1,180 research outputs found

    Constructing Desirable Scalar Fields for Morse Analysis on Meshes

    Get PDF
    Morse theory is a powerful mathematical tool that uses the local differential properties of a manifold to make conclusions about global topological aspects of the manifold. Morse theory has been proven to be a very useful tool in computer graphics, geometric data processing and understanding. This work is divided into two parts. The first part is concerned with constructing geometry and symmetry aware scalar functions on a triangulated 22-manifold. To effectively apply Morse theory to discrete manifolds, one needs to design scalar functions on them with certain properties such as respecting the symmetry and the geometry of the surface and having the critical points of the scalar function coincide with feature or symmetry points on the surface. In this work, we study multiple methods that were suggested in the literature to construct such functions such as isometry invariant scalar functions, Poisson fields and discrete conformal factors. We suggest multiple refinements to each family of these functions and we propose new methods to construct geometry and symmetry-aware scalar functions using mainly the theory of the Laplace-Beltrami operator. Our proposed methods are general and can be applied in many areas such as parametrization, shape analysis, symmetry detection and segmentation. In the second part of the thesis we utilize Morse theory to give topologically consistent segmentation algorithms

    Dictionary Learning-based Inpainting on Triangular Meshes

    Full text link
    The problem of inpainting consists of filling missing or damaged regions in images and videos in such a way that the filling pattern does not produce artifacts that deviate from the original data. In addition to restoring the missing data, the inpainting technique can also be used to remove undesired objects. In this work, we address the problem of inpainting on surfaces through a new method based on dictionary learning and sparse coding. Our method learns the dictionary through the subdivision of the mesh into patches and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means method on the computed sparse codes. One of the advantages of our method is that it is capable of filling the missing regions and simultaneously removes noise and enhances important features of the mesh. Moreover, the inpainting result is globally coherent as the representation based on the dictionaries captures all the geometric information in the transformed domain. We present two variations of the method: a direct one, in which the model is reconstructed and restored directly from the representation in the transformed domain and a second one, adaptive, in which the missing regions are recreated iteratively through the successive propagation of the sparse code computed in the hole boundaries, which guides the local reconstructions. The second method produces better results for large regions because the sparse codes of the patches are adapted according to the sparse codes of the boundary patches. Finally, we present and analyze experimental results that demonstrate the performance of our method compared to the literature

    Discrete differential operators on polygonal meshes

    Get PDF
    Geometry processing of surface meshes relies heavily on the discretization of differential operators such as gradient, Laplacian, and covariant derivative. While a variety of discrete operators over triangulated meshes have been developed and used for decades, a similar construction over polygonal meshes remains far less explored despite the prevalence of non-simplicial surfaces in geometric design and engineering applications. This paper introduces a principled construction of discrete differential operators on surface meshes formed by (possibly non-flat and non-convex) polygonal faces. Our approach is based on a novel mimetic discretization of the gradient operator that is linear-precise on arbitrary polygons. Equipped with this discrete gradient, we draw upon ideas from the Virtual Element Method in order to derive a series of discrete operators commonly used in graphics that are now valid over polygonal surfaces. We demonstrate the accuracy and robustness of our resulting operators through various numerical examples, before incorporating them into existing geometry processing algorithms

    A 3D+t Laplace operator for temporal mesh sequences

    Get PDF
    International audienceThe Laplace operator plays a fundamental role in geometry processing. Several discrete versions have been proposed for 3D meshes and point clouds, among others. We define here a discrete Laplace operator for temporally coherent mesh sequences, which allows to process mesh animations in a simple yet efficient way. This operator is a discretization of the Laplace-Beltrami operator using Discrete Exterior Calculus on CW complexes embedded in a four-dimensional space. A parameter is introduced to tune the influence of the motion with respect to the geometry. This enables straightforward generalization of existing Laplacian static mesh processing works to mesh sequences. An application to spacetime editing is provided as example

    Manifold Learning with Tensorial Network Laplacians

    Get PDF
    The interdisciplinary field of machine learning studies algorithms in which functionality is dependent on data sets. This data is often treated as a matrix, and a variety of mathematical methods have been developed to glean information from this data structure such as matrix decomposition. The Laplacian matrix, for example, is commonly used to reconstruct networks, and the eigenpairs of this matrix are used in matrix decomposition. Moreover, concepts such as SVD matrix factorization are closely connected to manifold learning, a subfield of machine learning that assumes the observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. Since many data sets have natural higher dimensions, tensor methods are being developed to deal with big data more efficiently. This thesis builds on these ideas by exploring how matrix methods can be extended to data presented as tensors rather than simply as ordinary vectors
    • …
    corecore