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Abstract 
 

This paper used complete ensemble empirical mode decomposition with adaptive 

noise (CEEMDAN) based hybrid model for the forecasting of world crude oil prices. 

For this purpose, the crude oil prices original time series are decomposed into sub 

small finite series called intrinsic mode functions (IMFs). Then ARIMA model was 

applied to each extracted IMF to estimate the parameters. Next, using these 

estimated parameters of each ARIMA model, the Kalman Filter was run for each IMF, 

so that these extracted IMFs can be predicted more accurately. Finally, all IMFs are 

combined to get the result. For testing and verification of the proposed method, two 

crude oil prices were used as a sample i.e. Brent and WTI (West Texas Intermediate) 

crude oil monthly prices series. The D-statistic values of the proposed model were 

93.33% for Brent and 89.29% for WTI which reveals the importance of the CEEMDAN 

based hybrid model. 

 

Keywords: ARIMA, CEEMDAN, Crude Oil, EMD, Kalman Filter 

 

Abstrak 
 

Kajian ini merupakan kombinasi penuh penguraian mod emperik dengan 

penyesuaian bunyi atau ensemble empirical mode decomposition with adaptive 

noise (CEEMDAN) berdasarkan kepada kombinasi model ramalan harga minyak 

mentah dunia. Untuk itu, siri harga minyak mentah asal di bahagikan kepada 

subkecil terhingga yang diberi nama intrinsic mode functions (IMFs). Kemudian, 

model ARIMA digunakan oleh setiap IMF untuk penganggaran parameter. Dengan 

nilai penganggaran parameter model ARIMA, Kalman Filter digunakan oleh setiap 

IMFs bagi mendapatkan jangkaan bacaan yang tepat. Untuk pengujan dan 

pengesahan, dua harga minyak mentah digunakan. Contohnya dengan peranan 

siri harga minyak mentah dari Brent dan WTI (West Texas Intermediate). Nilai D-

statistic yag dicadangkan pada model Brent adalah 93.33% dan untuk WTI adalah 

89.29% dimana ianya menunjukkan kepentigan CEEMDAN berasaskan model hibrid.  

 

Kata kunci: ARIMA, CEEMDAN, EMD, Kalman Filter, Minyak Mentah 
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1.0  INTRODUCTION 
 

Crude oil is a very important commodity in the world 

because of his unique nature, it affects every 

individual’s life in many ways. Everybody knows that oil 

is a non-transferable commodity but its use increases 

day by day irrespective of the fact that it is a non-

renewable commodity. As compared to other 

commodities oil needs more attention due to his high 

demand in every field. Due to the changing aspects 

of oil prices, it is a challenge for econometrician, 

mathematician, and statistician to design a better 

strategy for the industrialists who consume or supply oil 

can take up-to-date and more accurate decisions. 

Up to date decisions is not only important for 

industrialists but also more important for investors, 

suppliers and government agencies for planning their 

activities within the available resources. Crude oil is 

treated as a special commodity among different 

world players such as oil companies, oil producing 

nations, oil importing nations, speculators and 

individual refineries. The crude oil price fluctuations 

involve so many factors like supply, inventory, 

consumption and demand but irrespective of these 

factors the oil price also is influenced by irregulars and 

unpredictable elements which are random in nature. 

These characteristics of the crude oil price make a 

large fluctuation in the market Watkins and Plourde[1]. 

Due to the irregular and stochastic nature of oil prices, 

it is ‘a very complex and challenging task for 

researchers to develop appropriate models for 

forecasting the crude oil prices. The complex and 

compound nature of crude oil price makes this area 

widely opened for researchers to develop many 

different procedures for forecasting the crude oil 

prices in a good manner. As far as the world economy 

is concerned crude oil plays an increasingly very 

important role in the world energy demands which is 

met by two third from the crude oil Alvarez-Ramirez et 

al. [2]. Verleger [3] said that crude oil is the most active 

world largest traded commodity which is accounted 

for more than ten percent of the world total trade. Like 

other commodities, the price of crude oil is also 

measured from the demand and supply Hagen[4] 

and Stevens[5]. Additionally, the whole aggregate 

economic activity can be disturbed by a sharp 

movement of crude oil price which can fluctuate the 

nation’s economy significantly; further, the impacts 

can be reflected in two ways on nation’s economy. 

Firstly, the oil importing countries economic growth is 

harmfully influenced and increase inflation by a sharp 

increase in crude oil prices. Secondly, the oil exporting 

countries face a serious budgetary shortfall problems 

by a small fall in crude oil prices Abosedra and 

Baghestani[6]. The topic of forecasting crude oil price 

is very important although it is tremendously hard one, 

due to its high volatility and inherent difficulties 

Wang[7].    

In the last two decades, typical statistical tools and 

econometric methods were used for the forecasting 

of crude oil prices, such as GARCH models, ARIMA 

models, linear regression, naïve random walk, ECM 

(error correction model) and VAR (vector 

autoregressive) models. For example, a refine 

econometric model was used by Huntington[8] to 

predict the oil prices in  1980’s. A probabilistic 

approach was used by Abramson and Finizza[9] for 

forecasting the crude oil prices. Barone-Adesi et al. 

[10] proposed a semi-parametric approach for 

prediction of crude oil prices while Morana [11] also 

proposed a semi-parametric statistical technique for 

forecasting the crude oil price for a short term using 

the GARCH properties. For prediction of WTI prices, the 

co-integration procedure was used by Gülen[12].  To 

predict the U.S. oil price VAR model was used by 

Mirmirani and Li[13] while an investigation of crude oil 

and their products prices ECM model was used by 

Lanza et al. [14]. Using inventory levels of OECD 

petroleum, comparative inventories, and low and 

high inventories variables for the WTI prices the simple 

econometric models was used by Ye et al. [15, 16, 17]. 

Dées et al. [18] also, used cause and effect model for 

the forecasting of crude oil prices. Other researchers 

such as Liu[19], Chinn et al. [20], Agnolucci[21] and 

Ahmad[22] used a well-known Box-Jenkin’s 

methodology for forecasting the crude oil prices. 

Furthermore, some studied have been found which 

used the GARCH type of models for forecasting the 

Crude oil prices namely Sadorsky[23], Hou and 

Suardi[24], Ahmed and Shabri[25]. Aamir and Shabri 

[26] used the hybrid model of ARIMA GARCH for 

Pakistan crude oil prices. For best predictions, different 

approaches are used and when there are competing 

models the model is selected on the basis of past 

accuracy, but the problem is still there when the 

differences are significant. Diebold and Mariano [27] 

discussed that decisions are more critical in the 

situations, on determining the model selection for 

which predictions they take their decisions.     

The other approach used for univariate methods is 

called state space modelling which is also called 

dynamic linear modelling. The use of these models 

makes possible help in common mathematical 

problems in the stage of model development 

Hyndman et al. [28]. A lot of statistical tools can be 

accessed by putting the model in state space form, is 

one of the main advantages of this approach. The 

Kalman Filter technique can be used for obtaining the 

optimal forecast and unobserved components best 

estimates are achieved by the Kalman Filter 

smoothing Harvey[29]. Kalman [30] introduced the 

Kalman Filter for the first time and due to this 

technique, the modern work of state space modelling 

was started and at its earlier stages, it was proved that 

this approach is quite helpful in the field of space 

technology and engineering. It was stated that there 

is no general method available for implementation of 

Kalman Filter in the field of statistical forecasting 

Morrison and Pike[31]. However, the researchers 

started their work for implementation of Kalman Filter 

technique in statistics. The importance of Kalman Filter 

in the field of econometrics and statistics, for example, 

time series forecasting was discussed by 
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Rosenberg[32], Engle[33], Harvey and Phillips[34]. 

Ravichandran and Prajneshu [35] emphasized the 

importance of this procedure. Nikolaisen Sävås [36] 

stated that the Kalman Filter technique produced the 

best forecast for four different countries inflation data 

as compared to the SARIMA models. Recently, Aamir 

and Shabri[37]found that the hybrid model of ARIMA 

Kalman Filter produced better forecast than the 

hybrid model of ARIMA GARCH and single ARIMA 

model for Pakistan crude oil prices.      

Whenever an ARIMA model is used for a financial 

time series, one can remember that these series are 

non-linear and non-stationary in nature and the 

ignorance of these properties will produce worse 

predictions. The divide and conquer principle Yu et al. 

[38] for reconstructing of financial time series are very 

important for forecast models.  To solve these 

limitations of financial time series the concept of 

hybrid models was introduced and widely used these 

days. Empirical Mode Decomposition (EMD) is one of 

the procedures which divide the financial time series 

into sub-simple series for which the forecasting will be 

quite simple. EMD decomposed the non-stationarity 

and non-linearity behaviour of the financial time series 

into independent sub time series Tang et al. [39]. The 

EMD can also expose the trend and the hidden 

patterns of the time series which can be easily 

handled for forecasting models in different time series 

applications An et al. [40] and Guo et al. [41]. For 

example, Yu and Wang [38] proposed a hybrid model 

of EMD-FNN-ALNN for forecasting of Brent and WTI 

crude oil prices, whereas Guo and Zhao[41] used a 

hybrid model of EMD-FFNN for forecasting the wind 

speed time series. Despite these facts, EMD has still a 

limitation of “mode mixing problem” and it arises when 

clear spectral separation of modes is not achieved 

Huang and Wu[42] and Schlotthauer et al. [43]. In 

order to avoid this difficulty, Wu and Huang [44] 

propose a new technique called EEMD (ensemble 

empirical mode decomposition), its usefulness has 

proven for some geophysical data sets, for example, 

Wu et al. [45]. But EEMD has still some problems of 

mode mixing and residual noise in some real data sets. 

These drawbacks encouraged Torres et al. [46] to 

suggest an alternative method of EEMD which is 

called CEEMDAN ( complete ensemble empirical 

mode decomposition with adaptive noise), which 

produces a more clear spectral separation of modes 

and exact reconstruction of the actual signal. Due to 

these extra strengths, CEEMDAN became a useful tool 

for extracting some meaningful information from 

financial time series, in situations when the aforesaid 

complications are faced. Taking the above notes 

regarding the CEEMDAN Antico et al. [47] suggested 

that it performed well as compared to EMD and EEMD 

and extract more clear modes. CEEMDAN technique 

has not been used till now for such type of data set up 

to the best of our knowledge. This paper focused on 

forecasting the two well-known crude oil prices time 

series. In this paper, new technique CEEMDAN is used 

for the decomposition of non-stationary data into 

some meaningful modes and trends.   

2.0  METHODOLOGY 
 

In this section, the whole methodologies regarding all 

models are presented. First, the ARIMA technique was 

reviewed briefly. The second is state space models 

which are used by Kalman Filter technique. The third is 

the EMD mode decomposition technique and the last 

is CEEMDAN mode decomposition procedure. After 

these techniques, the next is evaluation criteria’s 

namely MAE, RMSE, MAPE and Dstatistic be presented 

briefly.       

 

2.1  ARIMA  

 

The models which require that the time series should 

be stationary is the ARIMA models. Stationarity implies 

that the mean, variance and auto-correlation 

structure of the time series remains constant over the 

time because the data is smooth and having no 

seasonality and trend factors. The successive 

differences have been taken whenever the given 

time series is not stationary. ARIMA models are 

preferably used for the time series measurement, 

which has some serial dependence. The 

Interdependencies in time series (x) is measured by the 

auto-regressive (AR) terms while the dependence on 

preceding error terms measured by moving average 

(MA) terms Montgomery et al. [48]. An ARMA (Auto-

regressive Moving Average) ARIMA model of order (k, 

m) for a univariate series has the following form:    

     
 𝑥𝑡 = 𝑥0 + 𝛼1𝑥𝑡−1 + ⋯+ 𝛼𝑘𝑥𝑡−𝑘 + 𝜖𝑡 + 𝛽1𝜖𝑡−1 + ⋯+ 𝛽𝑟𝜖𝑡−𝑚                

 

For selection of the appropriate order of polynomials, 

the sample auto-correlation and partial-

autocorrelation functions were used and compared 

with hypothetical bounds of Box et al. [49].   

 

2.2  Kalman Filter    

  

Before introducing the Kalman Filter technique, some 

introduction of the state space modelling is necessary 

because it uses the state space model terminology. 

The state space model works in two steps. Firstly, a 

state vector is created for capturing the substantial 

components of the series and added till the end. The 

state vector which is also called the smallest vector of 

the system plays a very important role in the state 

space modelling which summarizes the historical 

behaviour of overall system Brocklebank and 

Dickey[50]. The two linear equations explain the 

smoothing of the series in state space modelling. The 

first equation called observation equation comprised 

of the present observation and unobserved state and 

the second equation which is called state equation 

determines the progress over time in states and 

update the state vector continuously. Basically, the 

state equation is a vector containing the unobserved 

factors of the series, such as seasonality and trend. The 

state space models are presented in the following 

form:    
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𝑥𝑡 = 𝑇′𝛾𝑡 + 𝜀𝑡 
𝛾𝑡 = 𝐻′𝛾𝑡−1 + 𝐹𝜔𝑡 

 

Where 𝑥𝑡 is the observed vector of variables, 𝛾𝑡 is the 

vector of unobserved variables, F, H and T are 

parametric matrices, 𝜀𝑡 and 𝜔𝑡 are the white noise 

terms with variance-covariance matrices Q and R 

respectively Hamilton[51].  

Kalman Filter is the best linear estimator and infers 

the parameters from inaccurate and uncertain 

observation. The Kalman Filter updates the system 

after receiving each new observation and this feature 

differentiates the Kalman Filter from other techniques. 

Hence due to updating after each observation the 

mean square error of the state vector minimizes. The 

best estimates are found for the state vector by 

filtering the noise term and update the state vector. 

Once the state vector is updated it revises gradually 

the mean moments of the state vector distribution as 

well as predicts the unobserved time series values. The 

Kalman Filter is a procedure for elucidating the linear 

state space models. Thus, the updating and 

predicting the system of equations is called Kalman 

Filter. Kalman Filter retains the state vector estimates 

and covariance matrix of the state errors Harvey[29]. 

The innovative portion of the time series 𝑥𝑡, which is not 

described from the past behaviour of the series called 

innovations and equivalent to the residuals of Kalman 

Filter. The Kalman filter predicts recursively the states 

estimates of the series 𝑥𝑡 based on past information 

with the variance of the prediction error. 𝜀𝑡 is the 

novelty at time 𝑡, which is the new information in series 

𝑥𝑡 and supposed to be not predicted from the 

previous information are referred to the one-step 

ahead forecasting error Saini and Mittal[52]. The 

simple Kalman Filter recursions are described in three 

steps below:  

(a) Step 1. At time 𝑡 = 0, guess the starting values for   

state vector 𝛾0/0 and for variance 𝑃0/0.  

(b) Step 2. Prediction. Use the estimated value of 𝛾1/0 

at 𝑡 = 1 make a best estimate for 𝑥1/0. 

(c) Step 3. Updating. At time 𝑡 = 1 compute the 

prediction error by using estimated value of 𝑥.  

The prediction error (𝑤1/0 = 𝑥1 − 𝑥1/0) retains the new 

information that will be used to refine the guess about 

the state estimator 𝛾. The estimated value of the state 

is 𝛾1/1 = 𝛾1/0 + 𝐾𝑡𝑤1/0 , where 𝐾𝑡 is Kalman gain (this is 

the weight allocate to new information) and 𝛾1/1 is 

condition on time 𝑡 = 1. The Kalman Filter overall 

systems are as follows:  

 

At time 𝑡 = 0 starting 

values 

𝛾0/0, 𝑃0/0 

At time 𝑡 = 1, State 

vector prediction 

𝛾𝑡/𝑡−1 = 𝐻𝛾𝑡−1/𝑡−1 , 

𝑃𝑡/𝑡−1 = 𝐻𝑃𝑡−1/𝑡−1𝐻
′ + 𝑄 

Prediction error 

computation 

𝑤𝑡/𝑡−1 = 𝑥𝑡 − 𝑥𝑡/𝑡−1

= 𝑥𝑡

− 𝐹𝑡𝛾𝑡/𝑡−1 

𝑓𝑡/𝑡−1 = 𝐹𝑡𝑃𝑡/𝑡−1𝐹
′ + 𝑍 

Updating States 𝐾𝑡 = 𝑃𝑡/𝑡−1𝐹
′𝑓𝑡/𝑡−1

−1  

𝛾𝑡/𝑡 = 𝛾𝑡/𝑡−1 + 𝐾𝑡𝑤𝑡/𝑡−1 

𝑃𝑡/𝑡 = 𝑃𝑡/𝑡−1 − 𝐾𝑡𝐹𝑡𝑃𝑡/𝑡−1 

 

2.3  EMD  

 

The EMD is a nonlinear signal transformation 

procedure introduced by Huang et al. [53]. This 

method is used to molder a non-stationary and 

nonlinear time series data into IMFs (intrinsic mode 

functions) with single intrinsic time measure properties. 

Huang and Shen [53] said that the two conditions must 

satisfy by each IMF. The first condition is that the 

number of extreme and zero crossings values must be 

equal or not differ by at most one value, and the 

second condition is that the average value of the 

envelop is zero at any point assembled by local 

minima and maxima. The decomposition procedure 

of a time series data are as follows:  

(a) Detect all local minima and maxima of the series 
𝑥𝑡. 

(b) Compute the lower envelope 𝑥𝑡(𝑙) and upper 

envelop 𝑥𝑡(𝑢) for the series 𝑥𝑡. 
(c) Use the lower and upper envelop to obtain the 

first mean time series 𝑚𝑡(1), i.e. 𝑚𝑡(1) =
(𝑥𝑡(𝑙) + 𝑥𝑡(𝑢) ) 2⁄ . 

(d) To get the first IMF 𝑖𝑚𝑓𝑡(1), find the difference 

between the series 𝑥𝑡 and the mean series 𝑚𝑡(1). 
i.e. 𝑖𝑚𝑓𝑡(1) = 𝑥𝑡 − 𝑚𝑡(1). Furthermore, the two 

conditions will be checked for 𝑖𝑚𝑓𝑡(1), if it does 

not satisfy both conditions, then from step (a) to 

(c) of decomposition process will be repeated to 

obtain first IMF. 

(e) Repeat the above steps to get all IMFs, until the 

final residue 𝑟𝑡, which is a monotonic function 

proposed for the discontinuing of the 

decomposition process Huang et al. [54].      

To get back the original time series 𝑥𝑡from the IMFs and 

residue simply add these components using this 

equation. 𝑥𝑡 = ∑ 𝑖𝑚𝑓𝑡(𝑖)
𝑛
𝑖 + 𝑟𝑡, where n is the total 

number of IMFs.              

2.4  CEEMDAN  

  

Before starting with the CEEMDAN methodology, a 

brief introduction of EEMD (Ensemble Empirical Mode 

Decomposition) method is necessary. The EEMD 

procedure is an improved form of EMD, the ultimate 

modes are demarcated as mean of the IMFs attained 

through EMD over an ensemble of trails 𝑦𝑗 (𝑗 =

1,2,… , 𝑛), obtained by summing different white-noise 

realizations 𝜖𝑗, to the original time series 𝑥𝑡. More 

specifically, Huang andShen[54] elaborate the EEMD 

procedure are as follows: 

(a) Generate 𝑦𝑗 = 𝑥𝑡 + 𝜃𝜖𝑗, where 𝜖𝑗(𝑗 = 1,2, … , 𝑛) has 

a white noise Gaussian process with zero mean 

and unit variance, and 𝜃 is added noise term.  

(b) Decompose every 𝑦𝑗 (𝑗 = 1,2,… , 𝑛) by using EMD 

technique into modes 𝐼𝑀𝐹𝑏
𝑗
, where 𝑏 = 1,2, … , 𝐵 

identifies the number of mode.  
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(c) Assign 𝐼𝑀𝐹⃑⃑⃑⃑ ⃑⃑ ⃑⃑ 
𝑏 as 𝑏𝑡ℎ mode of 𝑥𝑡 and accomplish 

the mean of corresponding IMFs. i.e. 𝐼𝑀𝐹⃑⃑⃑⃑ ⃑⃑ ⃑⃑ 
𝑏 =

1

𝑛
∑ 𝐼𝑀𝐹𝑏

𝑗𝑛
𝑗=1        

Also, noted that 𝐼𝑀𝐹⃑⃑⃑⃑ ⃑⃑ ⃑⃑ 
𝑏 are not required to satisfy the IMF 

properties. In EEMD each 𝑦𝑗 is independently 

decomposed for all realizations. Hence, for each 

realization different residues are computed 𝑟𝑒𝑑𝑏
𝑗
=

𝑟𝑒𝑑𝑏−1
𝑗

− 𝐼𝑀𝐹𝑏
𝑗
 (𝑟𝑒𝑑0

𝑗
= 𝑦𝑗).    

In CEEMDAN Torres andColominas[46] method, the 

ultimate 𝑏𝑡ℎ decomposition mode is represented 

as  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
�⃑�and to compute the complete 

decomposition, the first residue is calculated by the 

proposed method of Colominas et al. [55] and Antico 

and Schlotthauer[47]  are as follows: 𝑟𝑒𝑑1 = 𝑥𝑡 −  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
1 

where  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
1 calculated in the same way like in EEMD. 

The ensemble 𝑟𝑒𝑑1 plus different realizations modes 

are generated by the EMD method with the given 

noise for each first element. After averaging these first 

EMD modes to get the second  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
2 , the second 

residue is calculated as like the first that is: 𝑟𝑒𝑑2 = 𝑥𝑡 −

 𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
2 and this procedure continues until the stopping 

criterion is reached for the rest of modes.  To describe 

the whole CEEMDAN procedure, define an 

operator 𝐸𝑏(. ). The signal giving by 𝐸𝑏(. ) produces 𝑏𝑡ℎ 

mode obtained through EMD procedure. Let 𝜖𝑗  (𝑗 =

1,2,… , 𝑛) be a white noise realization with zero mean 

and unit variance of Gaussian process. If the targeted 

data is 𝑥𝑡, the procedure describe by Colominas 

andSchlotthauer[55] are as follows:    

(a) By EMD method decompose 𝑛 realizations 𝑥𝑡 +
𝜃0𝜖𝑗 for the first mode to obtain and calculate 

 𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
1 =

1

𝑛
 ∑ 𝐼𝑀𝐹1

𝑗𝑛
𝑗=1 = 𝐼𝑀𝐹̿̿ ̿̿ ̿̿

1 

(b) Compute the first residue for 𝑏 = 1, using 𝑟𝑒𝑑1 =

𝑥𝑡 −  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
1 

(c) For the first each EMD mode the realizations 

𝑟𝑒𝑑1 + 𝜃1𝐸1(𝜖𝑗), 𝑗 = 1,2,… , 𝑛 are decomposed and 

the second mode has follow the given 

procedure: 𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑
2⃑ =

1

𝑛
∑ 𝐸1 (𝑟𝑒𝑑1 + 𝜃1𝐸1(𝜖𝑗))

𝑛
𝑗=1 . 

(d) For 𝑏 = 2,3,… , 𝐵 compute the 𝑏𝑡ℎ residue are as 

follows: 𝑟𝑒𝑑𝑏 = 𝑟𝑒𝑑𝑏−1 −  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
𝑏. 

(e) Continue the process to obtained the first EMD 

mode of the decompose realizations  𝑟𝑒𝑑𝑏 +

𝜃𝑏𝐸𝑏(𝜖𝑗), 𝑗 = 1,2,… , 𝑛, the next mode (𝑏 + 1) is 

defined as: 𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑
�⃑�+1 =

1

𝑛
∑ 𝐸1 (𝑟𝑒𝑑𝑏 + 𝜃𝑏𝐸𝑏(𝜖𝑗))

𝑛
𝑗=1 . 

(f) Continue from the step (𝑑) for the next 𝑏. 

Repeat step (d) to (f) until the last residue is computed 

which are no more decomposed. The last residue will 

satisfy;  𝑟𝑒𝑑 = 𝑥𝑡 − ∑  𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑
𝑏

𝐵
𝑏=1 , where B be the total 

number of modes, and the original signal from 

CEEMDAN decomposition can be obtained as: 𝑥𝑡 =

∑ 𝐼𝑀𝐹⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑
�⃑� + 𝑟𝑒𝑑𝐵

𝑏=1 .     

In CEEMDAN algorithm the added level of noise is 

represented by 𝜃𝑏, whereas different set of values of 

𝜃𝑏 can be used for every mode. But in the present 

study a fixed value of 𝜃𝑏 is used. Colominas and 

Schlotthauer [55] discussed that the number of 

realizations and the level of added noise can vary 

from application to application. In this study the noise 

level 0.21 is used for the Brent time series while 0.19 

used for WTI time series. The applications and 

implementations of CEEMDAN are available on the 

following link used in this study 

http://www.bioingenieria.edu.ar/grupos/ldnlys/.     

 

2.5  Evaluation Criteria’s   

 

To measure the forecasting accuracy, different 

evaluation criterions are used for the level of 

prediction and directional forecasting. For the level of 

prediction evaluation, three methods are used, the 

first one is mean absolute error (MAE), the second is 

the root mean square error (RMSE) and third is mean 

absolute percentage error (MAPE) typically these 

methods are defined as:  

𝑀𝐴𝐸 =
1

𝑛
∑ |�̂�𝑡 − 𝑥𝑡|

𝑛
𝑡=1  , 

 

𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (�̂�𝑡 − 𝑥𝑡)

2𝑛
𝑡=1     

 

and  𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥𝑡−𝑥𝑡

𝑥𝑡
| × 100𝑛

𝑡=1  

 Where �̂�𝑡 represents the forecasted value while 𝑥𝑡 

used for the original value and 𝑛 used for the total 

number of predictions. In this study for the percentage 

comparison of MAE, RMSE and MAPE the percentage 

relative efficiency (PRE) is also calculated for the 

different models as compared to the basic ARIMA 

model the formulas used for the PRE are as follows:  
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Figure 1 Complete Process of the EMD/ CEEMDAN, ARIMA 

and Kalman Filter Technique    

Data/Time Series 

(Input) 

 

Apply EMD/CEEMDAN 

techniques to Data for IMFs  

Apply ARIMA Model to each IMF 

and Residual  

 

Apply Kalman Filter to each IMF 

and Residual for starting values 

using ARIMA estimated 

parameters  

For prediction add all IMFs and 

Residual results  

(output)    
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 𝑃𝑅𝐸(𝑀𝐴𝐸) =
𝑀𝐴𝐸(𝐴𝑅𝐼𝑀𝐴 𝑚𝑜𝑑𝑒𝑙)

𝑀𝐴𝐸((𝜗)𝑚𝑜𝑑𝑒𝑙)
× 100     

 

  𝑃𝑅𝐸(𝑅𝑀𝑆𝐸) =
𝑅𝑀𝑆𝐸(𝐴𝑅𝐼𝑀𝐴 𝑚𝑜𝑑𝑒𝑙)

𝑅𝑀𝑆𝐸((𝜗)𝑚𝑜𝑑𝑒𝑙)
× 100  

𝑃𝑅𝐸(𝑀𝐴𝑃𝐸) =
𝑀𝐴𝑃𝐸(𝐴𝑅𝐼𝑀𝐴 𝑚𝑜𝑑𝑒𝑙)

𝑀𝐴𝑃𝐸((𝜗)𝑚𝑜𝑑𝑒𝑙)
× 100 

 

where 𝜗 = ARIMA Kalman Filter, EMD ARIMA, EMD 

ARIMA Kalman Filter, CEEMDAN ARIMA and CEEMDAN 

ARIMA Kalman Filter 

Obviously, predicting models accuracy is one of 

the best important measures, but the researcher still 

wants more improvement on the decisions for this 

purpose the directional predictions are used. For 

investors, the directional predictions are more 

important aiming to support more accurate decisions 

for the purpose of making more money. So, for the 

crude oil price predictions usually depends on the 

directions of the original price(𝑥𝑡) and the forecasted 

price(�̂�𝑡). For the directional purpose the 𝐷𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is 

used Yu and Wang[38], Yu et al. [56, 57], which can 

be defined as;       

𝐷𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
1

𝑛
∑𝜇𝑡

𝑛

𝑡=1

× 100 

 

Where 𝜇𝑡=1, 𝑖𝑓 (𝑥𝑡+1 − 𝑥𝑡)(�̂�𝑡+1 − 𝑥𝑡) ≥ 0 other wise 𝜇𝑡 =
0. Regarding the forecasting competence of the 

proposed CEEMDAN ARIMA Kalman Filter ensemble 

methodology with the other models, the ARIMA model 

is used as a bench mark model. The complete flow 

chart of the process to be used in this study is 

presented in Figure 1. In this section the methodology 

used for the new suggested median estimator and 

previous estimators suggested by various authors will 

be discuss in details.    

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Data information  

 

As we know that there are a lot of crude oil price 

series. In this study, the two-main benchmark crude oil 

price series are used as a sample. The first series is Brent 

crude oil prices and the second series is WTI (West 

Texas Intermediate) crude oil prices. The Brent and WTI 

crude oil prices are the most common and important 

benchmark prices and widely used as the basis of so 

many other crude oil prices formulas. The data used in 

this study is the monthly data sets for both crude oil 

prices, and easily obtainable from the DataStream 

(Thomson Reuters). 

For Brent crude oil price, we take the monthly data 

from January, 1982 to November, 2015 a total of 407 

observations. The data from January, 1982 to 

February, 2011 is used as a training dataset consisting 

of 350 observations and the rest 57 observations 

starting from March, 2011 is used as a testing data set. 

For WTI crude oil price, the data covers the period 

from January, 1982 to November, 2015 with a total of 

407 observations. Similarly, for WTI series the data from 

January, 1982 to Feb, 2011 is used as a training data 

set while the last 57 observations are used as a testing 

data set starting from March, 2011. Both the testing 

periods is used to evaluate the performance of the 

prediction, based on some evaluation criteria’s. In this 

study, only the one step ahead forecasting is carried 

out.   

  

3.2  Analysis  

 

In this study, R software is used for all the statistical 

computing which is freely available and supported by 

the R Foundation for Statistical Computing. For ARIMA 

model selection and forecasting the FitAR and 

forecast packages are used. For empirical mode 

decomposition and for complete ensemble empirical 

mode decomposition with adaptive noise the 

Rlibeemd R packages is used. While for Kalman Filter 

the dlm package of R is used proposed by Petris[58] 

for dynamic linear models. In this study, the ARIMA 

model is used as a benchmark for other models. For 

ARIMA modelling the well-known Box-Jenkins Box and 

Jenkins[49] methodology is used and for selecting the 

best model AIC criteria Akaike[59] is used. Thus, for 

Brent crude oil the best-selected model for training 

period is ARIMA (4, 1, 3) and for WTI the best ARIMA 

model of order (2, 1, 3) is chosen and their estimated 

coefficients are presented in Table 1.  

 

 

 

 

Table 1 The ARIMA model estimation results for the monthly 

prices of Brent series 

 

Coefficient  
Estimated 

Value 
Std.error 

t-

value 
P-value  

Brent ARIMA (4,1,3) 

AR (1) 0.3794 0.1753 2.16 0.0304 

AR (2) 0.9047 0.0848 10.7 0.0000 

AR (3) -0.3689 0.1553 -2.37 0.0175 

AR (4) -0.1973 0.0744 -2.65 0.0080 

MA (1) -0.1676 0.1761 -0.92 0.3553 

MA (2) -0.8671 0.0563 -15.4 0.0000 

MA (3) 0.2267 0.1665 1.36 0.1733 

WTI ARIMA (2,1,3) 

AR (1) 1.5292 0.0957 15.9 0.0000 

AR (2) -0.6512 0.0899 -7.2 0.0000 

MA (1) -1.5093 0.1008 -14.9 0.0000 

MA (2) 0.8122 0.1190 6.8 0.0000 

MA (3) 0.2312 0.0606 -3.8 0.0001 
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The ARIMA-Kalman Filter model used the estimated 

values of the ARIMA model presented in Table 1 as 

starting values of the Kalman Filter recursion. The EMD-

ARIMA model uses the ARIMA model to predict each 

IMF and residue extracted by EMD and after that 

simply combine all predicted IMFs and residue to get 

the result. In EMD-ARIMA-Kalman Filter model first 

ARIMA model apply to the extracted IMFs and residue 

and obtain the parameters estimate for each ARIMA 

model after that using the estimated value of ARIMA 

as starting values for the Kalman recursion and predict 

all IMFs including residual at the end simply combine 

the predicted values of all IMFs to get the result. In 

CEEMDAN-ARIMA model the same technique is used 

as discussed in the case of EMD, here the only 

difference is that IMFs and residue are extracted by 

the CEEMDAN technique. While in the case of 

CEEMDAN-ARIMA-Kalman Filter model, the only 

difference is the extraction of IMFs and residual as 

compared to EMD-ARIMA-Kalman Filter model here 

the IMFs are extracted by the CEEMDAN technique. 

Thus, ARIMA, EMD-ARIMA ensemble, EMD-ARIMA-

Kalman Filter ensemble, CEEMDAN-ARIMA ensemble 

and CEEMDAN-ARIMA-Kalman Filter ensemble models 

are all used for comparison to predict the crude oil 

prices for the two benchmark Brent and WTI 

respectively. 

In this study, the complete intrinsic mode functions 

are not used which is generated by EMD/CEEMDAN 

technique. The purpose of the limited use of extracted 

IMFs is to get the better prediction. The limited use of 

the IMFs was decided based on MAE and RMSE while 

applying ARIMA model. First, the EMD technique is 

used to decompose the two crude oil prices for the 

extraction of several independents IMFs. For WTI series 

the extracted total number of IMFs including residue 

was eight while for Brent series it was nine. Applying 

 

 
 

(a) IMFs for Brent Crude Oil  

 

  
 

(b)  IMFs for WTI Crude Oil  

 
Figure 2 The Price Decomposition using EMD Technique 
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ARIMA model to a different number of IMFs, the 

minimum MAE and RMSE was obtained by using five 

IMFs, where the last IMF called residue is the sum of last 

IMFs and residue. The graphical representation of IMFs 

by EMD method are shown in Figure 2. 

 

  
 

(a) IMFs for Brent Crude Oil 

 

 
 

(b) IMFs for WTI Crude Oil  

 

Figure 3 The Price Decomposition using CEEMDAN Technique 

 

Next, the CEEMDAN technique is used to 

decompose the two crude oil prices series into 

different independent IMFs and the same number of 

IMFs were extracted by this method as well. For Brent 

series, the adaptive noise strength was taken as 0.21 

while for WTI series it was equal to 0.19 with these two 

values the optimum mean absolute error, root mean 

square error and mean absolute percentage error 

were obtained for selected number of IMFs. Applying 

ARIMA model to different numbers of IMFs extracted 

by CEEMDAN, the minimum MAE and RMSE was 

obtained by using five IMFs, where the last IMF called 

residue is the sum of last IMFs and residue. The 

graphical representation of IMFs by CEEMDAN 

method are shown in Figure 3. It is to be noted that 

only the single ARIMA and ARIMA-Kalman Filter model 

use the original series for prediction purposes. The rest 

of the ensemble models are used the extracted 
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decomposed IMFs for the prediction purposes for both 

crude oil prices series. The ARIMA model estimated 

parameters results are shown in Table 1 for Brent and 

WTI crude oil price series respectively. For the 

remaining four models, different orders of 

autoregressive and moving averages terms were used 

by ARIMA models for different extracted IMFs in each 

case. After selection of best ARIMA model for each 

extracted IMFs, the respective parameters were 

estimated in all four models and rest of the analysis 

performed correspondingly as discussed earlier in this 

section.  At the end, all the IMFs and residuals results 

are simply added for obtaining the prediction results. 

Next, the evaluation of the prediction results of the two 

benchmark crude oil prices series are shown in Table 2 

and 4 via MAE, RMSE, MAPE, and D statistic. So, it is 

clear from Table 3 that the CEEMDAN-ARIMA-Kalman 

Filter model has very promising results as compared to 

the other designated models listed in this study. 

Hence, the prediction performance of the model 

CEEMDAN-ARIMA-Kalman Filter is much better than 

other models by the output of the three-evaluation 

criterion MAE, RMSE, and MAPE. Concentrating on the 

MAE, RMSE and MAPE indicators, the CEEMDAN-

ARIMA-Kalman Filter model executes the best 

performance for all oil data sets, followed by the 

CEEMDAN-ARIMA model, EMD-ARIMA model, EMD-

ARIMA-Kalman Filter, ARIMA-Kalman Filter and at the 

end the individual ARIMA model. Remarkably, it is 

interesting to note that the performance of the EMD-

ARIMA model is better than the EMD-ARIMA-Kalman 

Filter model for both crude oil prices series. From the 

above results, it is also noted that the decomposition 

results of the IMFs of two methods that are EMD and 

CEEMDAN are different. Especially in the case of the 

models CEEMDAN-ARIMA-Kalman Filter and EMD-

ARIMA-Kalman Filter, the Kalman Filter produces good 

forecasting results with less MAE, RMSE, and MAPE for 

the model CEEMDAN-ARIMA-Kalman Filter while for 

the model EMD-ARIMA-Kalman Filter the situation was 

different. From this study, we noted that the Kalman 

Filter is not producing good results with EMD while with 

CEEMDAN it produces good results. The possible 

reasons may be that the CEEMDAN decomposition 

influences the forecasting performance.  

 
Table 2 The MAE, RMSE and MAPE comparisons of the different selected methods 

 

Models  Brent      WTI    

 MAE RMSE MAPE Rank  MAE  RMSE  MAPE Rank 

CEEMDAN-ARIMA-Kalman Filter  1.95 2.68 2.62 1  1.27 1.59 1.59 1 

CEEMDAN-ARIMA 2.19 3.07 2.93 2  1.32 1.66 1.63 2 

EMD-ARIMA 3.62 4.43 4.47 3  2.94 3.54 3.85 3 

EMD-ARIMA-Kalman Filter 3.85 4.78 5.67 4  2.99 3.57 3.92 4 

ARIMA-Kalman Filter 5.65 7.19 6.57 5  5.35 6.49 6.45 5 

ARIMA 6.04 7.46 6.95 6  5.37 6.55 6.89 6 

 

 

This paper also examines the percentage relative 

efficiency (PRE) approach used to compare different 

models with the basic ARIMA model per the 

percentage improvement in each MAE, RMSE and 

MAPE criterion respectively. Table 3 presented the 

PRE-of all models, it is clear from the Table 3 that the 

forecasting power of the model CEEMDAN-ARIMA-

Kalman Filter is improved almost two hundred percent 

as compared to the single ARIMA model by the 

evaluation criterion MAE, RMSE, and MAPE for the 

Brent crude oil series. For WTI series the results for the 

model CEEMDAN-ARIMA-Kalman Filter are improved 

three hundred percent associated with the single 

ARIMA model per the forecasting power of the model. 

The rest of the models forecasting power percentages 

are shown in Table 3 for both Brent and WTI crude oil 

prices associated with the single ARIMA model. Figure 

4 also shows the percentage relative efficiency of all 

models with the three-evaluation criterion namely 

MAE, RMSE, and MAPE. 

 

 
Table 3 The percentage relative efficiency comparisons of the different selected methods 

Models  Brent      WTI    

 MAE RMSE MAPE Rank  MAE RMSE MAPE Rank 

CEEMDAN-ARIMA-Kalman Filter  308.9 296.8 284.8 1  422.8 411.9 432.9 1 

CEEMDAN-ARIMA 274.9 259.5 254.4 2  406.8 394.6 421.8 2 

EMD-ARIMA 166.8 180.0 167.2 3  182.6 185.0 178.8 3 

EMD-ARIMA-Kalman Filter 151.8 162.0 131.9 4  179.2 181.8 175.8 4 

ARIMA-Kalman Filter 103.3 102.8 113.9 5  100.4 100.9 106.8 5 

ARIMA 100.0 100.0 100.0 6  100.0 100.0 100.0 6 
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The next evaluation criterion is Dstatistic which evaluates 

the directional performance of the model. Since the 

MAE, RMSE, and MAPE do not ensure the high success 

rate of crude oil price movement direction which is 

more important for investors because the businessmen 

plan their activity per the market trend. So, therefore, 

the Dstatistic assessment is obligatory.  

Table 4 presented the percentage values of 

Dstatistic, from the Table 4 we observed that the model 

CEEMDAN-ARIMA-Kalman Filter perform well with high 

percentage among other models for both crude oil 

prices. Regarding the investor point of view, the Dstatistic 

is much important evaluation criterion than the MAE, 

RMSE, and MAPE for prediction purposes. According 

with Table 4 shows a significant difference among 

different models although the ranks remain same 

between all evaluation criterion in Table 4, the Brent 

crude oil Dstatistic values for single ARIMA model is 

44.44%, for the ARIMA-Kalman Filter model it is 75.00%, 

for the EMD-ARIMA model is 82.22%, for the EMD-

ARIMA-Kalman Filter model the value is 78.89%, for the 

CEEMDAN-ARIMA model the value is 87.78%, and for 

the last model which is CEEMDAN-ARIMA-Kalman 

Filter, the Dstatistic value is 93.33%. Except for the ARIMA 

model, the rest of the models are having higher 

percentages for Dstatistic. For WTI series the pattern is the 

same for Dstatistic with the lowest value for ARIMA 

model. The main reason is that the nonlinearity, high 

noise, and complex dynamics are the characteristics 

of crude oil  price series Yu andWang[38], while ARIMA 

is a class of linear models. The study presented in this 

paper is the comparison of the three different 

techniques the first one is the single ARIMA model, the 

second is the hybrid model of ARIMA and Kalman Filter 

while the third is the decomposition and ensemble 

strategy. From the outcomes of this paper, we 

observed that the decomposition of the series is a 

better strategy regarding the prediction of the series 

as compared to other single models.  

 
Table 4 The percentage Dstatistic comparisons of the 

different selected methods 

 

Models  Brent     WTI   

 Dstatistic Rank  Dstatistic Rank 

CEEMDAN-ARIMA-

Kalman Filter  
93.33  1  89.29  1 

CEEMDAN-ARIMA 87.78  2  85.71  2 

EMD-ARIMA-

Kalman Filter 
78.89  4  78.57  4 

EMD-ARIMA 82.22  3  82.14  3 

ARIMA-Kalman 

Filter 
75.00  5  65.45  5 

ARIMA 44.44  6  50.00  6 

 

 

In this paper, the hybrid model of ARIMA-Kalman 

Filter is used to predict the extracted IMFs from the 

original series. So, the performance of the model 

CEEMDAN-ARIMA-Kalman Filter is considerably better 

than other models considered in this study, namely 

they are single ARIMA model, ARIMA-Kalman Filter 

model, EMD-ARIMA model, EMD-ARIMA-Kalman Filter 

model and CEEMDAN-ARIMA model for the 

mentioned two crude oil prices with respect to 

forecasting power accuracy, as stately measured by 

MAE, RMSE, MAPE and the directional Dstatistic. 

 

Figure 4 Comparisons of PRE of Brent and WTI series
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4.0  CONCLUSION 
 

This paper proposed a CEEMDAN-ARIMA-Kalman Filter 

model for forecasting the world crude oil monthly 

prices. In terms of experimental results, the suggested 

model performed well by evaluating the three 

descriptive measures that are MAE, RMSE, MAPE and 

one directional measure that is Dstatistic criterion. On 

every case the MAE, RMSE, and MAPE are the lowest 

while the Dstatistic is the highest, demonstrating that the 

CEEMDAN-ARIMA-Kalman Filter technique is a 

promising approach needs to be used for prediction 

of the world crude oil monthly prices in future. 

 
(a) One step ahead forecast for testing data of Brent crude oil prices 

 

 

 

(b) One step ahead forecast for testing data of WTI crude oil prices  

 

Figure 5 One Step Ahead Forecast for Testing Data Sets of both Crude Oil Prices 
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