable single-chain PA core and a reconfigurable output 

matching network (OMN). The PA has two outputs and is designed to support any 

combinations of one low-band and one high-band out of five popular 3G/4G bands 

(Band 1/2/4/5/8), covering uplink UMTS/LTE frequency range of 824 ~ 1980 MHz 

[25]. Circuit reconfiguration is achieved by using the SOI CMOS switches made 

out of the same process as the PA core. Also, to improve the linear Pout and PAE, a 

phase-based linearizer described in Chapter 3.8 is employed and reconfigured 

according to the operating frequencies [32]. 
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Figure 3.46:  Schematic of the proposed MB reconfigurable linear CMOS PA. 
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The detailed schematic of the proposed PA is shown in Fig. 3.46. The PA core 

is based on a two-stage stacked-FET amplifier [6]. The high-band (HB) output path 

supports Band-1 as a natural band and can be reconfigured to support Band-2 and 

Band-4. The low-band (LB) output path supports Band-8 as a natural band and 

Band-5 as a reconfigured band. The transmit (Tx) frequencies of the five bands are 

also summarized in Fig. 3.46. Since only one output port is used at a time, the 

unused output is deactivated in the OMN using the path-selection networks and 

frequency reconfigurable networks [28], which was described in Chapter 2. 

RF switches are implemented using 0.32-μm 2.5-V NFETs, which show an 

on-state resistance (RS) of 0.8 Ω•mm and an off-state capacitance (Coff) of 310 

fF/mm, as summarized in Table 3.4. The switch design is aimed to minimize the 

loss due to the reconfiguration. As shown in [28], the loss of the path-selection 

network is a strong function of RS and thus large switches (6-stacked NFETs with a 

5 mm gate-width; RS ≈ 1 Ω) are used for S3 and S4 in Fig. 3.46. On the other hand, 

the frequency reconfiguration switches (S1, S2 and S5 in Fig. 3.46) have smaller 

size (6-stacked NFETs with 1~1.5 mm; RS ≈ 3.2~4.8 Ω) since the reactances for 

frequency reconfigurations (CF1, CF2, and CF3 in Fig. 3.46) are far greater (>90 Ω) 

than RS. A single-stack FET can handle a maximum RF voltage swing of 3.3 V and 

thus a switch cell composed of 6 FET-stacks shows P0.1dB more than 35 dBm, 

which is sufficient for 3G/4G handset applications. The measured power endurance 

of the SOI switch is plotted in Fig. 3.47. 

In the PA-core, circuit reconfiguration is applied to the interstage network as 

well as the internal FETs in the stack. The interstage matching is based on a high-

pass network consisting of two series capacitors and a shunt inductor. The values 

of the two series capacitors, Ci1 and Ci2 in Fig. 3.46, are designed for HB operation, 

and the capacitances are reconfigured by closing S11 and S12 during LB operation. 

The composite inductance of the shunt inductor, LT, is reconfigured according to 
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the frequency band of operation. For example, LT becomes Li at Band-8 (f0 = 897.5 

MHz) and is reconfigured for Band-5 (836.5 MHz) by turning S15 on. Likewise, 

S16 is closed during Band-1/2 operation and S17 and S18 are turned on for Band-2 

(1880 MHz) and Band-4 (1732.5 MHz) operation, respectively. 

To operate the stacked-FET cells at optimum PAE and power points, the 

individual FETs in the stack need to present the optimum load to the preceding 

FETs. For this purpose, the external drain-source Miller capacitors (Cm3 and Cm4 in 

TABLE 3.4 

TYPICAL RF SWITCH CHARACTERISTICS 

Characteristics SOI CMOS (this work) PIN diode [28] pHEMT [52] 

RS (Ω) 0.8 Ω·mm 1.0 1.9 

Coff (fF) 310 fF/mm 400 147 

FOM (=RS·Coff) (fsec) 250 400 280 

Power handling (dBm) 20log(N·Vm)+10 >38 >35 

※ FOM: figure-of-merit. 
N: number of stacks.  
Vm: rated drain-source voltage of single NFET (approximately 3.3 V). 

 

 

 

Figure 3.47:  Measured power handling of the SOI switch (at off-state) for various 

number of stacks (N). 
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Fig. 3.46) and the gate capacitors (C2, C3, and C4) have been reconfigured 

according to the frequency. Simple stacked-FET theory assumes that constant gate 

capacitances (C2 ~ C4) can be used irrespective of the frequency [5], [6]. However, 

this assumption is no longer valid if the parasitic capacitances cannot be neglected 

[37]. Since the output-stage FETs (M1 ~ M4) with a 20 mm gate-width have large 

parasitic capacitances and the common node of C2 ~ C4 is RF grounded through a 

wire-bond, the optimum load impedances of internal FETs change as a function of 

frequency. To compensate for this, the capacitances in the power-stage stacked-

FET cells are increased during LB operation by closing the switches, S6 ~ S10. 

Similar reconfiguration is also applied to the driver-stage using S13 and S14. 

As experimentally demonstrated in Chapter 3.8, the linearizer circuits are 

instrumental in achieving the required W-CDMA/LTE linearity while not 

compromising the PAE for CMOS PAs. The detailed circuit schematic of the 

linearizers is also shown in Fig. 3.46. The phase injection circuit provides the 

envelope-reshaped capacitance (CV) to the stacked-FET cells to recover the 

dynamic AM-PM distortion. Since the amount of the required capacitance injection 

for phase correction is different between HB and LB modes, the switches, S19, 

select one of the two varactors according to the operating frequency band groups 

(CV.HB: HB, CV.LB: LB). On top of the phase injection, the amplitude injection and 

hybrid bias are also activated during HB operation to further enhance the PA 

linearity. 

3.9.2 MB Linear CMOS PA: Measurement 

The PA was fabricated using an SOI CMOS process and all the MOSFETs 

have 0.32-μm gate length. Fig. 3.48 shows photographs of the SOI CMOS PA IC 

and test module. The IC was mounted on a 400-μm-thick FR4 substrate, where the 

reconfigurable OMN was realized using the off-chip capacitors and discrete SOI 

switches for the proof-of-concept experiment. The switches in the PA-core (S6 ~ 
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S19 in Fig. 3.46) are controlled by the integrated 3-bit logic decoder. 

The PA works with VDD = 4 V and idle current of 92 / 106 mA for HB / LB 

modes, and 3GPP uplink W-CDMA (Rel’99) signal was used for the initial testing. 

The measured results are plotted in Fig. 3.49. In the case of HB (Band 1/2/4) 

operation shown in Fig. 3.49(a), the PA showed gains higher than 23 dB and 

ACLRs better than –39 dBc up to the rated linear Pout’s (~28.5 dBm). The 

measured PAEs at the maximum linear Pout’s (meeting –39 dBc ACLR) were 

higher than 40.7% for all high bands. In the case of LB (Band 5/8) shown in Fig. 

3.49(b), the PA showed gains higher than 28 dB and ACLRs of better than –39 dBc 

 

Figure 3.48:  Photographs of the fabricated (a) SOI CMOS IC (size = 1.54 mm ×

0.68 mm) and (b) test module. 
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up to the rated linear Pout’s (~28.8 dBm). PAEs higher than 46% were measured for 

all the low bands while meeting –39 dBc ACLR. A separate test turning on and off 

the linearizer showed that the linear Pout’s and PAEs were improved by more than 

0.8 dB and 3.5%, respectively, through the use of the linearizer. 

LTE performance test was also performed using 10 MHz-bandwidth 16-QAM 

(PAPR = 7.5 dB) signal, and the results are shown in Fig. 3.50. The measured 

Figure 3.49:  Measured W-CDMA results of the MB linear CMOS PA: (a) High-
band. (b) Low-band. 

 

 

Figure 3.50:  Measured LTE results of the MB linear CMOS PA: (a) High-band.
(b) Low-band. 
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PAEs at the rated linear Pout’s (~27 dBm) meeting ACLRE-UTRA = –33 dBc were 

higher than 35.7% for all the high bands and 38.7% for the low bands. The 

measured PAEs for each band combination are summarized in Table 3.5. 

TABLE 3.5 

PAE SUMMARY FOR EACH BAND COMBINATION 

Band PAE (%) at W-CDMA –39 dBc PAE (%) at LTE –33 dBc 

B1/ B5 40.7 / 46.0 35.7 / 38.7 

B1 / B8 40.7 / 46.9 35.7 / 38.9 

B2 / B5 41.7 / 46.0 36.8 / 38.7 

B2 / B8 41.7 / 46.9 36.8 / 38.9 

B4 / B5 41.2 / 46.0 36.2 / 38.7 

B4 / B8 41.2 / 46.9 36.2 / 38.9 

 

 

TABLE 3.6 

PERFORMANCE COMPARISON OF THE REPORTED MULTIBAND W-CDMA PAS 

Ref 
PA (switch) 
technology 

N.out / 
core1

PAE (%)  ACLR
(dBc)

Output 
Matching B1 B2 B4 B5 B8

[26] 
GaAs HBT 

(FET) 
1 / 1 31 26 28 26.5 24.5 –37 Reconfiguration 

[27]2 pHEMT 5 / 2 40 40.5 40 44 42 –38 Broadband 

[28] 
GaAs HBT 
(PIN diode) 

2 / 2 39.1 40.7 38.7 43 43.3 –39 Reconfiguration 

[29] 
GaAs HBT 

(0.32 μm SOI)
5 / 2 38.0 39 37.5 41 41.1 –39 Reconfiguration 

[30] 
GaAs HBT 
(PIN diode) 

5 / 2 41.0 41.1 40.5 40.1 40.4 –39 Reconfiguration 

This 
work 
[33] 

0.32 μm SOI
[W-CDMA]

2 / 1 40.7 41.7 41.2 46.1 47.0 –39 Reconfiguration 

0.32 μm SOI
[LTE3] 

2 / 1 35.7 36.8 36.2 38.8 38.9 –33 Reconfiguration 

1 Number of the reconfigurable outputs / PA-cores. 
2 It is based on triple stacked-FET structure with separated VDD of each FET, resulting in 

very large optimum load impedance (Ropt = 25 ~ 30 Ω). 
3 LTE 10-MHz bandwidth 16-QAM signal with PAPR = 7.5 dB. 
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To estimate the reconfiguration loss of the PA, a single-band reference PA 

was also fabricated on the same chip using the fixed OMN. The reference PAs for 

HB / LB showed PAEs of 44 / 48.4% at the rated linear Pout’s (meeting W-CDMA 

ACLRs of –39 dBc). Thus, the PAE degradation due to multi-banding in our work 

are estimated to be of 1.5 ~ 3.3%, which is attributed to the losses of the switches 

and output matching. The PAE degradation is much smaller than that from the 

previous single-chain PA [26]. The performance of recently reported MB linear 

PAs is compared in Table 3.6. To the best of our knowledge, this is the first 

demonstration of 3G/4G MB reconfigurable CMOS PA using a single PA-core 

showing above 40% W-CDMA efficiency while meeting 3GPP linearity 

requirements with margin. The performance is comparable or better than GaAs-

based counterparts. 
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3.10  Summary 

In this study, a PA linearization technique based on the envelope-dependent 

phase injection (PI) has been proposed for highly linear and efficient CMOS PA. 

To achieve better efficiency and linearity of a standalone CMOS stacked-FET PA, 

the second-order harmonic termination and control of gate bias modulation are 

discussed. Together with the auxiliary amplitude injection and hybrid bias circuit, 

the fabricated 1.88 / 0.9 GHz W-CDMA SOI CMOS PAs meet the stringent 

linearity (ACLR < –39 dBc) across the entire output power range and show PAEs 

higher than 44 / 49% at 28.7 / 29.0 dBm, respectively, which are comparable to 

those of GaAs-based PAs. 

In addition, a single-chain multiband (MB) PA has been developed using an 

SOI CMOS process to cover multiple UMTS/LTE bands from 824 MHz to 1980 

MHz. To avoid the performance degradation by covering too wide bandwidth using 

a single PA-core, SOI CMOS switch-based reconfiguration is applied to the 

stacked transistor cells and interstage matching as well as the output matching. 

Combined with the reconfigurable structure and linearization technique, the 

fabricated PA showed PAE degradation of less than 1.5 ~ 3.3% compared with the 

single-band dedicated PA. The proposed PA design can offer significant 

advantages in terms of the PA module size and cost for 3G/4G mobile applications 

requiring global roaming. 
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Chapter 4 

Linearization of CMOS Power Amplif-

ier Covering Wideband Signal 

4.1 Introduction 

As a mobile communication standard is evolved from 3G UMTS to 4G LTE, 

the importance of high-speed data transmission is significantly increased. Contrary 

to the voice-centric 3G W-CDMA, the data-centric 4G LTE employs wideband 

signal as well as higher-level modulation scheme to maximize data transmission 

capacity. As a result, the peak-to-average power ratio (PAPR) of the LTE signal is 

far higher than that of the W-CDMA signal (7.5 dB for LTE 16-QAM versus 3.4 

dB for W-CDMA Rel’99 hybrid PSK) and thus the operating power range of LTE 

PAs should further be backed-off to maintain acceptable linearity. Moreover, the 

use of wideband signal (10/20 MHz for 4G versus 3.84 MHz for 3G) may give rise 

to performance degradation due to the non-quasi-static operation of a PA, thus 

causing nonlinearity including memory effect [1]-[3]. 

With the advent of the carrier aggregation technology for wide-banding 
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recently, the LTE signal with a bandwidth (BW) of wider than 40 MHz will be 

deployed not only for downlink but also for uplink [4]-[6]. Since a wideband signal 

contains high-speed envelopes, PA linearization should also work on the envelopes. 

Even though the envelope-based analog linearizers ([7], [8]) demonstrated the 

usefulness in terms of linear efficiency under 10-MHz BW LTE signal, however, 

their practical limitations under wider BW signals have not been investigated yet. 

Therefore, it is worthwhile to analyze the BW limiting factor of the envelope-based 

linearizer and propose a new solution for wideband application. 

This chapter deals with a linearization technique suitable for a wideband 

signal. Analysis shows that the envelope-based linearizer introduced in Chapter 3 is 

vulnerable to wideband signals. To overcome the limitation, the phase injection 

(PI) circuit structure is modified for feed-forward detection and a group delay 

circuit (GDC) is employed. Together with the GDC and PI circuits, the fabricated 

0.9 GHz linear SOI CMOS PA achieves high linear efficiency under 10/20/40 

MHz-BW LTE signals. This study is organized as follows: In Chapter 4.2, the BW 

limiting effect of envelope-based linearizers is analyzed and a simple solution is 

proposed. Chapter 4.3 presents a practical solution for covering wideband signal 

and miniaturizing circuit size by employing a compact GDC. The fabrication and 

measurement results of the proposed linear PA is presented in Chapter 4.4. 

4.2   Bandwidth Limitation of Envelope-Based Linearizers 

4.2.1 Analysis 

To investigate the BW limiting effect of the phase-based linearizer described 

in Chapter 3, the linear CMOS PA using PI was measured with 10/20-MHz BW 

LTE signals (16-QAM with PAPR = 7.5 dB). Fig. 4.1 shows the measured ACLRE-

UTRA of the PA with and without linearizer. This result shows that the linearization 

effect is limited below 10-MHz BW; linear Pout improvement is limited from 0.75 
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dB (at 10 MHz) to 0.2 dB (at 20 MHz). Since the PAPRs of the two signals are 

almost identical (~7.5 dB), one can see that one of the most limiting factors comes 

from the timing issue between the incoming input RF signal (VRF) and envelope-

reshaped signal (CV) of the phase injector. The BW limiting mechanism is 

illustrated in Fig. 4.2. Since CV experiences a time-delay during the envelope-

detection and shaping by the PI circuit, the time difference between VRF and CV 

 

Figure 4.1:  Measured bandwidth (BW) limiting effect of the linear CMOS PA

with phase injection (PI). (a) ACLRE-UTRA using 10-MHz BW LTE signal. (b)

ACLRE-UTRA using 20-MHz BW LTE signal. 

 

 

Figure 4.2:  (a) Block diagram of the linear PA with PI. (b) Time-domain input

RF signal (VRF) and injected capacitance (CV) waveforms. 
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(VCV) waveforms, td in Fig. 4.2(b), makes the phase injector perform non-ideal 

linearization, thus resulting in limited linearity improvement. 

The BW-limitation of the PA is also observed in simulation level. Fig. 4.3 

shows the simulated IMD3 of the linear CMOS PA with PI/AI under two-tone 

input condition (tone spacing of 4/10/20 MHz). Contrary to the 4-MHz and 10-

 

Figure 4.3:  Simulated two-tone IMD3 of the linear PA with PI/AI for various

tone-spacings (solid lines: lower IMDs, dotted/dashed lines: upper IMDs). 

 

 

 

Figure 4.4:  Simulated phase mismatch of the envelope-reshaped voltages with

respect to the incoming RF signal (VRF). (a) VCV. (b) VBIAS. 

 



 109

TABLE 4.1 

SIGNAL BANDWIDTH (BW = TONE-SPACING) VERSUS ANGULAR DELAY 

BW (MHz) Period (ns) Angular delay / ns (deg) Application 

1 1000 0.36 2G CDMA 

4 250 1.44 3G W-CDMA 

10 100 3.6 4G LTE (10 MHz) 

20 50 7.2 4G LTE (20 MHz) 

40 25 14.4 4G LTE 20+20 MHz (CA*) 

*Carrier aggregation. 

MHz BW cases, the PA under the 20-MHz BW signal exhibits a significant IMD 

asymmetry. As described in [9], the IMD asymmetry comes from the envelope 

asymmetry: especially when the upward (↗) and downward (↘) output envelopes 

show different behavior even with the same input signal amplitude, as shown in Fig. 

3.12. If the time delay (td) in Fig. 4.2 is translated to a phase-domain, the phase 

mismatches of VCV and VBIAS with respect to VRF can be obtained, as shown in the 

simulation results of Fig. 4.4. From the results, one can see that the phase 

mismatches are slightly reduced when Pout gets further increased. Also, the amount 

of phase mismatch is not proportional to the tone-spacing (signal BW). As a result, 

the 20-MHz BW result shows a significant linearity degradation due to the phase 

mismatch of larger than 30˚, compared to the 4-MHz and 10-MHz BW results. 

Since the envelope of a two-tone signal is time-periodic, the phase mismatch 

between VRF and CV (by td) can be derived. Once the two-tone spacing (BW) and td 

are determined, the phase mismatch at envelope frequency, θd, is calculated as 

360d dBW t       (4.1) 

where the unit of θd is degree. The relation between the signal BW and angular 

delay is summarized in Table 4.1. In the case of the signals with 1 ~ 4 MHz BWs 
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(for 2G CDMA and 3G W-CDMA applications), a time delay of several nano-

seconds does not affect the linearizer performance. In the case of the signal with 40 

MHz BW (for 4G LTE, two-carrier aggregation application), however, a time delay 

of a few nanoseconds significantly limits the linearization effect. To maintain the 

linearization effect under wideband signal condition, the amount of phase 

mismatch must be reduced below 5˚. 

4.2.2 Delay Correction 

To reduce the time delay (td), sub-circuits of the linearizer, which may have 

excessive RC time-constants, should be redesigned. In the case of PI circuit, the 

resultant envelope-reshaped signal (VCV) experiences two RC time-constants, one 

from CF || RF (envelope detector) and the other from RD || CB2 (envelope injector) in 

Fig. 3.31(b). Thus, we have reduced RD and CF values to 0 Ω and 5 pF, respectively. 

Two-tone simulation result of the linear PA with reduced RD and CF is plotted in 

Fig. 4.5. Compared to the previous design with RD = 50 Ω and CF = 15 pF (in 

Chapter 3), the modified design shows better performance in terms of phase 

 

Figure 4.5:  Delay correction by reducing RD and CF. (a) VCV and incoming RF

voltage (Vin) waveforms. (b) Phase mismatch of VCV. 
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mismatch (less than 6˚ at 10-MHz BW). Since the inverter-like envelope shaper 

(M6 and M7 in Fig. 3.31(b)) contains a parasitic gate capacitance (Cg.M6.M7), the 

composite capacitance for low-pass filter in the envelope detector, CF + Cg.M6.M7, 

becomes larger than CF. Thus, CF value can further be reduced unless the non-ideal 

RF filtering significantly limits the linearization effect. Even if RD was used in 

initial design to avoid the parallel resonance by CB2 and a bond-wire connecting M7 

and VP0 in Fig. 3.31(b), the absence of RD does not cause any stability issue. 

Furthermore, additional delay reduction is achieved by increasing the gate-

bias of the AI circuit (VGA in Fig. 3.31(b)). Fig. 4.6 shows the VBIAS waveform and 

phase mismatch of VCV by adjusting VGA. As the VGA value is increased, the phase 

mismatch of VCV (as well as VBIAS) is compensated, which means that the envelopes 

of VRF and VCV are getting aligned in-phase. Since a higher VBIAS of a CS amplifier 

(M1 in Fig. 3.31(a)) gives rise to larger gate-source capacitance (Cgs.M1), we can 

guess that this capacitance according to VBIAS provides a time-delay to match VCV 

(and VBIAS) and VRF in phase, even if the exact mechanism cannot be explained due 

Figure 4.6:  Delay correction by increasing VGA. (a) VBIAS and incoming RF

voltage (Vin) waveforms. (b) Phase mismatch of VCV. 
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Figure 4.7:  Measured LTE results of the 1.88 GHz linear CMOS PA after

adjusting RD/CF/VGA. (a) 10-MHz BW result. (b) 20-MHz BW result. 

to the recursively connected structure between the envelope-detection path and 

VBIAS injection path of the AI circuit. 

To demonstrate the linearization effect of the modified linearizer under 

wideband signal condition, a 1.9 GHz linear PA was fabricated using a 0.28-μm 

SOI CMOS process (TowerJazz CS18QT1). The baseline design of the PA is 

almost identical to the PA described in Chapter 3 except for RD / CF / VGA values. 

Three different cases (PI only, PI+AI, and no linearization) are compared; and the 

measured results are plotted in Fig. 4.7. In the case of 10-MHz LTE operation 

shown in Fig. 4.7(a), the linear PA exhibited an ACLRE-UTRA of –31 dBc and a PAE 
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Figure 4.8:  Two-tone simulation results of the linear CMOS PA with RD/CF/VGA

adjustments under 10/20/40 MHz BWs. (a) Phase mismatch of VBIAS. (b) IMD3. 

 

of 37.8% at Pout = 27.2 dBm. Compared to the case of no linearization (reference 

PA), the maximum linear Pout and PAE, which are defined by the Pout and PAE 

meeting –31 dBc ACLRE-UTRA, are increased by 0.65 dB and 2.5%, respectively. In 

the case of 20-MHz operation shown in Fig. 4.7(b), the linearizer also helped the 

PA achieve linear Pout of 0.6-dB higher than that of a reference PA, which 

improvement is in contrast to the result of Fig. 4.1(b). It should also be noted in Fig. 

4.7(b) that the PA with PI+AI showed almost no ACLR asymmetry, compared to 

the result with PI only. Thus, it is validated that the AI has an effect of delay (td) 

correction, since the ACLR asymmetry (memory effect) is typically caused by the 

timing mismatch between VRF and VCV (and VBIAS). 

Even though the PA maintained the linearization effect at 20-MHz LTE BW, 

however, the improvement is achieved at the expense of AI (VBIAS) over-injection, 

thus resulting in limited PAE improvement (1.6%) compared to the 10-MHz BW 

case (2.5%). Also, the linearizer still showed no measurable linearity improvement 

under the 40-MHz BW LTE signal (even with not shown here). As one can see 

from the simulated phase mismatch and IMD results in Fig. 4.8, this linearizer 
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topology practically corrects for the nonlinearity only if the signal BW is less than 

10 ~ 15-MHz. Thus, more effective linearization technique is required to overcome 

the limiting effect while maintaining linear PAE improvement. 

4.2.3 Feedforward Envelope-Detection Structure with a Delay T/L 

Since the BW limiting effect comes from the time-delay of the envelope-

reshaped signal (VCV) during envelope-detection and injection, the timing mismatch 

can be completely compensated by employing a delay line in the RF path. For this 

purpose, the envelope-detection structure in Fig. 4.2(a) should be modified to the 

feedforward (FF) types, as shown in Fig. 4.9. Even if the FF-detection structure in 

 
Figure 4.9:  Envelope-detection structures. (a) Feedforward (FF) detection. (b)

Feedforward/group-delay (FF/GD) detection. 

 

 

 
Figure 4.10:  (a) Time-adjusted input RF signal (VRF2) by the delay circuit. (b)

Simulated phase mismatch of VCV for various tone-spacings. 
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Fig. 4.9(a) seems to perform better linearization than the feedback-detection 

structure in Fig. 4.2(a), in reality, both show similar performance. This is due to the 

fact that the driver-stage consumes far smaller time-delay (< 0.5 ns) than that of the 

linearizer (2 ~ 3 ns). Thus, the feedforward/group-delay (FF/GD) detection 

structure shown in Fig. 4.9(b) is proposed in this work. Conceptual time-domain 

waveforms of the original input signal (VRF1), time-delayed input signal (VRF2), and 

envelope-reshaped CV are illustrated in Fig. 4.10(a), where VRF2 and CV are aligned 

in-phase. The delay correction topology of this work is quite similar to a 

feedforward PA [1]. If the transmission line (T/L) has a time delay of td, its 

electrical length (phase) at a carrier frequency (fc), θc, is calculated as 

360c c df t       (4.2) 

where the unit of θc is degree. Two-tone simulation result in Fig. 4.10(b) shows 

that the designed FF/GD-based linear PA, in which a T/L with a delay of 2.5-ns 

was employed, exhibits no phase mismatch under 20-MHz (and higher) BW. It 

should also be noted in Fig. 4.10(b) that the phase mismatch curve is not a function 

of Pout due to the FF-detection structure without AI, which result is in contrast to 

that of the feedback-detection structure shown in Fig. 4.6(b). 

To validate the usefulness of the FF/GD-type phase linearizer, a 0.9 GHz SOI 

CMOS linear PA with a delay T/L was fabricated and tested. The delay line with a 

delay of 3 ns, which corresponds to an equivalent electrical length of 972˚ at 0.9 

GHz, was implemented on a 25-mil-thick Rogers RT6010 substrate (εr ≈ 10.2, tanδ 

= 0.002) for proof-of-concept. The PA was measured using the 10/20/40-MHz LTE 

signals, where the 40-MHz BW LTE signal was obtained by doubling the sampling 

clock of the 20-MHz BW signal in the Agilent E4438C signal generator. The 

measured ACLRE-UTRA and PAE of the linear PA are plotted in Fig. 4.11. The PA 

with FF/GD-type linearizer showed linear Pout / PAE improvements of higher than 
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Figure 4.11:  Measured LTE ACLRE-UTRA of the linear CMOS PA with FF/GD

structure for various LTE BWs. Delay was realized with a T/L on a PCB. (a) 10-

MHz BW. (b) 20-MHz BW. (c) 40-MHz BW. 
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TABLE 4.2 

MEASUREMENT SUMMARY OF THE LINEAR PA USING A T/L DELAY CIRCUIT 

BW (MHz) ACLRE-UTRA (dBc) Pout (dBm) PAE (%) Pout / PAE improvement 

10 –31 27.6 43.0 0.95 dB / 4.1% 

20 –31 27.6 43.2 1.0 dB / 4.4% 

40 –31 27.3 41.7 0.95 dB / 4.2% 

0.95 dB / 4.1% over the entire signal BW cases. It should be noted that the 

measured improvements at 40-MHz BW case is almost identical to the 10/20-MHz 

BW results, thus validating the usefulness of the proposed FF/GD-type linearizer. 

The measurement summary of the PA is presented in Table 4.2. 

4.3   Group Delay Circuit 

The measured result of the PA using a delay T/L above is impressive since no 

BW limiting effect is observed up to 40-MHz (or higher) LTE BW. However, the 

electrical length of the T/L is too bulky to be adopted for practical handset PA 

applications when a delay of several nanoseconds is required, as calculated in (4.2). 

To reduce the size of delay circuit while obtaining a large group delay, a group 

delay circuit (GDC) is designed and fabricated in this chapter. 

4.3.1 Positive GDC versus Negative GDC 

Fig. 4.12 shows block diagrams of the linear PAs with PI circuits and GDCs. 

Since GDCs reported so far are sub-divided into a positive GDC and a negative 

GDC [10]-[20], the two types of delay circuits can be adopted in the different 

paths; a positive GDC is inserted in the RF path as shown in Fig. 4.12(a) whereas a 

negative GDC is inserted in the envelope-detector path as shown in Fig. 4.12(b). 

The group delay (GD), which is also called as the “true-time delay”, is defined as 
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21S
GD







   (4.3) 

where ω is the carrier angular frequency (ω = 2π fc), and the units of ∠S21 and ω 

are radian and radian/second, respectively. It is worthwhile to note that the GD of a 

T/L can directly be calculated from the electrical phase at carrier frequency, as 

shown in (4.2). However, this relation becomes invalid when the GDC is realized 

with lumped-elements and transistors, because most RF circuits except T/Ls do not 

have linear phase characteristics and thus they show dispersive GDs. 

Contrary to the positive GD, the negative GD concept is somewhat confusing 

because the signal which has traveled through a normal material cannot show time-

leading property than the incident signal under normal condition (time-causality). 

As described in [19], the negative GD can only be obtained through the signal 

attenuation condition, and thus it causes a large power loss. Its usefulness was 

validated in the feedforward PA [19], since the negative GDC can remove the 

bulky and lossy output delay line which has a significant impact on power loss and 

PAE degradation. Even though the loss at the input stage can be compensated by 

employing a small-signal amplifier for our application, however, it requires / 

consumes additional biases / dc power. Moreover, negative GDCs typically have 

narrowband characteristics and thus multi-stage GDCs are required, which further 

 

Figure 4.12:  Block diagram of the FF/GD-detection type linear CMOS PA using

(a) a positive GDC and (b) a negative GDC. 
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increase the input power loss (more than 20 dB) [15]-[20]. Due to the practical 

limit, we have employed a positive GDC. To achieve a large GD while maintaining 

compact size, a left-handed (high-pass type) T/L-based GDC, whose concept was 

introduced in [13] and [14], is employed. 

4.3.2 Left-Handed T/L-Based GDC 

Fig. 4.13 shows a schematic of the left-handed T/L-based GDC with N unit 

cells. Each unit cell consists of two series capacitors and a shunt inductor. To 

obtain a delay of several nanoseconds, multiple unit cells are connected in cascade. 

Since this circuit is a high-pass network, a cut-off frequency (also called as Bragg 

frequency), fB, exists [13], [14]. The cut-off frequency (fB) and GD are derived as 

1

4
Bf

LC
    (4.4) 

2

2

4 1

N
GD

LC 


 .
   (4.5) 

The characteristics impedance of the GDC, ZT, is calculated as 

T

L
Z

C


.
   (4.6) 

To maximize the return loss, ZT should be close to the system impedance (Z0). 

 

Figure 4.13:  Schematic of the left-hand (LH) T/L-based positive GDC. 
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Based on the design equations above, a 3.2-ns GDC was designed at 0.9 GHz. 

The designed circuit has six unit cells, where each cell is composed of 2C = 3.0 pF 

and L = 7.5 nH. Calculation results using (4.4) ~ (4.6) show that each unit cell has 

a delay of 0.53-ns, and the return loss and cut-off frequency are 15.3 dB and 0.75 

GHz, respectively. The simulated return loss, insertion loss, and GD are plotted in 

Fig. 4.14. It should be noted in Fig. 4.14(a) that the target frequency of the GDC 

should be at least 100-MHz higher than the Bragg frequency. Since the GDC has a 

dispersive characteristics in terms of GD, it cannot be adopted for ultra-wideband 

applications. At 0.9 GHz, the GDC has a delay of 3.2-ns and its ±10% delay 

bandwidth is 38 MHz (4.2%) while maintaining return loss of better than 15 dB. 

To check the feasibility of the GDC in terms of delay dispersion, a circuit 

envelope simulation was performed using the Agilent ADS. Fig. 4.15 shows the 

simulated dynamic AM-AM, dynamic AM-PM, and power spectral density of the 

GDC under 40-MHz BW LTE signal (two-carriers) condition. Even though the 

dynamic AM-AM and AM-PM show a little bit dispersive characteristics as shown 

in Fig. 4.15(a) and 4.15(b), however, it does not affect any significant linearity 

 
Figure 4.14:  Simulated results of the designed 0.9 GHz GDC with 6 unit cells. (a)

Return loss, insertion loss, and group delay. (b) Its magnified plot. 
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problem, which is validated through the power spectra plot in Fig. 4.15(c): its 

adjacent channel power is almost identical to that of an ideal T/L case. The 

simulated AM-AM/PM dispersion characteristics of the GDC for various LTE 

signal BWs (10/20/40/60 MHz) are also plotted in Fig. 4.16. In the case of 60-MHz 

BW LTE signal (three-carriers), the delay difference of the GDC at lower 

frequency (870 MHz) and upper frequency (930 MHz) is almost 1-ns, as shown in 

 
Figure 4.15:  Simulated envelope-dispersion characteristics of the designed GDC

under the 40-MHz BW (20 MHz, 2-channel) LTE signal. (a) Dynamic AM-AM.

(b) Dynamic AM-PM. (c) Power spectra density. 

 

 

 
Figure 4.16:  Simulated envelope-dispersions of the designed GDC for various

BW (10/20/40/60 MHz) signals. (a) Dynamic AM-AM. (b) Dynamic AM-PM. 
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Fig. 4.14(b). This means that the delay dispersion makes the phase mismatch by 

21.6˚ when two-tone input signal is used, as shown in Table 4.1. Thus, the AM-PM 

dispersion of the GDC becomes larger when higher signal BW is used. 

4.4   Fabrication and Measurement 

For the proof-of-concept experiment, a 0.9 GHz linear PA was implemented 

using a 0.28-μm SOI CMOS process (TowerJazz CS18QT1). The IC contains a 

two-stage PA core and a PI circuit, whose design is almost identical to that of Fig. 

3.31 except for the feed-forward detection structure and reduced CF and RD values. 

 

Figure 4.17:  Photographs of the fabricated (a) linear PA IC and (b) PA module

with an external LH T/L-based GDC. 
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The series capacitors and shunt inductors of the GDC (in Fig. 4.13) are realized 

with the lumped capacitors (Murata GJM03) and inductors (Coilcraft 0302CS). Fig. 

4.17 shows photographs of the fabricated SOI CMOS IC (size = 1.39 mm × 0.61 

mm) PA module. Even if the lumped capacitors are not integrated, they can easily 

be integrated in an SOI PA IC and thus the size can further be reduced. 

4.4.1 GDC Measurement 

Prior to the LTE measurement of the overall PA, small-signal characteristics 

of the GDC were measured using the vector network analyzer. Fig. 4.18(a) shows 

the measured insertion loss and GD of the GDC. The GDC showed an insertion 

loss of 1.7 dB and a GD of 3.2-ns at 0.9 GHz, which are almost identical to the 

simulation results. The GD bandwidth (meeting ±10%) is 45 MHz, which 

corresponds to the fractional bandwidth of 5%. For more comparison, two GDCs 

using two different inductor models (Coilcraft 0302CS and Murata LQP03), and a 

T/L delay circuit on a Rogers RT6010 substrate were also measured and the results 

are plotted in Fig. 4.18(b). Compared to the T/L delay circuit with a loss of 0.7 dB 

 
Figure 4.18:  (a) Measured insertion loss and group delay of the 0.9 GHz 3.2-ns

LH T/L-based GDC. (b) Measured results of a T/L delay (Rogers RT6010), a GDC

using the Coilcraft 0302CS inductors, and a GDC using Murata LQP03 inductors. 



 124

and GD of 3.1 ns, the two GDCs have a little bit dispersive characteristics in terms 

of insertion loss and GD near 0.9 GHz. Even though the GDC using the LQP03 

inductors showed loss of 1.5-dB higher than the GDC using the 0302CS inductors, 

almost identical GDs are achieved between the two GDCs. 

Fig. 4.19 shows the measured ACLR characteristics of the source signal and 

GDC under 60-MHz BW LTE signal. As one can see from Fig. 4.19, the GDC 

does not cause any ACLR degradation (less than –55 dBc for both case), even 

though large GD dispersion is observed at 60-MHz BW as shown in Fig. 4.16. 

4.4.2 LTE Measurement 

The measured LTE performance of the linear PA is plotted in Fig. 4.20. In the 

case of 10-MHz and 20-MHz BW LTE operations, the PA showed ACLRE-UTRA of 

–31 dBc and PAE of 44.1% at Pout = 28.0 dBm. Thus, the proposed linearizer helps 

the PA improve the linear Pout and PAE by 1.1 dB and 4.5%, respectively, 

compared to the results without linearizer (standalone PA). In the case of 40-MHz 

BW LTE operations, the PA showed ACLRE-UTRA of –31 dBc and PAE of 42.9% at 

Pout = 27.7 dBm, which means that the maximum linear Pout / PAE are improved by 

 

Figure 4.19:  Measured ACLRE-UTRA characteristics using a 60-MHz BW LTE

signal. (a) Source signal. (b) GDC. 
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TABLE 4.3 

MEASUREMENT SUMMARY OF THE LINEAR PA USING THE LH T/L-BASED GDC 

BW (MHz) ACLRE-UTRA (dBc) Pout (dBm) PAE (%) Pout / PAE improvement 

10 –31 28.0 44.2 1.1 dB / 4.5% 

20 –31 28.0 44.1 1.1 dB / 4.5% 

40 –31 27.7 42.9 0.85 dB / 3.4% 

 

0.85 dB / 3.4%. Even if the maximum linear Pout (meeting –31 dBc ACLR) of the 

40-MHz BW case is slightly reduced compared to the 10/20-MHz BW cases, it still 

validates that the amount of Pout improvement is well maintained. Since the 

standalone PA shows slightly dispersive ACLR characteristics, the PA 

performance at 40-MHz BW can further be improved when the standalone PA and 

delay of the GDC are fine optimized. Table 4.3 summarizes the measured LTE 

results of the PA. 
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Figure 4.20:  Measured LTE results of the fabricated PA with a GDC for various

signal BWs. (a) 10-MHz BW. (b) 20-MHz BW. (c) 40-MHz BW. 
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4.5  Summary 

In this work, the BW limiting factor of the envelope-based linearizer has been 

analyzed and investigated. Analysis showed that the timing mismatch between the 

incoming RF signal and envelope-reshaped capacitance causes a phase mismatch 

of the envelope signal, thus significantly degrading the linearization effect under 

the signal BW of higher than 20 MHz. To resolve the problem, the phase injection 

(PI) circuit has been modified to the feed-forward-type envelope-detector, and a 

compact left-handed T/L-based group delay circuit (GDC) have been proposed. 

To demonstrate the usefulness of the proposed linearizer, a 0.9 GHz linear 

CMOS PA was fabricated using an SOI CMOS process. The implemented PA with 

PI circuit and off-chip GDC achieved linear efficiency (–31 dBc ACLR) of higher 

than 44% under the 10-MHz and 20-MHz BW LTE signals (16-QAM with PAPR 

= 7.5 dB). The linearizer also helped the PA to maintain the linearization effect at 

40-MHz BW condition: linear PAE of 42.9% and ACLR of –31 dBc. 

With the strong demand for wideband signal operation for higher data-rate 

uplink transmission, the proposed linear CMOS PA can be a practical solution for 

4G LTE handset covering wide signal BW of higher than 40-MHz. 



 128

4.6  References 

[1] S. C. Cripps, RF Power Amplifier for Wireless Communications, 2nd ed., 

Norwood, MA: Artech House, 2006. 

[2] J. Xia, X. Zhu, L. Zhang, J. Zhai, and Y. Sun, “High-efficiency GaN Doherty 

power amplifier for 100-MHz LTE-advanced application based on modified 

load modulation network,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, 

pp. 2911–2921, Aug. 2013. 

[3] C. Ma et al., "A wideband Doherty power amplifier with 100 MHz 

instantaneous bandwidth for LTE-advanced applications," IEEE Microw. 

Wireless Compon. Lett., vol. 23, no. 11, pp. 614–616, Nov. 2013. 

[4] M. A. Al-Shibly, M. H. Habaebi, and J. Chebil, "Carrier aggregation in long 

term evolution-advanced," in IEEE Control and System Graduate Research 

Colloquium (ICSGRC). Dig., Jul. 2012, pp. 154–159. 

[5] J.-E. Mueller et al., "Requirements for reconfigurable 4G front-ends," in IEEE 

MTT-S Int. Dig., Jun. 2013, pp. 1–4. 

[6] S. Jin, M. Kwon, K. Moon, B. Park, and B. Kim, “Control of IMD asymmetry of 

CMOS power amplifier for broadband operation using wideband signal,” IEEE 

Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3753–3762, Oct. 2013. 

[7] S. Jin, B. Park, K. Moon, M. Kwon, and B. Kim, "Linearization of CMOS 

cascode power amplifiers through adaptive bias control," IEEE Trans. Microw. 

Theory Tech., vol. 61, no. 12, pp. 4534–4543, Dec. 2013. 

[8] U. Kim and Y. Kwon, "A high-efficiency SOI CMOS stacked-FET power 

amplifier using phase-based linearization," IEEE Microw. Wireless Compon. 

Lett., vol. 24, no. 12, pp. 875–877, Dec. 2014. 

[9] J. Vuolevi and T. Rahkonen, “Measurement technique for characterizing 

memory effects in RF power amplifiers,” IEEE Trans. Microw. Theory Tech., 

vol. 49, no. 8, pp. 1383–1389, Aug. 2001. 

[10] S. Park, H. Choi, and Y. Jeong, "Microwave group delay time adjuster using 

parallel resonator," IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 

109–111, Feb. 2007. 



 129

[11] H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, "Linear tunable 

phase shifter using a left-handed transmission line," IEEE Microw. Wireless 

Compon. Lett., vol. 15, no. 5, pp. 366–368, May 2005. 

[12] H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, "Compact left-

handed transmission line as a linear phase-voltage modulator and efficient 

harmonic generator," IEEE Trans. Microw. Theory Tech., vol. 55, no. 3, pp. 

571–578, Mar. 2007. 

[13] C.-Y. Kim, J. Yang, D.-W. Kim, and S. Hong, "A K-band CMOS voltage 

controlled delay line based on an artificial left-handed transmission line," IEEE 

Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 731–733, Nov. 2008. 

[14] W. Tang and H. Kim, "Compact, tunable large group delay line," in IEEE 

Wireless and Microw. Tech. Conf. Dig., Apr. 2009, pp. 1–3. 

[15] B. Ravelo, A. Perennec, and M. Le Roy, "Synthesis of broadband negative 

group delay active circuits," in IEEE MTT-S Int. Dig., Jun. 2007, pp. 2177–2180. 

[16] B. Ravelo, A. Perennec, M. Le Roy, and Y. G. Boucher, "Active microwave 

circuit with negative group delay," IEEE Microw. Wireless Compon. Lett., vol. 

17, no. 12, pp. 861–863, Dec. 2007. 

[17] H. Noto, K. Yamauchi, M. Nakayama, and Y. Isota, "Negative group delay 

circuit for feed-forward amplifier," in IEEE MTT-S Int. Dig., Jun. 2007, pp. 

1103–1106. 

[18] Y. Jeong, H. Choi, and C. D. Kim, "Experimental verification for time 

advancement of negative group delay in RF electronic circuits," Electronics 

Letters, vol. 46, no. 4, Feb. 2010. 

[19] H. Choi, Y. Jeong, C. D. Kim, and J. S. Kenney, “Efficiency enhancement of 

feedforward amplifiers by employing a negative group-delay circuit,” IEEE 

Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1116–1125, May. 2010. 

[20] J. Jeong, K. Mok, J. Kim, Y. Jeong, and J. Lim, "Negative group delay circuit 

with independently tunable center frequency and group delay," in IEEE Asia-

Pacific Microw. Conf. Dig., Nov. 2013, pp. 197–199. 



 130

Chapter 5 

Conclusions 

5.1 Research Summary 

In this Dissertation, studies on multiband (MB) reconfigurable structure and 

linearization of a CMOS handset power amplifier (PA) have been presented. To 

implement the reconfigurable output matching network (OMN) for 3G/4G 

multiband PAs, a design methodology has been presented together with details of 

closed-form design equations. The analysis shows how the power, frequency, and 

output-path reconfigurable networks can be co-designed with a fixed OMN to 

reduce the overall size and loss. To demonstrate the usefulness of the proposed 

reconfigurable networks, a 5 mm × 6 mm tri-band PA module, which covers either 

band 1/2/5 or band 1/4/8, has been fabricated for 3G handset applications using 

GaAs HBT process and multi-layer substrate. Measured W-CDMA results of the 

PA meets the UMTS linearity requirement with margin (–39 dBc ACLR) at all the 

target frequency bands while maintaining minimal efficiency degradation (less than 

2% compared to a single-band dedicated PA), thus validating the usefulness of the 

proposed reconfigurable OMN. 
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To achieve high linear efficiency of a CMOS PA, a phase-based linearization 

has been proposed. The proposed phase (capacitance) injection circuit is composed 

of an envelope-detector and an envelope-shaper with a varactor. The envelope-

reshaped capacitance by the linearizer effectively corrects for the dynamic AM-PM 

distortion and helps the PA recover the dynamic AM-AM as well. In addition, a 

hybrid bias is employed to set the power-dependent static bias to help recover the 

linearity at backed-off power levels. Together with the standalone stacked-FET PA 

design and the auxiliary amplitude injection/hybrid bias, the fabricated AM-PM 

linearizer helps the 1.88 GHz and 0.9 GHz SOI CMOS linear PAs achieve best 

linear efficiencies among the reported CMOS PAs. Then, the MB reconfigurable 

structure and linearization technique have been combined together to implement a 

single-chain MB reconfigurable linear CMOS PA for practical 3G/4G handset PA 

applications. The single-chain PA supports any combination of two bands, one 

from the low-band (0.8 ~ 0.9 GHz) group and the other from the high-band (1.7 ~ 

2.0 GHz). The fabricated MB CMOS PA showed minimal efficiency degradation 

(less than 3.3%) compared with the single-band dedicated PA with W-CDMA 

PAEs in excess of 46% for low-band and 40.7% for high-band. 

Finally, the signal-bandwidth limiting effect of the above linearizer has been 

analyzed and a solution has been proposed. The analysis reveals that the timing 

mismatch between the incoming RF signal and envelope-reshaped signal, which 

comes from the envelope detector and shaper, makes the linearizer limit the 

linearization effect of the overall PA below 10 ~ 15 MHz LTE bandwidths. This 

problem has been resolved by employing a delay transmission line (T/L) with a 

delay of 2 ~ 3 ns. To remove the bulky T/L while maintaining the linearization 

effect under 40 MHz and higher LTE bandwidths, a compact left-handed T/L-

based group delay circuit has been adopted for practical application. The fabricated 

feedforward-detection-type SOI CMOS linear PA with the delay circuit showed its 
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linearization effect under the 40 MHz uplink LTE signal condition. 

With the strong demands for MB coverage and wideband signal operation of 

the 3G/4G mobile communication standards, the proposed reconfigurable linear 

CMOS PA can be a practical solution for UMTS/LTE multiband Tx applications. 

5.2 Future Works 

The study discussed in Chapter 4 has two future works for size miniaturization 

and further linearity improvement. Even though the linear CMOS PA with phase-

injector and group delay circuit (GDC) showed its usefulness under the 40-MHz 

bandwidth LTE signal, the number of unit cells in the GDC is relatively excessive 

and thus the use of six external SMT inductors cannot be acceptable for practical 

handset PA requiring compact size and low cost. Thus, an additional effort is 

demanded to further reduce the time delay. Since the envelope shaper also 

contributes for the time delay, it can be removed to obtain smaller delay while 

compromising the linearizer performance. As a result, a small form-factor of the 

PA module can thus be achieved. 

For stronger linearity improvement, a multi-section configuration of the phase 

injector can be proposed. Since the phase injector may cause the problems on the 

return/insertion losses and RF bandwidth when a single phase injector employs an 

excessive varactor capacitance, the multi-section phase injector (e.g. low-pass pi-

network) is able to reduce the burdens of losses and RF bandwidth while achieving 

stronger dynamic AM and PM corrections. If the two solutions proposed above are 

combined together, the CMOS linear PA can achieve further linearity improvement 

with a small form-factor, even with wider signal bandwidths. 



 133

초  록 

본 논문에서는 재구성이 가능한 다중대역 선형 CMOS 

전력증폭기에 관한 연구를 수행하였다. 오늘날 3세대 UMTS 및 4세대 

LTE 이동통신 주파수 대역은 나라와 지역별로 다양하게 분포되어 있기 

때문에, 단말기용 전력증폭기는 이러한 많은 주파수 대역을 지원해야 

한다. 또한, 고속 데이터 송수신의 시대가 도래함에 따라, 전력증폭기는 

넓은 대역폭을 가진 신호에 대해서도 선형 증폭을 해야 한다. CMOS 

공정을 이용한 전력증폭기 회로 제작이 가격과 크기 측면에서 이점이 

있으나, CMOS 소자의 낮은 항복전압 및 비선형 특성으로 인해 와트 

(Watt) 단위의 선형 CMOS 전력증폭기를 설계하는 것은 매우 어렵다. 

위와 같은 요구와 문제를 해결하기 위해, 본 논문에서는 다중대역 

선형 CMOS 전력증폭기에 적합한 두 가지 방법(재구성이 가능한 

다중대역 정합 구조와 선형화 기법)을 제안한다. 제안된 재구성이 

가능한 다중대역 정합 구조는 비슷한 주파수 대역 그룹 내에서는 크기를 

줄이기 위해 증폭기 코어를 공유하며, 전력/주파수/출력포트를 재구성 

할 수 있는 회로망을 포함한다. 따라서, 이 구조는 복수의 주파수와 

전력을 가진 주파수 대역 그룹을 지원할 수 있다. 이와 같은 재구성 

방법을 본 논문에서는 정량적으로 분석하였고, 실험적으로 검증하였다. 

InGaP/GaAs HBT 공정으로 제작한 재구성이 가능한 삼중대역 (tri-

band) UMTS 전력증폭기는 각각의 단일밴드 전력증폭기의 최대 선형 

효율 대비 2% 이하의 낮은 효율 감소를 보여주었다. 

CMOS 전력증폭기의 선형화를 위해서는 위상 기반의 선형화 

기법이 제안되었다. 전력증폭기의 비선형성은 변조신호의 dynamic 

AM-AM 및 AM-PM에 의해 결정되므로, 선형화를 위해 이 두 가지가 

동시에 고려되어야 한다. 이전에 제시된 선형화는 주로 신호 포락선 

(envelope) 기반의 바이어스를 공통-소스 FET의 gate에 공급하는 
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방법임에 반해, 제안된 AM-PM 선형화 기법은 전압-제어 캐패시터 

(varactor)와 포락선-재형성 (envelope-reshaping) 회로를 사용한다. 

또한, 이 방법은 AM-AM 선형성 역시 개선할 수 있다. 제안된 선형화 

기법의 성능을 검증하기 위해 1.88 GHz / 0.9 GHz stacked-FET 

전력증폭기가 SOI CMOS 공정을 통해 제작되었다. 측정 결과, 이 

회로는 1.88 GHz / 0.9 GHz 에서 (–39 dBc의 W-CDMA ACLR을 

만족하면서) 각각 44% / 49% 의 선형 효율을 보여주었다. 더 나아가, 

단일-체인의 다중대역 선형 CMOS 전력증폭기도 위에서 설명한 두 

가지 기법을 적용하여 SOI 공정으로 구현하였다. 제작된 다중대역 

전력증폭기는 두 개의 출력과 다섯 개의 UMTS/LTE 주파수 대역을 

지원하며 (824-1980 MHz), W-CDMA 선형 효율을 40.7% 이상 

유지하면서도, 단일대역 전용 CMOS 전력증폭기 대비 3.3% 이하의 

낮은 효율 감소를 보였다. 

마지막으로, 앞서 설명한 CMOS 전력증폭기의 선형화 방법이 신호 

대역폭의 증가에 따라 선형화의 크기가 감소하는 문제에 관해 

논의하였고, 해결책을 제안하였다. 들어오는 RF 입력신호와 포락선-

재생성을 통해 생성된 선형화 신호 간의 시간적인 지연 차이로 인해, 

앞서 제시했던 선형화기의 선형화 효과는 신호 대역폭이 증가할수록 

(LTE 20 MHz 또는 그 이상의 대역폭에서) 크게 감소한다. 이 문제를 

해결하기 위해 작은 크기를 가진 군 지연 회로(group delay circuit)를 

본 전력증폭기에 적용하였고, 측정 결과, 선형화 효과는 40 MHz 이상의 

넓은 대역폭을 가진 LTE 신호에 대해서도 유지가 됨을 확인하였다. 

 

주요어: CMOS, 선형화, LTE, 다중대역, 전력증폭기, 재구성이 가능한, 

SOI, stacked-FET, W-CDMA 
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