246 research outputs found

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Effective Video Encoding in Lossless and Near-lossless Modes

    Get PDF

    Memory-efficient lossless video compression using temporal extended JPEG-LS and on-line compression

    Get PDF
    Use of temporal predictors in lossless video coders play a significant role in terms of compression gain, but comes with a cost of significant memory requirement since this approach requires to save at least one frame in buffer for residue calculation. An improvement to standard JPEG-LS based lossless video coding algorithm is proposed in this work which requires very small amount of memory comparing to the regular approach keeping the computational complexity low. To obtain a higher compression, a combination of spatial and temporal predictor model has been used where appropriate mode is selected adaptively on a pixel based analysis. Using only one reference frame, the context based temporal coder performs its calculation regarding mode selection and prediction error calculation with already reconstructed pixels. This method eliminates the overhead of transmitting the coding mode in the decoder side. The need for storage space to save the only reference frame is further reduced by introducing on-line lossy compression on that frame. Relevant pixels from the stored reference frame are obtained by partial on-the-fly decompression. The combination of temporally extended context based prediction and on-line compression achieves a significant gain in compression ratio comparing to standard frame-by-frame JPEG-LS video coding keeping the memory requirement low, making it usable as a lightweight lossless video coder for embedded systems

    High-throughput variable-to-fixed entropy codec using selective, stochastic code forests

    Get PDF
    Efficient high-throughput (HT) compression algorithms are paramount to meet the stringent constraints of present and upcoming data storage, processing, and transmission systems. In particular, latency, bandwidth and energy requirements are critical for those systems. Most HT codecs are designed to maximize compression speed, and secondarily to minimize compressed lengths. On the other hand, decompression speed is often equally or more critical than compression speed, especially in scenarios where decompression is performed multiple times and/or at critical parts of a system. In this work, an algorithm to design variable-to-fixed (VF) codes is proposed that prioritizes decompression speed. Stationary Markov analysis is employed to generate multiple, jointly optimized codes (denoted code forests). Their average compression efficiency is on par with the state of the art in VF codes, e.g., within 1% of Yamamoto et al.\u27s algorithm. The proposed code forest structure enables the implementation of highly efficient codecs, with decompression speeds 3.8 times faster than other state-of-the-art HT entropy codecs with equal or better compression ratios for natural data sources. Compared to these HT codecs, the proposed forests yields similar compression efficiency and speeds

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Coding local and global binary visual features extracted from video sequences

    Get PDF
    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.Comment: submitted to IEEE Transactions on Image Processin
    corecore