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General Fuzzy Min-Max Neural Network for
Clustering and Classification

Bogdan Gabrys and Andrzej Bargiela

Abstract—This paper describes a general fuzzy min-max is unlabeled and one has to deal with the task of splitting a set of
(GFMM) neural network which is a generalization and extension  patterns into a number of more or less homogenous clusters with
of the fuzzy min-max clustering and classification algorithms de- egnect to a suitable similarity measure. Patterns which are sim-
veloped by Simpson. The GFMM method combines the supervised . . .
and unsupervised learning within a single training algorithm. |Igr are_ all_qcated to the §am§ cluster, while the patterns which
The fusion of clustering and classification resulted in an algo- differ significantly are putin different clusters. Regardless of the
rithm that can be used as pure clustering, pure classification, clustering method the final resultis always a partition of patterns
or hybrid clustering classification. This hybrid system exhibits in disconnected or overlapped clusters.
an interesting property of finding decision boundaries between Veery often these two training strategies are treated separately
classes while clustering patterns that cannot be said to belong to _. . oo . L
any of existing classes. Similarly to the original algorithms, the since they_ have their specific environments and applications.
hyperbox fuzzy sets are used as a representation of clusters andHowever, it can be observed that one of the humans’ strengths
classes. Learning is usually completed in a few passes through thein solving classification problems is the ability to combine la-
data and consists of placing and adjusting the hyperboxes in the peled and unlabeled data. When one does not know how to clas-
pattern space which is referred to as an expansion—contraction sify a new object (pattern), one is able to remember its charac-

process. The classification results can be crisp or fuzzy. New data = . . L
can be included without the need for retraining. While retaining teristic features for later referencing or subsequent association

all the interesting features of the original algorithms, a number With other objects.

of modifications to their definition have been made in order to Another important characteristic of human reasoning is the
accommodate fuzzy input patterns in the form of lower and upper ease with of coping with uncertain or ambiguous data encoun-
bounds, combine the supervised and unsupervised leaming, and ygaq in real life. The traditional (statistical) approaches to pat-

improve the effectiveness of operations. t |lassification h b f d inad tei h ci
A detailed account of the GFMM neural network, its compar- /M classilication have been found inadequate in such circum-

ison with the Simpson’s fuzzy min-max neural networks, a set of Stances and this shortcoming has prompted the search for a more
examples, and an application to the leakage detection and identifi- flexible labeling in classification problems. The theory of fuzzy

cation in water distribution systems are given. sets was suggested as a way to remedy this difficulty. The sem-
Index Terms—Classification, clustering, fuzzy systems, fuzzy inal publication reporting the use of fuzzy sets in pattern recog-
min-max neural networks, pattern recognition. nition was that of Bellmaret al. [4]. Since then the combina-

tion of fuzzy sets and pattern classification has been studied
by many researchers [5], [6], [26]. The flexibility of fuzzy sets
and the computational efficiency of neural networks with their
ESPITE significant progress, computer-based pattegroven record in pattern recognition problems has caused a great
recognition faces continuous challenge from humasgmount of interest in the combination of the two [2], [6], [9],
recognition. Humans seem to be more efficient in solving mayo], [17], [22], [25], [27], [30], [31].
complex classification tasks which still cannot be handled The pattern recognition method reported in this paper orig-
easily by computers. inated from our investigation into uncertain information pro-
One of the more promising approaches to computer-basgsksing in the context of decision support (DS) for operational
pattern recognition is the use of artificial neural networks. Theyontrol of industrial processes [4], [12]. The essential require-
have been successfully used in many pattern recognition prebents of such a system were: the ability to process input data
lems [7], [16], [29]. There are two main training strategies fdan form of confidence limits; the ability to incorporate new in-
pattern classification procedures: supervised and unsupervigsghation without need to completely retrain the network; and
learning. In supervised learning, often referred to as a pattehe ability to combine the supervised and unsupervised learning
classification problem, class labels are provided with input patrategies within a single algorithm.
terns and the decision boundary between classes that minimizeshe fuzzy min-max (FMM) clustering and classification
misclassification is sought. In unsupervised learning, often reeural networks [30], [31], with their representation of classes
ferred to as a cluster analysis problem, the training pattern dathyperboxes im-dimensional pattern space and their con-
ceptually simple but powerful learning process, provided a
natural basis for our development. Interesting derivatives of the
Manuscript received February 2, 1998; revised January 15, 1999 and Junecr?ginal FMM can also be found in [17] and [21].

. INTRODUCTION

1999. . ) The proposed generalized fuzzy min-max (GFMM) neural
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GFMM algorithm a number of issues have been addressesl-world applications call for many intermediate modes of the
which have also drawn the attention of other researcherssimuctural search in the data set, the efficiency of which could
recent years. These include the problems of distinguishibg substantially enhanced by a prudent use of the available
between ignorance and equal evidence or interpretation of demain knowledge about the classification problem at hand. It
grees of membership as a measure of typicality or compatibilityas shown that even a small percentage of the labeled patterns
[18], incorporating labeled data into clustering algorithmsubstantially improved the results of clustering. While Pedrycz
[28], interval analysis [23], and combination of supervised arahd Waletzky’s algorithm is based on minimization of the
unsupervised learning. suitably formulated objective function, the positive effect of
An important development of the GFMM algorithm relatetabeled patterns on generated clusters have also been observed
to the interpretation of the membership values, both during teGFMM as reported in this paper.
training and the operation of the GFMM neural network, as the The problems of generalization, overfitting and reducing
degree of belonging or compatibility as advocated by Krishn#ie number of hyperboxes created during the training were
puram and Keller [18]. By relaxing the probabilistic constrairdddressed by proposing an adaptive maximum size of hyperbox
that the memberships of a data point across classes have tosd@gme. The maximum hyperbox si2ds the most important
up to one (used in Bezdek's fuzzy C-means algorithm [5]) anger-specified parameter which decides how many hyperboxes
suitably modifying an objective function to be minimized duringvill be created. Generally, the largé, the fewer hyperboxes
the clustering process, the possibilistic C-means algorithm wa® created. This has an effect of increasing the generalization
proposed that not only provided the membership values corgedility of the network but it decreases the ability to capture
sponding more closely to the notion of typicality, but also proveabnlinear boundaries between classes. On the other hand,
to be more immune to noise. small & may lead to data overfitting with the extreme case
Due to the fact that the fuzzy membership functions proposeti individual inputs memorised as separate hyperboxes. The
by Simpson and used in FMM algorithms can assign a relativedgheme attempting to find a compromise between these two
high membership value to an input vector which is quite far froonflicting options has been implemented in GFMM.
the cluster prototype, as illustrated in Figs. 3 and 4, it was nec-The essential characteristics of the proposed GFMM can be
essary to propose a new membership function which monot@wmmarized in the following points.

ically decreases with a growing distance from a cluster proto- 1) |nput patterns can be fuzzy hyperboxes in the pattern
type, as illustrated in Flg 5, thus eliminating the |Ik6|y confu- space, or Crisp_points in the pattern space.

sion between cases of “equally Iikely” and “unknown” inputs. It 2) The fuzzy hyperbox membership function and basic hy_
will also be shown that after modification of expansion criteria perbox expansion constraint proposed in [30] and [31]

the GFMM can create larger (in volumetric sense) hyperboxes  have been modified.

with greater abiIit)_/ to _identify outliers and reduce their influ-  3) The labeled and unlabeled input patterns can be processed

ence on data p.artl'Flonlng. . . o . at the same time which resulted in an algorithm that can
In many applications uncertainty associated with inputdatais  pe used as pure clustering, pure classification, or hybrid

quantified and presented in form of confidence intervals or con-  clustering/classification system.

fidence limits [3], [14], [20]. The interval analysis [23], which  4) The parameter regulating the maximum hyperbox size

underlies the fuzzy sets and fuzzy numbers theory, was initially  can be changed adaptively in the course of GFMM neural

used for accounting for a finite tolerance of elements and rec-  network training.

ognized that some physical entities can take any value from anrpqo remainder of this paper is organized as follows. Sec-

interval rather than be described by a single crisp value. They, | gives a short description of the original fuzzy min-max
Input to GF,MM n_eural network has been generalized .fror_n &gorithm. In Section 11, the detailed description of the GFMM
point in n-dimensional pattern space to a hyperbox which is 3y o] network with emphasis on new features and reasons be-
multidimensional representatio_n of a set of variab_les given H?nd changes to the original fuzzy min-max neural networks is
the form of lower and upper limits—intervals #. This, COM-  giyen Section IV presents a set of examples demonstrating dif-
bined with the modified membership function and an intemgl, o aspects of the GFMM neural network operations. Its com-
representapon of data clusters as .hy.perbox.es, prowdeq a Vﬁ%Yison with the original fuzzy min-max neural network for the
of processing that type of uncertain inputs in a very effiCieljg|s jata and some results of applying it to the leakage detection

manner. The compatibility between the type of input and clustgp  jgentification in water distribution systems are also given.
representation has also been utilized in neural network struct\iriﬁa”y the conclusions are outlined in Section V.

optimization, i.e., reducing a number of hyperbox clusters en-
coded in the network without loss of recognition performance.
Another problem addressed in this paper concerns the
combination of supervised and unsupervised learning withinThe fuzzy min-max clustering and classification neural net-
the framework of fuzzy min-max neural networks. Whilevorks[30], [31] are built using hyperbox fuzzy sets. A hyperbox
Simpson presented two separate approaches to neural netvdgfines a region of the-dimensional pattern space, and all pat-
training: one for clustering problem and one for classificatioierns contained within the hyperbox have full cluster/class mem-
problem, the GFMM combines them in a single algorithmbership. A hyperbox is completely defined by its min point and
Pedrycz and Waletzky, in their paper concerning clustering wiits max point. The combination of the min-max points and the
partial supervision [28], have pointed out that quite often tHgyperbox membership function defines a fuzzy set (cluster). In

Il. THE ORIGINAL Fuzzy MIN-MAX ALGORITHMS
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the case of a classification, hyperbox fuzzy sets are aggregatetivork phraseology, we attempt to define hybrid, supervised
to form a single fuzzy set class. (labeled inputs—classification) and unsupervised (unlabeled

Learning in the fuzzy min-max clustering and classificatiomputs—clustering), NN.
neural networks consists of creating and expanding/contractin®?) Fuzzy Hyperbox Membership Functioithe fuzzy hy-
hyperboxes in a pattern space. The learning process begingpbsbox membership function plays a crucial role in the fuzzy
selecting an input pattern and finding the closest hyperbox ttin-max classification and clustering algorithms. The decision
that pattern that can expand (if necessary) to include the pattemhether the presented input pattern belongs to a particular class
If a hyperbox cannot be found that meets the expansion criterda cluster, thus whether the corresponding hyperbox is to be ex-
a new hyperbox is formed and added to the system. This grovgéinded, depends mainly on the membership value describing
process allows existing clusters/classes to be refined over tinttee degree to which an input pattern fits within the hyperbox.
and it allows new clusters/classes to be added without retrainifi@llowing Simpson [30], let thgth hyperbox fuzzy seti3;, be
One of the undesirable effects of hyperbox expansion are ovéefined by the ordered set
lapping hyperboxes. Because hyperbox overlap causes ambi-
guity and creates possibility of one pattern fully belonging to B ={X;, V;,W; b;(X,,,V;,W;)} (2
two or more different clusters/classes, a contraction process is
utilized to eliminate any undesired hyperbox overlaps. In tHerallh = 1,2, - --,m, whereX;, = [X}, X:]is thehth input
case of a classification NN the overlap is eliminated only fgrattern,V; = (v;1,v;2,---, ;) is the min point for thejth
hyperboxes that represent different classes. hyperbox,W ; = (w;1,wj2, -+, w;y) is the max point for the

In summary, the fuzzy min-max neural network learning alth hyperbox, and the membership function for ttiehyperbox
gorithm is a four-step process consistingloitialization, Ex- is0 < b;(X,,,V;,W;) < L.
pansion Overlap TestandContractionwith the last three steps  For a decision support system that intends to quantify the con-

repeated for each training input pattern. fidence limit on its advice, it is a natural assumption that the de-
gree of membership oX;, for the hyperboxB, is one if X, is
. GFMM A LGORITHM contained within the hyperba®;, and the degree of member-

) ] ) o ship decreases &; moves away from the hyperbad;.
This section provides a description of the proposed GFMM ¢ shqyid be noted that neither the membership function pre-

algorithm based on the principle of .expansion/contracti%nted in [30] (shown in Fig. 3) nor the membership function

process. For the reference and comparison purposes, the nGfasented in [31] (shown in Fig. 4) satisfies this assumption.

tion used in the following section have been kept consisteRl,a two-dimensional (2-D) example shows that even for pat-

as far as possible, with the original papers introducing fuzg¥,ns that are far from the hyperbox, the membership values are

min-max neural networks. large. It can also be observed that the membership values do not
) o decrease steadily with increasing distance from the hyperbox.

A. Basic Definitions To meet the required criteria a new membership function

1) Input: The first extension introduced in the GFMM spec{shown in Fig. 5) has been defined as
ification concerns the form of the input patterns that can be pro-
cessed. The input is specified as the ordered pair bj(Xa) = min (min((l — f(zg; —wji, 7)),

{X} d;} (1) [1 - f(vji - ‘Tgn‘vfyi)])) (3)

1 ifry>1
WhereXh = [th X;i] is the hth input pattern in a form of Wheref(T’ /7) — { oy if O < 7y < 1—two parameter ramp
lower, X}, and upperX, limits vectors contained within the 0 ifry <0
n-dimensional unit cubd™; andd,, € {0,1,2,---,p} is the threshold function;y = [v1,79, -, v ]—Sensitivity parame-
index of one of the + 1 classes, wheré;,, = 0 means that the ters regulating how fast the membership values decrease.
input vector is unlabeled. The short interpretation of this function could be put in words
In other words, instead of a pointirtdimensional space thatas the minimum value of the maximum min-max hyperbox
has to be classified one has a hyperbox with the min point dasints violations for all dimensions. The 1-D membership
termined by the vectak’, and the max point determined by thefunction is shown in Fig. 1.
vectorX?¥. It can be observed, that whéff, andX " are equal  The 1-D illustration of membership value finding for an input
this hyperbox shrinks to a point. Therefore, the proposed rap-form of lower and upper bounds is shown in Fig. 2. The hy-
resentation of inputs is a generalization of a more conventionmrbox min,v;;, and maxaw,;, points can be violated by both
representation as pointsirrdimensional space. lower, z ,, and upperg¥,, bound points at the same time. The
While for some simple classification problems the completamaller membership value is yield, however, by the upper bound
set of possible input vectors can be explicitly stated and learngd|ue when the max hyperbox pointis violated [Fig. 2(a)] and by
for the real, high dimensional problems typically there is a hudlee lower bound value when the min hyperbox point is violated
number of potential input vectors. Also, such data is often[Rig. 2(c)]. On the basis of this observation, the upper bound
mixture of labeled and unlabeled instances. of the input pattern is applied to max hyperbox points and the
To reflect this input data complexity an additional indexower bound is applied to the min hyperbox points as shown in
(dp, = 0) for unlabeled data has been introduced. Using neu(&).
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B. GFMM Learning Algorithm

1) Initialization: When a new hyperbox needs to be created
its min, V';, and maxW ;, points are initialized in such a way
that the hyperbox adjusting process used in the expansion par

of the learning algorithm can be automatically used. Whend
W are set initially to

Vj =0 and Wj =0. (4)

This initialization means that when th¢h hyperbox is ad-

justed for the first time using the input pattekf), = [X’, X}]
the min and max points of this hyperbox would be

V,=X, and W; =X} (5)

identical to the input pattern.
2) Hyperbox ExpansionWhen thehth input patternX, is

presented, the hyperbdX; with the highest degree of member- b, + —
ship and allowing expansion (if needed) is found. The expansion

criterion, that has to be met before the hyperxcan expand
to include the inpufX;,, consists of the following two parts:

v (max(wj;, ;) — min(vj;, xh;)) < © (6)

. hi
1=1l---n

and

if  dn =0 then adjust B,
else

adjust B;

0= class(B;) = dy,
if class(By) = dn = adjust B @)
take

lse
else = another By

with the adjust B; operation defined as

v;'lf’w = 1nill(1/gqildv xILi)v foreachi =1,.--,n
Wy = max(w;%d,azﬁﬁi), foreachi=1,---,n.
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Fig. 2. The 1-D illustration of membership value finding for an input in form
of lower and upper bounds.

The paramete® (0 < O < 1) is a user-defined value that
imposes a bound on the maximum size of a hyperbox and its
value significantly affects the effectiveness of the training algo-
rithm.

In contrast to the FMM, the GFMM algorithm defines the
constraint regulating the maximum size of the hyperbox (6) so
as to control the size of the hyperbox for each dimension. We
can thus ensure that the difference between max and min value
for each dimension will not be greater than the user-specified

If neither of the existing hyperboxes include or can expand @lue®. Example 3 in Section 1V illustrates that this additional
include the inputX;,,, then a new hyperbo®, is created (see control can result in a more robust performance in presence of

Initialization), adjusted, and labeled by settitigss (By,) = dp,.

outliers.
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Fig. 3. The example of membership functionpresented in [30] for the hyperbox defined by min pdint= [0.20.2] and max pointV’
parametery = 4.
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Fig. 4. The example of membership functienpresented in [31] for the hyperbox defined by min pdint= [0.20.2] and max point
parametery = 4.
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Th_e_other differences in the expansion constraint result fromAssuming that the part of the hyperbox expansion constraint
admitting both labeled and unlabeled input patterns. Whitepresented by (6) has been met, we have to consider the fol-
being a part of the expansion criterion, condition (7) describ&sving possibilities represented by (7).

an inference process that attempts to use all the available]) |f the input patternX;, is not labeled d;, = 0) then the
information carried by both labeled and unlabeled patterns to
the full.

hyperboxB, can be adjusted to include this pattern. Since
there is no information to the contrary, it is assumed that
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Fig. 5. The 2-D example of membership functienused in the GFMM classification/clustering algorithm. The hyperbox is defined by min poiat[0.20.2]
and max poinf? = [0.30.4]. Sensitivity parametey = 4.

such input could have originated from any class or cluster The full hyperbox overlap test can be therefore summarized
to which it is close enough. as follows.

2) If the input pattern is labeledd;, # 0)—belongs to  Assuming that hyperboB,; was expanded in the previous
the particular class specified bl —the three additional step, test for overlapping witB,;, if
cases have to be considered.

. . ( test for overlapping
a) Ifthe hyperboxB, is not a part of any of the existing with all the other
classeq class(B;) = 0), then adjust the hyperbox hyperboxes

B; to include the input patterX; and since this

input is labeled as belonging to the class specified
by d;., setclass(B;) = dy.. In this case, an associ-
ation process takes place whereby a group of data

class (By)

(8)
test for overlapping
else = only if

L class(B;) # class(By).
represented by the hyperbék is given a label on
the basis of one labeled exempy, that is similar The principle of minimal adjustment, where only the smallest
(close) enough to be included into tik. overlap for one dimension is adjusted to resolve the overlap, is

b) If the hyperboxB; is a part of the class speci-used. Consequently, the smallest overlap along any dimension,
fied by indexd,, of the current input patterix, the index of the dimension and the index of the case are saved.
(class(B;) = dy,), then adjust the hyperbaR; . The four cases are being considered (where initiétl§y =

c) If neither a nor b then take another hyperbox anb-

test for possible expansion. Case Livy; < vk < wyi < Wi

3) Hyperbox Overlap TestBecause of the admittance of la-
beled and unlabeled input patterns in the GFMM the problem of
overlapping hyperboxes includes the consideration of not only~,4e 2100
different classes (like in the FMM classification) but also of all
these hyperboxes that are not labeled.

The resulting scheme can be described as follows.

6"V = min(w;; — vk, 601‘1).

< vy < Wi < Wy

6"V = min(wp; — vy, 6°ld).

1) If the hyperboxB;, expanded in the last expansion step, Case Siuji < vhi < wri < ws
is not labeled then test for overlapping with all the other
hyperboxes. This ensures that all unlabeled hyperboxes
do not overlap with any of the other existing ones.

2) If the hyperboxB;, expanded in the last expansion step,
belongs to one of the existing classes then test for the
overlap only with the hyperboxes not being part of the
same class af;. Notice that this allows to overlap the
hyperboxes belonging to the same class.

P = min(min(wy, — vji, Wi — Uki), 6°1d).

Case 4:v1; < Vi < wy < Wi
611er

= min(min(wy; — Vj;, Wi — ki), 5o,

If overlap for theith dimension has been detected (one of the
above four cases is valid) ad'd — 2V > 0, thenA = 4,
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§°M = 7w andcase = I (I = {1, 2,3, 4}—the case for which In original versions of the algorithm the training stops after
the smallest overlap was found). presenting the data once. Using the adaptive maximum size of
If overlap for theith dimension has not been detected, séte hyperbox requires defining the stopping condition. In other
A = —1 signifying that the contraction step is not necessary.words when the training should be assumed to be completed.
4) Hyperbox Contraction:If A > 0 then only theAth di- Let us first consider the simplified case where input patterns
mensions of the two hyperboxes are adjusted. are points inmm-dimensional space. Assuming that there are no
Having saved the index of overlapping case in the previotio identical points in the data which are labeled as belonging to
step we can go to adjusting stage without examining the cases different classes, we can say that the training is completed
again. when after presentation of all input patterns there have been
The adjusting process is the same as in min-max classifice misclassifications for the training data. This, however, may
tion algorithm although alternative formulas for cases 1 andi@ad to memorization of individual data patterns (overfitting)
have been proposed and tested. The differences between theamedeterioration in recognition performance for an independent
contraction procedures for these two cases will be discussedésting data set.
more detail later when presenting examples of the GFMM op- In the case of input patterns being represented by lower and
eration. upper bound values for each dimension it is a reasonable as-
Case Livja < Ugpa < wjn < Wia sumption that two patterns labeled as belonging to two different
classes can have overlapping regions. In such a case, an at-

ew ew vl + wj‘i‘ i tempt to resolve the overlap over the subsequent presentations
vka = Wi’ = ————— oraltematively of the data, might lead to infinite adjusting of hyperboxes. Con-
(Wi = oy, sequently, the stopping condition has to be augmented in order
to ensure a finite training time.
Case 2:vpa < vja < wra < WjA Both goals have been achieved by specifying the minimum
value that the parametércan take. On one hand, it prevents the
o o v}’lgl + wild . memorization of the individual input patterns while on the other
Via® = Wka = 2 or alternatively hand it ensures that the inputs in form of confidence limits can
(jR = wd). be accommodated and the training stops when this minimum
value is reached.
Case 3:vja < vpa S wpa < wja Reflecting the above the stopping condition is defined as fol-
lows.
if wia —vja < wija — vpa thenvlY = wyk The training is completed when:
otherwisew;y" = vzlﬁ. a) after presentation of all training patterns there have been
no misclassifications for the training data;
Case 4ivpa < vja < wjn < wpa b) or the minimum user-specified value of the paraméter
] e oid has been reached.
if wia —vja < wja — vpa thenugX" = vy The value of® is modified after each presentation of the
otherwisev;y” = wik. training data as follows:
5) An Adaptive Maximum Size of the Hyperbdr:the orig- oY = el (9)

inal FMM NN's the user defined parametéx controlling the

maximum size of created hyperboxes is set up at the beginnigeres—the coefficient responsible for the speed of decrease

of the learning process and stays the same all the time. To fiflg® (0 < j < 1).

the best value of this parameter the network has to be trained )

for several differen©s and verified by checking the number ofc- [Mplementation of the Neural Network

misclassifications. The neural network that implements the GFMM clus-
After having tested the algorithm for different types of datgering/classification algorithm is shown in Fig. 6. It is a

we can say that fixing paramet®rduring the training of the net- three-layer feedforward neural network that grows adaptively

work can have undesired effects on performance and the numtoemeet the demands of the problem. The input layerzhas

of created hyperboxes. A large value@fcan cause too many processing elements, two for each of thedimensions of

misclassifications, especially when there are complex, overlahe input patternX;, — [X} X}]. Each second-layer node

ping classes. On the other hand, wh@ris small, many un- represents a hyperbox fuzzy set where the connections of

necessary hyperboxes may be created, especially for condbe- first and second layers are the min-max points and the

trated, stand-alone groups of data which normally would fortransfer function is the hyperbox membership function. The

one class. But of course sm#&) helps to resolve overlapping connections are adjusted using the algorithm described in

classes. Section 1lI-B. The min points matri¥ is applied to the first
These problems have been addressed by introducing an adefput nodes representing the vector of lower bouidsof
tive maximum size of the hyperbox. the input pattern and the max points ma#¥xis applied to the

The idea is to start training the network with lal@eand de- othern input nodes representing the vector of upper bounds
crease it (if necessary) in subsequent presentations of the d&tg.of the input pattern. The connections between the second-
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Class
Nodes

IV. SIMULATION RESULTS AND EXAMPLES

A. Example 1—Classification of Patterns in Form of Lower
and Upper Boundaries Vectors

The data set used in this example was constructed in order to
show the performance of GFMM algorithm on fuzzy input pat-
terns and, at the same time, to present the potential advantages

%6

Fin ,&f‘f{;@ "Q of the adaptive maximum size of a hyperbox scheme. This data
'}‘:‘0";‘*‘ y‘— set consists of 42 input patterns representing three classes. The
v‘.;‘—,‘i@ <3 first and second classes have been constructed in such a way

\
"

that finding the boundaries between them is nontrivial while the
third class is a set of patterns standing alone and not overlapping

if b; is a hyperbox for class,

otherwise (10)

(11)

with the other two. Two slightly different contraction procedures
have been used in this experiment. The difference is reported in
the table given at the bottom of the page and regards only Cases
1 and 2 of the contraction part of the algorithmy.
Fig. 6. The three-layer neural network that implements the GFMM To illustrate the superior performance of the algorithm with
clustering/classification algorithm. the adaptive maximum size of a hyperbox, compared to the al-
gorithms with paramete® preset and kept constant during the
and third-layer nodes are binary values. They are stored in f@ining, the training of the network for a few different constant
matrix U. The equation for assigning the valuedbfs ©’s have been carried out. The results are shown in Fig. 7.
The table alongside Fig. 7 gives a statistical information on
1, a number of hyperboxes created and a number of misclassifica-
Uik = { 0, tions for values o ranging between 0.08 and 0.033.
To obtain the perfect recall (zero misclassifications) for the
whereb, is the jth second-layer node ang is the kth third-  training data the growth parameter had to be s te 0.033
layer node. Each third-layer node represents a class. The ouiggulting in the formation of 17 hyperboxes as compared to 9
of the third-layer node represents the degree to which the ingfgr Procedure 1) or 8 (for Procedure 2) hyperboxes formed
patternX,, fits within the clasg:. The transfer function for each while using the adaptive scheme. Notice that five hyperboxes
of the third-layer nodes is defined as (Fig. 7) have been formed for class 3 while one would be suffi-
cient.
cr = Iﬁﬁf( bjuj The training of the GFMM for both contraction procedures
= was performed in 11 passes through the data set and testing
for each of thep + 1 third-layer nodes. Node, represents all Produced a perfect recall. The starting growth parameter was
unlabeled hyperboxes from the second layer. The outputs of fie= 0.1 and the coefficient responsible for the decreas® of
class layer nodes can be fuzzy when calculated using (11) WaS¢ = 0.9. In this example, using the second contraction
rectly, or crisp when a value of one is assigned to the node wRFPcedure, giving preference to the new inputs, resulted in all
the largest;, and zero to the other nodes. training patterns having full memberships in appropriate hyper-
The topology of the network depicted in Fig. 6 is almost ideroxes (classes).
tical to the original fuzzy min-max neural network topology ex- , o
cept for two changes. First, the number of input nodes has b&enEx@mple 2—The Example of Clustering/Classification of
extended from to 2+n. This has eliminated the need for doubld-2Peled and Unlabeled Fuzzy Input Patterns
connections from input nodes to second-layer nodes. Second, afhis example was constructed to show the ability of the al-
additional node representing all the unlabeled hyperboxes frgorithm to process fuzzy labeled and unlabeled input patterns.
the second layer has been introduced in the output layer.  The data set consists of 26 patterns from which 15 are labeled

Procedure 1

Procedure 2

Case 1ZTJjA < vpa < wia < WrA

old old

new __ new __ rUkA + w]A

Yka T WA T T

Case 2upa < Uin < WA < WA
old old

new _  new _ YA T WkA

”U/,/ :w” =
A EA 5

Case 1ZIJjA < vpa < wia < WrA

new __ _old
Wi = VA
Case 2upa < via < WA < WA

new old

Via = Wi
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e} Number of | Misclassifi- Fig. 8. The example of clustering/classification of the fuzzy labeled and
hyperboxes cations
yP unlabeled patterns. The unlabeled patterns are the rectangles with an “*” mark
0.08 4 10 inside.
0.07 6 6
0.06 7 3 mension of the input vectors may mean that a practical value for
0.05 9 6 ©, for which the outliers could be identified (not included into
0.04 12 2 other hyperboxes), is unobtainable.
0.033 17 0 Table | also shows that using modified contraction proce-

dure (Procedure 2 from Example 1) significantly improves the

Fig. 7. The result of NN training for the 42 input pattern data set (thregumber of runs required for cluster stabilization.
classes). Left: the hyperboxes createddore 0.033—the bigges® for which

there have been no misclassifications for the training data. Right: the table
showing the number of created hyperboxes and number of misclassificatidds Standard Data Sets
for various® (© was constant during training). The performance of the GFMM have also been tested on
standard data sets used in various clustering and classification

as belonging to one of four classes and the remaining 11 are dfiigies. The IRIS, wine, and ionosphere data sets have been ob-
labeled. The starting growth parameéer= 0.1 ande = 0.9.  tajined from the machine learning repository of the University
The training has been completed in three passes through the dai@gajifornia at Irvine [8]. The repository also contains the de-
set and four hyperboxes have been formed. The GFMM alggjjs of these data sets with some statistics and experimental re-
rithm performed well and dealt successfully with both labeleg|)jts. in our study the experimental results have been restricted
and unlabeled patterns as shown in Fig. 8. GFMM allowed §} the direct comparison between original FMM algorithms and
unlabeled patterns to be included into the labeled hyperboxggmm. For comparative results for various statistical, fuzzy,
while resolving all overlappings between hyperboxes from difng neural clustering and classification techniques (including
ferent classes. Simpson’s FMM), the interested readers may refer to [17].

In order to provide a meaningful comparison the algorithms
have been tested in the same environment for the same splits of

A simple 2-D example has been included to illustrate thaata sets for training and testing, the same orders of input pattern
enhanced error-rejection characteristics of the GFMM whigiresentations and a full range of parameters.
derives from the modified expansion criteria and membershipThe results shown in Table Il have been obtained for a fixed
function. The data consisted of 41 patterns, 40 of which weparametei©® ranging from zero (when FMM and GFMM col-
randomly generated around point [0.25 0.25] withifD.05 lapse to a nearest neighbor method with a distance measure
range, and the remaining one represented an outlier. Figpr@vided by respective membership functions) to one with step
and Table | illustrate the advantage of GFMM expansiob01. The only difference between FMM and GFMM in this ex-
criteria, where the maximum size along individual dimensionmeriment was the membership functions and expansion crite-
can be controlled, over the original expansion criteria wher®n. High recognition rates were obtained in both cases with
only an average value from all the dimensions is restricted BFMM having a slight edge for IRIS and ionosphere data sets.
parametel®. This difference means that GFMM can producé has been observed that the number of hyperboxes created de-
larger hyperboxes (in volumetric sense) and still avoid theeases with the increase of parameéeand reaches its min-
undesired effect of including outliers into created hyperboxesum equal to the number of classes represented in the data set
The advantage of the GFMM is even more pronounced for hifbr large enougl® to encapsulate all the data from each of the
dimensional cases. classes.

This is to be expected since in the original FMM expansion After this initial testing, we have decided to concentrate on
criteria, the maximum hyperbox size for an individual dimerthe IRIS data set and in the following we examine the issues
sion (in the worst case) is restricted by ©. The growing di- concerning the adaptive maximum size of hyperbox scheme,

C. Example 3—Clustering in Presence of Outliers
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a) b)
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No. of hyperboxes: 2 No. of hyperboxes: 6
No. of runs: 1 | No. of runs: 1
045 0.45.
04 A o4r *
036 0351
0.3F 03 I
¥ N
"
025 :, z;:'. ‘*‘;& 025 % :::" - a
* L
- L
0.2f o u)t o2k m
0.15 015
b 0.15 o:z o.;s ofa o.‘as otl 045 05 °'=).1 o..|5 ofz 035 ofa 036 04 045 05
9) d) ‘
s Max. hyperbox size: 0.06 05e Max. hyperbox size: 0.04
) No. of hyperboxes: 5 ) No. of hyperboxes: 7
No. of runs: 12 No. of runs: 14
045 0451
04 04fF *
o35 0.38F

o3l o3l

Fig. 9. The clustering in presence of outlier. (a) and (b) GFMM with modified membership function, expansion criterion, and contraction procaddr(el) (
Original FMM algorithm.

TABLE |
THE RESULTSILLUSTRATING THE NUMBER OF CREATED HYPERBOXES ANDNUMBER OF RUNS REQUIRED FORSTABILIZATION OF CLUSTERS FORSIMPLE 2-D
CLUSTERING IN PRESENCE OFOUTLIER

Maximum | Contraction procedure 1 || Contraction procedure 2
Method h;;,Z;l;)cfx hylli‘ii)gi o5 | No- of runs hypNe(;Bgies No. of runs
0.03 9 12 o | 2
Simpson’s 0.04 7 12 3 3
FMM 0.05 5 2 5 i
0.06 5 12 4 1
0.05 7 7 7 3
0.07 6 13 6 1
GFMM 0.09 3 1 3 1
0.11 2 1 2 1

classification with superimposed noise and potential advantage®rlapping and the third was easily distinguishable from the
of representing the input patterns in form of confidence inteothers. In the case of IRIS data we have two species of flowers
vals, clustering/classification with partial supervision and putlat can be confused (similar features—classes 2 and 3) and the
clustering. third one with characteristic features allowing to distinguish it
The Fisher IRIS data set was selected because of the hfigé the other two (class 1). Several test data sets have been
number of published results for a wide range of classificatidtsed to determine the performance of the GFMM algorithm in
techniques that can provide a measure of relative performan@iéferent conditions.
The IRIS data consists of 150 four-dimensional (4-D) feature The results presented here concern the following test data
vectors (patterns) in three separate classes, 50 for each clas§€i:
a way this example is very similar to Example 1. In Example 1, 1) 25 randomly selected patterns from each class have been
we considered the case of three classes where two of them were used for training and the remaining 75 for testing;
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TABLE I
RECOGNITION RATES FORGFMM AND FMM NEURAL NETWORKS FORTHREE REAL WORLD DATA SETS. RESULTS OBTAINED FOR FIXED
MAXIMUM HYPERBOX SIZES RANGING FROM ZERO TOONE WITH STEP 0.01

IRIS Wine Tonosphere
Method Best (Range) Best (Range) Best (Igange)
Simpson’s FMM | 97.33% (97.33-92%) | 100% (100-94.32%) 198.01% (98.01-84.77%)
GFMM 100% (100-92%) 100% (100-88.64%) [98.68% (98.68-90.07%)
TABLE Il

THE RESULTS OFCLASSIFICATION OF THEFISHERIRIS DATA BY THE PROPOSEDGENERAL FUZZY CLASSIFICATION-CLUSTERING NEURAL NETWORKS

Contraction procedure 1 Contraction procedure 2
Test
data Start- I No of [ Passes Misclas-{| No of | Passes Misclas-
set | 8 © | hyper- |through| Final © | sifica- || hyper- | through | Final © | sifica-
boxes | data tions || boxes data tions

1 03 |6(172/3)] 7 0.1594 1 5(1/2/2) 3 0.2430 1
1 | 006 (29(7/10/] 1 0.06 2 29(7/10/ 1 0.06 2

12) 12)
1 {003 [49(15/ 1 0.03 0 49(15/ 1 0.03 0
17/17) 17/17)
2 0.3 | 10(1/5/ 16 | 0.0618 0 7(1/3/3) 7 0.1594 0
4)
2 1006|4310/ | 1 0.06 0 43(10/ 1 0.06 0
14/19) 14/19)
2) all available data patterns have been used for training and TABLE IV
testing. A COMPARISON OF THECLASSIFICATION PERFORMANCE OFVARIOUS

. . . . TRADITIONAL, FUzzY, AND NEURAL CLASSIFIERS
1) Comparison of FMM with GFMM Including the Adaptive

Hyperbox Size Schemd:or the first test data set (as definec Technique Misclassifications
above), the results presented in [30] are as follows. The grov —
.. Bayes classifier 2
parameter wa® = 0.0175 and the number of hyperboxes built - 1
. . . k-nearest neighbour 4
was 48. Training was performed in a single pass through the d =
. e . Fuzzy k-NN 4
set. The number of misclassifications was two. This has be — —
. . . . . . Fisher ratios 3
consistent with our implementation and testing of Simpson 1
. Ho-Kashya; 2
algorithm. 5 Y g 3
In comparison our algorithm produced five hyperboxes fc —oiecPron ;
; _ _ e Fuzzy perceptron 2
starting paramete® = 0.3 andy = 0.9. Training was com- a ,
pleted in three passes through the data set. The number of r Fu22y min-max NI:I 2
classifications was one. GFMM algorfthm . 1/0
The algorithm has been tested for various starting paramet SFMM algorithm 0

O ranging from zero to one with the minimué,,;,, changing
each time from zero to startirtg), two different contraction pro-
cedures (presented in Example 2), and using both test data seigpson’s FMM. The same level of noise has been represented
A representative set of the results is shown in Table III. as hyperboxes whetX* was generated by adding 0.04.X0
It can be observed that the GFMM method produced, in geaRd X’ was generated by subtracting 0.04 fraf The testing
eral, considerably fewer hyperboxes then the fuzzy min-mayas carried for the full range @ and the best recognition level
classification NN and also it resulted in fewer misclassification®r FMM was recorded at 96% with a significant deterioration
The influence of the changes of parametam classification in recognition rates for a vast majority of tested examples. The
performance has been tested for values ranging from 0.98 to ®€st recognition level for GFMM, trained and tested using data
No significant changes in recognition rates were noticed. ~ in form of upper and lower limits, was recorded at 98.67%.
The comparison of the performance of the proposed algib-has also been observed that the uncertainty associated with
rithm with several other neural, fuzzy, and traditional classifiefigh level of noise was directly reflected in the decrease of the
on the same data set is presented in Table IV. This comparati@mbership values when the input data is given in form of
performance test demonstrates that the proposed algorithm Ijsy.perboxes. The level of information uncertainty (if available)
formed better then other listed classifiers. cannot be represented in FMM and although the data is very
2) Addition of Noise to Data:A noise with amplitude of noisy each point is treated as if it was absolutely accurate and
0.04 has been superimposed on training and testing data ¥ét8 the same level of confidence irrespective of presence or
from point 1. The point representations have been useddhsence of noise.
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Fig. 10. Classification results for IRIS data with superimposed noise usir%g' 11: . Comparlspn of th_e re(():ognltlon performance for the IRIS d%ta using
GFMM with adaptive maximum size of hyperbox. Startifig= 0.4. the training sets with varying % _of labeled and 'unlabeled data (0%—pure
clustering; 100%—pure classification). (a) FMM using only labeled data—pure

classification. (b) FMM using all available data but discarding the labels—pure

Fig. 10 illustrates how, for noisy data, a suitable choice ofustering. (c) GFMM using all available data—hyhbrid clustering/classification

Omin CaN prevent overfitting, which occurs for sm@i,;,, and  PProach.

at the same time provides a mechanism for resolving legitimate ) S o
nonlinearities when algorithm starts with relatively large valug- Leéakage Detection and Identification in Water Distribution
of ©. If O, is 00 large the recognition rate decreases becaud¥¢Stems

of too general representation of the encoded data (too smallThe GFMM neural network has been also applied to a com-
number of hyperboxes). plex decision support task of classification of the states of a

3) Combination of Labeled and Unlabeled Data (Partial Suwater distribution system. Due to the space limitation, only a
pervision): In order to show the potential benefits of combinggeneral description of the training and testing data sets and the
labeled and unlabeled data a number of experiments involvipgrformance of the neural recognition system applied to leakage
various proportions of labeled and unlabeled input patternsdetection and identification will be given. A more detailed anal-
the training data set have been carried out. The training datayss can be found in [4] and [15].
from point 1 was used with the percentage of labeled patternaWVhile for the well-maintained water distribution systems the
ranging from 100% (all training data labeled—pure classificaxormal operating state data can be found in abundance the in-
tion problem) to 10% (a case of clustering with partial supervstances of abnormal events are not that readily available. In
sion). All the training data were used in the GFMM algorithnorder to observe the effects of abnormal events in the physical
while the results for FMM were obtained by either applying theystem, one sometimes is forced to resort to deliberate closing of
pure classification using only the labeled patterns or pure cluglves to simulate a blocked pipe or opening of hydrants to sim-
tering discarding the available labels. A clear advantage in usinlgte leakages. Although such experiments can be very useful
hybrid approach is illustrated in Fig. 11 where the results ate confirm the agreement between the behavior of the physical
presented for all three approaches. system and the mathematical model, it is not feasible to carry

As rightly observed in [28], for the benefits of partial supervieut such experiments for all pipes and valves in the system for
sion to be noticed the labeled patterns have to be representatimeextended period of time as might be required in order to ob-
of the data set to be clustered. tain a representative set of labeled data.

4) Clustering PerformanceAll 150 data points of IRIS data It is an accepted practice that, for processes where the phys-
set were used to determine the performance of GFMM in a pucal interference is not recommended or even dangerous, math-
clustering task. Similarly to the FMM algorithm the clusteringgmatical models and computer simulations are used to predict
has been performed for a fixeél and only after the clusters the consequences of some emergencies so that one might be pre-
(hyperboxes) were formed a class information was used to gered for quick response. In our case, the computer simulations
termine how well the underlying data structure was identifieshere used to generate data covering 24-h period of the water
The experiments were carried out fdranging from 0.03 to 0.3 distribution network operations.
with step 0.01 for GFMM ané® ranging from 0.01 to 0.2 with ~ The simulated water distribution network was the Doncaster
step 0.01 for FMM algorithm. Representative results for both &tastern Zone of the Yorkshire Water Authority and consisted of
gorithms are shown in form of confusion matrices in Fig. 12. B9 nodes and 38 pipes. By systematically working through the
has been observed that generally the GFMM required a smahetwork, ten levels of leakages were introduced, one at a time,
number of hyperboxes to obtain the same level of recognitiom every single pipe for every hour of the 24-h period. By ap-
performance as FMM, which corroborates the results presenfding the confidence limit analysis [3], [12], [14], the possible
in Example 3. variations of individual input patterns have been quantified and
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GFMM
a) Hyperbox size: 0.03 b) Hyperbox size: 0.06 c) Hyperbox size: 0.12
No. of hyperboxes: 87 No. of hyperboxes: 44 No. of hyperboxes: 13
Overall confusion: 0% Overall confusion: 2.0% Overall confusion: 4.67%
1 2 3 1 2 3 1 2 3
1 100% 1 100% 1 100%
2 100% 2 96% 4% 2 86% 14%
3 100% 3 2% 98% 3 100%
Simpson’s FMM
d) Hyperbox size: 0.01 ¢€) Hyperbox size: 0.04 ) Hyperbox size: 0.12
No. of hyperboxes: 117 No. of hyperboxes: 47 No. of hyperboxes: 12
Overall confusion: 0% Overall confusion: 3.87% Overall confusion: 4.9%
1 2 3 1 2 3 1 2 3
1 100% 1 100% 1 100%
2 100% 2 96.2% | 3.8% 2 87% 13%
3 100% 3 7.8% | 92.2% 3 1.7% | 98.3%

Fig. 12. Representative results, in form of confusion matrices, of comparison between FMM and GFMM for pure clustering problem.

TABLE V
MISCLASSIFICATION RATES FOR THETESTING SET CONSISTING OF91 440 EXAMPLES

Mem- | Overali | Split of misclassifications according to different levels of leaks

bership | misclassi-

values | fication 14 17 20 23 26 29

2 5 8 11
[W/s] [I/s] [/s) | [/s] | (s) | [Ws] | [Vs) | [/s] | [Vs] | [Us]

Highest|16.8274%]33.22%[18.33%|11.02%]8.18% [ 7.12% | 6.01% | 5.02% | 4.41% | 3.59% | 3.12%

Top2 | 6.1144% |57.23%(21.41%| 8.80% | 4.69%|2.77% | 2.06%| 1.06% | 0.88% | 0.61% | 0.50%

Top3 | 3.1868% |73.61%|17.64%)| 5.42% | 1.99% | 0.75% | 0.24% | 0.14% [ 0.10% | 0.10% | 0%

Top5 1.4129% |86.22%|11.07%| 2.09% |0.62%| 0% 0% 0% 0% 0% 0%

stored in form of lower and upper limits. In other words, the dafBhe “experts” were responsible for detection of anomalies for

used in training stage were hyperboxes rather than points in Hwne characteristic load patterns.

pattern space. The training of all six second-level neural networks has been
As a result, a training data set comprising of 9144 examplesmpleted in a single pass through the data. Paranteteas

of 35 dimensional input patterns and representing 39 categorietermined separately for each dimension of each of the six sub-

has been compiled. These categories stood for normal operasiets of the training set and was set to the value of the largest input

state and leakages in 38 pipes of the network. hyperbox for each of these six subsets. There were no misclas-
For testing purposes an independent large testing set ceffications for the training data set.

sisting of 91440 patterns have been generated. But this timeThe classification results for the testing data set are shown in

the patterns to be classified were the best state estimates (polatsle V. The percentage of misclassified input patterns for the

in the pattern space) obtained for measurements with superifass with the highest membership value, top two, three, and five

posed random errors. alternatives, have been used as a means of assessing the ability
A two-level recognition system has been used. The first levl correctly detect and locate leakages. Additionally, the share of

consisted of one neural network and its purpose was to distpatterns representing different levels of leakages in the overall

guish different typical behaviors of the water system (i.e., nightisclassification rate is presented.

load, peak load, etc.) by selecting one of the second-level neuralhe first row in Table V illustrates the overall rate of misclas-

networks. These neural networks can be viewed as “expersified patterns for the class with the highest membership value.

since each of them was trained using only a part of the trainifidpis is equivalent to the hard decision classifiers that are specif-

set and covered a distinctive part of 24 hour operational periadally designed to choose only one class which is closest to the
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input pattern. The rate of almost 17% of misclassified testing  rificing the recognition rate. As it has been shown in case
patterns leaves some room for improvement although over 62%  of the Fisher IRIS data, GFMM produced considerably
of all those misclassifications were recorded for patterns repre-  fewer hyperboxes (compared to FMM) with fewer mis-
senting small leakages of magnitude less or equal to 8 [I/s]. It  classifications.
is interesting to note that as much as 56% of all 2 [I/s] leakages4) Modifications to the membership function ensured con-
from the testing set were misclassified. Let us, however, empha-  sistent interpretation of membership values which dis-
size that the variation of some of the consumptions can be as tinguishes between the cases of “equal evidence” (class
much as 14 [I/s] which can easily hide the 2 [I/s] leakage. Nev-  membership values high enough and equal for a number
ertheless, itis clear that the hard classifier is not the best option  of alternatives) and “ignorance” (all class membership
in this case. The subsequent rows of the Table V illustrate the values equal or very close to zero).
flexibility of the recognition system based on the GFMM neural The training of the GFMM neural network is very fast and,
networks. In contrast to the hard decision classifiers, a numlzariong as there are no identical data belonging to two different
of alternatives can be easily obtained and sorted with respectlasses, the recognition rate for training data is 100%. Since all
the membership values. Utilizing this property the tests for thlee manipulations of the hyperboxes involve only simple com-
top two, three, and five alternatives have been carried out goate, add, and subtract operations, the resulting algorithm is ex-
misclassification rates calculated. Looking at the top two altetremely efficient.
natives the overall misclassification rate has been dramaticallySince the GFMM forms the decision boundaries by covering
improved to average 6.11%. When the top five alternatives hawe pattern space with hyperboxes, its performance will deteri-
been considered the overall misclassification fell to 1.51% awdate when the characteristics of the training and test data will
practically there were no misclassifications for leakages lardes very different. Therefore, it is important to provide as rep-
or equal to 11 [I/s]. resentative training data for the problem as possible. However,
Asi itis very difficult to detect and pinpoint the actual locatioreven when a large representative data set is available, the use of
of small leakages the fuzzy outputs of the classification systdmperboxes may lead to inefficient representation when one has
have proved to be extremely useful. In this particular applicatieo deal with elongated and rotated clusters of hyperelipsoidal
when an input pattern is not distinctive enough to be classifieghta. In a similar manner where hyperboxes were preferred in
with a reasonable level of confidence, as belonging to only otids paper as a representation of clusters because of the spe-
class, the system can return a number of viable alternativesclfic nature of data to be processed (inputs in form of confi-
terms of a leakage detection problem the algorithm facilitatdence limits), a suitable cluster representation should be used in
the identification of a problematic area if there is not enougiroblems where evidence suggests that it could be more efficient
evidence to pinpoint the leaking pipe. from the point of view of encoding or recognition performance.
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