701 research outputs found

    Analysis and Design Methodologies for Switched-Capacitor Filter Circuits in Advanced CMOS Technologies

    Get PDF
    Analog filters are an extremely important block in several electronic systems, such as RF transceivers, data acquisition channels, or sigma-delta modulators. They allow the suppression of unwanted frequencies bands in a signal, improving the system’s performance. These blocks are typically implemented using active RC filters, gm-C filters, or switched-capacitor (SC) filters. In modern deep-submicron CMOS technologies, the transistors intrinsic gain is small and has a large variability, making the design of moderate and high-gain amplifiers, used in the implementation of filter blocks, extremely difficult. To avoid this difficulty, in the case of SC filters, the opamp can be replaced with a voltage buffer or a low-gain amplifier (< 2), simplifying the amplifier’s design and making it easier to achieve higher bandwidths, for the same power. However, due to the loss of the virtual ground node, the circuit becomes sensitive to the effects of parasitic capacitances, which effect needs to be compensated during the design process. This thesis addresses the task of optimizing SC filters (mainly focused on implementations using low-gain amplifiers), helping designers with the complex task of designing high performance SC filters in advanced CMOS technologies. An efficient optimization methodology is introduced, based on hybrid cost functions (equation-based/simulation-based) and using genetic algorithms. The optimization software starts by using equations in the cost function to estimate the filter’s frequency response reducing computation time, when compared with the electrical simulation of the circuit’s impulse response. Using equations, the frequency response can be quickly computed (< 1 s), allowing the use of larger populations in the genetic algorithm (GA) to cover the entire design space. Once the specifications are met, the population size is reduced and the equation-based design is fine-tuned using the more computationally intensive, but more accurate, simulation-based cost function, allowing to accurately compensate the parasitic capacitances, which are harder to estimate using equations. With this hybrid approach, it is possible to obtain the final optimized design within a reasonable amount of computation time. Two methods are described for the estimation of the filter’s frequency response. The first method is hierarchical in nature where, in the first step, the frequency response is optimized using the circuit’s ideal transfer function. The following steps are used to optimize circuits, at transistor level, to replace the ideal blocks (amplifier and switches) used in the first step, while compensating the effects of the circuit’s parasitic capacitances in the ideal design. The second method uses a novel efficient numerical methodology to obtain the frequency response of SC filters, based on the circuit’s first-order differential equations. The methodology uses a non-hierarchical approach, where the non-ideal effects of the transistors (in the amplifier and in the switches) are taken into consideration, allowing the accurate computation of the frequency response, even in the case of incomplete settling in the SC branches. Several design and optimization examples are given to demonstrate the performance of the proposed methods. The prototypes of a second order programmable bandpass SC filter and a 50 Hz notch SC filter have been designed in UMC 130 nm CMOS technology and optimized using the proposed optimization software with a supply voltage of 0.9 V. The bandpass SC filter has a total power consumption of 249 uW. The filter’s central frequency can be tuned between 3.9 kHz and 7.1 kHz, the gain between -6.4 dB and 12.6 dB, and the quality factor between 0.9 and 6.9. Depending on the bit configuration, the circuit’s THD is between -54.7 dB and -61.7 dB. The 50 Hz notch SC filter has a total power consumption of 273 uW. The transient simulation of the circuit’s extracted view (C+CC) shows an attenuation of 52.3 dB in the 50 Hz interference and that the desired 5 kHz signal has a THD of -92.3 dB

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Development of a 6-bit 15.625 MHz CMOS two-step flash analog-to-digital converter for a low dead time sub-nanosecond time measurement system

    Get PDF
    The development of a 6-bit 15.625 MHz CMOS two-step analog-to-digital converter (ADC) is presented. The ADC was developed for use in a low dead time, high-performance, sub-nanosecond time-to-digital converter (TDC). The TDC is part of a new custom CMOS application specific integrated circuit (ASIC) that will be incorporated in the next generation of front-end electronics for high-performance positron emission tomography imaging. The ADC is based upon a two-step flash architecture that reduces the comparator count by a factor-of-two when compared to a traditional flash ADC architecture and thus a significant reduction in area, power dissipation, and input capacitance of the converter is achieved. The converter contains time-interleaved auto-zeroed CMOS comparators. These comparators utilize offset correction in both the preamplifier and the subsequent regenerative latch stage to guarantee good integral and differential non-linearity performance of the converter over extreme process conditions. Also, digital error correction was employed to overcome most of the major metastability problems inherent in flash converters and to guarantee a completely monotonic transfer function. Corrected comparator offset measurements reveal that the CMOS comparator design maintains a worse case input-referred offset of less than 1 mV at conversion rates up to 8 MHz and less than a 2 mV offset at conversion rates as high as 16 MHz while dissipating less than 2.6 mW. Extensive laboratory measurements indicate that the ADC achieves differential and integral non-linearity performance of less than ±1/2 LSB with a 20 mV/LSB resolution. The ADC dissipates 90 mW from a single 5 V supply and occupies a die area of 1.97 mm x 1.13 mm in 0.8 μm CMOS technology

    Static noise margin analysis for CMOS logic cells in near-threshold

    Get PDF
    The advancement of semiconductor technology enabled the fabrication of devices with faster switching activity and chips with higher integration density. However, these advances are facing new impediments related to energy and power dissipation. Besides, the increasing demand for portable devices leads the circuit design paradigm to prioritize energy efficiency instead of performance. Altogether, this scenario motivates engineers towards reducing the supply voltage to the near and subthreshold regime to increase the lifespan of battery-powered devices. Even though operating in these regime offer interesting energy-frequency trade-offs, it brings challenges concerning noise tolerance. As the supply voltage reduces, the available noise margins decrease, and circuits become more prone to functional failures. In addition, near and subthreshold circuits are more susceptible to manufacturing variability, hence further aggravating noise issues. Other issues, such as wire minimization and gate fan-out, also contribute to the relevance of evaluating the noise margin of circuits early in the design Accordingly, this work investigates how to improve the static noise margin of digital synchronous circuits that will operate at the near/subthreshold regime. This investigation produces a set of three original contributions. The first is an automated tool to estimate the static noise margin of CMOS combinational cells. The second contribution is a realistic static noise margin estimation methodology that considers process-voltage-temperature variations. Results show that the proposed methodology allows to reduce up to 70% of the static noise margin pessimism. Finally, the third contribution is the noise-aware cell design methodology and the inclusion of a noise evaluation of complex circuits during the logic synthesis. The resulting library achieved higher static noise margin (up to 24%) and less spread among different cells (up to 62%).Os avanços na tecnologia de semicondutores possibilitou que se fabricasse dispositivos com atividade de chaveamento mais rápida e com maior capacidade de integração de transistores. Estes avanços, todavia, impuseram novos empecilhos relacionados com a dissipação de potência e energia. Além disso, a crescente demanda por dispositivos portáteis levaram à uma mudança no paradigma de projeto de circuitos para que se priorize energia ao invés de desempenho. Este cenário motivou à reduzir a tensão de alimentação com qual os dispositivos operam para um regime próximo ou abaixo da tensão de limiar, com o objetivo de aumentar sua duração de bateria. Apesar desta abordagem balancear características de performance e energia, ela traz novos desafios com relação a tolerância à ruído. Ao reduzirmos a tensão de alimentação, também reduz-se a margem de ruído disponível e, assim, os circuitos tornam-se mais suscetíveis à falhas funcionais. Somado à este efeito, circuitos com tensões de alimentação nestes regimes são mais sensíveis à variações do processo de fabricação, logo agravando problemas com ruído. Existem também outros aspectos, tais como a miniaturização das interconexões e a relação de fan-out de uma célula digital, que incentivam a avaliação de ruído nas fases iniciais do projeto de circuitos integrados Por estes motivos, este trabalho investiga como aprimorar a margem de ruído estática de circuitos síncronos digitais que irão operar em tensões no regime de tensão próximo ou abaixo do limiar. Esta investigação produz um conjunto de três contribuições originais. A primeira é uma ferramenta capaz de avaliar automaticamente a margem de ruído estática de células CMOS combinacionais. A segunda contribuição é uma metodologia realista para estimar a margem de ruído estática considerando variações de processo, tensão e temperatura. Os resultados obtidos mostram que a metodologia proposta permitiu reduzir até 70% do pessimismo das margens de ruído estática, Por último, a terceira contribuição é um fluxo de projeto de células combinacionais digitais considerando ruído, e uma abordagem para avaliar a margem de ruído estática de circuitos complexos durante a etapa de síntese lógica. A biblioteca de células resultante deste fluxo obteve maior margem de ruído (até 24%) e menor variação entre diferentes células (até 62%)

    Characterization of process variability and robust optimization of analog circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-174).Continuous scaling of CMOS technology has enabled dramatic performance enhancement of CMOS devices and has provided speed, power, and density improvement in both digital and analog circuits. CMOS millimeter-wave applications operating at more than 50GHz frequencies has become viable in sub-100nm CMOS technologies, providing advantages in cost and high density integration compared to other heterogeneous technologies such as SiGe and III-V compound semiconductors. However, as the operating frequency of CMOS circuits increases, it becomes more difficult to obtain sufficiently wide operating ranges for robust operation in essential analog building blocks such as voltage-controlled oscillators (VCOs) and frequency dividers. The fluctuations of circuit parameters caused by the random and systematic variations in key manufacturing steps become more significant in nano-scale technologies. The process variation of circuit performance is quickly becoming one of the main concerns in high performance analog design. In this thesis, we show design and analysis of a VCO and frequency divider operating beyond 70GHz in a 65nm SOI CMOS technology. The VCO and frequency divider employ design techniques enlarging frequency operating ranges to improve the robustness of circuit operation. Circuit performance is measured from a number of die samples to identify the statistical properties of performance variation. A back-propagation of variation (BPV) scheme based on sensitivity analysis of circuit performance is proposed to extract critical circuit parameter variation using statistical measurement results of the frequency divider. We analyze functional failure caused by performance variability, and propose dynamic and static optimization methods to improve parametric yield. An external bias control is utilized to dynamically tune the divider operating range and to compensate for performance variation. A novel time delay model of a differential CML buffer is proposed to functionally approximate the maximum operating frequency of the frequency divider, which dramatically reduces computational cost of parametric yield estimation. The functional approximation enables the optimization of the VCO and frequency divider parametric yield with a reasonable amount of simulation time.by Daihyun Lim.Ph.D

    Design of a Configurable 4-Channel Analog Front-End for EEG Signal Acquisition on 180nm CMOS Process

    Get PDF
    In this work, a 4-channel Analog Front-End (AFE) circuit has been proposed for EEG signal recording. For EEG recording systems, the AFE may handle a wide range of sensor inputs with high input impedance, adjustable gain, low noise, and wide bandwidth. The buffer or current-to-voltage converter block (BCV), which can be set to operate as a buffer or a current-to-voltage converter circuit, is positioned between the electrode and the main amplifier stages of the AFE to achieve high input impedance and work with sensor signal types. A chopper capacitively-coupled instrumentation amplifier (CCIA) is positioned after the BCV as the main amplifier stage of the AFE to reduce input-referred noise and balance the impedance of the overall AFE system. A programmable gain amplifier (PGA) is the third stage of the AFE that allows the overall gain of the AFE to be adjusted. The suggested AFE operates in a wide frequency range of 0.5 Hz to 2 kHz with a high input impedance bigger than 2TΩ, and it is constructed and simulated using a 180nm CMOS process. With the lowest 100-dB CMRR and low input-referred noise of 1.8 µVrms, the AFE can achieve low noise efficiency. EEG signals can be acquired with this AFE system, which is very useful for detecting epilepsy and seizures

    Optimizing the integration and energy efficiency of through silicon via-based 3D interconnects

    Get PDF
    The aggressive scaling of CMOS process technology has been driving the rapid growth of the semiconductor industry for more than three decades. In recent years, the performance gains enabled by CMOS scaling have been increasingly challenged by highlyparasitic on-chip interconnects as wire parasitics do not scale at the same pace. Emerging 3D integration technologies based on vertical through-silicon vias (TSVs) promise a solution to the interconnect performance bottleneck, along with reduced fabrication cost and heterogeneous integration. As TSVs are a relatively recent interconnect technology, innovative test structures are required to evaluate and optimise the process, as well as extract parameters for the generation of design rules and models. From the circuit designer’s perspective, critical TSV characteristics are its parasitic capacitance, and thermomechanical stress distribution. This work proposes new test structures for extracting these characteristics. The structures were fabricated on a 65nm 3D process and used for the evaluation of that technology. Furthermore, as TSVs are implemented in large, densely interconnected 3D-system-on-chips (SoCs), the TSV parasitic capacitance may become an important source of energy dissipation. Typical low-power techniques based on voltage scaling can be used, though this represents a technical challenge in modern technology nodes. In this work, a novel TSV interconnection scheme is proposed based on reversible computing, which shows frequencydependent energy dissipation. The scheme is analysed using theoretical modelling, while a demonstrator IC was designed based on the developed theory and fabricated on a 130nm 3D process.EThOS - Electronic Theses Online ServiceEngineering and Physical Science Research Council (EPSRC)GBUnited Kingdo

    Circuit solutions to compensate for device degradation in analog design in scaled technologies

    Get PDF
    The continued aggressive scaling of semiconductor devices has had detrimental effects on the performance of those devices as used in analog circuitry. Specifically, the maximum intrinsic gain (MIG) of the devices continues to degrade as the device channel lengths are reduced below 100 nm and beyond. MIG is shown to degrade from 21.6 dB in a 180 nm technology to 12.2 dB in a 65 nm technology despite the application of traditional design techniques including device size scaling and bias voltage increases. This reduction in MIG along with other process scaling effects significantly complicates the design of linear amplifiers in these technologies. This work proposes the use of positive feedback to compensate for MIG degradation in linear amplifier design in scaled technologies. Criteria for stable and process tolerant design are derived and examined in the context of amplifier models of varying degrees of complexity. This analysis defines an all-encompassing positive feedback design methodology for use in linear amplifier design of low-gain high-frequency amplifier design. Additionally, the effects of positive feedback are compared and contrasted to the effects of the commonly studied negative feedback design methodology. Finally, the methodology is applied to a differential amplifier stage in TSMC\u27s 65 nm process using standard threshold voltage, thin oxide CMOS devices. These amplifiers were fabricated and tested to validate the positive feedback design methodology. Simulation shows that 98.4% of positive feedback amplifiers have improved gain over the baseline differential amplifier with an average improvement in gain of 10.3 dB. Silicon measurements of the amplifier gain show improvements of 17.1 dB on average. Similar to the application of negative feedback, gain improvement is achieved at the cost of frequency response. The gain-bandwidth product of the amplifier is reduced by an average of 18.4 GHz from 44.6 GHz. The circuitry required to implement this technique represent a meager 6% increase in silicon area from 460 μm2 to 488 μm2
    • …
    corecore