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Coronary artery disease 
Coronary arteries are the blood vessels that supply oxygen- and nutrient-rich blood 

to the myocardium in order to keep it functional. Coronary artery disease (CAD) is a 
disease that reduces the function of the coronaries, caused by a build up of plaque in the 
coronary wall which eventually narrows the lumen in a gradual manner or acutely promotes 
blood clotting; either way will obstruct the blood flow to the myocardium and potentially 
lead to myocardial infarction. In western world, CAD became the leading cause of death 
[1]. In the Netherlands alone, 40.868 persons died of cardiovascular disease in 2008. 
Among those, 11.387 cases were ischemic heart disease of which 7.792 were caused by an 
acute heart infarct [2]. 
 
Atherosclerotic plaque progression 

As described by the American Heart Association, an atherosclerotic plaque 
progresses in 6 types. The first three types are considered an early stage of atherosclerosis, 
where small groups of macrophages cells containing lipid droplets start to form within the 
vessel wall which then adaptively thickens (type I), and then the lipid containing 
macrophage cells start to proliferate, often forming fatty streaks (type II), and finally the 
lipid droplets start to form extracellularly (type III) [3].  

The advance stage of atherosclerotic plaque is marked by the accumulation of lipid 
droplets forming a lipid core (type IV). The subsequent stage of the plaque progression is 
the growth of new fibrous tissue (type V), which may be accompanied by the presence of 
lipid core (type Va), calcification (type Vb) or mostly fibrotic (type Vc). The lesion may 
grow into a complicated lesion (type VI) by developing fissures (type VIa), hematoma or 
haemorrhage (type VIb), thrombus (type VIc), or all three features (type VIabc) [4]. 
 
Early visualization of atherosclerotic plaque 

To be able to determine the severity and the stage of CAD, a reliable visualization 
and quantification of the atherosclerotic plaque is needed. Only then, a proper treatment can 
be determined in order to prevent or delay the progress of the disease. 

Starting from type V, the progression of plaque often forces the vessel wall inward 
narrowing the lumen [4]. As the plaque grows further, the lumen can be severely narrowed 
to the point where it can not adequately supply the blood to the myocardium. X-ray 
angiography had been regarded as the gold standard imaging modality to quantify the 
severity of the lumen narrowing. However, it may fail to thoroughly quantify the narrowing 
due to its two dimensional projection. An incorrect projection angle can lead to 
foreshortening visualization of vessel. A lesion which should have been visible at one 
projection might not be visible at another projection.  
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However, not all plaque progression leads to narrowing of the lumen (negative 
remodelling). In fact, negative remodelling is associated with stable lesions and positive 
remodelling with unstable lesions [5]. Until a certain stage, the coronary undergoes a 
compensatory response to the plaque build up by growing outward causing a positive 
remodelling, while preserving lumen opening [6]. Moreover, plaque showing positive 
remodelling has been shown to contain more lipid than the ones showing negative 
remodelling [7]. It has been suggested that the plaque component and morphology is an 
important determinant of the disease severity. Three types of plaques are associated with 
acute coronary syndrome, i.e. plaque rupture, plaque erosion, and calcified nodule, with the 
plaque rupture as the most frequent [8]. X-ray angiography is limited to visualizing the 
coronary lumen. Even though it has also been shown that visualize the plaque surface 
morphology of a complex plaque, which has been associated with plaque rupture [9] and 
thrombus [10], x-ray angiography can not visualize the plaque itself. Intra vascular 
ultrasound (IVUS) has been regarded as the gold standard modality to visualize plaque 
component and morphology in vivo. However, IVUS is limited in not being able to reach 
the small vessels due to the fact that it is catheter based.  

Both X-ray angiography and IVUS are invasive modalities which carries certain 
risks[11, 12] and certain level of discomfort to the patients. For these reasons, a non-
invasive imaging modality is highly preferred to visualize coronary atherosclerotic plaque. 
     
Computed tomography 

Computed tomography (CT) makes use of multiple x-ray projections through 
patient’s body to make a tomographic (cross section) of patient’s body. CT was invented by 
Sir Godfrey Hounsfield in the 1970s, initially used for head scanning. The first generation 
of CT took hours to obtain a single slice thick image. After its introduction, CT showed a 
gradual technical development. The past decade, multi detector-row CT (MDCT) advance 
more rapidly resulting in the ability to obtain multiple slices at sub-millimeter resolution in 
a fraction of a second, enabling visualization of small fast moving objects, like coronary 
arteries. 

The CT image pixel value is defined in Hounsfield Unit (HU) and it offers an 
advantage that is unique to CT as it is calibrated so the air will be -1000 HU value and 
water will be 0 HU. With this calibration, CT provides a possibility to characterize a tissue 
based on its HU value.   

 
Coronary CT evaluation 
(excerpted and adapted from van Ooijen, et al. [13]) 

Having the inherent technical advantages in image acquisition does not directly 
grant CT the ability to properly examine and visualize coronary arteries and atherosclerotic 
plaques. Further processing of the acquired images need to be performed in order to bring 
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out the useful information for the clinician to the fullest. A powerful software environment 
exhibiting powerful post-processing techniques is needed to enhance, localize, and analyze 
the images in order to produce meaningful information. 

 
Figure 1-1. Automatic coronary stenosis measurement over a user defined part of the Left 

Anterior Descending artery. 
 

Coronary stenosis measurement 

Currently, the automatic segmentation of the coronary artery tree resulting in a 
display composed of curved multiplanar reformations (MPRs) along the centerline of the 
coronary arteries and orthogonal cross-sections is commonplace [14] and clinical 
implementation of advanced visualization is included in current guidelines [15] (figure 1-
1). Reporting high sensitivity (89%) and specificity (100%), Busch et al. concluded that 
software supported CT-quantitative coronary angiography enables automatic quantitative 
analysis of significant coronary artery stenoses with area stenosis greater than 75% [16]. In 
many cases, the software will also identify the correct annotation of the coronary artery tree 
and will label the right coronary artery, left coronary artery and left circumflex branches 
automatically provided that the patient has a normal configuration of the coronary artery 
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tree. Maurer et al. showed in a survey that the vast majority of hospitals performing cardiac 
imaging using CT use these automatically generated curved MPRs for their interpretation 
[17].  

 
Figure 1-2. Example of missegmentation with the segmentation jumping from the First 

Diagonal of the Left Anterior Descending to the vein crossing over it. 
 

However, reliability of the results of these automatically generated curved MPRs 
heavily depends on the algorithm used to extract the centerline of the artery and the amount 
of user interaction required for the segmentation [18] (figure 1-2). Furthermore, Dikkers et 
al. showed in a phantom study that manual stenosis measurements are significantly more 
accurate than automatic measurements, indicating that manual adjustments are still 
essential for the non-invasive assessment of coronary artery stenosis [19]. A more general 
approach promoted by other authors is to use axial MDCT images in combination with the 
(automatic generated) multiplanar reconstructions [20]. Ferencik et al. tested various image 
processing methods to determine hemodynamically significant stenoses of the coronary 
arteries and found various accuracy levels ranging from 73% to 91% [21]. Based on their 
results, they stated that the evaluation of MDCT coronary angiography with interactive 
image display methods, especially interactive oblique MPRs, permits higher diagnostic 
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accuracy than evaluation of prerendered images (curved MPR, curved maximum intensity 
projection [MIP}, or volume rendering [VR] images). 

 

 
Figure 1-3. Example where a (significant) stenosis occured at the same z-location as 

motion artefacts (white arrows). Careful steps must be taken in interpreting the validity of 
the finding. 

 
The majority of reported studies support the use of multiple techniques in addition 

to the axial slices in an interactive fashion. The evaluation of MDCT coronary angiograms 
for the detection of coronary stenosis is frequently reported to be performed interactively 
on off-line workstations, by using a combination of transverse, MPR, MIP, and three-
dimensional (3D) VR images [20, 22-29]. Some authors evaluated MDCT data sets initially 
by using MIP images or a prerendered slab of MPR images, and the findings were then 
confirmed by using MPR, curved MPR, or 3D VR images [30-32]. 

Regardless of the visualization technique used, careful steps must be taken to 
avoid the effect of motion artifacts, as they can lead to false stenoses [33] (figure 1-3). By 
retrospectively checking any plane parallel to the z-axis motion artifacts can be detected.  
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Figure 1-4. Non-enhanced cardiac CT dataset with at the top right marked calcified 

plaques in the traject of the left anterior descending artery. Color coding is used to color the 
regions above a certain threshold (typically 130 HU) after which the user indicates which 

regions are calcified regions inside a coronary artery and to which artery they belong 
 

Coronary calcification 

The amount of coronary calcification is considered to be a strong predictor of 
coronary events. [34] Current guidelines discuss the possible clinical application of 
coronary calcification quantification [35, 36]. 

Assessment of coronary calcification is performed on non-contrast-enhanced CT 
scans usually with a relatively large slice thickness of 3 mm. From the standard axial views 
of the heart, with high density structures which exceed certain threshold already marked by 
the software, coronary calcification can be manually selected and assigned to a vessel. The 
most commonly used threshold for the determination of coronary calcification is 130 HU 
[37].  

Subsequently, the selected calcifications are automatically quantified based on the 
generally accepted scoring methods (Agatston, Volume or MASS) (figure 1-4).  

However, the practical use of calcium scoring in serial studies for tracking the 
progression of disease is still hampered by the limited reproducibility of the calcium scores 
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currently in use both because of technical [38] and software issues [39]. Recently, Groen et 
al. proposed a way to reduce the susceptibility of calcium scoring to cardiac motion by 
adjusting the calcification threshold according to its maximum HU value, promoting an 
increase of accuracy of at least 10% [40]. 

 

 
Figure 1-5. Automatic plaque morphology assessment. Box pointed by arrow 1 show the 
area and diameter stenosis grade at the most stenotic site, while boxes pointed by arrow 2 

and 3 show plaque morphology at the most stenotic plaque cross-section and for the whole 
plaque volume, respectively 

 
Analysis of plaque morphology 

To analyze plaque morphology, MPRs orthogonal to the centerline of the 
(automatically segmented) coronary artery can be obtained resulting in a large number of 
cross-sections of the coronary artery for evaluation of stenotic and nonstenotic coronary 
atherosclerotic lesions [41]. The conventional way of analyzing plaque morphology is by 
manual visual evaluation. To assess maximum luminal narrowing, the optimal image 
display setting can be chosen on an individual basis, in general at a window between 600 
and 900 HU and at a level between 40 and 250 HU. Structures with densities above the 
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adjacent vessel lumen are usually defined as calcified, and structures with densities below 
the vessel contrast as noncalcified plaques [42, 43]. Manual segmentation of outer vessel 
wall can also be done for assessment of vessel remodeling, as this parameter plays 
important role in determining plaque vulnerability [5]. The plaque composition can be 
determined by the mean HU value of manually placed regions of interest (ROI) at different 
areas inside the vessel wall. Of these ROIs, the mean HU value and standard deviation are 
then used to determine the plaque composition.  

Currently, many software packages also provide an automatic determination of 
lumen and vessel borders in combination with color coding of certain ranges of HU values 
(figure 1-5). These ranges should then indicate the different types of plaque and result in an 
automatic determination of the volumetric measurement of each plaque type. Therefore, 
using this automated tool, a complete volumetric analysis of the plaque compositions and 
of the percentage vessel remodeling (remodeling index) can be obtained. 

However, selection of the HU ranges should be made carefully as various claims 
are made by different authors about the HU values that correspond to certain types of 
plaques using intravascular ultrasound as the gold standard [43-45]. For example, Leber et 
al. [45] reported MDCT-derived density measurements within coronary lesions of 49 + 22 
HU for hypoechoic, 91 + 22 HU for hyperechoic and 391 + 156 HU for calcified plaques, 
while Carrascosa et al. [46] reported 71.5 + 32.1 HU for soft and 116.3 + 35.7 HU for 
fibrous, and 383.63 + 186.1 HU for calcified plaques. They both reported these values to be 
significantly different.  

Based on current reports, classification of coronary plaque into calcified and non-
calcified plaque could be feasible, either by qualitative visual assessment, using a common 
threshold for calcification, or even using automatic vessel segmentation tools [47, 48]. 
However, sub classification between the different non-calcified plaque types, such as lipid 
and fibrous plaque, seems difficult owing to the variety in reported cut-off values and the 
overlap in HU ranges. Furthermore, various factors, such as the reconstruction kernel and 
the attenuation level of the contrast enhanced blood in the arteries, have been reported to 
significantly influence the HU value of plaques used for the determination of plaque 
composition [49, 50]. 
 
Purpose and outline 

Despite having advanced technical developments, there are still limitations for CT 
in order to thoroughly visualize, analyze and quantify coronary arteries and atherosclerotic 
plaques. The purpose of this study is to investigate those limitations in order to provide 
more understanding in the field of coronary atherosclerosis visualization using MDCT.  

The first topic is about the coronary lumen visualization. Despite the many success 
reports of CT in visualizing coronary tree due to its high subsecond spatial resolution, there 
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is still one inherent drawback, namely motion artefacts. The second chapter discusses the 
effect of motion artefact on coronary lumen visualization. 

The second topic is about coronary calcification visualization. Despite the many 
success reports of CT ability in quantifying coronary calcifications and the sub-milimeter 
spatial resolution, there is a limitation on the size of calcification that can be detected by 
MDCT. The third chapter discusses about this in detail using a software simulation. 

The third topic is about non-calcified coronary atherosclerotic plaque visualization. 
Many studies reported the ability of CT in characterizing non-calcified plaques by virtue of 
their HU values. However, the reported values vary considerably. The fourth chapter 
discusses a systematic analysis on those reported plaque-specific HU values. The fifth 
chapter discusses the influencing factors that may influence non-calcified coronary 
atherosclerotic plaque in detail in a software simulation. The sixth chapter discusses a 
newly developed correction algorithm for the most prominent influencing factor to non-
calcified coronary atherosclerotic plaque visualization, i.e. lumen contrast-enhancement. 
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Abstract 

Multi detector-row CT (MDCT), the current preferred method for coronary artery 
disease assessment, is still affected by motion artefacts. To rule out motion artefacts, 
qualitative image analysis is usually performed. Our study aimed to develop a quantitative 
image analysis for motion artefacts detection as an added value to the qualitative analysis. 
An anthropomorphic moving heart phantom with adjustable heart-rate was scanned on 64-
MDCT and dual-source-CT. A new software technique was developed which detected 
motion artefacts in the coronaries and also in the myocardium, where motion artefacts are 
more apparent; with direct association to the qualitative analysis. The new quantitative 
analysis managed to detect motion artefacts in phantom scans and relate them to artefact-
induced vessel stenoses. Quantifying these artefacts at corresponding locations in the 
myocardium, artefact-induced vessel stenosis findings could be avoided. In conclusion, the 
quantitative analysis together with the qualitative analysis rules out artefact-induced 
stenosis. 
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Introduction 
Coronary artery disease (CAD) is the leading cause of death in western countries 

[1, 2]. It can result in coronary vessels obstruction and eventually myocardial ischemia. 
Multi detector computed tomography (MDCT), a non-invasive imaging modality featuring 
large scan coverage up to 320 detector system rows, sub-millimetre spatial resolution up to 
0.23 mm, and high temporal resolution up to 135 ms for a single source CT and 75 ms for a 
dual source CT (DSCT) system (with options for further increase using multi-segmental 
reconstruction techniques), is the current preferred method for CAD assessment.[3-6]  

Because of patient movement, irregular heart rate, and insufficient temporal 
resolution for high heart rate, cardiac MDCT images are often hampered by motion 
artefacts. Although identification of motion artefacts in large structures such as the 
myocardium can be relatively easy, it is not always possible to identify motion artefacts in 
smaller structures like the coronary vessels. Motion artefacts in the vessel were 
acknowledged as discontinuity and/or blurring. [7] These artefacts could lead to 
misinterpretation in the coronary computed tomography angiography (CTA) analysis. 

Motion artefacts are commonly evaluated qualitatively, either by visually 
determining their presence/absence [8] or by assigning a severity rating. [9, 10] However, 
this approach heavily depends on user experience and interpretation. Although qualitative 
analysis is not necessarily insufficient, a quantitative analysis can give more precise and 
objective information; and make the user aware of suspicious regions. Therefore, the 
purpose of this study was to develop an algorithm for quantitative image analysis for the 
detection of motion artefacts in coronary artery computed tomography as an added value to 
the qualitative analysis and test it in phantom scans of two different CT devices. 

 
Material and methods 

An anthropomorphic moving heart phantom (Limbs & Things, Bristol, UK), with 
an artificial coronary vessel was used. The movement of the heart phantom and the 
artificial coronary vessel have been shown to be comparable to the clinical setting.[10] The 
artificial coronary vessel was filled with a contrast agent (Ultravist-300, Schering, 
Switzerland) diluted to a concentration of about 250 HU. The phantom was scanned on a 
64-row MDCT (64CT; Somatom Sensation 64, Siemens Medical Solutions, Forchheim, 
Germany) at 120 kV, 770 mAs and a DSCT (Somatom Definition, Siemens Medical 
Solutions, Forchheim, Germany) at 120 kV, 300 mAs/rot; both at 330ms rotation speed in 
cranio-caudal direction. The field of view (FOV) was set at 200 mm  x 200 mm. The heart 
phantom was placed in supine position with its apex facing away from the bore hole. A 
respiratory device was connected to the phantom, which inflated and deflated the phantom 
at a programmed rate to simulate a beating heart and produced an ECG signal which was 
connected to the CT scanner.[10]. The phantom was scanned at rest and at 50 to 110 beats 
per minute (bpm) with 10 bpm intervals, without changing the phantom position. Twenty 
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preview series at intervals of 5% throughout the R-R interval were made, from which the 
phase in the RR interval with least motion artefacts was selected. For all dataset, 70% of 
the R-R interval was chosen as the optimal phase and datasets were reconstructed at 0.6/0.4 
mm slice thickness/increment using kernel B25f and B26f for 64CT and DSCT, 
respectively. Figure 2-1 shows the scanned heart phantom, where motion artefacts were 
absent (left images) and present (right images). 

 
Figure 2-1. The phantom used for experiment 

Images without motion artefacts (left) and with motion artefacts (right) are shown both in a 
volume reconstruction (top) and a sagittal reconstruction (bottom). 

Arrow no. 1 and 2 denote start and end location of vessel analysis, respectively 
Dotted white lines on the top row indicate the location of the sagittal slices 
 
Two plexiglas tubes with reference/stenosis diameters of 6/4 mm and 4/2 mm 

(resulting in area stenosis of 56 and 75%, respectively) were also used. The lumen was 
filled with contrast agent (Visipaque 320, General Electric Healthcare) diluted to a 
concentration of about 250 HU. The vessel phantoms were scanned on the 64CT without 
motion at 120kV and 107 mAs. The images were reconstructed at 0.75/0.4 mm slice 
thickness/increment using kernel B35f.  

A  Siemens Syngo workstation (Siemens Medical Solutions, Erlangen, Germany) 
was used for visual three-dimensional observation. Software for quantitative mathematical 
analysis was developed using Matlab® software (Mathworks Inc, USA).  
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Figure 2-2. Diagram of the quantitative image analysis methods for the detection of motion 

artefacts in coronary artery computed tomography 
 

Quantitative analysis 

Quantitative analysis was performed in the myocardium and the coronary for each 
heart rate and both modalities. The analysis was performed as follows: (see figure 2-2 for 
the overview diagram) 

I. Myocardium analysis 
Due to the nature of the phantom’s movement [10], motion artefacts in the 

myocardium were most apparent in the sagittal plane, especially in the anterior 
part of the myocardium. The sagittal cross-section images were taken at 
approximately the centre of the phantom (dotted line in figure 2-1). The anterior 
inner lining of the myocardium (green line at figure 2-3 left) was semi 
automatically extracted using a gradient vector flow (GVF) snake algorithm[11] 
by first placing several seed points for the initial contour which were then allowed 
to grow to match the inner lining. From the extracted line, the following parameter 
was determined: 
I.a. Smoothness of the inner-lining of the myocardium 

Smoothness of the inner-lining is determined by the presence of 
discontinuities, which was examined from its gradient. A second order 
polynomial line was fitted to the gradient to act as reference line. (figure 2-
3 right) A Gaussian smoothing filter (width = 5;  = 4) was applied to the 
gradient plot to remove possible noise. Locations with gradient deviating 
more than a preset threshold to the reference line were marked as motion 
artefacts. The threshold was set at twice the standard deviation at 0 bpm.  
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Figure 2-3. Illustration of myocardium analysis 

From the sagittal cross section image of the phantom (left), the inner-lining if the 
myocardium was extracted (green line). The inner-lining was then analyzed for any 

discontinuities (right) by plotting the gradient along z-axis. Discontinuities were found at 
locations whose gradient deviate more than a certain threshold from the reference line. 

 
Visual observations by two independent observers were performed. The observers 
were blinded to the results of the quantitative analysis. Each observer was asked to 
score the sagittal images for the presence of no, mild or severe motion artefacts 
resulting in scores of 0, 1 and 2 respectively. Consensus reading was used in case 
of any disagreements.  

II. Vessel analysis 
Because of the occurrence of motion artefacts along z-axis, the analysis was 

limited to the vessel segment which was relatively parallel to the z-axis. The vessel 
segment was predetermined and set equal for all heart rates (segment from arrow 1 
to arrow 2 at figure 2-1 top). A vessel extraction algorithm based on GVF snake 
was developed. Started by manual selection of the vessel lumen in the axial view 
at location 1 of figure 2-1, a small (50 by 50 pixels) region of interest (ROI) was 
determined around the vessel lumen. The image inside the ROI was thresholded at 
level 41% of the lumen peak value.[12] Afterwards, using GVF snake algorithm, 
the lumen boundary was extracted and its centre of mass was determined as centre 
point. The detection was continued to the next slice without further user 
interaction, and repeated until the last slice. (figure 2-4 - top)  
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Figure 2-4. Illustration on vessel analysis 

The vessel extraction algorithm (top images) is started by manual selection of the starting 
point (white arrow – top left) inside the vessel lumen at location 1 depicted at figure 2-1, 
from where an ROI (blue rectangle) was selected. Inside the ROI (top centre), the lumen 

boundary (bold blue line with centre point at blue circle) is detected using GVF snake 
algorithm. The vessel was constructed from the detected vessel boundaries and centre 

points (top right) along z-axis. Afterwards, the smoothness of vessel centreline (bottom 
left), the consistency of vessel lumen area (bottom centre) and the consistency of vessel 

lumen mean value (bottom right) along z-axis were analyzed.  
 

Three parameters were determined from the extracted vessel:  
II.a. Smoothness of the vessel centreline pathway along the z-axis 

The vessel centreline was constructed using the detected centre points. The 
smoothness of the centreline is also determined by the presence of 
discontinuities, which were analyzed from its second derivative in the y-
direction (direction of phantom movement; see direction legends at figure 
2-1-bottom) at each heart rate. Comparison to 0 bpm dataset was made. 

II.b. Consistency of vessel lumen areas along the z-axis 
Blurring can smear out the vessel lumen pixels, which consequently 
changes the amount of pixels considered to be lumen. Therefore the 
consistency of lumen area along the vessel was examined. The axial lumen 
area on each position along the detected centreline points from each heart 
rate was analyzed and compared to the 0 bpm data set. 

II.c. Consistency of vessel lumen value along the z-axis 
Blurring can also change the lumen intensity value. Therefore the 
consistency of the lumen value along the vessel was examined. The lumen 
mean value inside the detected lumen boundary on each position along the 
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detected centreline points from each heart rate was analyzed and compared 
to the 0 bpm data set.  A mean-shift algorithm was performed to suppress 
noise while  preserving large changes.[13]  
 
The quantitative vessel lumen area and value consistency analysis was also 

applied to the second vessel phantom to see whether real stenosis would give any 
difference. Figure 2-4-bottom illustrates the vessel analysis methods.  

 
The results of myocardium (I) and vessel (IIa-c) analysis were combined by 

correlating them side-by-side at the corresponding locations on z-axis, to determine 
whether there is coincidence of findings between the analysis results. 

 
Association quantitative and qualitative analysis 

 A qualitative analysis was previously performed in the same dataset.[9] A direct 
comparison between the new quantitative method and the qualitative analysis was made. 
 
Results 
Quantitative analysis 

The association between the qualitative and the developed quantitative analysis is 
listed on table 2-1 and 2-2, for 64CT and DSCT, respectively. The definition of quality 
scores are given by table 2-3.[9] 
 
I.a. Smoothness of the inner-lining of the myocardium 

The discontinuities threshold was set to 0.2. The visual observation of the two 
observers resulted in 38 individual motion artefacts, where 30 (79%) were identified by 
both observers, and eight (21%) by only one of both observers. 22 of 30 (73%) motion 
artefacts found by both observers were graded equal. From the 8 artefacts found only by 
either one of the observer, 4 were discarded after consensus. In total, the consensus resulted 
in 34 motion artefacts: 21 on 64CT (6 found to be severe) and 13 on DSCT (1 found to be 
severe). The quantitative analysis managed to find 29 out of the consented 34 motion 
artefacts (85%), of which all 7 (100%) severe artefacts and 22 out of 27 (81%) mild 
artefacts were found. None of the 4 consensus-discarded artefacts were found to be 
artefacts by the quantitative analysis. 

Table 2-1 and 2-2 list the comparison of the true positive quantitative findings of 
myocardium inner-lining discontinuities artefacts versus the qualitative analysis. The 
qualitative findings scored DSCT with higher quality than 64CT, and the developed 
quantitative analysis concurred by finding more severe myocardium artefacts at 64CT. 
However, the same numbers of medium motion artefacts were found on both modalities. 
Therefore, only the severe myocardium artefacts can be related to the qualitative analysis. 



 

 

 
Table 2-1. Qualitative[9] and quantitative motion artefact analysis on 64CT 

Heart Rate 
(bpm) 

64CT 

Qualitative 
Analysis *) 

Quantitative Analysis 

Myocardium  
Inner-lining 

Discontinuites 
**) 

Lumen area Lumen value 

Cumulative 
Area 

Differences 
(%) 

Artefact-induced 
lumen area stenoses 

segments ***) 

Lumen mean value 
change(s) ****) 

Medium Large Medium Large 

0 4.0 + 0 - - - - 3 - 
50 3.7 + 0.8 - -3.1 1 - 2 - 
60 3.5 + 0.5 - -3.4 1 - 4 - 
70 2.3 + 0.5 3 -4.9 1 - 1 1(1) 
80 3.8 + 0.4 - -3.5 1 - 2 - 
90 3.0 + 1.3 - -4.1 1 - 1 - 
100 1.3 + 0.5 7(4) -10.3 1(1) 2(2) 2(1) 1(1) 
110 2.0 + 0.6 7(2) -5.1 3(3) - - 1(1) 

Overall 3.0 + 1.1 17(6) -4.9 9(4) 2(2) 15(1) 3(3) 
Note: 
*) The value was taken from previous publication[9]. The value was given based on criteria listed in table 2-3 
**) Amount of myocardium inner-lining discontinuities found by the quantitative analysis. The values between brackets indicate findings 
categorized as severe by visual observation.  
***) Amount of vessel stenoses segments found by the quantitative analysis. The values between brackets indicate the amount of stenoses 
segments that coincide with myocardium artefacts. 
****) Amount of vessel lumen mean value changes found by the quantitative analysis. The values between brackets indicate the amount 
of the changes that coincide with myocardium artefacts. 
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Table 2-2. Qualitative[9] and quantitative motion artefact analysis on DSCT 

Heart Rate 
(bpm) 

DSCT 

Qualitative 
Analysis *) 

Quantitative Analysis 

Myocardium  
Inner-lining 

Discontinuites 
**) 

Lumen area Lumen value 
Cumulative 

Area 
Differences 

(%) 

Artefact-induced 
lumen area stenoses 

segments***) 

Lumen mean value 
change(s) ****) 

Medium Large Medium Large 
0 4.3 + 0.5 - - - - 3 - 
50 4.0 + 0.6 2 -3.1 1 - 4 1 
60 4.5 + 0.5 1 0.4 - - 3 - 
70 3.8 + 0.4 2(1) -3.9 2(1) - 3 1 
80 4.3 + 0.5 - -4.8 1 - 2 - 
90 4.5 + 0.5 - -3.4 - - 1 - 
100 4.3 + 0.5 3 -2.7 1(1) - 3(1) 1 
110 3.8 + 0.8 4 -6.8 2(2) - 4 3(2) 

Overall 4.2 + 0.6 12(1) -3.5 7(4) - 23(1) 6(2) 
Note: 
*) The value was taken from previous publication[9]. The value was given based on criteria listed in table 2-3 
**) Amount of myocardium inner-lining discontinuities found by the quantitative analysis. The values between brackets indicate findings 
categorized as severe by visual observation.  
***) Amount of vessel stenoses segments found by the quantitative analysis. The values between brackets indicate the amount of 
stenoses segments that coincide with myocardium artefacts. 
****) Amount of vessel lumen mean value changes found by the quantitative analysis. The values between brackets indicate the amount 
of the changes that coincide with myocardium artefacts. 

C
hapter 2 

24 



Motion artefact detection 

 25 

Table 2-3. Definition of image quality scores [9] 
Score Definition of image quality 

1 
Image with step artefacts and/or stripes throughout the image limiting 
evaluation of the coronary artery and pericardium 

2 
Image with step artefacts and/or stripes in part of the image that result in limited 
evaluation of the coronary artery and pericardium 

3 
Image with step artefacts and/or stripes which have minor implication on the 
evaluation of the coronary artery and pericardium 

4 
Image with minor motion artefacts not hampering the evaluation of the coronary 
artery and pericardium 

5 Excellent image quality without motion artefacts 
 
II.a. Smoothness of vessel centreline pathway along z-axis 

The second derivatives of all heart rates have small absolute values below 1.5 
indicating that no large discontinuities at the vessel pathway occurred and a student’s t-test 
comparing the second derivatives of all heart rates to 0 bpm showed no significant 
differences (p<0.05). The regular heart rate of the phantom and fixed selection of 
reconstruction phase in the R-R interval most probably caused the vessel to be always at the 
same position along the scan direction. 

 
II.b. Consistency of vessel lumen areas along the z-axis 

Comparing the lumen area of all heart rates to 0 bpm on each modality, consistent 
vessel volume (cumulative sum of lumen areas along the vessel) reduction was observed at 
all dataset, except at 60 bpm on DSCT (see table 2-1 and 2-2 under field “Cumulative Area 
Differences” for 64CT and DSCT, respectively). For the rest of this article, this lumen area 
reduction will be called stenosis (as opposed to the conventional definition of a stenosis, i.e. 
reduction of lumen area at certain location compared to the normal vessel proximal to it; 
which will be written in italic for the rest of the article). Although relatively small (<10%), 
this consistent stenosis implies that CT will always underestimate the vessel size and could 
thus underestimate stenosis severity in clinical settings. The stenoses occurred in segments, 
classified as medium (10 to 20%) and large (>20%) (see table 2-1 and 2-2 under field 
“Artefact-induced lumen area stenoses segments” for 64CT and DSCT, respectively). 
Small (<10%) lumen area stenoses segments were ignored because of their small 
significance. 

Applying the algorithm to the vessel phantom, stenoses of 48+2% and 73+3% 
were detected for the designed stenoses of 56% and 75%, respectively. 

Comparing to the qualitative results, the quantitative analysis concurred by finding 
larger overall cumulative stenosis on 64CT than on DSCT (4.9% versus 3.5%). Moreover, 
the largest cumulative stenosis and the presence of large stenoses segments concurred with 
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the lowest qualitative score at 100 bpm on 64CT. However, in the DSCT datasets 
qualitatively scored as ~4, medium stenoses segments were also found.  
 
II.c. Consistency of vessel lumen value along the z-axis 
 Fluctuations on vessel lumen value along z-axis were observed both at 64CT and 
DSCT. The (absolute) changes were classified as medium (20-40HU), and large (>40HU) 
(see table 2-1 and 2-2 under field “Lumen mean value changes”, for 64CT and DSCT, 
respectively). Small (<20HU) changes were ignored because of their small significance.   

Applying the algorithm to the vessel phantom, a small (10-20HU) lumen-mean 
value decrease and a medium (40HU) decrease were detected at the designed stenoses of 
56% and 75%, respectively. 

 Comparing to the qualitative results, the quantitative analysis appears to show the 
opposite by finding more lumen value changes on DSCT than on 64CT.  It is possible that 
these changes are not noticeable on the 3D VRT and curved MPR views used by the 
qualitative analysis. 

 

 
Figure 2-5. Combination of vessel (IIb) and myocardium (Ia) analysis. 

The location of the detected myocardium artefacts are indicated by arrows A to D in the 
three-dimensional volume reconstruction view (left) and by red vertical lines A to D in the 

vessel lumen area consistency graph (right). 
 
Combination of analysis 

Combining the vessel lumen value (IIc) and area (IIb) analysis, one large negative 
lumen value change (-60HU) at 100 bpm on 64CT was found to coincide with the large 
lumen area stenosis (-30%). Combining the vessel lumen value (IIc) and myocardium (Ia) 
analysis, 2 out of 38 medium (5.3%) and 5 out of 9 (55.6%) large lumen value changes 
were found to coincide with the myocardium artefacts (see table 2-1 and 2-2 under field 
“Lumen mean value changes” - values shown between brackets). From these findings, we 
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can derive that motion could blur the vessel, reducing the attenuation value. From the 
experiment with the second vessel phantom, similar finding of a large lumen mean value 
decrease at the 75%-stenosis phantom was also observed, but not at the 56%-stenosis 
phantom. This result indicated that a large stenosis decreases the amount of lumen pixels to 
be significantly influenced by partial volume effect. Therefore, it is hard to distinguish 
artefact-induced- and real stenosis based on lumen mean value decrease alone. 

Combining the vessel lumen area (IIb) and myocardium (Ia) analysis, ten out of 29 
myocardium artefacts were found to correlate with lumen area stenoses, of which two were 
severe stenoses at 100 bpm on 64CT. Figure 2-5 shows the combined analysis at this 
dataset. We can directly correlate the sharp change at point A with the qualitative step 
artefact observation, but not at point B. Nevertheless, there is more than 20% lumen area 
reduction close to it. Without apparent step artefacts on the plot, this lumen area reduction 
could be regarded as a true stenosis. However, by finding a myocardial motion artefact at 
the corresponding location, this lumen area reduction could be marked as artefact-induced. 
Although, as can be seen also in point C and D in figure 2-5, the presence of motion 
artefacts does not always have enough effect on the vessel visualization to result in 
apparent stenosis. Therefore, it is useful to check for the presence of motion artefacts in 
corresponding location in myocardium, if a stenosis is found. However, it might not be 
necessary if no stenosis is detected, although those areas will still be suspicious. This 
recommendation is summarized by table 2-4. 

 
Table 2-4. Recommendation to interpret findings 

Type of findings 
Meaning Vessel 

Stenosis 
Myocardial 

artefact 

- - Normal vessel 

+ - True stenosis 

- + 
 Suspicious area of 

motion artefact 

+ + 
Possible artefact-
induced stenosis 

 
Discussion 

The developed quantitative analysis managed to detect the motion artefacts in the 
phantoms scans at 64CT and DSCT. Moreover, it explored into more details the effect of 
motion artefacts on vessel visualization, even the ones that were missed by qualitative 
analysis.  
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When evaluating the coronary arteries, the proposed procedure could warn the 
radiologist for suspicious areas where motion artefacts are present that could hamper the 
evaluation of stenoses in the coronary arteries. This especially holds in the case that a 
radiologist is reviewing segmented and stretched views of the coronary arteries in which 
stenotic lesions could easily be misinterpreted. Detection of areas of motion artefacts could 
help to avoid false positive findings in coronary CTA stenoses evaluation. A false positive 
finding could direct the patients into unnecessary treatment which could pose another risk 
such as the possible risks related to percutaneous transluminal coronary angioplasty 
(PTCA). Meanwhile, a false negative finding could leave patients untreated. However, on 
the other side, patients with undetected coronary problems could live a long time without 
any problem, provided the patients were not subjected to excessive physical or emotional 
stress.[14] 

This study used 64-MDCT and DSCT, two modalities with similar characteristics 
except for their respective temporal resolution. DSCT has twice the temporal resolution of 
64-MDCT, due to the two perpendicular x-ray tubes inside its gantry rotating 
simultaneously. The qualitative analysis had shown the superiority of DSCT over 64-
MDCT in avoiding motion artefacts.[9] However, the quantitative analysis managed to 
reveal some artefacts on both modalities that would otherwise be missed.  

Ferencik, et al [15] attempted to quantitatively analyze motion artefacts in 
coronary arteries, using two variables. The first variable is the percentage of coronary-
length that is imaged without artefact, which nicely described the effect of motion to the 
coronaries. However, the detection of the motion artefact was performed qualitatively. In 
fact, our proposed method could be used for the motion artefact detection for this variable. 
The second variable is the contrast to noise ratio (CNR), which was calculated from the 
contrast of the vessel lumen mean attenuation value to the surrounding soft tissues, 
compared to the noise in the aorta. The consistency of vessel lumen value along z-axis 
measurement is similar to this variable, without comparison to surrounding soft tissue but 
with the advantage of location-specific depiction of motion artefacts. Otero et al [16] 
reported their finding of lumen mean value decrease at stenoses larger than 20% based on 
patient study. This is consistent with our finding of lumen mean value decrease at large 
stenosis area. However, their study excluded dataset suffering from motion artefact which 
makes a direct comparison with our finding not possible. 

The limitation of this study is the use of phantom data instead of patients’ data. 
Lack of real myocardium and vessel tissue of the phantom, and of surrounding pericardial 
fat tissue and chest cavity environment are factors that separate our phantom study to those 
of clinical patient examinations. Some adjustments can be made to apply our proposed 
method to the clinical examinations, such as: the parameters controlling GVF snake to 
extract myocardium boundaries, as in clinical examination, the heart chambers will be 
filled with contrast-enhanced blood instead of air. Other algorithm can be directly 
applicable to clinical examinations, such as: the lumen peak value-dependent lumen 
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thresholding as this method was taken from a clinical study.[12] The pre-processing step of 
GVF snake should be able to handle the additional noises from scattering and attenuation 
inside the chest cavity. 

Because of radiation dose concern, an examination with lower kV is desired. 
However, scans with different kV will affect HU values of materials, especially ones with 
high atomic number such as the contrast agent. The proposed method does not use a fixed 
HU threshold in any of the algorithms, which should make them also applicable to such 
examinations. In general, this phantom experiment has its advantage in the ability to adjust 
the heart rate in a controlled manner. The effects of heart rates in a large interval, from low 
until very high, can be individually studied.   

We conclude that the developed quantitative analysis adds to the diagnostic value 
of a qualitative analysis. The quantitative analysis allows for the detection of suspicious 
regions of the coronary arteries thus reducing the false positive stenosis rate. Several 
publications reported an almost perfect score of negative predictive value of MDCT in 
detecting stenosis, but lower values were reported for positive predictive value.[17-19] The 
quantitative analysis proposed in this study could improve the positive predictive value by 
reducing the number of false positive finding. Future work applying the method into 
clinical data still needs to be conducted. Such study would involve patients examined by 
MDCT with x-ray angiography as stenosis reference. An adjusted version of the proposed 
method will be applied to the data to detect and quantify motion artefacts. The 
interpretation recommendation listed by table 2-4 will be used to examine the images with 
reference to x-ray angiography findings.  
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Abstract 

Zero calcium score may not reflect the absence of calcifications as small 
calcifications could be missed. This study aimed to evaluate minimal size and minimal 
attenuation of coronary calcifications detectable by computed tomography (CT) and to 
determine the minimal spatial resolution required for detecting calcification onset. Using 
open source CT simulation software, CTSim©, several 50%-stenotic coronary artery 
phantoms were designed with 5µm resolution, realistic morphology and tissue-specific 
Hounsfield Unit (HU) values. The plaque had an attenuation resembling fibrous plaque and 
contained a single calcification. X-ray projections were simulated with settings resembling 
non-contrast-enhanced 64 multi detector-row CT (64-MDCT). Scanning and reconstruction 
were simulated with spatial resolution of a 64-MDCT (0.4mm) and of a MicroCT (48µm). 
Starting from a single calcium granule, the calcification was simulated to grow in size and 
attenuation until it could be detected using clinically accepted calcium determination 
scheme on MicroCT and 64-MDCT images. The smallest coronary calcifications detectable 
at MicroCT and 64-MDCT, which had a realistic attenuation (-1024 to 3072HU), were of 
25 m and 215 m diameter, respectively. The area was overestimated 7.7 and 8.8 times , 
respectively. Calcifications with smaller size need to have an unrealistically high 
attenuation to be detectable by 64-MDCT. In conclusion, 64-MDCT is only able to detect 
coronary calcifications with minimal diameter of 215 m. Consequently, early onset of 
calcification in coronary plaque will remain invisible when using CT and a zero calcium 
score can not exclude the presence of coronary calcification. 
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Introduction 
Computed tomography (CT) is highly sensitive for the detection of coronary 

calcification, due to the high attenuation value of calcium. Using this property, it has been 
shown in multiple large prospective studies that the amount of coronary calcification, 
expressed as a calcium score [1], is a strong predictor of coronary events [2-4]. Therefore, 
the calcium score is considered a promising method to improve cardiovascular risk 
stratification [5-7]. Furthermore, the occurrence of coronary heart disease and mortality is 
extremely unlikely in asymptomatic individuals with a zero or very low calcium score [8, 
9]. 

However, whether the absence of coronary calcium can also exclude the presence 
of obstructive plaque in patients with symptoms suggesting underlying coronary artery 
disease (CAD) is a matter of debate. In different studies with differing CT systems, the 
presence of significant stenosis on CT angiography in case of a zero calcium score ranged 
from 0 to 7% [10-14]. Although some authors have suggested that the zero calcium score 
can reliably exclude the presence of obstructive disease, others advise to be careful with 
patients with zero calcium score due to the inability to rule out CAD [13-15]. It should be 
proven that a zero calcium score on CT indeed means that coronary calcification is absent 
and that significant CAD can be safely excluded. The inability to detect small and less 
dense calcifications was shown in a recent phantom study, in which coronary calcification 
quantifications were compared between multiple 64 multidetector-row CT (MDCT) 
scanners from two different vendors [16].  

The current MDCT technology has limited spatial resolution to detect small 
calcifications. Therefore, by using a software simulation model, we investigated the 
smallest calcification which can be detected by current CT technology and the spatial 
resolution needed to detect significant calcifications based on the commonly accepted HU-
based threshold for calcification measurement in non-contrast-enhanced CT. 
 
Material and methods 

The simulation was conducted using an open source CT simulation software 
package, CTSim© 3.0 [17, 18]. The simulation was started by generating a custom-made 
phantom. Hereafter, x-ray projections on the phantom were simulated, and the resulting 
sinogram was reconstructed to make the final CT image.  
 
Phantom generation 

The phantom depicts an axial cross-section of a coronary vessel and was generated 
at 5 m resolution to facilitate the smallest size of a single calcium granule, found in 
histopathology [19]. Realistic morphological features of the vessel and attenuation values 
of the tissues and materials were used [20-28]. All three layers (intima, media, and 
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adventitia) of a coronary vessel and the surrounding epicardial fat tissue were incorporated 
into the design of the phantom. Published attenuation values of carotid plaques were 
chosen. Although the studies reporting these values used contrast-enhanced CT scans, 
carotid plaques are generally large enough to be less influenced by partial volume effects, 
either from the lumen contrast-enhancement or the surrounding fat tissue. The lumen was 
simulated to be blood-filled, while both the normal and plaque-infested parts of the vessel 
were fibrous. The plaque was designed to build up in the intima area causing 50% area 
stenosis with a single calcification inside. The construction and dimension of the phantom 
is presented in figure 3-1A.  

 
Figure 3-1. The vessel phantom (A) with fibrotic plaque and a single calcification was 

generated at 5 m resolution. CT scanning simulation was conducted, generating images at 
MicroCT (B) and 64-MDCT (C) resolution. 

 
Scanning simulation 

X-ray projections were simulated on the generated phantom and performed with 
settings based on the technical specifications of a commercially available 64-MDCT 
scanner (Somatom Sensation 64, Siemens Medical Solution, Forchheim, Germany). This 
scanner was considered to be an appropriate representative of the current clinical CT 
systems used in cardiac imaging. The scan settings of 64-MDCT adapted to the simulation 
were: the scanning voltage, amount of projections to make one image slice, and spatial 
resolution. The generally used 120 kV voltage setting for coronary CT calcium scoring  
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Table 3-1. Parameters used for simulation 

Phantom: 
1. Element size: 5 m 
2. Vessel morphology 

a.        Normal wall thickness: 1 mm (intima + media + adventitia); 0.5 mm 
(adventitia only) 1) 

b.       Normal lumen diameter: 4 mm  2) 
c.        Vessel shape: eccentric thickening with round lumen  3) 

3. Tissue attenuation value: 
a.        Air: -1024 HU 
b.       Blood: 50 HU 4) 
c.        Epicardial fat: -100 HU 5) 
d.       Fibrous plaque: 65 HU 6) 

Scanning / X-ray Projection: 
1. Detector geometry: Parallel 
2. Detector size: 48 m / 0.4 mm (MicroCT / 64-MDCT) 
3. Number of projections: 1151  

Reconstruction: 
1. Type of reconstruction: filtered back projection (FBP) 
2. Type of filter: Hanning 
3. Interpolation: Linear 
4. Pixel size: 48 m / 0.4 mm (MicroCT / 64-MDCT) 

Note: 
1) Normal coronary wall layers (for all three layers and for adventitia layer only)[23], and 

then rounded for simplification 
2) Normal lumen diameter.[20] 
3) The most common plaque-burdened vessel shape.[20]   
4) Arbitrarily chosen from the normal range of the reported value for blood. [25] 
5) Arbitrarily chosen from the normal range used for epicardial fat.[22, 27] 
6) Average of published carotid fibrous plaque values [21, 24, 26, 28], and then rounded 

for simplification 
 
examinations was not directly simulated by the scanning parameters. Instead, since voltage 
settings affect the HU values of the scanned materials, it was simulated by taking the HU 
values for plaque tissues in the phantom construction from studies which used 120 kV 
scanning voltage setting. Per 180° rotation, 1151 projections were made, resembling the 
number of projections made by 64-MDCT at 330 ms rotation time. Due to the limitation of 
the software, the geometry of the detectors was set to be parallel instead of equiangular (i.e. 
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equal to fan beam geometry) to mimic the configuration of 64-MDCT x-ray source-
detector. However, because of the relatively small size of the phantom in comparison to the 
distance between x-ray source and detector, a fan-beam ray passes through the phantom in a 
similar way as a parallel beam ray would and thus this will not influence the results. The 
detector array element size was set to be 0.4 mm, the spatial resolution of a 64-MDCT. The 
same projections were repeated with similar settings but with the detector array element 
size changed to 48 m, the spatial resolution of a MicroCT system (Kristanto et al, 
European Society of Cardiac Radiology, Porto 2008). Inapplicable scan settings of 64-
MDCT were the pitch and scanning time because the phantom was stationery, and the slice 
width because the phantom was two dimensional. 

Two other variables of clinical scans which were indirectly incorporated in the 
simulation were the scan current and the scanning environment inside a thorax cage. Both 
are known to be related to noise, affecting image quality. Adhering to this fact, an artificial 
noise comparable to noise in clinical scans was incorporated at the later stage of the 
simulation.  
 
Reconstruction parameters 

From the resulting sinograms of the x-ray projections, images were reconstructed 
using the filtered back projection (FBP) method with a Hanning filter and linear 
interpolation. The Hanning filter was selected because of its smoothing characteristics, 
comparable to a medium or smooth kernel, usually applied for coronary CT calcium 
scoring examinations. The reconstructed image pixel size was set to 48 m and 0.4 mm to 
match the MicroCT and 64-MDCT spatial resolutions, respectively (figure 3-1B and 3-1C). 

The parameters used for simulation are summarized in table 3-1. 
 
Analysis 

Since a calcification grows as several calcium granules aggregate [29], the 
calcification was systematically simulated to grow, starting from a single calcium granule, 
until it was detected by either 64-MDCT or MicroCT. The growth was simulated either by 
altering the attenuation value (by increasing the HU value) or the size (by increasing the 
diameter, assuming the granules aggregate in a circular shape), thus changing the physical 
properties of the calcification in the phantom images. Two parameters were investigated: 
1. Minimal attenuation value of detectable calcification 

The diameters of the calcifications were fixed into several predefined sizes: 1-, 2-, 
3-, 5-, and 10-pixel (with 1 pixel = 5 µm = 1 calcium granule). At each fixed diameter, the 
attenuation value was increased from 130 HU until it was detected by either CT system.  
2. Minimal size of detectable calcification 

The second simulation assumed that calcium granules have a specific attenuation 
value. The attenuation value of an area will be the average of the attenuation value of all 
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components in that area. As calcium granules aggregate and fill an entire pixel area, the 
attenuation value of the area will reflect the attenuation value of a single calcium granule. 
The attenuation value of this area will also be the highest since calcium is the densest 
plaque component. The maximum reported coronary calcification attenuation value was 
found to be approximately 2000 HU [30]. Therefore, the attenuation value of the 
calcification was fixed at 2000 HU, and then the diameter was increased starting from 1 
pixel (with 1 pixel increments) until it was detected by either CT system.  

The position of the calcification relative to the reconstructed image pixel borders 
may influence its detectability as a calcification at the center of an image pixel is blurred 
less than a calcification at the border of two image pixels. Therefore, additional 
investigation was conducted by varying the position of the calcification relative to the 
reconstructed image pixel(s), both for 64-MDCT and MicroCT images, into three 
variations: at the center of an image pixel, at the border between two image pixels, and at 
the border between four image pixels. (see figure 3-2). 

 

 
Figure 3-2. The different positioning of calcification, at the image center (1), at the border 

between two image pixels (2), and at the border between four image pixels (3). 
 

Noise could hamper the image quality and subsequently the calcification’s 
detectability. Artificial noise was incorporated into the simulation according to the method 
described in a previous publication, [31] by adding Gaussian noise with zero mean and 
sigma ( ) standard deviation to the sinograms. The  was set to a certain value so that the 
noise in the reconstructed image matched the noise in normal clinical CT images used for 
calcium scoring application. The normal clinical CT image sample was taken from a thorax 
phantom scan (QRM, Möhrendorf, Germany; see figure 3-3), scanned on a 64-MDCT 
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scanner in sequential mode at 120 kV and 50 mAs; reconstructed using B35f kernel at 3 
mm slice thickness. The noise was defined as the standard deviation inside an ROI over a 
homogenous area with attenuation equivalent to water. To achieve correct noise simulation 

in the micro CT simulation the noise has to be increased by a factor of NN , where N 
corresponds to the increase in resolution when compared to 64MDCT [32]. The resolution 
of MicroCT was 8.3 times the 64-MDCT. Therefore, the noise in the MicroCT images is 
approximately 24 times the noise in the 64-MDCT images.  

  

 
Figure 3-3. The photograph (left) and CT image (right) of the thorax phantom. 

 
Each time the calcification’s size, attenuation value, or position was changed, a 

new phantom was generated and a new simulation was conducted. Based on the known 
plaque area on the phantom image, a region of interest (ROI) was defined on all MicroCT 
and 64-MDCT images, enclosing the whole plaque area. Two calcification detection criteria 
were defined according to the clinically accepted threshold of 130 HU for the detection of 
calcified plaque regions in non-contrast-enhanced 64-MDCT: firstly, when there was 1 
pixel and secondly, when there were more than (>) 1 pixel inside the plaque ROI exceeding 
the 130 HU threshold. The second criterion was based on the generally used suggestion in 
calcium scoring schemes, that a threshold of more than 1 pixel for calcification is necessary 
to avoid false calcium detection due to noise [1]. 

 
Results 
No noise 

1. Minimal attenuation value of detectable calcifications 
The required attenuation value of 1, 2, 3, 5, and 10 pixel (5, 10, 15, 25, and 50 µm, 

respectively) diameter calcium granule(s) to be detectable by MicroCT and 64-MDCT is 
presented in table 3-2A and 3-2B, respectively (fixed diameter Ø rows). From all the 
detected calcium granule(s), only calcium granules with a diameter of at least 5 pixels (25 
µm) which were detected by MicroCT, had an attenuation value within normal CT values 
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range (-1024 until +3072 HU). Smaller calcifications required an unrealistically high 
attenuation value beyond this range to be detected. The simulation was stopped when a 
calcification with attenuation value >300000 HU was still not detected.  

 
2. Minimal size of detectable calcification  

The required size of 2000 HU calcium granule(s) to be detectable by MicroCT and 
64-MDCT is presented in table 3-2A and 3-2B, respectively (fixed attenuation rows). Using 
1 pixel threshold, the smallest calcification detected by MicroCT and 64-MDCT were the 
ones positioned at the image pixel center with 20 and 175 µm diameter, respectively, with 
area overestimation of 5.8 and 6.7 times, respectively. Using >1 pixel threshold, the 
smallest calcification detected by MicroCT and 64-MDCT were the ones positioned at the 
border between two image pixels with 25 and 215 µm diameter, respectively, with area 
overestimation of 7.7 and 8.8 times, respectively.  

The requirement of a calcification to be detected as 1 pixel, either by 64-MDCT or 
MicroCT, was constantly lower for calcification positioned at the image pixel center than 
the one positioned at the borders. However, to be detected as >1 pixel, the calcifications 
positioned at the image pixel center need the highest requirements. 
 
With noise 

The noise measured at the clinical 64-MDCT image sample was approximately 10 
HU. If the same scan would have been performed at MicroCT spatial resolution without 
additional radiation dose, the noise level would have been at approximately 240 HU, which 
is too high for a diagnostic image. Inserting noise of that level to the Micro CT images will 
practically obscure any details, let alone the visualization of a small calcification. 
Therefore, the noise insertion was only performed to 64-MDCT images. Introduction of 
noise in the simulated 64-MDCT images changed the number of the detected calcification 
pixels, either by reducing the HU value of the detected calcification pixel so it went below 
the 130 HU threshold or by increasing the HU value of non-calcification pixel so it went 
above the 130 HU threshold. (see table 3-3) 

One way to avoid being eliminated by the noise, the calcification pixel HU value 
needed to be above the noise level from the current threshold. Thus, the calcification 
needed to be at least 140 HU. Increasing the detection threshold accordingly, the detection 
requirements were updated as in table 3-4. 
 



 

 

Table 3-2.A. Detection prerequisites for MicroCT with no noise present 

Fixed 
Detection prerequisites of a calcification located at 

Center Border 2 pixels Border 4 pixels 
as 1 pixel as >1 pixel as 1 pixel as >1 pixel as 1 pixel as >1 pixel 

Diameter 
Ø 

1 pixel 32000 HU 65000 HU 42000 HU 44000 HU 50000 HU 52000 HU 
2 pixels 8000 HU 16500 HU 10500 HU 11000 HU 12500 HU 13500 HU 
3 pixels 3500 HU 7000 HU 4700 HU 5000 HU 5600 HU 5900 HU 
5 pixels 1300 HU 2500 HU 1800 HU 1900 HU 2100 HU 2200 HU 

10 pixels 430 HU 800 HU 500 HU 600 HU 570 HU 600 HU 
Attenuation 2000 HU 4 pixel Ø 6 pixel Ø N.A. 5 pixel Ø N.A. 6 pixel Ø 
 
 
 
Table 3-2.B. Detection prerequisites for 64-MDCT with no noise present 

Fixed 
Detection prerequisites of a calcification located at 

Center Border 2 pixels Border 4 pixels 
as 1 pixel as >1 pixel as 1 pixel as >1 pixel as 1 pixel as >1 pixel 

Diameter 
Ø 

1 pixel >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU 
2 pixels >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU 
3 pixels 210000 HU >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU 
5 pixels 75000 HU 130000 HU 125000 HU 135000 HU 160000 HU 170000 HU 

10 pixels 18000 HU 30000 HU 32000 HU 35000 HU 40000 HU 41000 HU 
Attenuation 2000 HU 35 pixel Ø 49 pixel Ø 40 pixel Ø 43 pixel Ø N.A. 45 pixel Ø 

Note: N.A.: data were not available since with the 1 pixel increment step, the calcification was directly detected as >1 pixel.  
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Table 3-3. The change of detected calcification pixels at 64-MDCT with noise present 

Fixed 
Change in the detected pixels 

Center Border 2 pixels Border 4 pixels 
as 1 pixel as >1 pixel as 1 pixel as >1 pixel as 1 pixel as >1 pixel 

Diameter 
Ø 

1 pixel N.A. N.A. N.A. N.A. N.A. N.A. 
2 pixels N.A. N.A. N.A. N.A. N.A. N.A. 
3 pixels 0 N.A. N.A. N.A. N.A. N.A. 
5 pixels 0 0 -1 -1 +1 1 

10 pixels 0 -1 -1 -1 +1 0 
Attenuation 2000 HU -1 -1 0 0 N.A. -1 

Note: N.A.: data were not available since the simulation was not performed at this setting. 
 
 
Table 3-4. Detection prerequisites for 64-MDCT with noise present 

Fixed 
Detection prerequisites of a calcification located at 

Center Border 2 pixels Border 4 pixels 
as 1 pixel as >1 pixel as 1 pixel as >1 pixel as 1 pixel as >1 pixel 

Diameter 
Ø 

1 pixel >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU 
2 pixels >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU >300000 HU 
3 pixels 250000 HU >300000 HU >300000 HU >300000 HU 290000 HU >300000 HU 
5 pixels 85000 HU 150000 HU 145000 HU 155000 HU 185000 HU 190000 HU 

10 pixels 20000 HU 35000 HU 37000 HU 39000 HU 46000 HU 47000 HU 
Attenuation 2000 HU 38 pixel Ø 53 pixel Ø 43 pixel Ø 46 pixel Ø 45 pixel Ø 48 pixel Ø 
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Discussion 
In this software simulation study, the attenuation value and size requirement of 

small calcifications necessary to be detectable by current clinical CT systems (represented 
by 64-MDCT), were systematically investigated. Very small calcifications (<= 50 m 
diameter) needed an unrealistically high attenuation value, while calcifications of a realistic 
attenuation value had to have at least a 215 m (0.215 mm) diameter. Calcifications with a 
size or attenuation value below these requirements would simply be blurred out due to 
partial volume effects.  

Contrast-enhanced coronary CT angiography examinations have been widely used 
for coronary artery disease examination, both for coronary lumen and wall assessment [33-
38]. However, coronary calcification quantification based on non-contrast-enhanced 
coronary CT remains a solid assessment tool for predicting coronary event risk [2-4]. It has 
been associated with total plaque burden [39]. Although extensive calcifications are 
associated with more stable plaques [40-42], they are frequently found in ruptured plaques 
according to a histopathology study on victims of sudden coronary death [43]. However, 
speckled calcifications are more commonly associated with ruptured and vulnerable 
plaques than diffuse calcification [44]. Above all, mixed plaques with predominantly non-
calcifying component are associated with acute coronary syndromes [40]. Some studies 
have shown that absence of coronary calcium can 100% rule out the presence of significant 
CAD on CT angiography in symptomatic patients [10, 12]. Other studies have found 
contradicting results, with significant stenoses in up to 7% of patients with zero or very low 
calcium score [11, 13, 14]. The sensitivity of the CT technique applied may play an 
important role. Furthermore, dependency of coronary calcification quantification on 
acquisition mode, quantification algorithm, and vendor were reported [45]. A study 
comparing coronary calcification quantifications by multiple 64-MDCT scanners from two 
different vendors addressed the inability to detect all small and less dense calcifications by 
all 64-MDCT scanners [16]. One pathological study reported a few missed calcifications by 
MDCT [46]. Another pathological study supports our findings, describing the limitations of 
64-MDCT in detecting small calcifications and also the overestimation of the detected 
calcifications area [47]. A recent clinical study reported missed small calcifications by 
contrast-enhanced MDCT and confirmed the limited spatial resolution as the main cause 
instead of the lumen contrast-enhancement influence [48]. 

Stary et al noted that calcifications could be observed at the same time as the 
plaques reached an advanced stage [49]. However, a recent finding shows that micro-
calcifications (sized 1-10 m) are already present in an early type of atherosclerotic plaque, 
indicating the possibility of calcium to be a marker for early development hereof 
atherosclerosis [50]. Vengrenyuk et al. hypothesized that micro-calcifications in the thin 
fibrous cap covering a lipid pool could destabilize the plaque to the point of becoming 
rupture-prone [51]. However, for these micro-calcifications to be detectable by 64-MDCT, 
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an unrealistically high attenuation value is needed. A MicroCT is necessary to detect these 
micro-calcifications, while a macro CT, such as the 64-MDCT, is limited to larger coronary 
calcifications. Langheinrich et al. showed that MicroCT with 12 m spatial resolution could 
visualize small (<100 m2 or ~10 m diameter) and very dense iron deposits [52]. However, 
as the spatial resolution decreased, these iron deposits became blurred out and at a spatial 
resolution of around 50 m, they started to be completely blurred out. This concurred with 
our results in a MicroCT of similar spatial resolution (48 m), in which calcification of a 
similar size (2-pixel or 10 m diameter) and a similar attenuation value as the iron deposits 
started to be detected (see table 3-2A). 

The presence of noise influenced the detectability of small calcifications, affecting 
more than half of the detected calcifications by 64-MDCT. The effect of noise may be 
avoided by setting a higher HU threshold for calcification detection. However, it will also 
mean that only larger and denser calcification can be detected, while smaller and less dense 
calcification will be missed. No noise evaluation was performed for the MicroCT images as 
the increased noise level will severely limit further evaluation.  

The current developments in CT, in term of spatial resolution, are marked by the 
introduction of a new 230 m-spatial resolution CT system [53] and the emerging 
technology of a 200 m-spatial resolution flat panel CT system [47]. Higher spatial 
resolution may allow CT systems to detect smaller calcifications, but the main challenge 
lies in dealing with the accompanying higher noise level while keeping the radiation dose 
comparable to clinical settings [32, 52]. Technological advances such as the iterative 
reconstruction algorithm may offer a solution to this problem [53]. So far in-vivo 
modalities that may visualize ultrasmall calcifications are invasive modalities such as 
intravascular ultrasound (IVUS) and optical coherence tomography (OCT) [54]. However, 
invasive modalities can only be applied in selected high-risk patient groups. 

The calcification quantification method used in this study follows the commonly 
accepted threshold-based calcification quantification method [1]. The method is simple yet 
effective, as has been shown in many studies. However, the usage of a fixed threshold to 
quantify coronary calcification may not properly take into account the true volume of 
calcification. Advanced new image post-processing techniques may improve the current 
established calcification quantification method. 

This study does not simulate different types of vessel remodeling as the type of 
remodeling should not have any influence on the visualization of small calcifications. 
However, it is of importance in non-calcified plaque attenuation value measurements as 
plaque, which causes positive remodeling, had a low attenuation value, which is associated 
with higher vulnerability [55]. The lack of physical CT scanning properties in this study is 
compensated by the fact that software simulation can systematically adjust individually 
influencing factors while mimicking the technical settings of a CT system as closely as 
possible. Due to the simulation software limitation, however, some parameters, such as the 
x-ray source-detector geometry, can only be approximated. This also applies to properties 
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such as the reconstruction filter details, since these are not always disclosed by the CT 
vendor. The analysis is limited to two dimensional (2D) images also because of the 
limitation of the simulation software. However, since calcification measurement is 
commonly assessed based on its area [1, 39, 47], our result should sufficiently show 64-
MDCT limitations in detecting calcification. Also it should be noted that calcification is a 
three-dimensional (3D) object and its volume comparison to the image voxel size can play 
a role in the partial volume effect. Although cardiac motion has been reported to affect the 
coronary calcium score [56], the effect of motion on the detection of small calcifications 
was excluded in this current study. However, it is expected that including motion will 
increase the size and attenuation value requirement of a small calcification to be detectable 
by 64-MDCT. The ideal noiseless and motionless environment gave us the opportunity to 
focus our study on the relation between spatial resolution and the detectability of a small 
calcification. Future work should incorporate all these considerations to provide even more 
solid proof on how small calcifications may be missed by 64-MDCT or current clinical CT 
systems in general. 

In conclusion, 64-MDCT is only able to detect coronary calcifications with 
minimal diameter of 215 m, which is approximately 40 times the smallest reported 
calcium granule size. Consequently, early onset of calcification in coronary plaque 
indicating early progression of disease and increased coronary risk to the patient will go 
undetected when using a clinical CT system; and a zero calcium score can not exclude the 
presence of coronary calcification. 
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Abstract 
 
BACKGROUND: Many computed tomography (CT) studies have reported that lipid-rich, 
presumably rupture-prone atherosclerotic plaques can be characterized according to their 
Hounsfield Unit (HU) value. However, the published HU-based characterization criteria 
vary considerably. The present study aims to systematically analyze these values and 
empirically derive a hierarchical classification of the HU-based criteria which can be 
referred in clinical situation.  
MATERIAL AND METHODS: A systematic search in Pubmed and Embase for 
publications with HU-criteria to characterize lipid-rich and fibrous atherosclerotic plaques 
resulted in 36 publications, published between 1998 and 2011. The HU-criteria were 
systematically analyzed based on the characteristics of the reporting study. Significant 
differences between HU-criteria were checked using student’s t-test. Subsequently, a 
hierarchical classification of HU-criteria was developed based on the respective study 
characteristics. 
RESULTS: No correlation was found between HU-criteria and the reported lumen 
contrast-enhancement. Significant differences were found for HU-criteria when pooled 
according to the respective study characteristics: examination type, vessel type, CT-vendor, 
detector-rows, voltage-setting, and collimation-width. The hierarchical classification 
resulted in 21 and 22 CT attenuation value categories, for lipid-rich and fibrous plaque, 
respectively. More than 50% of the hierarchically classified HU-criteria were significantly 
different.  
CONCLUSION:  In conclusion, variations in the reported CT attenuation values for lipid-
rich and fibrous plaque are so large that generalized values are unreliable for clinical use. 
The proposed hierarchical classification can be used to determine reference CT attenuation 
values of lipid-rich and fibrous plaques for the local setting.  
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Introduction 
Multi-detector-row computed tomography (MDCT) is currently the preferred non-

invasive modality to assess the extent of coronary artery disease (CAD) [1], MDCT can 
reliably exclude the presence of obstructive CAD [2]. Furthermore, contrast-enhanced 
MDCT shows potential for differentiating types of atherosclerotic plaques, including 
calcified and non-calcified plaques [3]. MDCT can accurately quantify calcified plaque 
burden [4-6] and potentially non-calcified plaque volume [3]. However, quantitatively 
characterizing non-calcified plaque components has been found more challenging [7].  

Characterizing the lipid-rich component of non-calcified plaques has become of 
increasing interest as lipid-rich, thin-capped plaques are considered to have an increased 
risk of rupture, with the potential sequel of an acute cardiovascular event [8, 9]. Early CT 
studies reported that non-calcified plaque components can be characterized based on their 
CT attenuation values, expressed in Hounsfield Unit (HU) [10, 11]. Since then, a number of 
studies on this topic has emerged, using new generations of the rapidly evolving MDCT 
technology [12, 13]. However, a reliable and consistent non-calcified plaque 
characterization based on its HU values is yet to be achieved. The reported plaque-specific 
HU values vary considerably. Several factors influencing non-calcified plaque HU values 
have been identified, among others lumen contrast-enhancement and reconstruction kernel 
[14, 15]. However, the fact that each study investigating HU-based non-calcified plaque 
characterization has different characteristics may also contribute to the considerable 
variation. Examples of those characteristics are examination type, vessels of interest, and 
CT-system. The aim of this study is to systematically investigate the published HU-based 
criteria to characterize non-calcified plaques, and empirically derive a hierarchical 
classification of the HU-based criteria, in order to assist CT determination of non-calcified 
components in atherosclerotic plaques in a clinical setting.  
 
Material and methods 

In this study, we systematically searched and collected publications which reported 
HU-criteria to characterize lipid-rich and fibrous plaques. Subsequently, the HU-criteria 
were systematically analyzed based on the specific characteristics of each study.  
 
 Literature study 

With the guidance of a librarian and using denominator terms for several relevant 
publications obtained beforehand, a computerized search was performed per April 22nd, 
2011 to identify relevant publications in Pubmed, using MeSH terms and free text 
keywords: ("Ultrasonography, Interventional"[Mesh] OR "Coronary Artery 
Disease"[Mesh] OR "Carotid Artery Diseases"[Mesh]) AND plaque* AND "Tomography, 
X-Ray Computed"[Mesh] NOT "Review "[Publication Type]; and in Embase, using the 
keywords: ('endoscopic echography'/exp OR 'coronary artery disease'/exp OR 'carotid 
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artery disease'/exp) AND 'plaque' AND 'computer assisted tomography'/exp NOT 
'review'/exp/. Inclusion criteria for publication selection were: 1) original publication; 2) 
characterization of non-calcified plaques into lipid-rich and fibrous plaques, and report of 
their specific HU values; 3) using human derived materials; and 4) using other an imaging 
modality as plaque composition reference. Publications meeting one or more of the defined 
exclusion criteria were excluded (figure 4-1).  

 

 
Figure 4-1. Search strategy and result. 

 
The search yielded 2062 publications. After removing 576 duplicates (either 

overlaps between Pubmed and Embase results or repetitions in each database results), 1486 
individual publications were screened by one reviewer (WK) based initially on the title and 
abstract, and when inclusion was still unclear, on the full-text of the article. In case of doubt 
about inclusion of a publication, arbitration was performed in a consensus meeting with a 
second reviewer (PvO).  Finally, 1450 out of the remaining 1486 publications were 
excluded based on the exclusion criteria. No language or publication date related exclusions 
were made. In total, 36 publications were included in this study [7, 10-13, 16-46] (figure 4-
1, table 4-1). A preliminary check was performed to evaluate whether one study which used 
two different CT modalities could be regarded as two separate studies [46] and whether 
another study which used four different kV settings could be regarded as four separate 
studies [44]. The preliminary check involved pooling all HU-criteria and pooling all HU-
criteria minus one of the aforementioned studies, repeated for all six studies in question. As 
no significant difference in outcome was found when splitting up these studies, the two 
studies were treated as six studies resulting in total 40 studies for our systematical analysis 
obtained from the 36 publications. 
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Table 4-1. Characteristics of the included publications 
 

No 

Publication Modality Scan 
Settings 

LC 
(HU) 

Subject 

Ref 

Plaque 

Ref# First 
Author Year Brd DR kV CW 

(mm) 

Population 
SD Ves 

Lipid-rich Fibrous 

N Male 
(%) Age N Value N Value 

1 Becker 2003 SIE 4 120 0.5 250 11 45 (34- 
87) Ex Cor PA 15 47+9 16 104±28 [16] 

2 Brodoefel 2008 SIE 64 120 0.6 NA 13 92 65+7 In Cor IV NA (-10- 
66) NA (67- 

153) [17] 

3 Carrascosa 2003 PHI 4 120 1 NA 30 NA NA In Cor IV 105 75.73+ 
44.3 14 

148.61
+ 

36.54 
[18] 

4 Carrascosa 2006 PHI 4 120 1 NA 40 80 
52 

(33-
86) 

In Cor IV 188 71.5+ 
32.1 45 116.3+ 

35.7 [19] 

5 Caussin 2004 SIE 16 NA NA NA 21 52 

58+ 
13 

(39- 
77) 

In Cor IV 12 12+38* 4 63.8+ 
18.9* [20] 

6 Chopard 2010 PHI 64 120 0.625 NA 21 NA NA Ex Cor PA 20 70+41 42 83+35 [21] 

7 de Weert 2005 SIE 16 140 0.75 0 21 81 
64.7 
(41- 
81) 

Ex Car PA 35 45+21 28 79+20 [22] 

8 de Weert 2006 SIE 16 120 0.75 ~400 15 40 
70.3 
(62- 
84) 

In Car PA 31 25+19 53 88+18 [23] 

9 Estes 1998 SIE 1 NA 3 150-
300 20 80 

74 
(57- 
85) 

In Car PA NA 39+12 NA 90+24 [10] 

10 
Ferencik 2006 SIE 16 120 0.75 250 6 67 77+1 Ex Cor OC 41 29+43 40 101+21 [24] 

53 
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Galonska 2008 GE 16 120 0.625 308 30 67 61.5+ 
13.4 Ex Cor PA 33 

(26-67) 
med: 
44 

21 

(37-
124) 
med: 
67 

[25] 

12 Hur 2009 SIE 64 120 0.6 NA 39 72 
59 

(45- 
74) 

In Cor IV 10 54+13 11 82+17 [26] 

13 Iriart 2007 SIE 16 120 0.75 NA 20 85 

53+ 
12 

(38- 
83) 

In Cor IV NA 38+33 NA 94+44 [27] 

14 Jin 2006 SIE 16 120 NA NA 49 55 NA In Car DU NA 6+28 NA 51+19 [28] 

15 Kim 2009 GE 64 120 0.625 NA 42 48 66+9 In Cor IV 28 52.9+ 
24.6 43 98.6+ 

34.9 [29] 

16 Kitagawa 2007 GE 64 120 0.625 ~350 21 76 66+9 In Cor IV 25 18+17 13 67+21 [30] 

17 Kopp 2001 SIE 4 120 1 NA 6 67 60+8 In Cor IV 2 0.5+ 
7.8* 2 67+ 

22.6* [11] 

18 Leber 2004 SIE 16 120 0.75 NA 37 NA NA In Cor IV 62 49+22 87 91+22 [31] 

19 Leschka 2010 SIE 64 120 0.6 300 25 72 

72+ 
13 

(38-
85) 

Ex Cor PA 91 40+ 
17* 43 91+16 [32] 

20 Marwan 2011 SIE 64 120 0.6 NA 40 75 

59+ 
10 

(52-
85) 

In Cor IV 15 67+31 40 96+40 [33] 

21 Motoyama 2007 TOS 16 135 0.5 

258+ 
43 

(174-
384) 

37 84 66+ 
12 In Cor IV 18 10.6+ 

11.6 40 78.1+ 
20.8 [34] 

22 Nikolaou 2004 SIE 4 120 0.5 250 17 65 (38-
86) Ex Cor PA 16 45+16 21 97+31 [36] 

23 Nikolaou 2004 SIE 4 120 0.5 242+ 
28 13 62 (34-

87) Ex Cor PA 10 47+13 11 87+29 [35] 

24 Pohle 2007 SIE 16 120 0.75 NA 32 72 59+8 In Cor IV 84 58+43 42 121+34 [12] 

25 Qiu 2006 PHI 64 
120

- 
140 

0.625 NA 6 67 77.5+ 
9.3 In Cor IV 2 -21.5+ 

36.6 4 85.3+ 
14.3 [37] 
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26 Sakakura 2006 TOS 16 135 0.5 NA 16 69 

63+ 
12 

(42- 
80) 

In Cor IV 6 50.6+ 
14.8 11 131+21 [38] 

27 Schroeder 2001 SIE 4 140 1 NA 15 87 

58+ 
10 

(44-
71) 

In Cor IV 12 14+26 5 91+21 [39] 

28 Schroeder 2004 SIE 4 140 1 182+
34 12 NA 63+ 

17 Ex Cor PA 6 42+22 6 70+21 [41] 

29 Schroeder 2004 SIE 16 120 0.75 237+
17 9 NA NA Ex Pop PA 13 51+ 

20* 18 126+99 [40] 

30 Shen 2010 GE 64 120 0.6 NA 91 58.2 

64.78
+9.19 
(38-
79) 

In Cor IV 6 52.52+ 
15.71 36 

108.32
+ 

43.44 
[42] 

31 Soeda 2011 SIE 64 120 0.6 NA 17 82.4 63.5+
8.4 In Cor OC 78 28.9+ 

30.6 42 77.5+ 
25.7 [43] 

32 Sun 2008 TOS 64 
120

-
135 

0.5 398+
74 26 65 56 In Cor IV NA 79+34 NA 90+27 [13] 

33 Tanami 2010 GE 32 

80 

0.625 0 15 73.3 72+9 Ex Cor PA 39 

20.5+ 
6.5 

30 

28.1+ 
4.3 

[44] 
100 21.8+ 

7.3 
27.8+ 

4.7 

120 23.1+ 
7.2 

27.1+ 
5 

140 23.9+ 
7.2 

27.3+ 
5.1 

34 Wintermar
k 2008 GE 16 120 0.625 NA 8 100 

61 
(55-
69) 

In Car PA NA 32.6+ 
20 NA 46.4+ 

19.9 [7] 

35 Wu 2007 GE 16 120 1.25 NA 30 73 
58 

(43-
75) 

In Cor IV 16 23+18 19 69+21 [45] 

36 
Xiao 2007 

GE 16 120 0.625 
NA 25 NA (50-

72) Ex Cor PA 13 
53+12 

10 
106+17 

[46] 
TOS 64 120 0.5 51+13 110+19 
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Notes: 

1. Values in the columns Lumen Contrast, Age, and Plaque Values are in means, with the range in brackets.  
2. *: Values were self-calculated 
3. NA: data were not available 
4. DR: Detector rows amount 
5. CW: Collimation width 
6. LC: Lumen contrast-enhancement 
7. Brd (Manufacturer Brand): 

a. GE: General Electric 
b. PHI: Philips 
c. SIE: Siemens 
d. TOS: Toshiba 

8. SD (Study Design): 
a. Ex: Ex-vivo 
b. In: In-vivo 

9. Ves (Vessel Type): 
a. Cor: Coronary 
b. Car: Carotid 
c. Pop: Popliteal 

10. Ref (Reference Modality): 
a. DU: Doppler ultrasound (DUS) 
b. IV: Intravascular ultrasound (IVUS) 
c. OC: Optical Coherence Tomography (OCT) 
d. PA: Pathology 
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 HU-criteria were collected for lipid-rich plaques (synonyms used: soft, hypoechoic, 
lipid, lipid-rich, hypodense, or lipid-rich necrotic core) and for fibrous plaques (synonyms 
used: intermediate, hyperechoic, fibrous, fibrous-rich, or connective tissue), as has been 
characterized by each study based on each chosen reference modality. When only the raw 
or partial data were presented in the publications, the plaque value (mean + standard 
deviation [SD] ) was calculated [11, 20, 32, 40].  
 

Systematic analysis of published HU-criteria 

First, all published HU-criteria were pooled. Next, the correlation between published 
HU-criteria and the reported lumen contrast-enhancement was investigated. Finally, the 
published HU-criteria were pooled based on similarity of the studies concerning: 1) 
examination type (in-vivo or ex-vivo), 2) vessel type (coronary or other arteries), 3) CT-
system brand, 4) detector-rows, 5) voltage-setting, and 6) collimation-width. Studies using 
a dual-source CT (DSCT) [26, 32, 33, 43] were grouped with 64-row MDCT studies 
because of the similarity in number of detector-rows. For the remainder of this article, 
DSCT was regarded as equal to 64-row MDCT. Pooling was performed by the pooled 
statistics, using the following formulas: 

kNNN
stdevNstdevNstdevNstdev

NNN
meanNmeanNmeanNmean

k

kk
pooled

k

kk
pooled

...
)1(...)1()1(

...
...

21

22
22

2
11

21

2211

 

Note: 
N : amount of plaques region of interests (ROIs), segments, or squares used to make the 
mean + SD 
k: number of studies included 
 

Not all information to compute the pooled statistics was available in 8 studies. 
Contact information of corresponding authors was used to contact them in 7 of these 
studies. Of these, one author replied but was not able to provide the requested missing 
information. Only those studies providing all the necessary information for pooling (table 
4-1) were included in each pooling calculation. 
 
 Hierarchical classification 

The analysis was extended by systematically classifying the HU-criteria by the 
following hierarchy: examination type, vessel type, CT-system brand, detector-rows, 
voltage-setting, and collimation width. Comparisons were made between criteria at the 
lowest tree branches. HU-criteria which were not significantly different were pooled. 
 

(1) 
 
 
 
(2) 
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 Statistical analysis 

The correlation between the published HU-criteria and the reported lumen contrast-
enhancement was analyzed using linear regression analysis and was expressed as the 
coefficient of determination (r2), ranging from 0 to 1 with r2 = 1 indicating perfect 
correlation. Significant differences between the pooled HU-criteria were determined using 
custom-made unpaired student’s t-test with unequal variances assumed in Microsoft Excel 
2003 (Microsoft Corp., Redmond, Washington) at two-tailed probability p  0.05. 
 
Results 

Preliminary analysis on the 40 analyzed studies showed that:  
1. Sixteen were ex-vivo studies and 24 in-vivo studies;  
2. In 34 coronary arteries were studied and in 6 other arteries (i.e. carotid and 

popliteal arteries);  
3. Eleven studies were performed on General Electric (GE) CT-systems, 4 on 

Philips systems, 21 on Siemens systems, and 4 on Toshiba systems; 
4. One study was performed on a 1 detector-row CT-system, 8 on 4-row MDCT, 

15 on a 16-row MDCT, 4 on a 32-row MDCT , and 12 on a 64-row MDCT;  
5. Two used the voltage setting <120 kV, 28 studies used 120kV , 6 studies used 

>120kV, and 2 studies used  variable kV settings. In 2 studies, the kV setting 
was not reported;  

6. The collimation width applied in the CT-system in 7 studies was <0.6 mm, 17 
studies applied 0.6-0.7 mm, 7 studies applied 0.7-0.8 mm., and 7 studies applied 
>0.8 mm collimation width In 2 studies, the collimation width was not reported.  

7. Thirty eight studies reported the plaque HU values in mean + SD format, 1 
study reported plaque median HU value and the range, and 1 study only HU 
value range.   

8. Out of 20 in-vivo studies that examined the coronaries, 19 studies used intra-
vascular ultrasound (IVUS) and 1 study used optical coherence tomography 
(OCT) as plaque composition reference.  Out of 4 in-vivo study that examined 
the carotid arteries, 3 used histopathology and 1 used Doppler ultrasound (DUS) 
as plaque composition reference.  

9. Out of 14 ex-vivo studies that examined coronaries, 13 studies used 
histopathology and 1 study used OCT as plaque composition reference. One ex-
vivo study that examined carotid arteries and another that examined popliteal 
arteries used histopathology as plaque composition reference. 
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 Systematic Analysis of Published HU-criteria 

Pooling all published HU-criteria, the values for lipid-rich and fibrous plaques were: 
47 + 29 HU and 86 + 29 HU, respectively. The published mean HU-criteria showed a low 
correlation with lumen contrast-enhancement, for lipid-rich (r2 = 0.0054) and fibrous 
plaques (r2 = 0.0304) (figure 4-2). 

Results of the pooled HU-criteria based on similar study characteristics are shown in 
table 4-2. Significant differences were found for the HU-criteria for lipid-rich plaques in 
studies with different examination types, vessel types, CT-system brands (except General 
Electric (GE) versus Toshiba), detector-rows (except 16 versus 64 detector-rows), voltage-
settings, and collimation-widths. In case of fibrous plaques, significant differences were 
found for the HU-criteria in studies with different examination types, CT-system brands 
(except GE versus Toshiba; and Siemens versus Toshiba), detector-rows (except 16 versus 
64 detector-rows), voltage-settings, and collimation-widths (except <0.6 mm versus 0.7-0.8 
mm). 

 

 
Figure 4-2. HU criteria for lipid-rich and fibrous plaques versus the reported lumen 

contrast-enhancement. 
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Table 4-2. Pooled HU-criteria 

Characteristics Ns 
Lipid Fibrous 

Np Mean + stdev Np Mean + stdev 

Study Ex-vivo 15 429 36+20 365 73+30 
design In-vivo 18 701 53+33 511 96+29 

Vessel Coronary 30 1051 47+29 777 85+27‡ 

Type Larger  
Arteries 3 79 38+20 99 92+45‡ 

Brands 

GE 9 244 28+13* 241 61+24§ 

Philips 4 315 72+37 105 106+35 

Siemens 17 534 41+29 469 94+32|| 

Toshiba 3 37 31+13* 61 93+21§,|| 

Rows 

4 8 354 67+35 120 108+32 
16 11 332 42+31† 352 95+31# 
32 4 156 22+7 120 28+5 
64 9 288 41+25† 284 91+32# 

Voltage <120 2 78 21+7 60 28+5 

(kV) 
120 23 921 52+31 688 94+32 

>120 6 116 29+17 120 71+18 

Collimation <0.6 6 78 39+13 109 95+25** 

width 0.6-0.7 14 444 34+21 404 72+27 
(mm) 0.7-0.8 6 266 46+33 268 98+34** 

 >0.8 6 329 67+36 91 106+32 

Note: 
1. Ns: total amount of studies included in the pooling calculation. There were studies 

excluded because of incomplete data needed for pooling calculation or unclear 
characteristics needed for classification. 

2. Np : total amount of plaques ROIs, segments, or squares of the studies of similar 
characteristic used to make the mean+stdev 

3. All comparisons between groups’ HU-criteria within one type of characteristics were 
significantly different (p 0.05) except the 7 pairs marked with the same symbols (*,†, 
‡, §, ||, #, and **,).  
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Figure 4-3. Hierarchical classification of HU-criteria for lipid-rich plaques. Values inside brackets (x/y) indicate the number of 

studies/plaques included, respectively. Values inside angle brackets <z> indicate the number of studies which did not report HU-criteria 
in mean + SD. NA means data were not available. Studies marked with asterisk (*) were not included in the calculation of HU-criteria of 

the corresponding group (group 7[27], 9[17], 14[28], and 15[25]). Bold red rounded-boxes bind groups whose criteria are not 
significantly different. 
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Figure 4-4. Hierarchical classification of HU-criteria for fibrous plaques. Values inside brackets (x/y) indicate the number of 

studies/plaques included, respectively. Values inside angle brackets <z> indicate the number of studies which did not report HU-criteria 
in mean + SD. NA means data were not available. Studies marked with asterisk (*) were not included in the calculation of HU-criteria of 

the corresponding group (group 7[27], 9[17], 14[28], and 15[25]). Bold red rounded-boxes bind groups whose criteria are not 
significantly different. 
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Table 4-3. Comparison of HU-criteria for lipid-rich plaque between hierarchical-classified groups 

  
Group 

1 2 3 4 5-6 7 8 9 10 11 12 13 14 15 16-19 20 21-22 23 24 25 26-27 
G

ro
up

 

1   2 1 3 3 1 3 1 3 * * * 3 1 3 1 1 3 2 1 1 
2 2   1 3 2 1 2 3 1 * * * 2 2 1 2 2 3 3 2 2 
3 1 1   3 1 1 1 1 1 * * * 1 1 1 3 1 1 1 1 1 
4 3 3 3   3 3 3 3 3 * * * 3 3 3 3 3 3 3 3 3 

5-6 3 2 1 3   1 3 1 3 * * * 3 1 3 1 2 3 2 1 1 
7 1 1 1 3 1   2 2 1 * * * 1 3 1 3 2 2 1 3 3 
8 3 2 1 3 3 2   2 3 * * * 3 2 3 2 2 3 2 2 2 
9 1 3 1 3 1 2 2   1 * * * 1 3 1 2 3 2 3 3 3 

10 3 1 1 3 3 1 3 1   * * * 3 1 3 1 1 3 1 1 1 
11 * * * * * * * * *   * * * * * * * * * * * 
12 * * * * * * * * * *   * * * * * * * * * * 
13 * * * * * * * * * * *   * * * * * * * * * 
14 3 2 1 3 3 1 3 1 3 * * *   1 3 1 1 3 1 1 1 
15 1 2 1 3 1 3 2 3 1 * * * 1   1 3 3 2 2 3 3 

16-19 3 1 1 3 3 1 3 1 3 * * * 3 1   1 1 3 1 1 1 
20 1 2 3 3 1 3 2 2 1 * * * 1 3 1   2 2 2 3 2 

21-22 1 2 1 3 2 2 2 3 1 * * * 1 3 1 2   2 2 3 3 
23 3 3 1 3 3 2 3 2 3 * * * 3 2 3 2 2   3 2 2 
24 2 3 1 3 2 1 2 3 1 * * * 1 2 1 2 2 3   2 3 
25 1 2 1 3 1 3 2 3 1 * * * 1 3 1 3 3 2 2   3 

26-27 1 2 1 3 1 3 2 3 1 * * * 1 3 1 2 3 2 3 3   
Note: 

1 Signicantly different at p < 0.001 
2 Significantly different at p <= 0.05 
3 Not significantly different 
*   Comparison can not be made due to lack of data, i.e. amount of plaque 63 
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Table 4-4. Comparison of HU-criteria for fibrous plaque between hierarchical-classified groups 

  
Group 

1 2 3 4 5-6 7 8 9 10 11 12 13 14 15 16-19 20 21 22 23 24 25 26-27 
G

ro
up

 

1   1 1 3 3 1 3 3 2 * * * 1 1 1 3 1 3 1 1 1 2 
2 1   1 3 3 3 2 1 3 * * * 2 3 1 2 3 2 3 3 3 3 
3 1 1   2 2 1 2 1 1 * * * 1 2 1 1 1 1 1 1 3 2 
4 3 3 2   3 3 3 3 3 * * * 3 3 2 3 3 3 3 3 2 3 

5-6 3 3 2 3   3 3 3 3 * * * 3 2 1 3 3 3 3 3 2 3 
7 1 3 1 3 3   2 1 2 * * * 1 3 1 2 3 2 3 2 3 3 
8 3 2 2 3 3 2   3 3 * * * 3 2 2 3 2 3 2 3 2 2 
9 3 1 1 3 3 1 3   2 * * * 2 1 1 3 1 3 1 2 1 3 

10 2 3 1 3 3 2 3 2   * * * 3 2 1 3 3 3 2 3 2 3 
11 * * * * * * * * *   * * * * * * * * * * * * 
12 * * * * * * * * * *   * * * * * * * * * * * 
13 * * * * * * * * * * *   * * * * * * * * * * 
14 1 2 1 3 3 1 3 2 3 * * *   2 1 3 3 3 2 3 2 3 
15 1 3 2 3 2 3 2 1 2 * * * 2   1 2 3 2 3 2 3 3 

16-19 1 1 1 2 1 1 2 1 1 * * * 1 1   1 1 2 1 1 1 1 
20 3 2 1 3 3 2 3 3 3 * * * 3 2 1   2 3 2 3 2 3 
21 1 3 1 3 3 3 2 1 3 * * * 3 3 1 2   2 3 3 3 3 
22 3 2 1 3 3 2 3 3 3 * * * 3 2 2 3 2   2 3 2 2 
23 1 3 1 3 3 3 2 1 2 * * * 2 3 1 2 3 2   2 3 3 
24 1 3 1 3 3 2 3 2 3 * * * 3 2 1 3 3 3 2   2 3 
25 1 3 3 2 2 3 2 1 2 * * * 2 3 1 2 3 2 3 2   3 

26-27 2 3 2 3 3 3 2 3 3 * * * 3 3 1 3 3 2 3 3 3   
Note: 

1 Signicantly different at p < 0.001 
2 Significantly different at p <= 0.05 
3 Not significantly different 
*   Comparison can not be made due to lack of data, i.e. amount of plaque 
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Figure 4-5.  The hierarchically grouped HU-criteria for lipid-rich and fibrous plaques along 

with their +/-1 standard deviation range. The blue and purple  rounded-boxes bound the 
groups that give non-significant different HU-criteria and therefore pooled, for lipid-rich 

and fibrous plaque, respectively. 
 

 Hierarchical classification of the published HU-criteria 

Extending the analysis, a hierarchical classification of the published HU-criteria was 
performed, resulting in 27 distinct HU-criteria groupings (figures 4-3 and 4-4). No further 
classification based on collimation-width was performed because the studies included in 
each of these 27 groups had the same collimation-width or did not provide the collimation-
width information. The criteria at the lowest tree branches, which were not significantly 
different, were pooled (boxed groups in figures 4-3 and 4-4), resulting in 21 and 22 distinct 
HU-criteria groupings for lipid-rich and fibrous plaques, respectively. Comparing the HU-
criteria for lipid-rich plaque of each group to each other, 60.1% (92 out of 153 
comparisons) were significantly different, of which 60.9% (56 out of 92 comparisons) were 
significantly different at p < 0.001 (table 4-3). For fibrous plaque, 52% (89 out of 171 
comparisons) of the HU-criteria were significantly different, of which 46.1% (41 out of 89 
comparisons) were significantly different at p < 0.001 (table 4-4). A visual representation 
of the hierarchically grouped HU-criteria along with their range (+/- 1 standard deviation) 
is given in figure 4-5.  

 
Discussion 

Plaque rupture has been identified as the most prevalent feature at sudden coronary 
death cases [9]. A thin fibrous cap (<65µm) and a relatively large lipid-rich content are 
associated to plaque’s vulnerability to rupture [47]. Also, plaques showing positive 
remodeling are reported to contain more lipid-rich components [48, 49]. It has been 
suggested that MDCT should be able to measure plaque volume [50], to detect and measure 
positive remodeling [51] and to even follow the change of plaque characteristics after lipid-
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lowering therapy [52, 53], using a simple HU-based approach. Patients having low 
attenuation value coronary plaques as detected by MDCT were shown to be at higher risk 
of an acute coronary syndrome (ACS) [54].  

Direct use of HU-criteria to quantify lipid-rich plaque is not trivial as considerable 
variability exists in the reported HU values of lipid plaque. Over the years, CT technology 
has advanced rapidly from producing a thick slab image during a rather long scan time to 
producing submillimeter thin images in subsecond scan time, allowing for accurate 
coronary imaging. Due to its calibration, HU value of a material or a tissue should be equal 
irrespective of how or with which CT system it was acquired. However, it is advised to be 
extra cautious in applying absolute HU-criteria when characterizing plaques as CT 
attenuation values were found to differ in case of different reconstruction settings [14, 55]. 
The present study identified 36 publications, published between 1998 and 2011, each 
giving HU-criteria for lipid-rich and fibrous plaque. Specific patterns were found when the 
HU-criteria were pooled according to the reporting studies’ characteristics. Both HU-
criteria for lipid-rich and fibrous plaques were significantly lower for ex-vivo studies 
compared to in-vivo studies, presumably due to lack of movement during scanning. HU-
criteria of coronary lipid-rich plaques were significantly higher than those of other arteries 
(carotid and popliteal arteries). This may be caused by more partial volume effect from the 
surrounding fibrous tissue and lumen contrast-enhancement due to smaller plaque size and 
more movement during scanning. The specific way in which each CT-vendor processes 
scan data may cause the significant differences in HU-criteria for different CT-systems. 
HU-criteria for lipid-rich plaques decreased as the number of detector-rows increased and 
collimation-widths of the scanner decreased. This might be explained by the fact that 
improvements in scanner technology with higher spatial resolution result in less partial 
volume effect, especially from the lumen contrast-enhancement. Materials’ x-ray 
attenuation values depend on the x-ray photon energy, a principle behind the material 
decomposition with dual energy CT [56]. Our results concurred with this fact by showing 
that the HU-criteria for both lipid-rich and fibrous plaques were significantly higher for 
studies using 120 kV voltage settings than those using higher voltage settings. The 
significantly lower HU-criteria for studies using lower than 120 kV voltage settings is 
caused by the fact that the scan was performed without lumen contrast-enhancement. 
Lumen contrast-enhancement is one of the most frequently identified influencing sources to 
the non-calcified plaques’ HU value [15, 57-60]. However, no direct correlation between 
the reported lumen contrast-enhancements and plaque HU-criteria were found in this study 
result. Besides by the different characteristics of the reporting studies, this lack of 
association may also be explained by one aspect of the measurement, i.e. the distance of the 
measurement ROI from the lumen border, which has been reported to affect plaque HU 
values [15]. Unfortunately, none of the analyzed publications reported this particular 
information on ROI placement which prohibits further analysis. Potential differences in 
patient characteristics or in tube current were not analyzed. Patient characteristics may 
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influence the composition of plaque [47, 61]. However, it should not have affected the HU 
value of the plaque as such. The tube current will mainly affect image quality and not the 
HU value of the plaque. 

The investigated HU-criteria in this study were of the lipid-rich and fibrous plaque. 
However, more complex division of tissues is attributed to non-calcified plaque. The 
American Heart Association (AHA) has classified the atherosclerotic plaque into 6 types 
according to its composition, progression, and complexity [62, 63]. In several of the 
included CT studies, non-calcified plaque has been characterized according to the AHA 
classification [32, 35, 36, 40]. One study managed to characterize one other type of tissue, 
i.e. hemorrhage, on carotid atherosclerotic plaques [7]. However, due to the limitation of 
CT in spatial resolution to characterize each individual plaque component, most of the 
studies characterize non-calcified plaque into two categories only: low and high attenuation 
value, of which the previous attributed to lipid-rich plaque and the latter to fibrous plaque. 
Even then, the HU-criteria of lipid-rich and fibrous plaque still overlap largely. Some of the 
included studies proposed a HU-threshold or -range to characterize different plaque 
components [7, 17, 19, 22, 23, 25, 29, 30, 34, 39, 42]. Receiver operating characteristic 
(ROC) analysis was used to determine some threshold, showing promising accuracies 
(sensitivity ranged from 82% to 92%) [19, 25, 29, 30, 42]. 

A HU-based plaque characterization approach was used to quantify non-calcified 
plaques in patients in a number of studies [64-67]. However, sometimes, HU-criteria 
coming from studies with different characteristics than their own were applied, ranging 
from small differences, e.g. the generation of the CT-system used [64], to larger 
differences, e.g. the brand and detector-rows[53, 65]; the brand and vessel type [68]. As has 
been shown in the present study, HU-criteria for non-calcified plaque derived from studies 
with different study characteristics may be significantly different. This could result in 
considerably different measurements of non-calcified plaque components. Since obtaining 
the correct amount of lipid-rich plaques is of importance in determining the extent of 
vulnerable plaque [9], it is theoretically preferable to characterize plaques using criteria 
which match one’s specific study characteristics.  

Some reviews exist on non-calcified plaque characterization by CT [69, 70]. We 
managed to extend the discussion by systematically investigating the published HU-criteria 
based on specific characteristics of each study. By hierarchically grouping the HU-criteria 
based on the study characteristics, the effect of each characteristic was separately analyzed. 
As a result, 21 and 22 distinct HU-criteria were obtained from lipid-rich and fibrous plaque, 
respectively. Two post-mortem studies with histopathological correlation and an in-vitro 
validation study without reference standard reported non-significant differences in HU-
criteria when using different CT-system brands [46] and voltage-settings [44, 46, 71]. In 
our study, some of the pooled and grouped HU-criteria comparisons were also not 
significantly different, but more than 50% were, indicating that specific HU-criteria 
correspond to specific characteristics of each study. This warrants a careful selection of the 



Chapter 4 

68 

HU-criteria, should non-calcified plaque characterization be desired. Therefore, the 
proposed hierarchical diagram may be consulted for using the HU-criteria in clinical 
practice (figures 4-3 and 4-4). The most suitable HU-criteria for lipid and fibrous plaque for 
a specific clinical situation can be traced, e.g. when an in-vivo examination of coronary 
plaque should be done on a Siemens 64-row MDCT at 120 kV, the HU-criteria of group 9 
in the diagram should be used.  

A limitation of our study is that the provided HU-criteria hierarchical diagram is not 
100% complete as not every combination of characteristics is currently available in 
literature. Moreover, with the advent of more advanced CT-systems, such as the 320-
MDCT and 0.23 mm spatial resolution, new HU-criteria can emerge. Not every HU-
criterion presented in the diagram has the same accuracy due to unequal number of 
supporting studies or samples and therefore, clinical application still leaves room for 
improvements. Further research should provide more input for the proposed diagrams 
involving phantoms or arterial specimens with known plaque compositions scanned using 
multiple CT-systems at different settings and a clinical validation to establish a clinically 
useful guide with which HU-criteria can be applied per study set-up.  
  
Conclusions 

Criteria to characterize non-calcified plaques based on CT attenuation value are non-
uniform, due to differences in examination type, vessels of interest, and CT scanning. 
Therefore, generalized values are unreliable for clinical use. The proposed hierarchical 
classification can be used to determine reference CT attenuation value values of lipid-rich 
and fibrous plaques for the local setting. 
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Abstract 
Computed tomography (CT) may characterize lipid-rich and presumably rupture-

prone non-calcified coronary atherosclerotic plaque based on its Hounsfield-Unit (HU), 
but still inconclusively. This study aimed to evaluate factors influencing the HU-value of 
non-calcified plaque using software simulation. Several realistic virtual plaque-burdened 
coronary phantoms were constructed at 5µm resolution. CT scanning was simulated with 
settings resembling a 64-row multi-detector CT (64-MDCT) and reconstructed at 64-
MDCT (0.4mm) and MicroCT (48µm) resolutions. Influences of lumen contrast-
enhancement, stenosis-grades, and plaque compositions on plaque visualization were 
analyzed. Lumen contrast-enhancement and mean plaque HU-value were positively 
correlated (R2>0.92), with approximately the same slopes for all plaque compositions. 
Percentage lipid-content and mean plaque HU-value were negatively correlated (R2>0.98). 
Stenosis-grade and noise had minimal influence on the correlations. Influence of lumen 
contrast-enhancement on plaque HU-value was following a specific exponentially 
declining pattern (y=Ae x+c) from the lumen border until 2-pixel radius. Outside 2-pixel 
radius, plaque HU-values deviated maximally 5HU from non-contrast-enhanced reference. 
Thus, to avoid lumen contrast-enhancement influence, plaques should be measured outside 
2-pixel radius from the lumen border. Based on the patterns found, a lumen influence 
correction algorithm may be developed. HU-based plaque percentage lipid-content 
determination might serve as an alternative plaque characterization method. However, its 
applicability is still hindered by many inherent limitations. 
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Introduction 
Computed-tomography (CT) is currently the preferred modality to assess the extent 

of coronary artery disease (CAD) in a non-invasive manner. CT not only excels in stenosis 
detection [1, 2] but also in measurement of calcified plaque burden [3-5]. The amount of 
coronary calcification quantified by CT is a strong predictor of coronary heart disease [6-
8], although it does not accurately predict the site of stenosis [9]. In contrast, non-calcified 
plaque characterization and quantification by CT so far has been anything but conclusive. 
Differentiation between types of non-calcified plaques may allow identification of plaques 
which are more vulnerable to rupture and which, consequently, could cause an acute 
coronary syndrome. Generally, lipid-rich plaques are considered to be more prone to 
rupture than fibrous plaques [10-12].  

Several studies [13-15] reported various Hounsfield Unit (HU)-based criteria to 
distinguish lipid-rich from fibrous plaque, but the criteria have so far been discordant. 
Moreover, the HU values for distinguishing these two plaque types are overlapping, which 
makes distinction so far inaccurate. The main causes of the problem are the small size of 
plaques combined with the low CT contrast difference between lipid-rich plaque and 
fibrous plaque, and the suboptimal spatial resolution of CT. Those studies refer to other 
modalities (such as intravascular ultrasound and histology) to depict a certain plaque type 
and then find the corresponding plaque in CT [13-15]. However, the difference in spatial 
resolution between CT and those modalities makes 100% correct plaque type 
correspondence impossible. Other aspects, such as lumen contrast-enhancement and lipid-
content percentage, have been reported to also affect the measured plaque CT number and 
the detectability of lipid-rich plaques [16, 17].  

By using software simulation, this study aimed to evaluate and quantify the factors 
influencing non-calcified plaque visualization and differentiation in order to define 
guidelines on how to best perform non-calcified plaque differentiation on CT.  

 
Material and methods 

The simulation was conducted using open source CT simulation software, CTSim© 
3.0 [18]. This software was also used in studies reported in previous publications, for 
general CT visualization research [19] and specifically for coronary and plaque 
visualization [20, 21]. The simulation was started by generating custom-made phantoms. 
Subsequently, x-ray projections of these phantoms were simulated and the resulting 
sinograms were reconstructed to obtain the final CT images.  

 
Phantom generation 

The phantoms depicted axial cross-sections of a coronary vessel, which were 
generated at 5 m spatial resolution. Representative morphological features and dimensions 
of the vessel and realistic attenuation coefficient of the tissues and materials were applied, 
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derived from accepted standards and previously reported CT numbers of different non-
calcified carotid plaque types [22-30]. CT numbers of carotid plaques were used, because 
carotid plaques are assumed to be large enough to be less influenced by partial volume 
effects and motion than coronary plaques. All three layers (intima, media, and adventitia) 
of a coronary vessel were incorporated into the design of the vessel phantom. (see figure 5-
1 and table 5-1). The attenuation coefficients of different materials will be represented in 
HU for the rest of the article. 
 

Table 5-1. Simulation parameters 

Phantom: 
1. Element size: 5 m 
2. Vessel morphology 

a.       Normal wall thickness: 1 mm (intima + media + adventitia);  
0.5 mm (adventitia) a 

b.       Normal lumen diameter: 4 mm b 
c.       Atherosclerosis shape: eccentric plaque with circular lumen c 

3. Tissue CT numbers: 
a.      Air: -1024 HU 
b.      Blood: 50 HUd 
c.      Epicardial fat: -100 HUe 
d.      Contrast-enhanced lumen: 200/250/300/350/400 HU 
e.      Fibrous plaque: 65 HUf 
f.      Lipid-rich plaque: 30 HU g 

Scanning / X-ray Projection: Detector size: 48 m / 0.4 mm (MicroCT / 64-MDCT) 
Noise addition: 6, 12, 19 HU 
Reconstruction: Pixel size: 48 m / 0.4 mm (MicroCT / 64-MDCT) 
Note: 
a Normal coronary wall layers (for all three layers and for adventitia layer only)[25]  
b  Normal lumen diameter.[22] 
c  The most common coronary atherosclerosis shape.[22] 
d  Arbitrarily chosen from the normal range for blood. [27]  
e  Arbitrarily chosen from the normal range for epicardial fat.[24, 29] 
f  Average of carotid fibrous plaque values [23, 26, 28, 30]  
g  Average of carotid lipid-rich plaque values [23, 26, 30] 
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Figure 5-1. The constructed phantom morphology. The figure shows a typical example of 
the virtual vessel infested by a plaque containing 25% lipid-content which causes 75% 

stenosis. 
 

The content and morphology of the lumen and the plaque were varied to investigate 
their influence on plaque-burdened vessel visualization, as follows: 

1. Lumen HU value: The lumen was either non-contrast-enhanced (blood-filled 
at 50 HU) or contrast-enhanced (200 to 400 HU, with 50 HU increments).  

2. Stenosis grade: The plaque was designed to increase in size in the intima area 
causing either a 50% or a 75% area stenosis (relative to the assumed normal 
lumen area).  

3. Plaque composition: The plaque was fibrous with increasing lipid content 
(from 0% to 100%, with 25% increments, see figure 5-2). 

A phantom was generated for each varied parameter resulting in 60 phantoms (6 lumen HU 
values x 2 stenosis grades x 5 plaque contents). 
 
 

 
 

Figure 5-2. Different levels of lipid content of the plaque (from left to right: 0 to 100%, 
with 25% increment) 

 



Chapter 5 

80 

Scanning parameters 

The simulation used identical scanning parameters as has been previously published 
elsewhere [20]. The parameters were chosen to mimic the scanning parameter of a 64-
MDCT scanner for CT angiography (CTA), but with detector size set to mimic 64-MDCT 
and MicroCT spatial resolutions, i.e. 0.4 mm and 48 µm, respectively. The 64-MDCT 
scanner used for reference is a Somatom Sensation 64 (Siemens Medical Solution, 
Forchheim, Germany). This type of scanner was considered to be an appropriate 
representative of current clinical CT systems based on its properties and wide-spread use in 
cardiac imaging. Meanwhile, the MicroCT scanner used for reference is a Siemens 
MicroCAT II (Siemens Preclinical Solutions, Knoxville, TN). 
 

 
Figure 5-3. QRM Thorax phantom’s photograph (a) and CT scan image (b). The arrow 

indicates the water equivalent insert with attenuation equivalent to water on which an ROI 
was placed for measuring the noise reference. 

 
 
Noise addition  

The tube current and the scanning environment inside the thorax, two other variables 
of clinical scans, were indirectly incorporated in the simulation. Both are known to be 
related to noise, affecting image quality. Artificial noise was incorporated into the 
simulation using a custom-made Matlab® (Mathworks Inc, Nattick, MA, USA) program 
according to the method described in a previous publication [31], matching the noise level 
at normal clinical CT images. The reference for normal clinical CT images was taken from 
a thorax phantom scan (QRM, Möhrendorf, Germany; figure 5-3) [32], scanned on a 64-
MDCT scanner in spiral mode at 120 kV and 770 mAs; reconstructed using B25f kernel at 
0.6/0.4 mm slice thickness/interval and 200 mm field of view. The reference noise was 
defined as the standard deviation inside a region of interest (ROI) over a homogenous area 
with attenuation equivalent to water (indicated by arrow in figure 5-3), measuring at 
approximately 19 HU. Several additional noise levels were also simulated to both 
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modalities, namely at 1/3 and 2/3 of the thorax phantom noise level. Thus, there are three 
noise levels simulated: 6 HU, 12 HU, and 19 HU, at both modalities. The same noise levels 
were simulated for both MicroCT and 64-MDCT images.  

 
Reconstruction parameters 

The simulation used identical reconstuction parameters as has been previously 
published elsewhere [20]. The reconstructed image pixel size was set to be 48 m and 0.4 
mm to match the spatial resolution of the MicroCT and 64-MDCT, respectively. The 
reconstructed images will be regarded as MicroCT and 64-MDCT images, respectively, in 
the rest of this paper (figure 5-4).  

 
 

 
Figure 5-4. The phantom was at 5 m resolution (a), and reconstructed at MicroCT 

resolution of 48 m (b) and 64-MDCT resolution of 0.4mm (c) 
 
 

 
Figure 5-5. Pixel by pixel comparison between contrast-enhanced (a) and non-contrast-

enhanced (b) image, resulting in a difference image (c). The same plaque ROI (red dotted 
lines) used to measure plaque HU-values were applied to the difference image (d), which 

extract the lumen contrast-enhancement influence on plaque area (e). 
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Analysis 

Analyses were performed using a custom-made Matlab® program and Microsoft 
Excel 2003 (Microsoft Corp., Redmond, WA, USA). The plaques HU values (mean and 
standard deviation) were measured inside a region of interest (ROI) which exactly enclosed 
the plaque region (the crescent-shaped ROI in figure 5-1), as the region was already known 
from the phantom design. Influences of lumen contrast-enhancement and plaque 
composition on the plaque HU value were analyzed using linear regression analysis. 
Separate linear regression analyses for both modalities and stenosis grades were performed 
to investigate possible interactions of these two variables to the results of the linear 
regression analysis. The slopes for the two linear regression analysis were calculated, 

valuemeanlumen
valuemeanplaquem

__
__

1  (i.e. the change in plaque mean value for every 1 HU 

change of the lumen mean value) and 
contentlipid

valuemeanplaquem
_%

__
2  (i.e. the change 

in plaque mean value for every 1 % change of the plaque lipid content), for lumen HU 
values and plaque compositions influence analysis, respectively.  

To study the influence of the lumen contrast-enhancement on the plaque HU value in 
detail, a pixel-by-pixel comparison was performed on the plaque on contrast-enhanced and 
non-contrast-enhanced images by subtracting the latter from the former, both for MicroCT 
and 64-MDCT (figure 5-5), resulting in a difference image which precisely extracts the 
lumen contrast-enhancement influence. As the position of the vessel was fixed during the 
simulations, the images were perfectly aligned to each other. Identical plaque ROI used to 
measure plaque HU values were used to delineate the plaque area on the difference image. 
The HU value of every pixel inside the ROI was extracted and plotted versus its distance 

from the lumen border. A simple exponential curve ( cAey x ) was fitted to the 

data points, where A, , x, and c indicated the amplitude, coefficient, distance from lumen 
border, and constant, respectively, using a custom-made Matlab® program which 
minimizes the squared error between the data points and the approximation curve. A linear 
regression analysis was also performed to investigate the relationship between the 
amplitudes and the mean lumen HU values; and between the constants and the mean lumen 

HU values, with the corresponding slopes: 
valuemeanlumen

Amplitudesm
__3  and 

valuemeanlumen
Constm

__4 , respectively.  

All analyses were performed with and without noise incorporated. 
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Results 
 
No noise 
 
Factors influencing non-calcified plaque visualization 
 

 
Figure 5-6.  Effect of lumen HU values on the plaque HU values at 50% stenosis (a, c, and 
e) and 75% stenosis (b, d, and f), for phantom images (a and b), MicroCT (c and d), and 64-

MDCT (e and f). 
 

In figures 5-6(a) and 5-6(b), the mean HU values of each plaque type at the actual 
phantom images are shown, for 50% and 75% stenosis, respectively. Investigating the 
effect of lumen contrast-enhancement on plaque visualization, positive linear correlations 
(0.92<R2<1) were found between the lumen and the mean plaque HU values (figures 5-6(c) 
to 5-6(f)). The slopes (m1) of these positive linear correlations were nearly identical for all 
plaque lipid contents, but varied slightly with stenosis grades (see table 5-2 – No Noise). 
Investigating the effect of plaque composition on plaque visualization, negative linear 
correlations (0.98<R2<0.999) were found between the plaque percentage (%) lipid content 
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Table 5-2. Linear relationship between plaque mean HU value, lumen mean HU values, and plaque percentage lipid content 

Noise Level 

uCT 64-MDCT 
50% Stenosis 75% Stenosis 50% Stenosis 75% Stenosis 

m1 m2 m1 m2 m1 m2 m1 m2 
No Noise 0.02 + 0.00 -0.34 + 0.00 0.01 + 0.00 -0.34 + 0.00 0.15 + 0.00 -0.26 + 0.00 0.12 + 0.00 -0.28 + 0.01 
6 HU Noise 0.02 + 0.00 -0.34 + 0.00 0.01 + 0.00 -0.34 + 0.00 0.15 + 0.00 -0.26 + 0.01 0.12 + 0.00 -0.28 + 0.01 
12 HU Noise 0.02 + 0.00 -0.34 + 0.00 0.01 + 0.00 -0.34 + 0.00 0.16 + 0.00 -0.26 + 0.02 0.12 + 0.01 -0.29 + 0.01 
19 HU Noise 0.02 + 0.00 -0.34 + 0.01 0.01 + 0.00 -0.34 + 0.00 0.16 + 0.01 -0.29 + 0.02 0.11 + 0.00 -0.27 + 0.01 

Note: 
1. m1: The slope of linear relationship between plaque mean HU value and lumen HU value 
2. m2: The slope of linear relationship between plaque mean HU value and plaque percentage lipid content 
 

Table 5-3. Lumen influence patterns parameters 

Noise Level 

MicroCT 64-MDCT 
50% Stenosis 75% Stenosis 50% Stenosis 75% Stenosis 

m3  m4 m3  m4 m3  m4 m3  m4 
No Noise 0.56 1.60 + 0.00 0.001 0.54 1.63 + 0.00 0.001 0.62 1.22 + 0.00 0.05 0.64 1.64 + 0.00 0.01 
6 HU Noise 0.56 1.61 + 0.03 * 0.53 1.63 + 0.03 * 0.63 1.14 + 0.09 0.05† 0.65 1.71 + 0.13 * 
12 HU Noise 0.55 1.62 + 0.06 * 0.55 1.63 + 0.07 * 0.64 1.31 + 0.17 * 0.67 1.73 + 0.24 * 
19 HU Noise 0.56 1.59 + 0.1 * 0.54 1.57 + 0.13 * 0.61 1.29 + 0.25 * 0.72 1.71 + 0.26 * 

Note: 
1. m3: The slope of linear relationship between amplitude parameter of the influence patterns and lumen HU value 
2. m4: The slope of linear relationship between constant parameter of the influence patterns and lumen HU value 
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and mean HU value.  The slopes (m2) of these negative linear correlations were nearly 
identical for all lumen HU values (see table 5-2 – No Noise). On non-contrast-enhanced 
images, all plaques had similar mean HU values (  4 HU difference) as plaques of the same 
lipid content at the actual phantom images, regardless of the stenosis grade and modality. 
 
Lumen contrast-enhancement influence pattern 

In figures 5-7(a) and 5-8(a) the typical results are shown of the pixel by pixel 
difference in plaques HU values on contrast-enhanced and non-contrast-enhanced MicroCT 
and 64-MDCT, respectively, versus their distance to the lumen border. In figures 5-7(b) 
and 5-8(b) the influence patterns at different lumen HU values and stenosis grades are 
shown. The influence patterns at different plaque lipid contents (with the same lumen HU 
value and stenosis grade) were identical. The lumen contrast-enhancement influence 
patterns were similar for the 50% and 75% stenotic plaque with the same lumen HU value 
(figures 5-7(b) and 5-8(b), for MicroCT and 64-MDCT, respectively). Positive linear 
correlations (R2 = 1) were found between the amplitudes and lumen HU values (the slopes 
(m3) for MicroCT and 64-MDCT are shown in table 5-3 – No Noise). All lambdas ( ) 
parameters from the influence patterns are closely similar (table 5-3 – No Noise), except for 
the 50% stenosis 64-MDCT. Positive linear correlations (R2 = 1) were also found between 
the constants and lumen HU values (the slopes (m4) for MicroCT and 64-MDCT are shown 
in table 5-3 – No Noise). However, the slopes were very small (<= 0.01) for all data, except 
for the 50% stenosis 64-MDCT.  Despite of this deviation, the shape of the lumen influence 
pattern matched the pattern from the rest of the data (figure 5-8(b)). At approximately 2-
pixel radius from the lumen border, the influence patterns reached a relatively neutral level 
(0 - 7 HU). Outside a 2-pixels radius, the absolute mean difference in the plaque values for 
the contrast-enhanced (lumen 200-400 HU) versus the non-contrast-enhanced images 
(lumen 50 HU) was very low (table 5-4 – No Noise) indicating very low influence from the 
lumen.  

 
Table 5-4. Absolute mean HU values difference of plaques outside 2 pixel radius from the 
lumen border between contrast-enhanced and non contrast-enhanced images 

Noise Level 
MicroCT 64CT 

min max median min max median 
No Noise 0 0 0 0 5 1 
6 HU Noise 0 0 0 0 7 1 
12 HU Noise 0 1 0 0 13 3.5 
19 HU Noise 0 1 0 0 19 2 
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Figure 5-7. The typical lumen influence pattern (from 400 HU lumen in this case) at 

MicroCT images, which can be approximated with an exponential curve ( CAey x ) 

(a) and the approximation curves of the influence patterns from all lumen values (b). The 
pattern for 50% stenosis (solid lines) and 75% stenosis (dotted lines) are close to each 

other. The amplitudes (A) of the exponential curves were similar for all stenosis grades and 
modalities. The influence patterns for different plaque contents (with the same lumen HU 

value and stenosis grade) were almost identical and, therefore, not shown here. Introduction 
of noise affected the lumen influence patterns, but the patterns remained similar (c-d: 6 HU 

noise; e-f: 12 HU noise; g-h: 19 HU noise). 



Effects of contrast and lipid fractions to non-calcified plaque CT visualization 

 87 

 
Figure 5-8. The typical lumen influence pattern (from 400 HU lumen in this case) at 64-

MDCT images, which can be approximated with an exponential curve ( CAey x ) 

(a) and the approximation curves of the influence patterns from all lumen values (b). The 
pattern for 50% stenosis (solid lines) and 75% stenosis (dotted lines) are close to each 

other. The amplitudes (A) of the exponential curves were similar for all stenosis grades and 
modalities. The influence patterns for different plaque contents (with the same lumen HU 

value and stenosis grade) were almost identical and, therefore, not shown here. Introduction 
of noise affected the lumen influence patterns, but the patterns remained similar (c-d: 6 HU 

noise; e-f: 12 HU noise; g-h: 19 HU noise). 
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With noise 

Introduction of noise imposed some effects on the non-calcified plaque visualization, 
but similar results were still found. Compared to when no noise present, slightly weaker 
positive linear correlations (0.92<R2<1) were found between the lumen and the mean 
plaque HU values (the slopes (m1) are shown on table 5-2 – all noise levels). The same 
effect was also found on the negative linear correlations (0.87<R2<0.999) between the 
plaque percentage lipid content and mean HU values (the slopes (m2) are shown on table 5-
2 – all noise levels).  

The influence patterns were also affected by the presence of noise. Slightly weaker 
positive linear correlations (0.94<r2<0.999) between the amplitudes and lumen HU values 
were found (the slopes (m3) are shown on table 5-3 – all noise levels). The s were having 
more variations as the noise level increased (see the s on table 5-3 – all noise levels). 
Almost all linear correlations were lost between the constants and the lumen HU values. 
Only the constants from 50% stenosis 64-MDCT still retained small linear correlation (R2 = 
0.45). However, the patterns remained similar (figures 5-7(c) – 5-7(h) and figures 5-8(c) – 
5-8(h), for MicroCT and 64-MDCT. respectively). Outside a 2-pixels radius, the absolute 
mean differences of the plaque values between the contrast-enhanced to the non-contrast-
enhanced images were still small (see table 5-4 – all noise levels).  
 
Discussion 
Lumen contrast-enhancement influence on non-calcified  plaque visualization 
 

In this study, the lumen contrast-enhancement was shown to highly influence the 
non-calcified plaque HU value, similar to findings in earlier publications [16, 33-36]. The 
partial volume effects (induced by the limited spatial resolution of clinical CT) and the use 
of smooth reconstruction kernels are the most probable causes of this phenomenon. The 
proposed exponential decreasing curve was found to fit the lumen contrast-enhancement 
influence pattern very well. The curve corresponds to one-half of the exponential sigmoid 
curve. A previous publication has also used the exponential sigmoid curve to describe an 
image edge model [37]. The extent of the influence of lumen contrast-enhancement on 
plaque HU value was up to a 2-pixel radius. The observed influence patterns were valid for 
all investigated cases, regardless of the lumen HU value, stenosis grade, plaque content, 
and modality/spatial resolution. Small deviation found on 50% 64-MDCT’s influence 
patterns are caused by the lack of pixel data for approximation. Addition of noise to the 
simulation data resulted in some variations in the found influence patterns. However, the 
patterns remained the same. The lost of linear correlations between the pattern’s constants 
parameter and lumen HU value after noise introduction is understandable because the 
slopes were already small to begin with, so that a little amount of noise will already 
obscured the correlation. Outside a 2-pixel radius, the lumen influence was minimal. Pixel 
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size is dependent on the spatial resolution of the imaging modality, which means that 
plaque HU values have to be measured at least 0.8 mm away from the lumen border in case 
of the 0.4 mm spatial resolution of current clinical CT scanners. This range concurs with a 
previous report in which plaque measurements at 0.75 mm distance were no longer 
influenced by the lumen contrast-enhancement  [36].  

In clinical situations, the exact determination of lumen and outer vessel wall 
boundary remains challenging. One of the methods which can be used is the one proposed 
by Brodoefel et al. [38]. By using a fixed HU threshold to define the outer wall and the 
lumen border; and by peeling of 1 outer pixel (corresponds to the thickness of adventitia 
layer of the simulated vessel in this study), the plaque-burdened intimal area is obtained. 
Alternatively, a lumen contrast-enhancement dependent threshold may be used instead to 
determine lumen the border [39]. The size of the simulated vessel corresponded to the 
proximal part of the coronary tree. The 2-pixel lumen influence radius has been shown to 
be independent of the simulated lumen size. Moreover, the analysis was focused to the 
intimal part and excluding the outer layer of the plaque, which was affected by partial 
volume effect with the surrounding. As the vessel grows smaller to the distal part, the inner 
area of the plaque influenced by the lumen and the outer area blurred by partial volume 
effect with the surrounding became even more prominent, making it even harder to 
characterize the plaque. However, the distal part was less likely to contain rupture-prone 
plaque than the proximal part [40], which make it relatively less urgent for plaque 
characterization.  

 
Lipid-content fraction effect on non-calcified plaque visualization 

The strict binary classification of the plaque area inside the measurement ROI as 
either fibrous or lipid-rich might cause some problems due to the plaque heterogeneities 
inside the ROI [41]. Furthermore, Wintermark, et al. [30] stated that for carotid plaques a 
minimum size of 5 pixels is needed to ensure excellent detection of the lipid pool, which 
would be a relatively large size in the much smaller coronary arteries. The simulation result 
has shown that the mean HU value of the plaques was linearly correlated with their % lipid 
content. A recent study on coronary CT angiography scans of patients has also shown 
similar linear relationship, but with a rather weak correlation [42]. Plaque vulnerability is 
defined by its % necrotic core (lipid) [12], and thus direct determination of plaque % lipid-
content based on its HU value might serve as an alternative for plaque characterization. 
However, this method is still inapplicable due to many inherent limitations. On the 
simulated non-contrast-enhanced images, the HU values of each lipid content were 
relatively stable regardless of the stenosis grade and modality. However, on the contrast-
enhanced images, the plaques HU values were highly influenced by the contrast-
enhancement. The simulation result has shown that the lumen influence is limited to 2-pixel 
radius from the lumen border. However, to entirely ignore the part of the plaque located 
inside the 2-pixels radius would be unwise as the vulnerable plaques might be located close 
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to lumen border, such as the thin-capped fibroatheroma [10]. Another limitation to this 
method is the possible presence of other plaque component besides fibrous and lipid, e.g. 
microcalcifications [43] and hemorrhage [30] that may affect the plaque HU value. 
 
Limitation of the study 

The limitation of this study lies in the nature of the simulation design. Despite the 
efforts to mimic actual CT scanning parameters, several aspects can only be approximated. 
Furthermore, images were stationary, while in clinical situations, not all CT scans will 
show motion-free depiction of the coronary arteries. Due to the limitation of the simulation 
software, beam hardening and x-ray scattering were not incorporated into the simulation. 
Both artifacts may introduce non-linear errors in the CT numbers. However, both the 
effects of beam hardening [44] and scattering [45] are mainly pronounced as a streak 
artifact in the path between two high attenuating objects. It has been shown that there is no 
or minimal streak artifact on the tissue next to contrast-enhanced cavity when there is no 
high attenuating object next to it [44]. Since there was no other object around the simulated 
vessel in this study, minimal effects to the results are thought to arise from these artifacts. 
The simulation software failed also to simulate a cone beam x-ray projections and the 
analysis was limited to two dimensional images. Scanning using a cone beam x-ray may 
introduce artifacts due to misregistration of projection data, especially to the off-axis 
object. However, the simulated vessel was located at the center of the image where there 
should have been minimal cone beam artifact. Meanwhile, vessel wall analysis is 
commonly performed based on cross sectional view of the coronary on CT angiography 
examinations [46]. The visualization of the simulated vessel was specifically chosen to 
show this representation. Despite the limitations, this software phantom study offers some 
unique advantages. Visualization in CTA datasets can be individually assessed by 
eliminating the interference motion artifacts; and by a controlled construction of the 
phantom, influencing factors in atherosclerotic plaque can be investigated. 

Positive remodeling of coronary plaque has been associated with a lower attenuation 
value, indicating more lipid-rich content [47]. The simulated plaque-burdened vessels in 
this study did not explicitly take into account this relationship between plaque composition 
and type of remodeling. Instead, the vessels directly simulate different levels of lipid 
content of the plaque, which is the main interest for plaque classification. Moreover, this 
study showed that the lumen contrast-enhancement influence was only dependent on the 
distance from the lumen border, and thus independent of the morphology of the lumen, 
plaque, vessel and plaque compositions.  
 
Future work 

The finding that lumen contrast-enhancement influence follows a specific 
exponential pattern, which depends only to the lumen contrast-enhancement value and the 
distance to the lumen border, indicated that it might be feasible to construct a lumen 
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influence correction algorithm. Further validations are still needed in future studies 
involving hardware phantom studies, ex-vivo specimen, and finally clinical validation.  
 
Conclusion 

To avoid lumen contrast-enhancement influence, plaques must be measured outside 
2-pixel radius from the lumen border, which corresponds to 0.8 mm for current clinical CT 
systems. Based on the patterns found, a lumen influence correction algorithm may be 
developed. HU-based plaque percentage lipid-content determination might serve as an 
alternative plaque characterization method. However, its applicability is still hindered by 
many inherent limitations.  
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Abstract 
Lumen contrast-enhancement influences non-calcified atherosclerotic plaque 

Hounsfield-Unit (HU) values in computed tomography (CT). This study aimed to construct 
and validate an algorithm to correct for this influence. Three coronary vessel phantoms 
with 1, 2, and 4mm circular hollow lumina; with normal and plaque-infested walls were 
scanned simultaneously in oil using a dual-source CT scanner. Scanning was repeated as 
the lumina were alternately filled with water and 4 contrast solutions (100-400HU, at 
100HU interval). Images were reconstructed at 0.4mm x-y pixel size. The HU-values for 
wall and lumen were positively linearly correlated, with approximately the same gradients 
for both normal and plaque-infested walls. Pixel-by-pixel comparisons of contrast-
enhanced and non-contrast-enhanced images confirmed exponential declining patterns in 
lumen contrast-enhancement influence on wall HU-values from the lumen border (y=Ae-

x+c). The median difference of the inside and outside 2-pixel radius part of the wall to the 
reference (non-contrast-enhanced images) was 45HU and 2HU, respectively. Based on the 
lumen contrast-enhancement influence patterns, a generalized correction algorithm was 
formulated. Application of the generalized correction algorithm to the inside 2-pixel radius 
part of the wall reduced the median difference to the reference to 4HU. With this 
correction, a more accurate determination of vessel wall composition can be made. 



Lumen contrast-enhancement influence correction 

 97 

Introduction 
In coronary artery disease (CAD) is ), atherosclerotic plaque develops in the wall 

of the coronary artery, potentially leading to significant narrowing of the lumen and/or 
occlusion, hindering the blood supply of the heart muscle. An acute coronary syndrome 
(ACS) as a result of CAD is currently the leading cause of death in the western world [1]. 
Early detection of CAD is essential in order to start treatment timely and prevent or delay 
the progress of the disease. Previous publications demonstrated that coronary stenosis [2, 3] 
and calcified plaque burden [4-6], two main parameters for estimating CAD event risk, can 
be quantified reliably by multi detector-row computed tomography (MDCT). 

Quantification of non-calcified plaques is of increasing interest in diagnosis and 
clinical workup as plaques with large lipid-rich components are considered to be more 
rupture prone and subsequently are more likely to cause an ACS [7]. MDCT can reportedly 
characterize non-calcified plaques by virtue of their specific CT density in Hounsfield 
Units (HU) [8-11]. However, to use a generalized HU-criterion is not yet possible as the 
reported HU-values vary considerably. Many factors have been reported to influence non-
calcified coronary plaque HU values, one of the most prominent being the lumen contrast-
enhancement [12-16]. In a preliminary software phantom simulation study, the lumen 
contrast-enhancement was shown to influence the surrounding coronary wall with a 
specific pattern [17]. This vessel phantom study aimed to construct and validate an 
algorithm to correct for the lumen contrast-enhancement influence in order to obtain the 
correct HU values for the characterization of non-calcified plaques.  
 
Material and methods 
Phantom experiment 

Three coronary vessel phantoms with 1, 2, and 4 mm diameter circular hollow 
lumina were used in the experiment. The vessel wall was designed to be 35 HU in CT 
density and 3 mm in thickness, and part of each vessel phantom was infested with an 
artificial plaque of -10 HU in CT density, 2 mm in thickness, and 5 mm in length (figure 6-
1A, these 2 different segments of the wall will be referred to as normal and plaque-infested 
wall, respectively, for the remainder of the article). 

The phantoms were scanned simultaneously while submerged in sun flower oil 
with a dual-source computed tomography scanner (Siemens Definition, Siemens Medical 
Solution, Forchheim, Germany) at 120kV, 300mAs/rot, and 64x0.6mm (figure 6-1B). 
Scanning was performed five times with the lumen alternately filled with water and 4 
contrast solutions of approximately 100, 200, 300, and 400 HU. Images were reconstructed 
at 0.6 mm slice thickness with 0.4 mm increment. 

In total, 30 datasets were obtained with the following properties: 3 lumen sizes (1, 
2, and 4 mm diameter) x 2 wall types (normal and plaque-infested wall) x 5 lumen contents 
(water or 1 of the 4 different contrast solutions). 
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Figure 6-1. The phantom diagram (A) and experimental setup (B). 

 

 
 

Figure 6-2. Vessel segmentation algorithm. The semi-automatic algorithm was performed 
by selecting the original image (A), thresholding [28] the image (B), applying a gradient 
vector flow snake algorithm [29] (red and blue lines) to segment the lumen contour (C), 

and finally fitting a circle (green circle, centered at the green asterisk) to the obtained 
contour (D). The manual vessel segmentation (E) was started by selecting the approximate 
center of the vessel (green asterisk). The vessel was segmented inside an ROI of 30 by 30 

pixels (F) around the center (green asterisks on D and E) of the vessels and the process was 
repeated to the next slice for in total 10 times (G). 
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Analysis 

The images were analyzed using a custom-made software tool written in Matlab® 
(Mathworks Inc, USA). The following analyses were performed. 

 
1. Vessel segmentation 

The vessel was first detected semi-automatically using an algorithm used in a 
previous publication [18]. The algorithm was finalized by fitting the lumen boundary with a 
circle of its designed true size, obtaining the center of the vessel (figure 6-2A-D). When the 
semi-automatic detection was not possible, detection was performed by manually selecting 
the approximate center of the vessel (figure 6-2E). The vessel was segmented inside a 
square region of interest (ROI) of 30 by 30 pixels around the center of the vessel (figure 6-
2F). 

Each plaque was visible on 12 to 13 axial image slices, from which the middle 10 
slices were selected to construct a plaque-infested vessel dataset (figure 6-2G). A normal 
vessel dataset was also constructed similarly by obtaining 10 consecutive slices from the 
normal part of the same vessel (figure 6-2G). 

A training set was constructed by averaging the 10 selected slices for every dataset 
in order to minimize noise. This training set was then used to study the correlation between 
HU values of wall and lumen; and to extract the lumen contrast-enhancement influence 
pattern. 

Additionally, a validation set was constructed by arbitrarily selecting one of the 10 
slices in each dataset. The validation set was used to apply and test the formulated lumen 
contrast-enhancement influence correction algorithm (see Validation section). 

 
2. Wall and lumen HU value measurement 

Lumen and wall (normal and plaque-infested) HU-values were measured inside 
ROIs that matched the designed morphology. Since the vessel images underwent 
preprocessing steps (averaging and alignment), the lumen needed to be segmented again, 
using the same method as described in the previous step. Manual adjustments were 
performed when necessary. The wall ROI was defined as the area between the lumen 
circular ROI and a larger circle with the same axis and a diameter conforming to the 
designed plaque thickness. The wall ROI left out the outer part of the wall which is blurred 
by the partial volume averaging with the surrounding. The relation between wall and lumen 
HU-values was investigated using linear regression analysis. The squared correlation 
coefficient (r2) and gradient of the relation were obtained. 
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3. Lumen contrast-enhancement influence pattern 
Pixel by pixel comparisons were performed between contrast-enhanced images (of 

lumen CT density: 100, 200, 300, and 400 HU) and non-contrast-enhanced images (of 
lumen CT density: 0 HU) by first aligning both images based on their outer vessel contour 
(obtained by 0 HU threshold [19]) and then subtracting the latter from the former (figure 6-
3). The comparisons resulted in difference images containing only the contribution of the 
contrast to the image (figure 6-3C). The wall ROI from the previous step was used to 
delineate the wall area of the difference image (figure 6-3D) and extract the contribution of 
the contrast to the wall area (figure 6-3E). The value of every pixel inside this ROI was 

plotted against its distance from the lumen border.  An exponential line ( cAey x ) 

was fitted through the data points, with A, , x, and c indicating the amplitude, coefficient, 
distance from lumen border, and constant, respectively, using a custom made Matlab® 
program which minimizes the squared error between the data points and the approximation 
line. 

 

 
Figure 6-3. Pixel by pixel comparison between contrast-enhanced image (A) and non-
contrast-enhanced image (B) by subtracting the latter from the former, resulting in a 

difference image (C). The wall ROI (striped red line) was overlaid onto the difference 
image (D), from which the lumen contrast-enhancement influence on the wall  

was extracted (E). 
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Validation 

In a previous study using software phantoms, it was demonstrated that the lumen 
contrast-enhancement influences the surrounding wall HU values up to a 2-pixel radius 
from the lumen border. [17] Therefore, the obtained lumen contrast-enhancement influence 
lines were applied to the contrast-enhanced image to correct for the lumen contrast-
enhancement influence on the surrounding wall up to a 2-pixel radius from the lumen 
border.  

Non-contrast enhanced images of each vessel and wall type were defined as the 
reference images. The wall HU-values outside the 2-pixel radius were compared between 
contrast-enhanced images and the reference to check the validity of selecting only inside 
the 2-pixel radius for applying the correction algorithm. Subsequently, the wall HU-values 
for the inside 2-pixel radius and for the whole plaque, were compared to the reference, 
before and after correction.  

 
Results 
Wall and lumen HU value measurement 

Positive linear correlations between HU values of wall and lumen were found. The 
gradients were similar for both normal and plaque-infested walls (figure 6-4). 

 
 

Figure 6-4. The correlation between the wall and lumen mean HU values. 
 

Lumen contrast-enhancement influence pattern 

An exponential line ( cAey x ) approximated the lumen contrast-

enhancement influence on the surrounding wall (figure 6-5). The lumen contrast-
enhancement influence patterns for the two types of wall were similar for each vessel type, 
except for the smallest vessel (figure 6-6).  



 

 

C
hapter 5 

 
Figure 6-5. Typical lumen contrast-enhancement influence on the surrounding wall, plotted against the distance to the lumen border (blue 

dots), which was approximated by an exponential line (red line). 
 

 
Figure 6-6. The lumen contrast-enhancement influence patterns for large (A), medium (B), and small (C) vessels.
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Figure 6-7. The correlation between the amplitudes (A) and the lumen mean HU values 

and between the constants (B) and the lumen mean HU values 
 

 
Figure 6-8. The effect of the formulated correction algorithm on the normal wall. This 

figure shows the uncorrected contrast-enhanced image (A), the corrected contrast-enhanced 
image (B), and the non-contrast-enhanced reference image (C). The lumen border is shown 
by the solid magenta circle, and the 2-pixel radius by the striped magenta circle. The HU 
profiles along the vertical (yellow lines) and horizontal (cyan lines) directions of the three 

images are plotted on top of each other in image D and E, respectively. 
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Figure 6-9. The effect of the formulated correction algorithm on the plaque-infested wall. 

This figure shows the uncorrected contrast-enhanced image (A), the corrected contrast-
enhanced image (B), and the non-contrast-enhanced reference image (C). The lumen border 
is shown by the solid magenta circle, and the 2-pixel radius by the striped magenta circle. 
The HU profiles along the vertical (yellow lines) and horizontal (cyan lines) directions of 

the three images are plotted on top of each other in image D and E, respectively. The range 
of the plaque infestation is marked by the green arrows on image A, B, and C; and by the 

green text in image D and E. 
 

The obtained influence patterns (figure 6-6) were applied to the training set to 
correct for the lumen contrast-enhancement influence. The difference between the mean 
HU-values of the wall to the reference, before and after correction, can be seen at table 6-1 
(training set). 
 
Generalized lumen contrast-enhancement influence pattern 

To enhance the applicability of the lumen contrast-enhancement influence pattern, 
a generalized form of the correction algorithm was formulated. Combining all the 
parameters of the exponential lines from all vessels and all types of wall, the amplitudes (A) 
were found to be linearly correlated to the mean lumen HU-values (r2 = 0.96), following a 
linear equation: 4_*66.0 HULumenA (figure 6-7A). Meanwhile, the 

coefficients ( ) were similar: 0.9+0.1, and the constants (c) were linearly correlated to the 
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mean lumen HU values (r2 = 0.64), following a linear equation: 
2_*03.0 HULumenc (figure 6-7B). 

The generalized correction algorithms were applied to the validation set to correct 
for the lumen contrast-enhancement influence (figure 6-8 and 6-9). The differences of the 
walls mean HU-values to the reference, before and after correction, can be seen at table 6-1 
(validation set). 

 
Table 6-1. The difference of walls mean HU-values to the reference 

Set 
Part of the wall 

Measured 
Difference to Reference 

No Correction Correction 

Training 
Outside 2-pixel radius 0-7 HU (2 HU) NC 
Inside 2-pixel radius 0-95 HU (44 HU) 0-6 HU (1 HU) 

Whole wall 1-30 HU (11 HU) 0-4 HU (1 HU) 

Validation 
Outside 2-pixel radius 0-8 (2 HU) NC 
Inside 2-pixel radius 4-98 HU (45 HU) 0-15 HU (4 HU) 

Whole wall 1-30 HU (10 HU) 0-8 HU (2 HU) 

Note:  
1. The values on Difference to Reference columns indicate the range with the median 

in the bracket 
2. NC: no correction performed 

 
Discussion 

The increasing interest to characterize non-calcified plaque content originates 
from the assumption that plaques with a large lipid-rich component are more likely to 
rupture which in turn causes an ACS [7]. One of the most common and most validated 
methods to identify and quantify lipid-rich plaque is intravascular ultrasound [20, 21]. 
However, identification of lipid-rich plaque using MDCT is highly preferable because of its 
non-invasive nature.  

Many studies have reported that types of non-calcified plaques can be 
distinguished based on CT attenuation [11, 22-24]. However many factors have been 
reported that influence the HU values of plaques [12, 25, 26], with lumen contrast-
enhancement being the most prominent one. Previous studies showed that the influence was 
dependent on the location of plaque relative to lumen [15, 16], with stronger influence on 
CT attenuation of non-calcified plaque close to the lumen. Confirming the findings initially 
shown in software simulations [17] the exact pattern of the lumen contrast-enhancement 
influence was reproduced and validated in this study as being most severe close to the 
lumen border and decreasing following a specific exponential pattern until a 2-pixel radius 
from the lumen border. The amplitudes determine the magnitude of the exponential pattern. 
The strong positive linear correlation to the lumen HU values can be explained by the fact 
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that CT is a linear system. The lambda coefficients express the range of the exponential 
pattern. The fact that they are relatively stable confirms that the influence range is mostly 
dependent on the spatial resolution of the CT system. The negative linear correlation 
between the constants and the lumen HU-values may first seem counter intuitive as this 
will decrease the influence as the lumen HU values increase. This finding may be due to the 
Gibbs phenomenon, commonly associated with discontinuities in images [27]. However, 
the relatively weak correlation and small values indicate that this effect is not prominent. 
The close similarity of the influence patterns between all types of wall indicates the 
independency of wall types. The slight dissimilarity in the influence patterns between the 
two wall types of the small vessels (figure 6-6C – influence from 100 and 200 HU lumen 
value) was caused by the difficulty to correctly segment the boundary of the small 
(approximately 2 pixels diameter) and low attenuation lumina.  

The proposed correction algorithm managed to correct for the lumen contrast-
enhancement influence on the most affected wall region, which is within a 2-pixel radius 
from the lumen border, reducing the median difference of 45 HU to a median difference of 
4 HU, with reference to non contrast-enhanced vessel. When the whole wall region was 
measured, the median difference decreased from 10 HU to 2 HU. 

A limitation of the study is that the HU values of the vessel wall (either the normal 
or the plaque-infested wall) do not specifically refer to any of the published plaque-specific 
HU values. The sheer amount of variations in the reported HU values makes a single 
correct selection of a particular plaque type impossible. However this limitation would not 
interfere with the result as has been shown in this study that the pattern of the lumen 
contrast-enhancement influence is independent to the wall types. The only variables that 
determined the pattern are the mean lumen HU-values and the spatial resolution of the CT 
system.  

Another shortcoming is the fact that the coronary phantoms were scanned 
stationary and thus, the effect of coronary motion was not taken into account in this study. 
Future studies should be conducted to validate our correction algorithm using moving 
phantoms. However, the current correction algorithm could already be applied to other 
types of vessels where cardiac motion plays no role such as the carotids or peripheral 
vessels.   
 
Conclusion 

Lumen contrast-enhancement influence on the vessel wall can be defined by an 
exponential approximation, allowing correction of the CT density of the vessel wall closest 
to the lumen. After this correction, a more accurate determination of the composition of the 
vessel wall plaques can be made. 
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Non-invasive coronary imaging has the potential to replace invasive coronary 
angiography as the common technique for detection of coronary heart disease, if the key-
morphology to diagnose coronary artery disease (CAD) can be determined by CT 
acquisition, processing, and postprocessing techniques. Both the vessel’ width (lumen 
opening) and wall morphology are important characteristics in disease detection. In chapter 
1, an overview is given on the clinical representation and significance of CAD. Accurate 
and reliable visualization and quantifications are needed to determine the proper treatment 
of CAD. Two major characteristics determining the reliability of a coronary artery are its 
lumen opening and its wall morphology. Early imaging modalities, such as x-ray 
angiography and intravascular ultrasound, provide a good assessment of these features. 
However, they also experience several limitations, most notably due to their invasiveness. 
In chapter 1, the steady rise of multi detector-row computed tomography (MDCT) to be the 
preferred non-invasive modality to assess CAD is discussed. With MDCT, the whole 
coronary tree and its lumen can be adequately visualized with reported specificity for 
determination of obstructive coronary disease of up to 100%. Also, an MDCT-based 
quantification of the calcified portion of the coronary wall has been so reliable that it is 
regarded as a strong predictor of coronary events. Despite of these positive reports, MDCT 
still has its limitations in visualizing the fast moving coronaries and small components of 
coronary atherosclerotic plaque. The aim of the research described in this thesis is to 
evaluate and improve the determination of coronary disease using MDCT with focus on 
stenotic lesions of the lumen and small calcified and soft plaques in the coronary artery 
wall. 

In Chapter 2, the ability to visualize the coronary lumen opening with MDCT is 
discussed, especially the effect of motion artefacts and how these could be recognized in 
post-processing. Despite the already high temporal resolution of the latest generation of 
MDCT scanners, the desired temporal resolution to image small fast moving objects such 
as coronary arteries always artefact free can not be achieved yet. A systematic investigation 
on the effect of motion artefacts on coronary visualization was performed by scanning an 
anthropomorphic moving heart phantom in a 64-row MDCT (64-MDCT) scanner and a 
dual-source CT (DSCT) scanner. A 64-MDCT scanner has a gantry rotation speed of 0.33 
ms / rotation. A DSCT scanner has the same gantry rotation speed but twice the temporal 
resolution due to the presence of two x-ray source-detector pairs rotating simultaneously. 
The results of the study showed that, the higher temporal resolution of DSCT indeed 
provides a better image quality when compared to 64-MDCT. Further analysis of the effect 
of motion artefacts on coronary stenosis evaluation showed that up to 30% of the detected 
stenoses can be artificial, caused by motion artefacts. A quantification method was 
developed base on these findings, which contributes to the diagnostic accuracy by ruling 
out these false diagnoses, thus improving the diagnostic value of a qualitative analysis.  

The early onset of calcification in a coronary plaque may indicate early 
progression of coronary disease and increased coronary risk in a patient. The presence of 
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very small calcified plaques (microcalcifications) in the thin fibrous cap covering a large 
atheromatous plaque was hypothesized to be able to destabilize the cap to the point of 
rupture-prone, potentially exposing the thrombogenic material underneath to the blood. In 
Chapter 3, the ability to visualize these very small calcified plaques (microcalcifications) 
with MDCT is discussed. MDCT is known to be highly sensitive for the detection of 
coronary calcification because of the distinctively high attenuation values of calcified 
plaques. Furthermore, calcium scoring, a quantification of coronary calcification as 
detected by MDCT, is proven to be a strong predictor of future coronary events. However, 
an inherent limitation of MDCT, namely the limited spatial resolution of up to 0.4 mm, still 
hinders the visualization of microcalcifications. It was shown using a software simulation 
that the smallest calcification that can be visualized by a typical 64-MDCT scanner has a 
diameter of approximately 200 µm. This indicates that the early onset of calcification in 
coronary plaque will go undetected when using current clinical CT systems; and a zero 
calcium score can not absolutely exclude the presence of coronary calcification.  

In Chapters 4 to 6, the ability to visualize non-calcified plaques with MDCT is 
discussed. Several studies have reported the ability to characterize non-calcified plaques 
based on their Hounsfield Unit (HU) value with MDCT, providing HU-criteria or even HU 
cut-off values to distinguish between lipid-rich and fibrous plaques. However, there appears 
to be no concordance between the different reports, most probably since the small size of 
the plaques (relative to the resolution of the scan) cause partial volume effects.  

In Chapter 4, all published HU-based criteria to characterize non-calcified plaque 
into fibrous and lipid-rich plaques were systematically analyzed. Considerable variations in 
the published HU criteria were found. However, there were specific relationships found 
between the HU-criteria and the reporting studies’ characteristics, in terms of.: examination 
type (in-vivo versus ex-vivo study), vessel type (coronary versus other artery), CT-system 
brand, detector-rows, voltage-setting, and collimation-width. In order to investigate these 
relationships more deeply, the HU-criteria were hierarchically classified based on these 
characteristics and visualized in diagrams. As a result, 21 and 22 distinct HU-criteria were 
obtained for lipid-rich and fibrous plaques, respectively. Significant differences were found 
between most of these hierarchically classified HU-criteria, indicating limited applicability 
when HU-criteria of certain study characteristics are used for studies with non-matching 
characteristics. To overcome this problem, the diagrams that are presented, can be 
consulted in a clinical setting to find the closest suitable HU-criteria for one specific 
situation by matching the characteristics in the diagrams as much as possible to the local 
situation.  

In Chapter 5, this topic is further discussed by investigating the factors that 
influence non-calcified plaque visualization on a coronary MDCT angiography dataset. The 
limitation in spatial resolution of MDCT has made it difficult to identify a single 
component of a non-calcified plaque. The partial volume effect, either from different 
plaque components or from the lumen contrast-enhancement, strongly affects non-calcified 
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plaque visualization and hence, its attenuation value. Using a software simulation which 
incorporates realistic scanning parameters, it was shown that plaque’s attenuation value and 
percentage lipid-rich content is linearly correlated. The linear correlation between the 
plaque lipid-rich content and its HU-value indicates the possibility to characterize the 
plaque lipid-rich content based on its HU value instead of strict depiction of individual 
components. However, inherent limitations still severely hinder the applicability of this 
method. Lumen contrast-enhancement was found to highly influence the plaque’s 
attenuation value, following a specific exponential pattern until 2-pixel radius from the 
lumen border. This pattern is dependent only on the lumen contrast-enhancement level and 
the distance from the lumen border, and not on stenosis grade, plaque content and 
modality/spatial resolution. This finding indicates the possibility to construct an algorithm 
to correct for lumen contrast-enhancement influence. 

In Chapter 6, the validation and application of the contrast-enhancement influence 
as described in chapter 5 were studied using a physical experimental setup. This setup 
involved a hardware coronary vessel phantom, with a hollow lumen and plaque-infested 
wall. The linear correlation between lumen contrast-enhancement and plaque attenuation 
value, and the specific exponential patterns of lumen contrast-enhancement were 
confirmed. Based on the specific influence patterns, a generalized correction algorithm was 
constructed. Early validation of this correction algorithm showed a promising reduction of 
lumen contrast-enhancement influence from a median plaque HU-value deviation from the 
non-contrast-enhanced reference of 45 HU to 4 HU. After this correction, a more accurate 
determination of the composition of the vessel wall plaques could be made. 
In conclusion, MDCT scanning, in combination with advanced post-processing techniques, 
is a powerful tool to non-invasively investigate coronary artery disease but still leaves room 
for improvement. The studies performed in this thesis with hardware and software 
phantoms identified some drawbacks of MDCT in assessing coronary artery disease. Some 
drawbacks are yet to be solved due to inherent limitations of the current MDCT technology 
(i.e. the spatial resolution limitation to visualize microcalcifications), others are to be 
avoided by exercising caution when conducting the examinations (i.e. the false artificial 
stenosis induced by motion artefacts). However, it is shown that some of the artefacts and 
interpretation problems can be reduced and managed using advanced post-processing 
techniques such as the lumen contrast-enhancement correction. The advance in knowledge 
provided by these findings will help to improve coronary artery disease determination using 
MDCT. 
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De huidige, invasieve, standaardtechniek voor het afbeelden van de 
kransslagaderen, de coronair angiografie, zou mogelijkerwijs vervangen kunnen worden 
door niet-invasieve CT-acquisitie, verwerkings- en bewerkingstechnieken, mits hiermee de 
morfologie van coronaire hartziekten goed kan worden vastgelegd. Belangrijke kenmerken 
hierbij zijn de vaatwijdte (het lumen) en de vaatwandsamenstelling. In hoofdstuk 1 wordt 
een overzicht gegeven van de klinische presentatie en significantie van coronaire 
hartziekten (Coronary Artery Disease – CAD). Voor het bepalen van de juiste behandeling 
van CAD zijn accurate en betrouwbare visualisatie en kwantificering essentieel.  

De twee belangrijkste karakteristieken, die de betrouwbaarheid van een 
kransslagader bepalen, zijn de opening van het  lumen en de morfologie van de vaatwand. 
Beeldvormende technieken als de coronair angiografie en intravasculaire ultrasound bieden 
de mogelijkheid om deze karakteristieken te visualiseren en te evalueren. Deze technieken 
hebben echter ook een aantal tekortkomingen, waarvan de belangrijkste is dat het 
onderzoek invasief is.. In hoofdstuk 1 wordt de opkomst van Multi Detector Computer 
Tomografie (MDCT) als voorkeurstechniek voor het niet-invasief beoordelen van CAD 
beschreven. Met behulp van MDCT kunnen zowel het lumen als de vaatwand van de 
gehele kansslagaderen gevisualiseerd worden met een in de literatuur beschreven 
specificiteit voor het vaststellen van obstructieve vernauwing oplopend tot 100%. 
Daarnaast is het detecteren en meten van calcificaties in de vaatwand met MDCT dusdanig 
betrouwbaar dat het beschouwd wordt als een sterke voorspeller van hartfalen. Ondanks 
deze positieve ontwikkelingen heeft MDCT nog steeds tekortkomingen bij het in beeld 
brengen van de snel bewegende kransslagaderen en de zeer kleine componenten van 
atherosclerotische plaques. In dit proefschrift wordt naar oplossingen gezocht voor de 
huidige beperkingen van MDCT bij de identifcatie en kwantificering van het afbeelden van 
de kransslagaderen. Hierbij wordt de nadruk gelegd op de visualisatie van vernauwingen 
van het lumen en kleine kalk- en soft-plaques in de vaatwand. 

In hoofdstuk 2 wordt het in beeld brengen van de lumenopening van de 
kransslagaderen met behulp van MDCT beschreven en dan met name het effect van 
bewegingsartefacten en hoe deze kunnen worden onderkend door middel van nabewerking 
(post-processing) van de beelden. Ondanks de hoge temporele resolutie van de meest 
recente generatie MDCT scanners zijn deze nog niet in staat om bij elke patiënt de snel 
bewegende kransslagaderen zonder artefacten in beeld te brengen. Gebruik makend van een 
antropomorfisch bewegend hartfantoom is systematisch onderzoek gedaan naar het effect 
van deze bewegingsartefacten op de visualisatie van de kransslagaderen. Hierbij is gebruik 
gemaakt van een 64-rij MDCT (64-MDCT) met een rotatie snelheid van 0.33 ms per rotatie 
en een dual-source CT (DSCT) met dezelfde rotatiesnelheid maar dubbele temporele 
resolutie door het gelijktijdig gebruik van twee röntgenbron en -detectorparen. De 
resultaten tonen aan dat de hogere temporele resolutie van de DSCT inderdaad leidt tot een 
betere beeldkwaliteit in vergelijking met 64-MDCT. Verdere analyse van de effecten van 
bewegingsartefacten op de beoordeling van de kransslagaderen toonde aan dat tot 30% van 
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de gevonden vernauwingen kunstmatig kan zijn, veroorzaakt door bewegingsartefacten. Op 
basis van deze bevindingen is een kwantificeringsmethode ontwikkeld die, door het 
detecteren van deze kunstmatige vernauwingen, een bijdrage levert aan de diagnostische 
waarde van een kwantitatieve beoordeling. 

Het vroege ontstaan van calcificaties in een plaque in de kransslagaderen kan een 
aanwijzing zijn voor progressie van vaatziekten en daarmee een verhoogd risico hierop 
geven voor de patiënt. Er is een vermoeden dat de aanwezigheid van zeer kleine 
calcificaties (micro-calcificaties) in het dunne fibreuze kapsel, dat over een grote 
atheromateuse plaque ligt, dit vlies destabiliseert tot het scheurt (ruptuur), waardoor het 
thrombogene materiaal van de plaque in contact kan komen met het bloed. In hoofdstuk 3 
wordt de mogelijkheid besproken om deze zeer kleine calicificaties (micro-calcificaties) te 
bekijken met MDCT. Het is bekend dat de detectie van calcificaties in de kransslagaderen 
zeer goed uitgevoerd kan worden met behulp van MDCT door de onderscheidende hoge 
röntgen absorptie waarde (in HU) van gecalcificeerde plaques. Tevens is de kalkscore 
berekend op basis van MDCT een bewezen sterke voorspeller voor toekomstig hartfalen. 
Een inherente tekortkoming van MDCT die de visualisatiemogelijkheden van micro-
calcificaties beperkt is echter de beperkte spatiële (ruimtelijke) resolutie van maximaal 
0.4mm. Door een softwaresimulatie is aangetoond dat de kleinste calcificaties, die 
zichtbaar gemaakt kunnen worden met een typische 64-MDCT scanner, een diameter van 
ongeveer 200 µm hebben. Dit is een aanwijzing dat het vroege ontstaan van calcificaties 
met de huidige generatie klinische CT systemen niet zal worden ontdekt en dat een 
kalkscore van nul de aanwezigheid van kalk in de vaatwand niet absoluut kan uitsluiten.  

In de hoofdstukken 4 tot en met 6 worden de mogelijkheden van MDCT voor het 
visualiseren van zachte plaques (zonder kalk) behandeld. In meerdere studies is de 
mogelijkheid beschreven om niet gecalcificeerde plaques met MDCT te karakteriseren op 
basis van hun Hounsfield Unit (HU). Deze studies stellen HU-criteria of zelfs HU 
afkapwaardes voor om onderscheid te maken tussen lipide (vet) rijke en fibrotische 
(bindweefsel-achtige) plaques. Er lijkt echter geen overeenstemming te zijn tussen de 
resultaten van de verschillende publicaties, waarschijnlijk omdat de relatief kleine omvang 
van de plaques ten opzichte van de spatiële resolutie van de scan partial volume effects 
veroorzaakt. 

Hoofdstuk 4 beschrijft een systematische analyse van alle gepubliceerde HU 
gebaseerde criteria voor de karakterisering van zachte plaques in lipiderijke en fibrotische 
plaques. Er zijn aanzienlijke verschillen gevonden in de gepubliceerde criteria. Wel zijn er 
specifieke relaties gevonden tussen de HU criteria en de karakteristieken van de 
bijbehorende studies op basis van: soort onderzoek (in-vivo versus ex-vivo), vaattype 
(kransslagaders versus andere vaten), merk van het CT system, aantal detector rijen, 
instelling van het voltage, en breedte van de collimatie. Om deze relaties beter te 
onderzoeken zijn de HU criteria hiërarchisch geclassificeerd op basis van deze 
karakteristieken en samengevat in een aantal diagrammen. Dit leidt voor lipiderijke plaques 
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tot 21 en voor fibrotische plaques 22 afzonderlijke HU criteria. Na verdere analyse bleek 
dat de toepassing van HU gebaseerde criteria beperkt is, daar de meeste van deze 
hiërarchisch geclassificeerde HU criteria significant verschilden. Hierdoor is gebruik van 
een willekeurige set van HU criteria niet geschikt voor studies, die uitgevoerd worden met 
andere karakteristieken dan die gebruikt om de HU criteria te bepalen. Om dit probleem te 
voorkomen is het mogelijk om uit de gepresenteerde diagrammen die HU criteria te kiezen 
die gebaseerd zijn op een situatie waarin de genoemde karakteristieken zo goed mogelijk 
overeen komen met de eigen klinische situatie. 

Dit onderwerp wordt verder behandeld in hoofdstuk 5 door de factoren te 
onderzoeken, die de visualisatie van niet-gecalcificeerde plaques met behulp van MDCT 
beïnvloeden. De identificatie van de verschillende plaque componenten wordt bemoeilijkt 
door de beperkingen in spatiële resolutie van MDCT. Op basis van het partial volume effect 
wordt de gemeten röntgen absorptie waarde sterk beïnvloed door de omgeving 
(verschillende plaque componenten of contrastmiddel in het lumen). Op basis van een 
softwaresimulatie met realistische scan eigenschappen is aangetoond dat de correlatie 
tussen de röntgen absorptie waarde van een plaque en het percentage lipiderijke 
componenten lineair is. Deze lineaire correlatie tussen de lipiderijke component en de HU 
waarde van de gehele plaque biedt mogelijkheden om de lipiderijke component te bepalen 
op basis van de HU waarde in plaats van een strikte scheiding van individuele 
componenten. Praktische toepassing van deze methode wordt echter bemoeilijkt door een 
aantal fundamentele tekortkomingen. De röntgen absorptie waarde van een plaque wordt 
sterk beïnvloed door het contrastmiddel dat zich in het lumen bevindt op basis van een 
exponentieel patroon tot een 2-pixel afstand van de lumen begrenzing. Dit patroon is alleen 
afhankelijk van het niveau van contrastaankleuring van het lumen en de afstand tot de 
lumenbegrenzing en niet van de mate van de vernauwing, samenstelling van de plaque of 
modaliteit/spatiële resolutie. Op basis van deze bevinding is het mogelijk om een algoritme 
te ontwikkelen dat corrigeert voor de invloed van de contrastaankleuring. 

In hoofdstuk 6 zijn de invloeden en effecten van contrastaankleuring, die 
beschreven staan in hoofdstuk 5, gevalideerd en toegepast binnen een fysieke 
experimentele opstelling. Deze opstelling bestond uit een fysiek kransslagader fantoom met 
een hol lumen en plaques in de vaatwand. De lineaire correlatie tussen lumen 
contrastaankleuring en de röntgen absorptie waarde van de plaques, die ook met de 
softwaresimulatie waren gevonden, zijn bevestigd in deze opstelling. Vervolgens is op 
basis van de gevonden patronen een algemeen correctie-algoritme ontwikkeld. Een eerste 
validatie van dit correctie-algoritme liet een veelbelovende afname van de invloed van de 
contrastaankleuring zien. De mediaan van de afwijkingen van de HU-waarde van de plaque 
ten opzicht van de werkelijke waarde zonder contrast nam na correctie af van 45HU naar 
4HU. Op basis van deze resultaten is een nauwkeurigere beoordeling van de 
plaquesamenstelling in de kransslagaderen mogelijk. 
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Concluderend kan worden vastgesteld dat, in combinatie met geavanceerde 
beelbewerkingstechnieken, MDCT een krachtig middel is voor het niet-invasief 
onderzoeken van de kransslagaderen maar dat er nog ruimte voor verbetering is. De in dit 
proefschrift op basis van software en hardware fantomen beschreven onderzoeken tonen 
een aantal van de tekortkomingen van MDCT aan. Enige hiervan moeten opgelost kunnen 
worden door de continue verbetering van de MDCT technologie (bijv. de beperking in de 
visualisatie van microcalcificaties door de beperkte spatiële resolutie), of door het 
zorgvuldig werken bij het uitvoeren van het onderzoek (bijv. introductie van kunstmatige 
stenoses veroorzaakt door bewegingsartefacten). Het is echter aangetoond dat een aantal 
van de artefacten en interpretatieproblemen verminderd en geregeld kan worden door 
geavanceerde beeldbewerkingstechnieken zoals de lumen contrastaankleuringcorrectie en 
de hiërarchische classificatie van HU criteria. De kennisvermeerdering, die door deze 
bevindingen is verkregen, zal bijdragen tot verbetering van de vroegtijdige, niet-invasieve, 
opsporing van coronaire hartziekten met behulp van MDCT.  
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