43,057 research outputs found

    Novel possibility Pythagorean interval valued fuzzy soft set method for a decision making

    Get PDF
    We discuss the theory of possibility Pythagorean interval valued fuzzy soft set, possibility interval valued fuzzy soft set and define some related the operations namely complement, union, intersection, AND and OR. The possibility Pythagorean interval valued fuzzy soft sets are a generalization of soft sets. Notably, we showed DeMorgan’s laws that are valid in possibility Pythagorean interval valued fuzzy soft set theory. Also, we propose an algorithm to solve the decision making problem based on soft set method. To compare two possibilities Pythagorean interval valued fuzzy soft sets for dealing with decision making problems and find a similarity measure is obtained. Finally, an illustrative example is discussed to prove that they can be effectively used to solve problems with uncertainties.Publisher's Versio

    General fuzzy min-max neural network for clustering and classification

    Get PDF
    This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms of Simpson (1992, 1993). The GFMM method combines supervised and unsupervised learning in a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering, pure classification, or hybrid clustering classification. It exhibits a property of finding decision boundaries between classes while clustering patterns that cannot be said to belong to any of existing classes. Similarly to the original algorithms, the hyperbox fuzzy sets are used as a representation of clusters and classes. Learning is usually completed in a few passes and consists of placing and adjusting the hyperboxes in the pattern space; this is an expansion-contraction process. The classification results can be crisp or fuzzy. New data can be included without the need for retraining. While retaining all the interesting features of the original algorithms, a number of modifications to their definition have been made in order to accommodate fuzzy input patterns in the form of lower and upper bounds, combine the supervised and unsupervised learning, and improve the effectiveness of operations. A detailed account of the GFMM neural network, its comparison with the Simpson's fuzzy min-max neural networks, a set of examples, and an application to the leakage detection and identification in water distribution systems are given

    Dominance intensity measure within fuzzy weight oriented MAUT: an application

    Get PDF
    We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure

    Fuzzy cardinality based evaluation of quantiÂźed sentences

    Get PDF
    Quantified statements are used in the resolution of a great variety of problems. Several methods have been proposed to evaluate statements of types I and II. The objective of this paper is to study these methods, by comparing and generalizing them. In order to do so, we propose a set of properties that must be fulfilled by any method of evaluation of quantified statements, we discuss some existing methods from this point of view and we describe a general approach for the evaluation of quantified statements based on the fuzzy cardinality and fuzzy relative cardinality of fuzzy sets. In addition, we discuss some concrete methods derived from the mentioned approach. These new methods fulfill all the properties proposed and, in some cases, they provide an interpretation or generalization of existing methods

    Generalization of One-Sided Concept Lattices

    Get PDF
    We provide a generalization of one-sided (crisp-fuzzy) concept lattices, based on Galois connections. Our approach allows analysis of object-attribute models with different structures for truth values of attributes. Moreover, we prove that this method of creating one-sided concept lattices is the most general one, i.e., with respect to the set of admissible formal contexts, it produces all Galois connections between power sets and the products of complete lattices. Some possible applications of this approach are also included

    UNFIS: A Novel Neuro-Fuzzy Inference System with Unstructured Fuzzy Rules for Classification

    Full text link
    An important constraint of Fuzzy Inference Systems (FIS) is their structured rules defined based on evaluating all input variables. Indeed, the length of all fuzzy rules and the number of input variables are equal. However, in many decision-making problems evaluating some conditions on a limited set of input variables is sufficient to decide properly (unstructured rules). Therefore, this constraint limits the performance, generalization, and interpretability of the FIS. To address this issue, this paper presents a neuro-fuzzy inference system for classification applications that can select different sets of input variables for constructing each fuzzy rule. To realize this capability, a new fuzzy selector neuron with an adaptive parameter is proposed that can select input variables in the antecedent part of each fuzzy rule. Moreover, in this paper, the consequent part of the Takagi-Sugeno-Kang FIS is also changed properly to consider only the selected set of input variables. To learn the parameters of the proposed architecture, a trust-region-based learning method (General quasi-Levenberg-Marquardt (GqLM)) is proposed to minimize cross-entropy in multiclass problems. The performance of the proposed method is compared with some related previous approaches in some real-world classification problems. Based on these comparisons the proposed method has better or very close performance with a parsimonious structure consisting of unstructured fuzzy

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience
    • 

    corecore