237 research outputs found

    Automated procedures for quantification of rhizosphere physical properties in micro CT images

    Full text link
    The rhizosphere, i.e. the zone of soil immediately surrounding plant roots plays a prominent role in supplying plants with water and nutrients. However, surprisingly little is known about rhizosphere physical properties and how they affect root growth, water and nutrient uptake. The lack of non-invasive and non-destructive imaging techniques necessary to observe living roots growing in undisturbed soil have been a main reason for this shortcoming. Recent advances in synchrotron X-ray micro tomography (CMT) provide the potential to directly observe soil physical properties around living roots in-situ.In this work we develop procedures for assisting scientist to study the soil properties by visualizing and automatically processing micro CT images. Specifically image de-noising in the wavelet domain is performed for convenient profiling and segmentation is applied for automated calculation of soil properties. As new measures we proposed the normalized radial and circular aggregation and water transportability and also have shown ways of generalizing the studies for 3D

    ์™€์šฐ์ด์‹ ์ˆ˜์ˆ ๊ธฐ์ฃผ์œ„ ์ฒญ๊ฐ๊ธฐ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์™€์šฐ๊ฐ‘๊ฐ ์ „๊ธฐ์ž๊ทน ์œ ๋ฐœ ์ฒญ์„ฑ๋‡Œ๊ฐ„๋ฐ˜์‘

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋‡Œ๊ณผํ•™์ „๊ณต, 2021.8. ์˜ค์Šนํ•˜.Abstract Promontory Electrically Evoked Auditory Brainstem Response for Perioperative Evaluation of Auditory Function in Cochlear Implant Doo Hee Kim Interdisciplinary Program in Neuroscience The Graduate School Seoul National University ์„œ๋ก : ์ธ๊ณต์™€์šฐ๋Š” ๋ณด์ฒญ๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ๋„ ์†Œ๋ฆฌ๋ฅผ ๋“ค์„ ์ˆ˜ ์—†๋Š” ์ค‘๊ณ ๋„ ๊ฐ๊ฐ์‹ ๊ฒฝ์„ฑ ๋‚œ์ฒญ์ธ์„ ์œ„ํ•œ ์ฒญ๊ฐ์žฌํ™œ์žฅ์น˜์ด๋‹ค. ์ด ์žฅ์น˜๋Š” ๋‚œ์ฒญ์ธ์˜ ๋‹ฌํŒฝ์ด๊ด€์— ์ „๊ทน์„ ์ด์‹๋˜์–ด ์†Œ๋ฆฌ์ •๋ณด๊ฐ€ ๋‹ด๊ธด ์ „๊ธฐ์ž๊ทน์œผ๋กœ ์ฒญ๊ฐ์„ธํฌ๋ฅผ ์ง์ ‘ ์ž๊ทนํ•˜์—ฌ ์ฒญ๋ ฅ์„ ํšŒ๋ณต์‹œ์ผœ์ค€๋‹ค. ์ธ๊ณต์™€์šฐ ์ˆ˜์ˆ  ํ›„ ์˜ˆํ›„์˜ˆ์ธก์„ ์œ„ํ•˜์—ฌ, ์ˆ˜์ˆ ํ•˜๊ธฐ ์ „์— ๋‚œ์ฒญ์ธ์˜ ์ฒญ๊ฐ๊ณ„์˜ ์ƒํƒœ๋ฅผ ํ™•์ธํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ „๊ธฐ์ž๊ทน ์œ ๋ฐœ๋ฐ˜์‘ ๊ด€์ฐฐ์€ ๊ธฐ์กด์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•˜์—ฌ ์œ ์šฉ์„ฑ์ด ์•Œ๋ ค์กŒ์ง€๋งŒ, ์‹ ๋ขฐ์„ฑ ๋ถ€์กฑ, ์ž๊ทน์œ„์น˜ ํ™•์ธ ์–ด๋ ค์›€, ๋‹จ์ฑ„๋„ ์ „๊ทน์œผ๋กœ ์ธํ•œ ์ œํ•œ์ ์ธ ์ž๊ทน๋ฒ”์œ„ ๋“ฑ์œผ๋กœ ์ž„์ƒ์ ์œผ๋กœ ๊ฑฐ์˜ ์“ฐ์ด์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์™€์šฐ๊ฐ‘๊ฐ์˜ ์ž๊ทน ์œ„์น˜๋ณ€๊ฒฝ์— ๋”ฐ๋ฅธ ์ฒญ์‹ ๊ฒฝ ์ž๊ทน ์œ ๋ฐœ ์ „์œ„์˜ ํŠน์„ฑ์— ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š”์ง€ ๊ด€์ฐฐํ•˜์—ฌ, ์™€์šฐ๊ฐ‘๊ฐ์˜ ๋‹ค์ฑ„๋„ ์ž๊ทน์„ ํ†ตํ•œ ์ฒญ๊ฐ๊ธฐ๋Šฅํ‰๊ฐ€์˜ ํ•„์š”์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฐฉ๋ฒ•: ๋™๋ฌผ์˜ ์™€์šฐ๊ฐ‘๊ฐ์— ๋ฐฐ์น˜, ๊ณ ์ •ํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ์˜ ํ‘œ๋ฉดํ˜• ๋‹ค์ฑ„๋„ ์ „๊ทน์„ ์ œ์ž‘ํ•˜๊ณ , ์ „๊ธฐ์ž๊ทน์ด ์ถœ๋ ฅ๋˜๋Š” ์‹ ๊ฒฝ์ž๊ทน์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ •์ƒ ์ฒญ๋ ฅ 4๋งˆ๋ฆฌ, ๋‚œ์ฒญ ๋™๋ฌผ 4๋งˆ๋ฆฌ์— ๋Œ€ํ•˜์—ฌ ๋‹ฌํŒฝ์ด๊ด€์˜ ๋ผˆ ๋ฒฝ์ธ ์™€์šฐ๊ฐ‘๊ฐ์— ๋‹ค์ฑ„๋„ ์ „๊ทน์„ ์„ค์น˜ํ•˜์—ฌ ๋‹ฌํŒฝ์ด๊ด€์˜ apex์— ๊ฐ€๊นŒ์šด ๊ณณ์— Ch-A, base์— ๊ฐ€๊นŒ์šด ๊ณณ์— Ch-B๊ฐ€ ์œ„์น˜๋˜๋„๋ก ํ•œ๋‹ค. ์ •์ƒ์ฒญ๋ ฅ๊ฐœ์ฒด 3๋งˆ๋ฆฌ, ๋‚œ์ฒญ๊ฐœ์ฒด 2๋งˆ๋ฆฌ์— ๋Œ€ํ•˜์—ฌ ์ „๊ทน์œ„์น˜ ํ™•์ธ์„ ์œ„ํ•ด microCT์ดฌ์˜์„ ํ•˜์˜€๋‹ค. ๋‘ ๊ฐœ ์ฑ„๋„์„ ์ด์šฉํ•˜์—ฌ ์ฒญ์‹ ๊ฒฝ์„ ์ „๊ธฐ์ž๊ทนํ•˜์—ฌ ์œ ๋ฐœ๋˜๋Š” ์ „์œ„ electrically evoked auditory brainstem response(EABR)๋ฅผ ์ธก์ •ํ•˜๊ณ , wave V์˜ amplitude growth function(AGF), slope, latency ๋“ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ •์ƒ์ฒญ๋ ฅ, ๋‚œ์ฒญ, Ch-A์ž๊ทน์‹œ, Ch-B์ž๊ทน์‹œ์˜ 4๊ฐœ ์กฐํ•ฉ์— ๋Œ€ํ•˜์—ฌ ํ†ต๊ณ„๋ถ„์„์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ •์ƒ์ฒญ๋ ฅ, ๋‚œ์ฒญ๋™๋ฌผ์˜ ๋‹ฌํŒฝ์ด๊ด€์˜ ์กฐ์ง๋ณ‘๋ฆฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ „๊ธฐ์ž๊ทน๋˜์–ด ์ฒญ๊ฐ๊ณ„ ํ™œ์„ฑ์— ๊ธฐ์—ฌํ•˜๋Š” spiral ganglion neuron์˜ ๋ฐ€๋„ ๋˜ํ•œ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์ „๊ทน์„ค์น˜ ํ›„ microCT ์ดฌ์˜๊ฒฐ๊ณผ, ์ •์ƒ์ฒญ๋ ฅ๊ตฐ 2๋งˆ๋ฆฌ๋Š” ์ „๊ทน์ด ์™€์šฐ๊ฐ‘๊ฐ์— ์ •์œ„์น˜ํ•˜์˜€๊ณ , 1๋งˆ๋ฆฌ๋Š” ์ •์œ„์น˜ ํ•˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋‚œ์ฒญ๊ตฐ์€ 1๋งˆ๋ฆฌ๋Š” ์ •์œ„์น˜ํ•˜์˜€๊ณ , 1๋งˆ๋ฆฌ๋Š” ์™€์šฐ๊ฐ‘๊ฐ ํ‘œ๋ฉด์—์„œ ์ด๊ฒฉ๋˜์–ด ์žˆ์—ˆ๋‹ค. AGF๋Š” ์ „๊ทน์œ„์น˜๊ฐ€ ํ™•์ธ๋œ ๊ฐœ์ฒด์—์„œ ์ฒญ๋ ฅ์— ์ƒ๊ด€์—†์ด Ch-A๊ฐ€ Ch-B์— ๋น„ํ•˜์—ฌ amplitude๊ฐ€ ๋” ํฌ๊ณ  ๊ธฐ์šธ๊ธฐ๊ฐ€ ๊ธ‰ํ•œ ๊ตฌ๊ฐ„์ด ๋งŽ์•˜๋‹ค. Amplitude๋Š” Ch-B์—์„œ NH๊ตฐ์ด deaf๊ตฐ์— ๋น„ํ•ด ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ปธ๋‹ค. ๊ฐ ๊ตฐ์˜ ๋ชจ๋“  ๊ฐœ์ฒด์— ๋Œ€ํ•œ slope๋Š” ์ฒญ๋ ฅ์— ๊ด€๊ณ„์—†์ด Ch-A์—์„œ Ch-B์— ๋น„ํ•˜์—ฌ ์ปธ๋‹ค. ์ •์ƒ์ฒญ๋ ฅ๊ตฐ์˜ Ch-B๊ฐ€ ๋‚œ์ฒญ๊ตฐ์˜ Ch-A์— ๋น„ํ•ด ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ปธ๋‹ค. EABR์ด ๊ด€์ฐฐ๋œ stimulus intensity์˜ ๋ฒ”์œ„๋Š” Ch-A๋ณด๋‹ค Ch-B ์ž๊ทน์˜ ๊ฒฝ์šฐ ๋” ๋„“์—ˆ๋‹ค. Latency๋Š” ์ฒญ๋ ฅ์— ๊ด€๊ณ„์—†์ด Ch-A์ž๊ทนํ•œ ๊ฒฝ์šฐ๊ฐ€ Ch-B์ž๊ทนํ•œ ๊ฒฝ์šฐ์— ๋น„ํ•˜์—ฌ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์งง์•˜๋‹ค. Ch-B์— ๋Œ€ํ•˜์—ฌ๋Š” ์ •์ƒ์ฒญ๋ ฅ๊ตฐ์ด ๋‚œ์ฒญ๊ตฐ์— ๋น„ํ•˜์—ฌ ์งง์•˜๊ณ , ์ •์ƒ์ฒญ๋ ฅ๊ตฐ์˜ Ch-A์ž๊ทนํ•œ ๊ฒฝ์šฐ ๋‚œ์ฒญ๊ตฐ Ch-B์ž๊ทนํ•œ ๊ฒฝ์šฐ์— ๋น„ํ•˜์—ฌ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์งง์•˜๋‹ค. Threshold๋Š” ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋Š” ์—†์—ˆ๊ณ , ๋‹จ์œ„๋ฉด์ ๋‹น spiral ganglion neuron์˜ ๋ฐ€๋„๋Š” ์ •์ƒ์ฒญ๋ ฅ๊ตฐ์ด ๋‚œ์ฒญ๊ตฐ๋ณด๋‹ค ์•ฝ 2.9๋ฐฐ ๋†’์•˜๋‹ค. ๊ฒฐ๋ก : ๋™๋ฌผ ์™€์šฐ๊ฐ‘๊ฐ ์ „๊ธฐ์ž๊ทน์— ์ ํ•ฉํ•œ ์‹ ๊ฒฝ์ž๊ทน์žฅ์น˜์™€ ํ‘œ๋ฉดํ˜• ๋‹ค์ฑ„๋„์ „๊ทน์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์™€์šฐ๊ฐ‘๊ฐ์— ์ „๊ทน์„ ๊ณ ์ •ํ•œ ํ›„ EABR์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ธก์ •ํ•˜์˜€๋‹ค. ์™€์šฐ๊ฐ‘๊ฐ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์œ„์น˜๋ฅผ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‘ ์ฑ„๋„์„ ์ž๊ทนํ•˜์—ฌ ํš๋“ํ•œ EABR์˜ AGF, slope ๋“ฑ์˜ ํŠน์„ฑ์— ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ „๊ทน์˜ ๋ฌผ๋ฆฌ์  ์œ„์น˜์— ๋”ฐ๋ผ ์ „๋ฅ˜์ž๊ทน๋˜๋Š” ๋ฒ”์œ„, ์ž๊ทน๋˜๋Š” ๋‚˜์„ ์‹ ๊ฒฝ์ ˆ ์„ธํฌ์˜ ๊ฐœ์ˆ˜์™€ ๋ถ„ํฌ์— ๋”ฐ๋ฅธ ํŠน์„ฑ์ด ๋ฐ˜์˜๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง€๋ฉฐ, ์ž„์ƒ์—์„œ ์ฒญ๊ฐ๊ธฐ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•˜์—ฌ promontory stimulation์„ ํ•  ๊ฒฝ์šฐ์—๋Š” ๋‹ค์ฑ„๋„ ์ „๊ทน์„ ์ด์šฉํ•œ ํ‰๊ฐ€์˜ ํ•„์š”์„ฑ์ด ์š”๊ตฌ๋œ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๊ทน์ด ์˜๋„๋˜์ง€ ์•Š์€ ์œ„์น˜์— ๊ณ ์ •๋œ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด ์ถ”ํ›„ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•˜์—ฌ๋Š” ์ „๊ทน๋ฐฐ์น˜์™€ ๊ณ ์ •๋ฐฉ๋ฒ•์˜ ๊ฐœ์„  ๋ฐ ์ „๊ทน์„ค์น˜ ํ›„ electrode-tissue interface ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ ๊ธฐ๋Šฅ์ด ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ partial hearing loss model์— ๋Œ€ํ•˜์—ฌ ์™€์šฐ๊ฐ‘๊ฐ์˜ ๋‹ค์–‘ํ•œ ์œ„์น˜๋ฅผ ์ž๊ทนํ•œ ์ฒญ์‹ ๊ฒฝ ๋ฐ˜์‘ ํŠน์„ฑ์˜ ๊ด€์ฐฐ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์ธ๊ณต์™€์šฐ ๋Œ€์ƒ์ž์— ๋Œ€ํ•˜์—ฌ ์ˆ˜์ˆ ๊ธฐ์ฃผ์œ„์— ์ฒญ์‹ ๊ฒฝ ์ƒํƒœ๋ฅผ ๊ฐ๊ด€์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ฒญ๊ฐ์žฌํ™œ๊ฒฐ๊ณผ์˜ ์˜ˆํ›„ ์˜ˆ์ธก์— ํ™œ์šฉ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ํ•ต์‹ฌ๋‹จ์–ด: ์ธ๊ณต์™€์šฐ, ์ฒญ๊ฐ๊ธฐ๋Šฅํ‰๊ฐ€, ์™€์šฐ๊ฐ‘๊ฐ์ž๊ทน, ๋‹ค์ฑ„๋„ ์ „๊ทน, ์ „๊ธฐ์œ ๋ฐœ ์ฒญ์„ฑ๋‡Œ๊ฐ„๋ฐ˜์‘, ์ˆ˜์ˆ ๊ธฐ์ฃผ์œ„, ์˜ˆํ›„์˜ˆ์ธก ํ•™๋ฒˆ : 2014-30097Abstract Promontory Electrically Evoked Auditory Brainstem Response for Perioperative Evaluation of Auditory Function in Cochlear Implant Doo Hee Kim Interdisciplinary Program in Neuroscience The Graduate School Seoul National University Introduction: A cochlear implant is a hearing rehabilitation device for moderate to severe sensorineural hearing loss who cannot hear the sound even with a hearing aid. This device restores hearing by directly stimulating the auditory nerve with electrical stimulation containing sound information by implanting electrodes into the cochlea of the deaf person. To predict the clinical outcome after cochlear implant surgery, it is imperative to check the auditory function of the deaf person before surgery. Although the usefulness of observing evoked responses by promontory stimulation to evaluate the auditory function has been known through previous studies, it is rarely used clinically due to lack of reliability, difficulty in identifying stimulation locations, and limited stimulation range by single-channel electrodes. In this study, the necessity of auditory function evaluation through multichannel stimulation of the promontory was confirmed by observing whether there was a change in the characteristics of the evoked potential by stimulation of the auditory nerve according to the change in the stimulation position of the promontory. Methods: A surface-type multichannel electrode suitable for placement on the promontory of an animal was designed, and a neural stimulator that outputs electrical stimulation was developed. For four normal hearing (NH) and four deaf animals, install multichannel electrodes on the promontory so that channel A(Ch-A) is located near the apex of the cochlea and channel B(Ch-B) is located near the base. MicroCT imaging was performed to confirm the electrode positions. Electrically evoked auditory brainstem response (EABR) induced by promontory stimulation was measured using the two electrode channels. The amplitude growth function (AGF), slope, and latency of wave V of EABR were analyzed. The density of spiral ganglion neurons (SGNs) contributing to auditory system activity by electrical stimulation through histology of the cochlea with NH and deafness was also compared. Results: It was confirmed by microCT scans that the electrode is positioned in the correct position on the promontory in 2 out of 3 animals in the NH group and 1 out of 2 in the deaf group. In the case of AGF, in subjects whose electrode positions were confirmed, there were many sections with greater amplitude and steeper slope during Ch-A stimulation than during Ch-B stimulation in both groups. The amplitude was significantly greater in the NH group than in the deaf group in Ch-B. The slope showed steeper in Ch-A than Ch-B in both groups. The range of stimulus intensities that EABR was observed was more comprehensive with Ch-B than Ch-A. The latency was significantly shorter with Ch-A than with Ch-B, regardless of hearing. In Ch-B, the latency of the NH group was shorter than that of the deaf group. The Ch-A stimulation of the NH group was significantly shorter than the Ch-B stimulation of the deaf group. There was no significant difference in the threshold. The density of SGN was about 2.9 times higher in the NH group than in the deaf group. Conclusion: The neural stimulation device and surface-type multichannel electrode suitable for electrical stimulation of the promontory in animals were developed, and the properties of the EABR with two channels in the normal hearing and deaf subjects were compared. It was confirmed that there were differences in characteristics of AGF, slope, and latency of EABR obtained by stimulating two channels to stimulate different positions of the promontory. This may be due to the characteristics of current spread, and the number and distribution of stimulated SGNs are reflected according to the physical location of the electrode. So, using multichannel electrodes is necessary for promontory stimulation for auditory function evaluation in clinical practice. However, there are cases where the electrode was fixed in an unintended position, so it is needed to improve the electrode design and fixation method and monitor the condition of the electrode-tissue interface after installation. In addition, it is necessary to observe the characteristics of the auditory nerve response that stimulated various positions of the promontory in the partial hearing loss model with the various distribution of spiral ganglion neurons. Through this, the auditory function of a person with hearing loss can be objectively evaluated. It is expected to be used as a perioperative prognostic factor in a cochlear implant. Keyword : Cochlear implant, evaluation of auditory function, promontory stimulation, multichannel electrode, electrically evoked auditory brainstem response, perioperative, prognostic factor Student Number : 2014-30097Chapter 1. Introduction 1 1.1. Study Background 1 1.2. Purpose of Research 7 Chapter 2. Materials and Methods 9 2.1. Development of a Neural Stimulator and electrode 9 2.1.1. Neural Stimulator 9 2.1.2. Surface Type Multichannel Electrode 11 2.2. Experimental Setup for EABR Recording 13 2.2.1. Animal Preparation 13 2.2.2. Electrode Position on the Promontory 16 2.2.3. Setup for EABR Recording 17 2.3. Data Processing and Analyzed Parameters 18 2.4. Histology 22 2.5. Statistical Analysis 23 Chapter 3. Results 24 3.1. Neural Stimulator and Electrode 24 3.1.1. Neural Stimulator 24 3.1.2. Surface Type Multichannel Electrode 28 3.2. Electrode Position on Promontory 29 3.3. Properties of EABR of Between Channel A and Channel B Stimulation 33 3.3.1. Comparison of Channel A and B in Normal Hearing Group 33 3.3.2. Comparison of Channel A and B in Deaf Group 34 3.4. Properties of EABR of Between Normal Hearing and Deaf 37 3.4.1. Comparison of AGF, Slope, Latency, and Threshold of in Normal Hearing and Deaf Group 37 3.4.2. Statistical Analysis of EABR Parameters of All Subjects in Normal Hearing and Deaf Group 39 3.4.3. Density of Spiral Ganglion Neuron 43 Chapter 4. Discussions 48 4.1. Comparison of Properties of EABR Between Channel A and Channel B 48 4.2. Comparison of Properties of EABR of Between Normal Hearing and Deaf 49 4.3. Clinical Implications 51 4.4. Limitation of This Work and Future Direction 53 4.4.1. Design and type of electrode, Electrode Installation, and Fixation 53 4.4.2. Condition of Electrode-Tissue Interface 54 4.4.3. Animal Deaf Model 55 Chapter 5. Conclusion 56 5.1. Summary and Clinical Implications 56 5.2. Limitations of This Study and Further Study 57 Acknowledgment 58 Bibliography 59 Abstract in Korean 72๋ฐ•

    Imaging fascicular organisation in mammalian vagus nerve for selective VNS

    Get PDF
    Nerves contain a large number of nerve fibres, or axons, organised into bundles known as fascicles. Despite the somatic nervous system being well understood, the organisation of the fascicles within the nerves of the autonomic nervous system remains almost completely unknown. The new field of bioelectronics medicine, Electroceuticals, involves the electrical stimulation of nerves to treat diseases instead of administering drugs or performing complex surgical procedures. Of particular interest is the vagus nerve, a prime target for intervention due to its afferent and efferent innervation to the heart, lungs and majority of the visceral organs. Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions resistant to standard therapeutics. However, due to the unknown anatomy, the whole nerve is stimulated which leads to unwanted off-target effects. Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in which the impedance of a part of the body is inferred from electrode measurements and used to form a tomographic image of that part. Micro-computed tomography (microCT) is an ex vivo method that has the potential to allow for imaging and tracing of fascicles within experimental models and facilitate the development of a fascicular map. Additionally, it could validate the in vivo technique of EIT. The aim of this thesis was to develop and optimise the microCT imaging method for imaging the fascicles within the nerve and to determine the fascicular organisation of the vagus nerve, ultimately allowing for selective VNS. Understanding and imaging the fascicular anatomy of nerves will not only allow for selective VNS and the improvement of its therapeutic efficacy but could also be integrated into the study on all peripheral nerves for peripheral nerve repair, microsurgery and improving the implementation of nerve guidance conduits. Chapter 1 provides an introduction to vagus nerve anatomy and the principles of microCT, neuronal tracing and EIT. Chapter 2 describes the optimisation of microCT for imaging the fascicular anatomy of peripheral nerves in the experimental rat sciatic and pig vagus nerve models, including the development of pre-processing methods and scanning parameters. Cross-validation of this optimised microCT method, neuronal tracing and EIT in the rat sciatic nerve was detailed in Chapter 3. Chapter 4 describes the study with microCT with tracing, EIT and selective stimulation in pigs, a model for human nerves. The microCT tracing approach was then extended into the subdiaphragmatic branches of the vagus nerves, detailed in Chapter 5. The ultimate goal of human vagus nerve tracing was preliminarily performed and described in Chapter 6. Chapter 7 concludes the work and describes future work. Lastly, Appendix 1 (Chapter 8) is a mini review on the application of selective vagus nerve stimulation to treat acute respiratory distress syndrome and Appendix 2 is morphological data corresponding to Chapter 4

    X-ray computed tomography

    Get PDF
    X-ray computed tomography (CT) can reveal the internal details of objects in three dimensions non-destructively. In this Primer, we outline the basic principles of CT and describe the ways in which a CT scan can be acquired using X-ray tubes and synchrotron sources, including the different possible contrast modes that can be exploited. We explain the process of computationally reconstructing three-dimensional (3D) images from 2D radiographs and how to segment the 3D images for subsequent visualization and quantification. Whereas CT is widely used in medical and heavy industrial contexts at relatively low resolutions, here we focus on the application of higher resolution X-ray CT across science and engineering. We consider the application of X-ray CT to study subjects across the materials, metrology and manufacturing, engineering, food, biological, geological and palaeontological sciences. We examine how CT can be used to follow the structural evolution of materials in three dimensions in real time or in a time-lapse manner, for example to follow materials manufacturing or the in-service behaviour and degradation of manufactured components. Finally, we consider the potential for radiation damage and common sources of imaging artefacts, discuss reproducibility issues and consider future advances and opportunities

    Experimental imaging of asthma progression and therapeutic response in mouse lung models

    Get PDF
    Asthma ist eine Erkrankung die das komplette Immunsystems involviert, ein System so komplex, dass es sich nur unzureichend in-vitro studieren lรคsst. Daher haben sich Mausmodelle als ein unverzichtbares Werkzeug in der prรคklinischen Asthmaforschung etabliert. Da es sich weiterhin bei Asthma um eine Erkrankung handelt, die durch eine schnelle ร„nderung der Symptome gekennzeichnet ist, wรคre longitudinale vorzugsweise nicht-invasive Bildgebung, insbesondere bei der Entwicklung und Bewertung neuer Therapiekonzepte von groรŸem Interesse. Nachteilig hingegen ist, dass die Darstellung der Mauslunge in der Praxis auf Grund der GrรถรŸe des Organs und, im Falle einer in vivo Bildgebung, durch die Bewegung des Brustkorbes sich als รคuรŸerst schwierig herausstellt. Die Vielzahl der Luft-Gewebe-Grenzflรคchen erzeugt starke Streuung in der optischen Bildgebung, der groรŸe Hohlraum der Lunge verursacht Suszeptibilitรคtsartefakte bei der MRT und die Rippen erschweren eine Ultraschallbildgebung. Aus diesen Grรผnden besteht ein groรŸer Bedarf an neuen Bildgebungsverfahren, um die durch Asthma verursachten anatomischen, funktionalen und molekularen Verรคnderungen darstellen zu kรถnnen. Um die Schwierigkeiten in der Lungenbildgebung bei Mรคusen zu umgehen, habe ich mich auf drei wesentliche Bildgebungsstrategien fokussiert: A) anatomische Bildgebung durch โ€œinline free propagation phase contrast computed tomographyโ€, B) direkte Messung der Lungenfunktion durch โ€œlow dose planar cinematic x-ray imagingโ€ und C) funktionale Bildgebung mit Hilfe der โ€žnear infrared fluorescence imagingโ€œ in Kombination mit Antikรถrpern, die mit einem Fluoreszenzfarbstoff markiert wurden, oder โ€œsmart probesโ€, die in Gegenwart von Entzรผndungen aktiviert werden. Durch die Anwendung von โ€œphase contrast computed tomographyโ€ fรผr die anatomische Bildgebung war ich in der Lage morphologische Verรคnderung des Lungengewebes zu quantifizieren, indem ich lokal das Verhรคltnis zwischen Weichgewebe und Luft, das Zusammenziehen der Luftwege sowie das Anschwellen der Bronchialwรคnde im asthmatischen Lungengewebe ausgewertet habe. Diese Parameter erlaubten es zwischen Mรคusen von Asthmamodellen unterschiedlicher Schweregrade, therapierten und gesunden Mรคusen zu unterscheiden. Zusรคtzlich ermรถglichte diese Technik die Darstellung intra-tracheal applizierter Bariumsulfat markierter Makrophagen im Lungengewebe. Dies stellt meines Wissens die erste Kombination einer funktionalisierten Kontrastierung und hochauflรถsender Lungenbildgebung mittels CT unter in vivo รคhnlichen Bedingungen dar. Um diese Ergebnisse mit dem Grad der asthmabedingten Kurzatmigkeit zu korrelieren, habe ich eine einfache und verlรคssige Methode entwickelt die es, basierend auf 2D Rรถntgen-videos niedriger Rรถntgendosis (~6,5mGy) erlaubt, in narkotisierten Mรคusen die Lungenfunktion zu bewerten. Mit Hilfe dieser neuen Methode gelang es mir charakteristische Unterschiede in der Lungenfunktion von asthmatischen, therapierten und gesunden Mรคusen in vivo รผber die Zeit nachzuweisen, und diese Resultate mit den Ergebnissen von CT und Histologie zu korrelieren. Das Verfahren wird derzeit von mir fรผr die Anwendung an frei beweglichen und nicht narkotisierten Mรคusen weiterentwickelt. Dies sollte zu einer deutlichen Stressreduktion fรผr die Maus bei der Untersuchung fรผhren und somit, vor allem in Asthma, im Gegensatz zu etablierten Verfahren wie Plethysmographie, die Erhebung validerer Messdaten erlauben. Mit Hilfe von โ€žnear infrared fluorescence imagingโ€œ konnten wir in vivo und longitudinal erfolgreich verschiedene durch Asthma ausgelรถste molekulare Verรคnderungen in der Mauslunge verfolgen. Erstens erlaubte die Verwendung einer neuen Polyglyzerol Probe mit dendritischer Struktur (MN2012) die spezifisch an Selektine bindet, die Darstellung der durch Asthma verursachten Entzรผndung der Lunge. Im Zuge dessen konnten wir nachweisen, dass sich MN2012 ย zur Darstellung von Enzymkinetiken bei Entzรผndungsreaktionen durch eine schnellere Kinetik und hรถher Spezifitรคt als kommerziell erhรคltliche Proben auszeichnet. Zweitens haben wir gezeigt, dass in Kombination mit einem Fluoreszenz markiertem Antikรถrper gegen SiglecF, einem Antigen das hauptsรคchlich auf Eosinophilen exprimiert ist, Eosinophilie in asthmatischen Mรคusen verfolgt und der Effekt einer Dexamethason Behandlung ย ebenso dargestellt werden kann. Drittens konnten wir den Verbleib inhalierter fluoreszierender Nanopartikel in der Lunge der Maus in vivo untersuchen und dabei nachweisen, dass diese hauptsรคchlich von endogenen Makrophagen im Lungengewebe aufgenommen werden. Alle diese Techniken wurden gegeneinander und mittels histologischer Analyse und Fluoreszenzmikroskopie korreliert und validiert.ย  Zusammenfassend bilden die in meiner Dissertation entwickelten Lungenbildgebungsstrategien fรผr Asthmamausmodelle eine Bildgebungsplattform, um sowohl spezifische Effekte in asthmatischen Mรคusen unterschiedlichen Schweregrades als auch die Auswirkungen neuer Therapien abzubilden und im Detail zu untersuchen

    Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization

    Get PDF
    Ecomorphological studies evaluating the impact of environmental and biological factors on the brain have so far focused on morphology or size measurements, and the ecological relevance of potential multi-level variations in brain architecture remains unclear in vertebrates. Here, we exploit the extraordinary ecomorphological diversity of squamates to assess brain phenotypic diversification with respect to locomotor specialization, by integrating single-cell distribution and transcriptomic data along with geometric morphometric, phylogenetic, and volumetric analysis of high-definition 3D models. We reveal significant changes in cerebellar shape and size as well as alternative spatial layouts of cortical neurons and dynamic gene expression that all correlate with locomotor behaviours. These findings show that locomotor mode is a strong predictor of cerebellar structure and pattern, suggesting that major behavioural transitions in squamates are evolutionarily correlated with mosaic brain changes. Furthermore, our study amplifies the concept of 'cerebrotype', initially proposed for vertebrate brain proportions, towards additional shape characters.Peer reviewe

    In Pursuit of an Optimum Optical Imaging Technology for Early Detection of Dental Caries

    Get PDF
    Clinical caries detection techniques, such as radiographs, are not sensitive to detect and monitor the progression of caries at early stages. In recent years, several optics-based imaging modalities have been proposed for early detection of caries. In this thesis, we report on a systemic comparative study on the performances of optical coherence tomography and thermophotonic lock-in imaging (TPLI) as early caries detection imaging modalities based on light scattering and absorption, respectively. Through controlled demineralization on extracted human teeth, our results suggest that TPLI provides better sensitivity and detection threshold in detecting early stages of caries. The outcome justifies the need for a light-absorption based imaging modality to produce depth-resolved images. Therefore, preliminary imaging studies on a 3-D imaging platform known as a Truncated-Correlation Photothermal Coherence Tomography (TC-PCT) system was conducted to achieve optimal diagnostic yield. The results demonstrate that TC-PCT can detect early caries with significant enhancement in depth-resolution
    • โ€ฆ
    corecore