11 research outputs found

    Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

    Get PDF
    In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm

    Ensemble-Empirical-Mode-Decomposition based micro-Doppler signal separation and classification

    Get PDF
    The target echo signals obtained by Synthetic Aperture Radar (SAR) and Ground Moving Target Indicator (GMTI platforms are mainly composed of two parts, the micro-Doppler signal and the target body part signal. The wheeled vehicle and the track vehicle are classified according to the different character of their micro-Doppler signal. In order to overcome the mode mixing problem in Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) is employed to decompose the original signal into a number of Intrinsic Mode Functions (IMF). The correlation analysis is then carried out to select IMFs which have a relatively high correlation with the micro-Doppler signal. Thereafter, four discriminative features are extracted and Support Vector Machine (SVM) classifier is applied for classification. The experimental results show that the features extracted after EEMD decomposition are effective, with up 90% success rate for classification using one feature. In addition, these four features are complementary in different target velocity and azimuth angles

    Ensemble-Empirical-Mode-Decomposition based micro-Doppler signal separation and classification

    Get PDF
    The target echo signals obtained by Synthetic Aperture Radar (SAR) and Ground Moving Target Indicator (GMTI platforms are mainly composed of two parts, the micro-Doppler signal and the target body part signal. The wheeled vehicle and the track vehicle are classified according to the different character of their micro-Doppler signal. In order to overcome the mode mixing problem in Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) is employed to decompose the original signal into a number of Intrinsic Mode Functions (IMF). The correlation analysis is then carried out to select IMFs which have a relatively high correlation with the micro-Doppler signal. Thereafter, four discriminative features are extracted and Support Vector Machine (SVM) classifier is applied for classification. The experimental results show that the features extracted after EEMD decomposition are effective, with up 90% success rate for classification using one feature. In addition, these four features are complementary in different target velocity and azimuth angles

    Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

    Get PDF
    In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm

    Research on singular spectrum decomposition and its application to rotor failure detection

    Get PDF
    As an important part of rotating machinery, a healthy rotor is critical to ensuring optimal working conditions of the entire system. Considering that the vibration signal of rotor consists of different frequency components when the failure arises, a novel rotor failure detection method based on singular spectrum decomposition (SSD) is presented. The original vibration signal is adaptively decomposed into a number of singular spectrum components (SSCs) by the SSD method. Then, energy separation algorithm (ESA) is adopted to demodulate each singular spectrum component. Finally, the SSD-ESA time-frequency spectrum can be obtained and the fault features contained in the SSD-ESA time-frequency spectrum can be identified to determine the fault types. The effectiveness of SSD for harmonic separation was assessed through tones separation analyses, the results show that SSD is able to separate more harmonic pairs of different amplitude ratios than empirical mode decomposition (EMD). Furthermore, three simulations of multi-component signals were designed to investigate the use of SSD for signal decomposition. The SSD method was then applied to detect signatures caused by rotor oil film whirl in experimental signals and compared to both EMD and ensemble EMD (EEMD). The simulated analysis results reflect that SSD shows superiority to EMD and EEMD in inhibiting mode mixing and extracting the time-varying frequency components. The experimental analysis results demonstrate that the SSD based rotor failure detection method is an alternative method under both constant and variable speed conditions

    Crude oil price forecasting by CEEMDAN based hybrid model of ARIMA and Kalman filter

    Get PDF
    This paper used complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) based hybrid model for the forecasting of world crude oil prices. For this purpose, the crude oil prices original time series are decomposed into sub small finite series called intrinsic mode functions (IMFs). Then ARIMA model was applied to each extracted IMF to estimate the parameters. Next, using these estimated parameters of each ARIMA model, the Kalman Filter was run for each IMF, so that these extracted IMFs can be predicted more accurately. Finally, all IMFs are combined to get the result. For testing and verification of the proposed method, two crude oil prices were used as a sample i.e. Brent and WTI (West Texas Intermediate) crude oil monthly prices series. The D-statistic values of the proposed model were 93.33% for Brent and 89.29% for WTI which reveals the importance of the CEEMDAN based hybrid model

    Crude oil price forecasting based on the reconstruction of imfs of decomposition ensemble model with arima and ffnn models

    Get PDF
    The development of economic and industry depend upon how well the accuracy of crude oil price forecasting is managed. The study aims to reduce computation complexity and enhance forecasting accuracy of decomposition ensemble model. The propose model comprises four steps which are (i) decomposing the complex data into several IMFs using ensemble empirical mode decomposition (EEMD) method, (ii) reconstructing the decomposed IMFs through autocorrelation into stochastic and deterministic components, (iii) forecasting every reconstructed component, and (iv) ensemble all forecasted components for the final output. IMFs in the stochastic component are analysed separately. The findings confirm that the stochastic component contributed more variation as compared to deterministic component. For verification and illustration, Brent, West Texas Intermediate (WTI) daily, weekly, monthly and yearly, and Pakistan monthly spot crude oil prices were used as sample study. The empirical results indicated that the proposed model statistically outperformed all the considered benchmark models including the most popular auto-regressive integrated moving average (ARIMA) model, feed forward neural network (FFNN) model, decomposition ensemble model (EEMD-ARIMA and EEMD-FFNN), reconstruction decomposition ensemble model with stochastic and deterministic components (EEMD-(S+D)-ARIMA and EEMD- (S+D)-FFNN) and Rios and De Mello (RD) reconstruction decomposition ensemble model with stochastic and deterministic components (EEMD-RD-ARIMA and EEMD-RD-FFNN). To determine the performance, two descriptive statistical measures were applied, including the root mean square error (RMSE) and mean absolute percentage error (MAPE). The MAPE of the proposed EEMD-individual stochastic and deterministic (ISD)-FFNN model for daily and weekly data of Brent and WTI are <1%, however, for monthly Brent, WTI and Pakistan data are <5% shows a good fit produce by EEMD-ISD-FFNN. The MAPE of the model EEMDISD- FFNN for yearly Brent data is <30% indicate a reasonable fit and for WTI <20% implies a good fit. Whereas the MAPE of the EEMD-(S+D)-FFNN model for Brent yearly data <20% display a good fit and for WTI data <10% indicate excellent fit. In nutshell, the recommended model for yearly data is EEMD-(S+D)-FFNN. In conclusion, the proposed method of reconstruction of IMFs based on autocorrelation enhanced the forecasting accuracy of the EEMD model

    Localization of Active Brain Sources From EEG Signals Using Empirical Mode Decomposition: A Comparative Study

    Get PDF
    The localization of active brain sources from Electroencephalogram (EEG) is a useful method in clinical applications, such as the study of localized epilepsy, evoked-related-potentials, and attention deficit/hyperactivity disorder. The distributed-source model is a common method to estimate neural activity in the brain. The location and amplitude of each active source are estimated by solving the inverse problem by regularization or using Bayesian methods with spatio-temporal constraints. Frequency and spatio-temporal constraints improve the quality of the reconstructed neural activity. However, separation into frequency bands is beneficial when the relevant information is in specific sub-bands. We improved frequency-band identification and preserved good temporal resolution using EEG pre-processing techniques with good frequency band separation and temporal resolution properties. The identified frequency bands were included as constraints in the solution of the inverse problem by decomposing the EEG signals into frequency bands through various methods that offer good frequency and temporal resolution, such as empirical mode decomposition (EMD) and wavelet transform (WT). We present a comparative analysis of the accuracy of brain-source reconstruction using these techniques. The accuracy of the spatial reconstruction was assessed using the Wasserstein metric for real and simulated signals. We approached the mode-mixing problem, inherent to EMD, by exploring three variants of EMD: masking EMD, Ensemble-EMD (EEMD), and multivariate EMD (MEMD). The results of the spatio-temporal brain source reconstruction using these techniques show that masking EMD and MEMD can largely mitigate the mode-mixing problem and achieve a good spatio-temporal reconstruction of the active sources. Masking EMD and EEMD achieved better reconstruction than standard EMD, Multiple Sparse Priors, or wavelet packet decomposition when EMD was used as a pre-processing tool for the spatial reconstruction (averaged over time) of the brain sources. The spatial resolution obtained using all three EMD variants was substantially better than the use of EMD alone, as the mode-mixing problem was mitigated, particularly with masking EMD and EEMD. These findings encourage further exploration into the use of EMD-based pre-processing, the mode-mixing problem, and its impact on the accuracy of brain source activity reconstruction

    Empirical mode decomposition with least square support vector machine model for river flow forecasting

    Get PDF
    Accurate information on future river flow is a fundamental key for water resources planning, and management. Traditionally, single models have been introduced to predict the future value of river flow. However, single models may not be suitable to capture the nonlinear and non-stationary nature of the data. In this study, a three-step-prediction method based on Empirical Mode Decomposition (EMD), Kernel Principal Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) model, referred to as EMD-KPCA-LSSVM is introduced. EMD is used to decompose the river flow data into several Intrinsic Mode Functions (IMFs) and residue. Then, KPCA is used to reduce the dimensionality of the dataset, which are then input into LSSVM for forecasting purposes. This study also presents comparison between the proposed model of EMD-KPCA-LSSVM with EMD-PCA-LSSVM, EMD-LSSVM, Benchmark EMD-LSSVM model proposed by previous researchers and few other benchmark models such as Single LSSVM and Support Vector Machine (SVM) model, EMD-SVM, PCA-LSSVM, and PCA-SVM. These models are ranked based on five statistical measures namely Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Correlation Coefficient ( r ), Correlation of Efficiency (CE) and Mean Absolute Percentage Error (MAPE). Then, the best ranked model is measured using Mean of Forecasting Error (MFE) to determine its under and over-predicted forecast rate. The results show that EMD-KPCA-LSSVM ranked first based on five measures for Muda, Selangor and Tualang Rivers. This model also indicates a small percentage of under-predicted values compared to the observed river flow values of 1.36%, 0.66%, 4.8% and 2.32% for Muda, Bernam, Selangor and Tualang Rivers, respectively. The study concludes by recommending the application of an EMD-based combined model particularly with kernel-based dimension reduction approach for river flow forecasting due to better prediction results and stability than those achieved from single models
    corecore