
94 table of contents 95table of contents

In today’s digital era, the cultural sector is confronted with a
growing demand for making digital recordings – audio, video and
still images – of stage performances available over a multitude of
channels, including digital television and the internet. Essentially,
this can be accomplished in two different ways. A single entity can
act as a content aggregator, collecting digital recordings from
several cultural partners and making this content available to
content distributors or each individual partner can distribute its own
recordings via the internet. Both methods (content aggregation and
individual internet distribution) imply a different set of requirements
for audio-visual compression and container formats.

Content aggregation requires high-resolution, high-quality
material, suitable for editing/post-processing and conversion
to different audio-visual formats tailored to specific distribution
channels. Compression and container formats must be chosen
so that the content can be processed using (semi)professional
production tools. This means that interoperability is essential,
which implies the use of internationally standardized solutions.
Since the material is typically transferred offline, storage and
bandwidth limitations are of secondary importance. However,
constantly increasing quality and resolution demands and the
need for an efficient production chain prohibit the use of older,
sub-optimal compression techniques.

detailed approach also when the transfer of rights forms
part of an employment contract between the producer of
the recording and the live crew.

•	 Since the area of activity most probably qualifies as
part of the ‘cultural sector’, separate remuneration for
each method of exploitation should be stipulated in the
contract. If no separate remuneration system has been
set up, right holders might at any time invoke the legal
default mechanism. This default mechanism grants a
proportionate part of the gross revenue linked to a specific
method of exploitation to the right holders. The producer
may also be obliged to provide an annual overview of the
gross revenue per way of exploitation. This clause is crucial
in order to avoid unforeseen financial and administrative
burdens in a later phase.

•	 Determine geographical scope and, if necessary, the
duration of the transfer for each way of exploitation.

•	 Include future methods of exploitation in the contract.
Although the legitimacy of this kind of clause is not
completely guaranteed, we believe future or unknown
ways of exploitation can be covered. In order to guarantee
the applicability of such a clause, make sure two
additional conditions are fulfilled: (1) if the transfer of
future/unknown means of exploitation is done within the
framework of an employment contract, part of the profit
generated through that specific method of future/unknown
exploitation should be granted to the right holder and; (2)
insert a clause which secures the validity of the rest of the
contract in case one clause turns out to be invalid.

Digital recording of performing
arts: formats and conversion
Stijn Notebaert, Jan De Cock, Sam Coppens, Erik Mannens,

Rik Van de Walle (IBBT-MMLab-UGent)
Marc Jacobs, Joeri Barbarien, Peter Schelkens (IBBT-ETRO-VUB)

emannens
Cross-Out

emannens
Replacement Text

96 table of contents 97table of contents

Compression formats

Still image compression

As mentioned in the introduction, there is a difference in the
requirements for the two scenarios, content aggregation and
distribution via the internet. The first scenario puts the emphasis
on quality, implying the use of lossless image compression,
whereas the second scenario must take into account the limitations
imposed by the internet connection bandwidth, implying the use
of lossy image compression. For the first scenario, the following
standardized image coding techniques, operated in lossless
mode, were tested: JPEG-LS, JPEG 2000, JPEG XR (HD Photo)
and PNG. The evaluation of the compression performance of
these codecs is straightforward. The most efficient codec is the
one that offers the highest compression ratio, i.e. the size of
the uncompressed image divided by the size of the compressed
image, for a set of representative test images. In our evaluation,
the employed test material consisted of a set of high resolution
images related to performing arts productions and exhibiting
varying characteristics. The results of our experiments clearly
show that PNG has the worst compression efficiency. JPEG XR
performs significantly better than PNG but its efficiency is still
considerably worse than that of JPEG-LS and JPEG 2000. For
black and white images, the performance of JPEG-LS and JPEG
2000 is very similar but for colour images, JPEG-LS outperforms
JPEG 2000.

From the viewpoint of professional support, none of the
compared compression formats should pose a problem for
professional image processing and desktop publishing software.
This leads us to conclude that JPEG-LS is the best choice for
image compression in the content aggregation scenario.

For internet distribution, the formats must be flexible enough to
support a wide range of terminals (PC, personal media player,
smartphone, etc.) and bandwidth-limited connections (xDSL,
UMTS, etc.). This specifically implies the use of compression
algorithms with a very good rate-distortion performance, (i.e.
algorithms which require a minimal number of bits to obtain a
given, suitable quality) over a large range of resolutions, frame
rates, and quality levels. Additionally, it is of prime importance
that the distribution formats are supported by popular playback
software.

Establishing a standard set of suitable content aggregation and
distribution formats necessitates efficient tools for the conversion
of contributed and legacy content to the chosen formats. This
conversion is often a time- and resource-consuming process.
The efficiency of conversion tools can be improved by performing
transcoding instead of re-encoding. Transcoding implies the
use of information present in the compressed representation of
the original material to facilitate low-complexity conversion to a
different format.

In the project, the problems of compression and container
format selection and that of efficient format conversion through
transcoding have been investigated in great detail. In this chapter,
the main conclusions of this work will be presented. A selection
of compression formats for video, audio and still images will
be discussed. The next section will elaborate on the choice of a
proper container format. Finally, the work on transcoding will be
summarized.

98 table of contents 99table of contents

Microsoft is actively pushing support for JPEG XR, as shown
by the fact that JPEG XR is natively supported in all versions of
Windows Vista. As a conclusion, based on its performance and
end-user support, JPEG XR is our recommended choice for the
internet distribution scenario. Figure 2 presents a typical PSNR
graph – showing PSNR values in function of corresponding bit
rates – from our tests with lossy image compression.

Figure 2: Typical PSNR graph for lossy image compression
(scenario 2)

Audio compression

For the content aggregation scenario the following audio com
pression techniques were evaluated: MPEG-4 Audio Lossless
Coding (ALS), Free Lossless Audio Codec (FLAC), Monkey’s Audio
(APE), Windows Media Audio (WMA) Lossless 9.2 and WAVPACK.
Lossless audio compression techniques were selected, since
they offer sufficient size reduction to be practically useful

Figure 1: Compression ratios for lossless still image
compression (scenario 1)

For the second scenario, distribution via the internet, the following
standardized lossy image coding techniques were tested: JPEG,
JPEG 2000 and JPEG XR (HDPhoto). The images used were the
same as for the first scenario but their resolution was uniformly
reduced to obtain pictures with a maximum height of 768 pixels
(typical height of a modern computer monitor). The test images
were coded using different bit rates (ranging from 0.1875 to 3 bits
per pixel). In each case, the quality of the decoded video material
was measured using the peak signal-to-noise ratio (PSNR), which
expresses the quality difference between the original and the
compressed material. The test results for the second scenario
clearly show that classical JPEG coding is no match for the other
two image coding techniques. The results for JPEG 2000 and JPEG
XR show that JPEG 2000 slightly outperforms JPEG XR. However,
the performance difference is limited. Based on its performance,
JPEG 2000 is the winner, closely followed by JPEG XR. However,
the end-user support for JPEG 2000 is rather limited, whereas

C
om

pr
es

si
on

 r
at

io
 (

hi
gh

er
 is

 b
et

te
r)

10

8

6

4

2

0
IMG

 1
IMG

 2
IMG

 3
IMG

 4
IMG

 5
IMG

 6
IMG

 7
IMG

 8
IMG

 9
IMG
 10

IMG
 11

IMG
 12

IMG
 13

IMG
 14

IMG
 15

IMG
 16

IMG
 17

IMG
 18

IMG
 19

JPEG 2000
JPEG-LS
JPEG XR
PNG

P
S
N

R
 [

dB
]

JPEG 2000
JPEG XR
JPEG

40

35

30

25

20

Bitrate [bpp]

0 1 2 3

100 table of contents 101table of contents

Figure 3: Compression ratios for lossless audio compression
(scenario 1)

The second scenario, internet distribution, warrants the use of lossy
audio compression techniques for bandwidth efficiency reasons.
The following audio compression technologies are commonly used
for distributing audio content via the internet: MPEG-2/MPEG-4
Advanced Audio Coding (HE-AAC v2), Microsoft Windows Media
Audio (WMA 10 Pro), Ogg Vorbis (aoTuV), and MPEG-1/2 Layer-3
– commonly known as ‘MP3’. Unfortunately, the performance
evaluation of these techniques poses a significant problem. In the
community of audio compression specialists there is no consensus
concerning an adequate objective quality measurement tool
for audio material. This implies that lossy audio compression
techniques have to be evaluated with standardized subjective tests.
However, these tests are very complex with very high demands on
qualified expert listeners and very strict requirements for the testing

in professional environments, while introducing no quality
degradation. Apart from MPEG-4 ALS, these compression
techniques are not officially standardized and WMA Lossless is
even a closed-source audio compression technique. To evaluate
the performance of the selected codecs, their compression ratio
was compared on different representative audio fragments with
varying characteristics. All fragments had two channels (stereo)
and a sampling rate of 96 KHz with 24 bits per sample.

The experimental results, graphically presented in Figure 3,
show that MPEG-4 ALS yields the best compression performance,
closely followed by Monkey’s Audio. The third place is shared by
FLAC and WMA Lossless. WAVPACK shows the worst performance.
Based on compression performance alone, MPEG-4 ALS is
clearly the winner. However, the current generation of media
applications seems to have only limited support for lossless audio
compression in general and for MPEG-4 ALS and Monkey’s Audio
specifically. FLAC seems to be the most supported lossless audio
compression technology, followed by WMA Lossless. Therefore
the conclusion is that FLAC is the lossless audio compression
technology of choice for the content aggregation scenario.

C
om

pr
es

si
ef

ac
to

r
(h

og
er

 is
 b

et
er

)

FLAC
APE
APE
WavPack
WMA

2.0

1.5

1.0

0.5

0.0
AUD

 1
AUD
 2A

AUD
 2B

AUD
 2C

AUD
 2D

AUD
 2E

AUD
 3A

AUD
 3B

AUD
 3C

AUD
 4A

AUD
 4B

AUD
 5A

AUD
 5B

AUD
 5C

AUD
 6

AUD
 7A

AUD
 7B

AUD
 8A

AUD
 8B

AUD
 9

102 table of contents 103table of contents

resolution (1280x720, 50 frames per second), with 4:2:2 chroma
subsampling and 10 bits per component, and selected fragments,
with varying characteristics, were coded using different bit rates
(ranging from 30 Mbps to 100 Mbps). In each case, the quality of
the decoded video material was measured using the peak signal-
to-noise ratio (PSNR). Figure 4 presents a typical PSNR graph for
high resolution, high quality video compression.

Figure 4: Typical PSNR graph for high resolution, high quality
video compression (scenario 1)

The results show that H.264/AVC Intra performs slightly better
than MJPEG2000. However, the differences in objective quality
at the same bit-rate are so small that they will not be visible in
general. In terms of compatibility with existing and future pro-
fessional production systems, the situation is not entirely clear
yet. This is most certainly the case in broadcast environments.

hardware and the testing environment. Because the necessary
expert listeners were not available for the testing hardware and
testing environment, the tests were replaced by a literature study
encompassing test results from subjective tests performed
by international organizations such as MPEG and EBU and by
independent audio compression experts. Test results presented in
the literature indicate that other compression techniques, which
have been developed more recently, significantly outperformed
the older MP3 codec. Among these newer techniques, there seem
to be only small performance differences. On average, HE-AAC v2
seems to show the best performance. The best supported audio
compression technology is still MP3, with HE-AAC v2 coming in
second. Based on its performance and (end-user) support, HE-
AAC v2 is the recommended choice for the internet distribution
scenario.

Video compression

Given the requirements detailed in the introduction of this chapter,
two video coding techniques, H.264/AVC Intra and MJPEG2000
were selected and compared for use in the content aggregation
scenario. Both MJPEG2000 and H.264/AVC are international
standards. In both techniques, each frame of the video sequence
is coded independently, ensuring optimal edit-friendliness. While,
for still images and audio material, lossless compression was
advocated for use in the content aggregation scenario, this is not
a practical solution for video since it implies unrealistic bandwidth
and storage requirements. However, to ensure high quality results,
lossy compression with visually imperceptible quality degradation
is used, which significantly reduces the storage and bandwidth
requirements in comparison to true lossless coding.

To evaluate the compression efficiency of the selected
techniques, a performing arts event was captured in 720p HD

P
S

N
R

 [
dB

]

60

55

50

45

40

Bitrate [Mbps]

25 35 45 55 65 75 85 95 105

H264
MJPEG 2000

104 table of contents 105table of contents

Additionally, Apple’s popular iPhone and iPod Touch and several
mobile phones from Nokia and other manufacturers also offer
H.264/AVC support. As a conclusion, based on its performance and
end-user support, H.264/AVC is our recommended choice for the
internet distribution scenario.

Figure 5: Typical PSNR graph for video compression (scenario 2)

Conclusion compression formats

For the content aggregation scenario, the compression technolo-
gies of choice are the following: FLAC for audio content, JPEG-LS
for still images and H.264/AVC Intra Only for video content. For
the internet distribution scenario, the compression technologies
of choice are the following: MPEG-2/MPEG-4 Advanced Audio
Coding (HE-AAC v2) for audio content, JPEG XR for still images
and H.264/AVC for video content.

However, considering its massive adoption in a multitude of other
markets, H.264/AVC is likely to receive better hardware and soft-
ware support. These reasons lead us to conclude that H.264/AVC
Intra is the best choice in this scenario.

For the internet distribution scenario, the following coding
techniques were evaluated: H.264/AVC, MPEG-4 ASP (XViD,
DivX), VC1 (Windows Media 9 Advanced Profile) and Flash (On2
VP6). The first three codecs are open international standards,
while the last one is a proprietary solution, which has become
a de facto standard in the last few years. All codecs employ
temporal prediction to obtain optimal rate-distortion performance.
To evaluate the compression performance of these codecs,
selected fragments from a recording of the opera Dialogues des
Carmélites at the Vlaamse Opera in SD format were converted to
QVGA format (320x240, 25 frames per second) using professional
editing equipment and thereafter compressed at different bit rates
ranging from 256 kbps to 1 Mbps. The resulting video quality was
again measured using the PSNR (see Figure 5 for a typical PSNR
graph). The results show that H.264/AVC generally achieves the
best compression efficiency, while VC-1 typically yields the worst
performance. The results for MPEG-4 ASP lie somewhere in the
middle between those of the latter two codecs. The results for
VP6 are harder to interpret. For some sequences, VP6 shows the
worst performance, while for others it demonstrates the highest
efficiency. The relative performance also seems to vary depending
on the target bit-rate. In general, the performance of VP6 should
be placed somewhere between that of MPEG-4 ASP and VC-1. The
best performing codec, H.264/AVC, is still relatively new. Despite
this fact, end-user support for this standard is rapidly growing.
On one hand, mature open-source solutions are already available
(ffmpeg). On the other hand, a H.264/AVC decoder has recently
been added to Adobe’s popular and freely available Flash Player
10, ensuring high-quality support for the broad end-user market.

P
S

N
R

 [
dB

]

45

44

43

42

41

40

39

Bitrate [kbps]

150 250 350 450 550 650 750 850 950 1050

H.264/AVC
MPEG-4 ASP XViD
SMPTE VC-1
MPEG-4 ASP XViD (two pass)
On2 TrueMotion VP6

106 table of contents 107table of contents

JPEG-LS for the content aggregation scenario.
The JPEG XR standard defines a feature-complete container

format organized as a table of Image File Directory (IFD) tags,
similar to a TIFF 6.0 container. A standard JPEG XR file contains
image data, an optional planar alpha channel, basic HD Photo
metadata stored as IFD tags, optional descriptive metadata stored
as IFD tags, optional Extensible Metadata Platform (XMP) metadata
encoded in XML and stored as a single IFD tag with extended data,
optional Exchangeable Image File Format (EXIF) metadata stored
as a sub IFD table linked by an IFD tag, an optional ICC colour
profile stored as an IFD tag with extended data. The image data is
a monolithic self-contained, self-describing JPEG XR compressed
data structure. The optional alpha channel, if present, is stored
as separately compressed single channel image data, referenced
by the appropriate IFD tags; enabling decoding of the image
data independently of transparency data in applications which
do not support transparency. In an effort to remain compatible
with software designed to decode IFD table-based TIFF files, the
largest possible HD Photo file is 4 GB in length. Even though this
limit should not raise any concerns in real-life applications, it will
be addressed in a future update. Taking all these elements into
consideration, it can be concluded that JPEG XR coded images
do not need an extra container format for the internet distribution
scenario.

JPEG-LS uses a file format that is similar to the JPEG
interchange format (JFIF), as it consists of frames, scans, and
restart intervals. In fact, JPEG-LS uses the same markers as JPEG
(except for a few that do not apply). Moreover, it adds new marker
segments containing JPEG-LS specific information, namely
specific start-of-frame and start-of-scan marker segments, and
an LSE marker segment for preset parameters. In fact, unlike
JPEG, parameters have default values that can be overridden by
other marker segments. JPEG-LS supports single- and multi-

Container formats

While compression formats are designed to compress the
multimedia data, container formats, also called wrapper formats,
are meta-formats that specify how the (compressed) data is
stored in a file or a stream in order to support functionalities
such as multiplexing, synchronization, indexing and the addition
of metadata. Container formats are typically tailored to a specific
type of multimedia material, be it audio, still images, video or a
combination of these. Some multimedia container formats, like
AIFF, WAV and XMF are exclusively designed to contain audio
data. Other containers, like FITS, JP2, JFIF, EXIF and TIFF, are
exclusive to still images. Other containers are more flexible and
can simultaneously hold many types of audio, video and other
data, such as subtitles, metadata, tags, timeline information, and
synchronisation information for the playback of the interleaved
streams. The most commonly used are 3GP, ANIM, ASF, AVI,
CDXL, DVR-MS, IFF, Matroska, MPEG-2 TS, MP4, MOV, Ogg, OGM
and Realmedia.

The choice of a multimedia container format requires the
thorough evaluation of different aspects of container formats:
market support, overhead of the metadata, support for the
(advanced) coding features of the intended compression format,
support for multiplexing, synchronization and indexing, and finally,
the support for streaming media – which requires the data to be
stored in chunks inside the container. In the following subsections
we elaborate on the choice of the proper container format for the
compression formats selected in the previous section.

Still image containers

According to the previous section, the compression technology
of choice is JPEG XR for the internet distribution scenario and

108 table of contents 109table of contents

Quicktime, and RMVB. The most interesting of these are the
multimedia container MPEG-4 Part 14 (MP4), formerly known
as ISO/IEC 14496-14:2003 and Matroska. Both container formats
offer a wide variety of functionality and support for many different
multimedia compression formats (see further).

Video containers

Video material is usually stored in combination with the
corresponding audio tracks, subtitles and metadata in a single
container format. Commonly used formats are AVI, MP4, Matroska
(MKV/MKA), and MXF.

Audio Video Interleaved (AVI) is a multimedia container
designed by Microsoft. AVI containers can store multiple audio
and video streams. The format supports nearly all the audio
and video formats supported by DirectX and Video for Windows.
Subtitles and chapters can also be stored inside the container via
modifications outside Microsoft. An AVI container consists of a
header with information about the video, e.g., the frame rate, and
the actual data.

MPEG-4 Part 14 (MP4) is a multimedia container format that
is part of the MPEG-4 standard. MP4 can store multiple audio and
video streams. It supports the standard video formats MPEG-1,
MPEG-2, MPEG-4, and MPEG-4 AVC and the audio formats (HE-)
AAC, MP3, MP2, MP1, CELP, TwinVQ, Vorbis, and Apple Lossless.
Except for these audio and video compression formats, MP4
containers can also store private streams. These private streams
can hold any kind of information. MP4 also supports storing
images, hyperlinks, subtitles, and chapters.

Matroska is an open-source multimedia container format. It is
based on EBML (Extensible Binary Meta Language). This is a binary
byte-bonded format, based on the principles of XML. Matroska has
two versions: MKV, that stores audio and video streams, and MKA,

component scans; in this latter case, a single set of context
counters is used throughout all components, whereas prediction
and context determination are done independently on each
component. The data in the component scan can be interleaved
either by lines or by samples. Since JPEG-LS has its own file
format, which can foresee most of the required functionality, it is
unnecessary to use an additional container format.

Audio containers

Some containers are exclusively designed for audio. The most
widespread audio-only container formats are FLAC, WAV, AIFF,
and XMF, of which WAV is the most widely used. However, audio is
also very often wrapped in multi-purpose multimedia containers,
such as Ogg, MP4 or Matroska. This is usually also the case for
the compression formats that were withheld before: FLAC for the
content aggregation scenario and MPEG-2/MPEG-4 Advanced
Audio Coding (HE-AAC v2) for internet distribution.

The open source FLAC development community proposes
two alternative containers. The first, also called FLAC, is a very
minimalistic audio container, designed to be very efficient at
storing single audio streams. The second is the Ogg multimedia
container, which enables the mixing of audio, video, metadata,
etc. The overhead is slightly higher than that of the native FLAC
container format. The FLAC community advises the use of FLAC
if only archiving of compressed audio is required. For more
advanced purposes it advises the Ogg container. Evidently, other
containers also support FLAC. Sometimes, the open source,
feature complete multimedia container Matroska is chosen for
FLAC encoded audio.

MPEG-2/MPEG-4 Advanced Audio Coding (HE-AAC v2) is
supported by many audio and multimedia containers such as
3GPP, Flash Video, Matroska, MP4, MPEG-2 TS, NUT, Ogg,

110 table of contents 111table of contents

the end-user market is limited. This limits the practical choice of
a video container for H.264/AVC to MP4 and Matroska.

Conclusion container formats

FLAC, JPEG-LS and H.264/AVC Intra Only were advised as the
compression formats for the content aggregation scenario for
audio content, still images and video content respectively. For
the internet distribution scenario, the compression technologies
of choice are the following: MPEG-2/MPEG-4 Advanced Audio
Coding (HE-AAC v2) for audio content, JPEG XR for still images
and H.264/AVC for video content. The encoded data should be
wrapped in container formats that are fully compatible with
the compression formats and support the requirements of the
different scenarios. The advised container formats for the chosen
compression formats for the content aggregation scenario are:

•	 Ogg or Matroska for FLAC,

•	 JPEG-LS does not need an extra container format,

•	 MXF for H.264/AVC Intra Only.

The container formats of choice for the internet distribution
scenario are:

•	 MP4 or Matroska for MPEG-2/MPEG-4 Advanced Audio
Coding,

•	 JPEG XR does not need an extra container format,

•	 MP4 or Matroska for H.264/AVC.

that can only store audio streams. Matroska containers can hold an
unlimited number of audio and video streams. It supports nearly
all the current audio and video codecs. Besides audio and video
streams it can also store images, subtitles, chapters, DVD-like
menus, and even fonts for the subtitles. It also allows streaming.

Material eXchange Format (MXF) is a standard container
format for professional audio and video. The format is specified
by a set of SMPTE standards. It is an open file format especially
designed for exchanging audiovisual material together with the
associated data and metadata during the production process.
Interoperability is the main goal of MXF. It can be used as a
streaming format and as a transferring format. MXF supports
nearly all the current audio and video codecs and also permits
storing random files. This allows storing transcriptions, images,
etc. The MXF container consists of a header, footer and body,
which actually holds the data. The header of the container format
stores timing parameters, synchronisation information, and
metadata. The MXF metadata can store information about the file
structure, the title and keywords, subtitles, reference numbers,
annotations, version numbers, location, date, etc. To manage the
complexity and all the degrees of freedom of the MXF container
format, MXF offers some ‘operational patterns’, or templates.

In the previous section H.264/AVC Intra Only was chosen
for the content aggregation scenario while H.264/AVC was the
codec of choice for the internet distribution scenario. H.264/AVC
Intra Only can be combined with any of the above-mentioned
video containers but for maximum professional support this
compression format should be combined with the MXF container
format. H.264/AVC can also be combined with any of the above-
mentioned video container formats. However, a combination
with AVI or MXF is not ideal. AVI limits the coding options, e.g.
B-frames cannot be supported in a straightforward manner,
which results in suboptimal compression and support for MXF on

112 table of contents 113table of contents

is to work in the frequency domain instead of the pixel domain,
hereby avoiding inverse and forward transform operations.

In order to obtain higher compression performance, standard
ization committees have pushed the limits of coding algorithms in
order to identify spatial, temporal, and statistical dependencies in
the video stream. As a result, the amount of dependencies in the
video stream is severely increased. This means that by changing
one syntax element of the video stream, several other elements

Transcoding

Video transcoding

In order to match the properties and constraints of transmission
networks and terminal devices, video transcoding is necessary.
Video transcoding can be regarded as the process for efficient
adaptation of video streams. The information of the incoming video
stream is efficiently reused while, at the same time, the quality
loss due to the transcoding process is minimized. A number of
properties and constraints can be the subject or reason for the
transcoding process, such as bandwidth limitations, packet loss,
bit rate variation, buffer constraints, display resolution, battery
life, etc. The properties and constraints implied by the network
or the device typically have an impact on the bit rate, the frame
rate, or the spatial resolution. Other types of transcoding exist
such as the insertion of new information, i.e. a company logo or
a watermark.

A straightforward solution for transcoding is the concatenation
of decoder and encoder. Since decoding and encoding is a
computationally very demanding operation, this solution is very
time-consuming. To overcome this problem, different alternative
transcoding solutions have been introduced in the literature
that try to ‘shortcut’ the transcoding process. Reducing the
computational efficiency has been a major driving force behind
the development of new transcoding solutions.

Efficient transcoding of video streams can be performed by re-
using as much of the information as possible from the incoming
video stream, and by only changing the required data in the video
stream. This means for example, that the motion vectors will be
re-used while changes will be made to the residual data (transform
coefficients). Another way of reducing complexity is by avoiding
algorithmic operations in the transcoding solution. An example

Figure 6: Spatial resolution, temporal resolution and bit rate
reduction transcoding

114 table of contents 115table of contents

are briefly discussed and their strengths and weaknesses are
indicated:

1)	 Open-loop requantization is a low-complexity transcod-
ing technique that consists of the following operations:
entropy decoding, requantization, and entropy encoding. A
number of time-consuming operations are eliminated and
fast transcoding becomes possible. The main disadvantage
is that the requantization errors propagate and accumu-
late, which results in increased quality loss. Drift plays an
important role in H.264/AVC transcoding and its effect on
visual quality will become more severe. Open-loop requan-
tization as such is practically not usable for transcoding.

2)	 Requantization with compensation is an extension of open-
loop requantization. This single-loop architecture calcu-
lates the requantization errors and compensates with the
requantization errors for both spatial and temporal predic-
tion in order to restrain drift propagation and accumulation.
As a result, more processing power and memory buffers
are required compared to open-loop requantization; how-
ever, this transcoding technique is still faster compared to
the cascade of decoder and encoder.

3)	 The cascade of decoder and encoder is the only drift-free
solution for transcoding. This is the most straightforward
solution since this is the concatenation of decoder and
encoder. In most cases, this solution is not desirable due
to the computational complexity as a result of the double-
loop architecture. One way to reduce the computational
complexity is to reuse the mode and motion data from
the incoming video stream. This way, complex processes,
such as mode decision and motion estimation, are avoid-
ed and significant savings can be made in complexity.

can be harmed. Because of the resulting mismatch between the
transcoder and decoder, drift can arise in the video stream, and
video quality can degrade. Because of this reason, a significant
effort related to the development of transcoding algorithms
was dedicated to assuring visual quality of the transcoded video
streams. Ideally, the transcoded video stream should have the
quality of a stream encoded directly with the required parameters.
The problem of drift together with techniques to stop degradation
has been extensively studied in literature.

In this project, we have been investigating bit rate reduction
transcoding and temporal resolution reduction transcoding for
H.264/AVC video streams.

Bit rate reduction transcoding

The objective of bit rate reduction transcoding is to reduce the
bit rate of a video stream while maintaining low complexity and
achieving the highest possible quality. Ideally, the quality of the
transcoded video stream should have the quality of the video
stream directly generated at the reduced bit rate.

There are two classes of techniques for bit rate reduction
transcoding, namely requantization transcoding and dynamic rate
shaping. Requantization transcoding uses a coarser quantizer
while dynamic rate shaping discards high-frequency transform
coefficients. In the scope of the project, we selected requantization
transcoding for bit rate reduction transcoding.

Different transcoding techniques are proposed in the literature:
open-loop requantization, requantization with compensation and
the cascade of decoder and encoder. Problems of drift for MPEG-
2 transcoding are extensively discussed in the literature. New
coding tools in H.264/AVC cause extra problems for transcoding.
An evaluation of different techniques for H.264/AVC transcoding
is presented in the literature. The main transcoding techniques

116 table of contents 117table of contents

temporal resolution reduction. More recently, hierarchical coding
structures have been used. Pictures are organized in temporal
layers. A temporal layer only depends on lower temporal layers.
As a result, the highest temporal layer can be removed without
harming the other pictures.

Conclusion transcoding

Transcoding of H.264/AVC has become more difficult due to new
coding algorithms. The transcoding operation should be care-
fully designed in order to have an optimum trade-off between the
computational complexity of the transcoding solution and the vis-
ual quality of the transcoded video streams. For bit rate reduction
transcoding, a hybrid transcoding architecture is presented that
combines different transcoding algorithms. These algorithms are
selected based on the picture and macroblock type. This results in
a fast transcoding solution that minimises quality loss. We found
that the hybrid architecture performs well for performing arts
video content. For temporal resolution reduction transcoding,
the H.264/AVC specification allows flexibility in the selection of
picture types. This way, different temporal resolution reductions
can be obtained using different coding structures. This technique
does not harm the other pictures in the video stream.

Future work

Future work in the domain of digital recording of performing
arts will probably be driven by the evolution in compression
techniques. In the short term in particular, the evolution in
video compression is likely to have a significant influence. More
specifically, a lot of work is being put into the development of
Scalable Video Coding (SVC) and Multiview Video Coding (MVC).

Since none of the transcoding techniques satisfied the require-
ments, we developed a hybrid architecture that combines different
transcoding techniques depending on the picture and macrob-
lock type. This provides a fast transcoding solution that minimizes
quality loss due to transcoding. Transcoding tests on performing
arts video content have shown that the performance of the hybrid
architecture is close to the cascade of decoder and encoder with
a significant reduction in transcoding complexity.

Temporal resolution reduction transcoding

The objective of temporal resolution reduction transcoding
is to reduce the frame rate of a video stream. In the past, this
was often achieved using motion vector mapping. The mapping
operation introduces small propagating errors. More recently,
other approaches have appeared. These approaches make an
appropriate choice for the coding structure. The coding structure
allows certain pictures to be dropped without causing errors in
other pictures.

Before we explain how to compose these coding structures, we
need to further elaborate on picture types. There are three types
of pictures: I pictures, P pictures, and B pictures. The I pictures
are coded independently and only exploit spatial correlation.
These pictures require more bits compared to P or B pictures
and are used as random access points in the video stream. The
P and B pictures exploit both spatial and temporal correlation.
The P pictures only refer to past reference pictures while the B
pictures refer to both past and future reference pictures.

In the past, mainly IBBP coding structures were used.
The P picture is coded before the two consecutive B pictures.
As a result, there is a structural delay on the encoder side of
two pictures. When the B pictures are not used as a reference,
they can be discarded from the video stream. This leads to a

118 table of contents 119table of contents

Figure 7: Compression and container formats

Scenario Multimedia files Compression
format

Container
format

Content
aggregation

Audio FLAC Ogg or Matroska

Still Images JPEG-LS /

Video H.264/AVC Intra
Only

MXF

Internet
distribution

Audio MPEG-2/MPEG-4
Advanced Audio
Coding

MP4 or Ma-
troska

Still Images JPEG XR /

Video H.264/AVC MP4 or Ma-
troska

It should be noted that the optimum solutions for the two
scenarios differ because the requirements of the scenarios
are different. This implies that there is a need for conversion if
aggregated content needs to be distributed. The most efficient
method for this conversion is transcoding, optimized for specific
compression formats and/or applications. In this chapter, a hybrid
architecture for transcoding H.264/AVC encoded video with low
quality loss was presented.

SVC is the efficient combination of the same video content with
a different resolution, frame rate and/or quality into a single
encoded video stream. Some of the applications of SVC include
a scalable production format, offering both a high resolution, a
high-quality editing format and a low resolution, a lower quality
browsing format, and a scalable format for distribution over
channels with different characteristics (bandwidth, error rate,
etc.). MVC allows the efficient representation of multiple views
of the same video content into a single encoded video stream. It
offers interesting possibilities in applications, such as 3D video
and immersive experiences where the spectator can virtually
walk on stage during a performance. However, new techniques
like SVC and MVC and their possible applications will pose new
requirements on container formats and they will increase the
need for efficient conversion – transcoding – to application and/
or network specific content.

Conclusions

The goal of this project is a fluent digital dissemination of
performing arts content. Two different scenarios were identified
to realize this goal, a content aggregation scenario and an
internet distribution scenario. This chapter tries to formulate
recommendations concerning the optimal choice of compression
and container formats for audio, video and still images in the
context of these two scenarios. The following table presents the
advised combinations of compression formats and container
formats for the different scenarios.

