143 research outputs found

    Metrological remote identification of a human body by stereoscopic camera techniques

    Get PDF
    The stereoscopic and 3D triangulation techniques are widely used in close-range photogrammetry for metrological applications. Same techniques may also implement remote identification tasks of a human body for the security requirements using its intrinsic geometrical features remotely acquired by stereoscopic CCD camera pair. Within the initial technique, Human body and some other features at the background in motion are selected and separated from rest of background by the image differentiation algorithm which is already performed by video frame grabber card in real-time. The further differentiation between the human body and other features in motion (e.g. birds, clouds, trees, etc.) is made by stereoscopic measurement techniques in relation with a simple human body features data base. The data base may contain; possible ranges of height, width of the body, maximum velocity, etc. Since the distance between the camera and human body could be measured, its velocity may easily be calculated

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Mars surface context cameras past, present and future

    Get PDF
    Matthew Gunn and Claire Cousins are Co-Investigators on the European Space Agency ExoMars Panoramic Camera instrument (PI Andrew Coates; MSSL/University College London, London, United Kingdom). C Cousins is funded by the Royal Society of Edinburgh on a Personal Research Fellowship. Matthew Gunn acknowledges UK Space Agency grants ST/L001454/1, ST/N003349/1 and ST/N006410/1.Mars has been the focus of robotic space exploration since the 1960s, in which time there have been over 40 missions, some successful, some not. Camera systems have been a core component of all instrument payloads sent to the Martian surface, harnessing some combination of monochrome, color, multispectral, and stereo imagery. Together, these datasets provide the geological context to a mission, which over the decades has included the characterization and spatial mapping of geological units and associated stratigraphy, charting active surface processes such as dust devils and water ice sublimation, and imaging the robotic manipulation of samples via scoops (Viking), drills (Mars Science Laboratory (MSL) Curiosity), and grinders (Mars Exploration Rovers). Through the decades, science context imaging has remained an integral part of increasingly advanced analytical payloads, with continual advances in spatial and spectral resolution, radiometric and geometric calibration, and image analysis techniques. Mars context camera design has encompassed major technological shifts, from single photomultiplier tube detectors to megapixel charged-couple-devices, and from multichannel to Bayer filter color imaging. Here we review the technological capability and evolution of science context imaging instrumentation resulting from successful surface missions to Mars, and those currently in development for planned future missions.Publisher PDFPeer reviewe

    NASA Tech Briefs, March 2010

    Get PDF
    Topics covered include: Software Tool Integrating Data Flow Diagrams and Petri Nets; Adaptive Nulling for Interferometric Detection of Planets; Reducing the Volume of NASA Earth-Science Data; Reception of Multiple Telemetry Signals via One Dish Antenna; Space-Qualified Traveling-Wave Tube; Smart Power Supply for Battery-Powered Systems; Parallel Processing of Broad-Band PPM Signals; Inexpensive Implementation of Many Strain Gauges; Constant-Differential-Pressure Two-Fluid Accumulator; Inflatable Tubular Structures Rigidized with Foams; Power Generator with Thermo-Differential Modules; Mechanical Extraction of Power From Ocean Currents and Tides; Nitrous Oxide/Paraffin Hybrid Rocket Engines; Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents; Probabilistic Multi-Factor Interaction Model for Complex Material Behavior; Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators; Compact Rare Earth Emitter Hollow Cathode; High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors; Rapid Active Sampling Package; Miniature Lightweight Ion Pump; Cryogenic Transport of High-Pressure-System Recharge Gas; Water-Vapor Raman Lidar System Reaches Higher Altitude; Compact Ku-Band T/R Module for High-Resolution Radar Imaging of Cold Land Processes; Wide-Field-of-View, High-Resolution, Stereoscopic Imager; Electrical Capacitance Volume Tomography with High-Contrast Dielectrics; Wavefront Control and Image Restoration with Less Computing; Polarization Imaging Apparatus; Stereoscopic Machine-Vision System Using Projected Circles; Metal Vapor Arcing Risk Assessment Tool; Performance Bounds on Two Concatenated, Interleaved Codes; Parameterizing Coefficients of a POD-Based Dynamical System; Confidence-Based Feature Acquisition; Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery; Universal Decoder for PPM of any Order; Algorithm for Stabilizing a POD-Based Dynamical System; Mission Reliability Estimation for Repairable Robot Teams; Processing AIRS Scientific Data Through Level 3; Web-Based Requesting and Scheduling Use of Facilities; AutoGen Version 5.0; Time-Tag Generation Script; PPM Receiver Implemented in Software; Tropospheric Emission Spectrometer Product File Readers; Reporting Differences Between Spacecraft Sequence Files; Coordinating "Execute" Data for ISS and Space Shuttle; Database for Safety-Oriented Tracking of Chemicals; Apparatus for Cold, Pressurized Biogeochemical Experiments; Growing B Lymphocytes in a Three-Dimensional Culture System; Tissue-like 3D Assemblies of Human Broncho-Epithelial Cells; Isolation of Resistance-Bearing Microorganisms; Oscillating Cell Culture Bioreactor; and Liquid Cooling/Warming Garment

    Desarrollo de geotecnologías aplicadas a la inspección y monitorización de entornos industriales

    Get PDF
    Tesis por compendio de publicaciones[ES]El desarrollo tecnológico de las últimas dos décadas ha supuesto un cambio radical que está llevando a un nuevo paradigma en el que se entremezclan el mundo físico y el digital. Estos cambios han influido enormemente en la sociedad, modificando las formas de comunicación, acceso a información, ocio, trabajo, etc. Asimismo, la industria ha adoptado estas tecnologías disruptivas, las cuales están contribuyendo a lograr un mayor control y automatización del proceso productivo. En el ámbito industrial, las tareas de mantenimiento son críticas para garantizar el correcto funcionamiento de una planta o instalación, ya que influyen directamente en la productividad y pueden suponer un elevado costo adicional. Las nuevas tecnologías están posibilitando la monitorización continua y a la inspección automatizada, proporcionando herramientas auxiliares a los inspectores que mejoran la detección de fallos y permiten anticipar y optimizar la planificación de las tareas de mantenimiento. Con el objetivo de desarrollar herramientas que aporten mejoras en las tareas de mantenimiento en industria, la presente tesis doctoral se basa en el estudio de como las geotecnologías pueden aportar soluciones óptimas en la monitorización e inspección. Debido a la gran variedad de entornos industriales, las herramientas de apoyo al mantenimiento deben adaptarse a cada caso en concreto. En este aspecto, y con el fin de demostrar la adaptabilidad de la geomática y las geotecnologías, se han estudiado instalaciones industriales de ámbitos muy diversos, como una sala de máquinas (escenario interior), plantas fotovoltaicas (escenario exterior) y soldaduras (interior y exterior). La escala de los escenarios objeto de estudio ha sido muy variada, desde las escalas más pequeñas, para el estudio de las soldaduras y la sala de máquinas, a las escalas más grandes, en los estudios de evolución de la vegetación y presencia de masas de agua en plantas fotovoltaicas. Las geotecnologías demuestran su versatilidad para trabajar a distintas escalas, con soluciones que permiten un gran detalle y precisión, como la fotogrametría de rango cercano y el sistema de escaneado portátil (Portable Mobile Mapping System - PMMS), y otras que pueden abarcar zonas más amplias del territorio, como es el caso de la teledetección o la fotogrametría con drones. Según lo expuesto anteriormente, el enfoque de la tesis ha sido el estudio de elementos o instalaciones industriales a diferentes escalas. En el primer caso se desarrolló una herramienta para el control de calidad externo de soldaduras utilizando fotogrametría de rango cercano y algoritmos para la detección automática de defectos. En el segundo caso se propuso el uso de un PMMS para optimizar la toma de datos en las tareas de inspección en instalaciones fluidomecánicas. En el tercer caso se utilizó la fotogrametría con drones y la combinación de imágenes RGB y térmicas con algoritmos de visión computacional para la detección de patologías en paneles fotovoltaicos. Finalmente, para la monitorización de la vegetación y la detección de masas de agua en el entorno de plantas fotovoltaicas, se empleó la teledetección mediante el cálculo de índices espectrales. [EN]The technological development of the last two decades has brought about a radical change that is leading to a new paradigm in which the physical and digital worlds are intertwined. These changes have had a great impact on society, modifying communication methods, access to information, leisure, work, etc. In addition, the industry has adopted these disruptive technologies, which are contributing to achieving greater control and automation of the production process. In the industrial sector, maintenance tasks are critical to ensuring the proper operation of a plant or facility, as they directly influence productivity and can involve high additional costs. New technologies are making continuous monitoring and automated inspection possible, providing auxiliary tools to inspectors that improve fault detection and allow for the anticipation and optimization of maintenance task planning. With the aim of developing tools that provide improvements in maintenance tasks in industry, this doctoral thesis is based on the study of how geotechnologies can provide optimal solutions in monitoring and inspection. Due to the great variety of industrial environments, maintenance support tools must adapt to each specific case. In this regard, and in order to demonstrate the adaptability of geomatics and geotechnologies, industrial installations from very diverse areas have been studied, such as a machine room (indoor scenario), photovoltaic plants (outdoor scenario), and welding (indoor and outdoor scenarios). The scale of the studied scenarios has been very varied, ranging from smaller scales for the study of welds and machine rooms, to larger scales in the studies of vegetation evolution and the presence of bodies of water in photovoltaic plants. Geotechnologies demonstrate their versatility to work at different scales, with solutions that allow for great detail and precision, such as close-range photogrammetry and the Portable Mobile Mapping System (PMMS), as well as others that can cover larger areas of the territory, such as remote sensing or photogrammetry with drones. The focus of the thesis has been the study of industrial elements or installations at different scales. In the first case, a tool was developed for external quality control of welding, using close-range photogrammetry and algorithms for automatic defect detection. In the second case, the use of a PMMS is proposed to optimize data collection in fluid-mechanical installation inspection tasks. In the third case, drone photogrammetry and the combination of RGB and thermal images with computer vision algorithms were used for the detection of pathologies in photovoltaic panels. Finally, for the monitoring of vegetation and the detection of water masses in the environment of photovoltaic plants, remote sensing was employed through the calculation of spectral indices

    Semi-automated geomorphological mapping applied to landslide hazard analysis

    Get PDF
    Computer-assisted three-dimensional (3D) mapping using stereo and multi-image (“softcopy”) photogrammetry is shown to enhance the visual interpretation of geomorphology in steep terrain with the direct benefit of greater locational accuracy than traditional manual mapping. This would benefit multi-parameter correlations between terrain attributes and landslide distribution in both direct and indirect forms of landslide hazard assessment. Case studies involve synthetic models of a landslide, and field studies of a rock slope and steep undeveloped hillsides with both recently formed and partly degraded, old landslide scars. Diagnostic 3D morphology was generated semi-automatically both using a terrain-following cursor under stereo-viewing and from high resolution digital elevation models created using area-based image correlation, further processed with curvature algorithms. Laboratory-based studies quantify limitations of area-based image correlation for measurement of 3D points on planar surfaces with varying camera orientations. The accuracy of point measurement is shown to be non-linear with limiting conditions created by both narrow and wide camera angles and moderate obliquity of the target plane. Analysis of the results with the planar surface highlighted problems with the controlling parameters of the area-based image correlation process when used for generating DEMs from images obtained with a low-cost digital camera. Although the specific cause of the phase-wrapped image artefacts identified was not found, the procedure would form a suitable method for testing image correlation software, as these artefacts may not be obvious in DEMs of non-planar surfaces.Modelling of synthetic landslides shows that Fast Fourier Transforms are an efficient method for removing noise, as produced by errors in measurement of individual DEM points, enabling diagnostic morphological terrain elements to be extracted. Component landforms within landslides are complex entities and conversion of the automatically-defined morphology into geomorphology was only achieved with manual interpretation; however, this interpretation was facilitated by softcopy-driven stereo viewing of the morphological entities across the hillsides.In the final case study of a large landslide within a man-made slope, landslide displacements were measured using a photogrammetric model consisting of 79 images captured with a helicopter-borne, hand-held, small format digital camera. Displacement vectors and a thematic geomorphological map were superimposed over an animated, 3D photo-textured model to aid non-stereo visualisation and communication of results

    3D high resolution techniques applied on small and medium size objects: from the analysis of the process towards quality assessment

    Get PDF
    The need for metric data acquisition is an issue strictly related to the human capability of describing the world with rigorous and repeatable methods. From the invention of photography to the development of advanced computers, the metric data acquisition has been subjected to rapid mutation, and nowadays there exists a strict connection between metric data acquisition and image processing, Computer Vision and Artificial Intelligence. The sensor devices for the 3D model generation are various and characterized by different functioning principles. In this work, optical passive and active sensors are treated, focusing specifically on close-range photogrammetry, Time of Flight (ToF) sensors and Structured-light scanners (SLS). Starting from the functioning principles of the techniques and showing some issues related to them, the work highlights their potentialities, analyzing the fundamental and most critical steps of the process leading to the quality assessment of the data. Central themes are the instruments calibration, the acquisition plan and the interpretation of the final results. The capability of the acquisition techniques to satisfy unconventional requirements in the field of Cultural Heritage is also shown. The thesis starts with an overview about the history and developments of 3D metric data acquisition. Chapter 1 treats the Human Vision System and presents a complete overview of 3D sensing devices. Chapter 2 starts from the enunciation of the basic principle of close-range photogrammetry considering digital cameras functioning principles, calibration issues, and the process leading to the 3D mesh reconstruction. The case of multi-image acquisition is analyzed, deepening the quality assessment of the photogrammetric process through a case study. Chapter 3 is devoted to the range-based acquisition techniques, namely ToF laser scanners and SLSs. Lastly, Chapter 4 focuses on unconventional applications of the mentioned high-resolution acquisition techniques showing some examples of study cases in the field of Cultural Heritage
    corecore