
Received March 5, 2020, accepted April 27, 2020, date of publication April 29, 2020, date of current version May 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991314

High-Throughput Variable-to-Fixed Entropy
Codec Using Selective, Stochastic Code Forests
MANUEL MARTÍNEZ TORRES 1, MIGUEL HERNÁNDEZ-CABRONERO 2,
IAN BLANES 2, (Senior Member, IEEE),
AND JOAN SERRA-SAGRISTÀ 2, (Senior Member, IEEE)
1Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Corresponding author: Miguel Hernández-Cabronero (miguel.hernandez@uab.cat)

This was supported in part by the Postdoctoral Fellowship Program Beatriu de Pinós through the Secretary of Universities and Research
(Government of Catalonia) under Grant 2018-BP-00008, in part by the Horizon 2020 Program of Research and Innovation of the European
Union under the Marie Skłodowska-Curie under Grant 801370, in part by the Spanish Government under Grant RTI2018-095287-B-I00,
and in part by the Catalan Government under Grant 2017SGR-463.

ABSTRACT Efficient high-throughput (HT) compression algorithms are paramount to meet the stringent
constraints of present and upcoming data storage, processing, and transmission systems. In particular,
latency, bandwidth and energy requirements are critical for those systems. Most HT codecs are designed
to maximize compression speed, and secondarily to minimize compressed lengths. On the other hand,
decompression speed is often equally or more critical than compression speed, especially in scenarios where
decompression is performed multiple times and/or at critical parts of a system. In this work, an algorithm
to design variable-to-fixed (VF) codes is proposed that prioritizes decompression speed. Stationary Markov
analysis is employed to generate multiple, jointly optimized codes (denoted code forests). Their average
compression efficiency is on par with the state of the art in VF codes, e.g., within 1% of Yamamoto et al.’s
algorithm. The proposed code forest structure enables the implementation of highly efficient codecs, with
decompression speeds 3.8 times faster than other state-of-the-art HT entropy codecs with equal or better
compression ratios for natural data sources. Compared to these HT codecs, the proposed forests yields similar
compression efficiency and speeds.

INDEX TERMS Data compression, high-throughput entropy coding, variable-to-fixed codes.

I. INTRODUCTION
High throughput (HT) data compression is widely employed
to improve performance in many systems with strong time
constraints. In communications applications, compression
improves effective channel capacity [1], [2], and HT is essen-
tial to avoid undesired transmission delays. Large-scale data
processing applications benefit fromHT compression, e.g., to
reduce network, disk and memory usage in computer clusters
and distributed (including cloud) storage systems [3]–[10].

HT codecs produce compact representations of input
data, prioritizing the rate at which samples are processed
over the achieved compression ratios –i.e., the quotient
between the original and compressed data sizes. Even though
HT can be attained via massive parallelization [11]–[14],
low-complexity compression pipelines are often employed

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

for this purpose [15]–[25]. Lower complexity typically entails
lower power consumption, and therefore HT codecs are also
suitable in scenarios with energy consumption and delay con-
straints. These include remote sensing and earth observation
onboard satellites [26], [27], real-time transmission of point
clouds for search and rescue [28], cooperative robot coordi-
nation [29], and Internet of Things (IoT) scenarios [30]–[32].
Many other applications can benefit from time-efficient and
energy-efficient data compression, in particular when involv-
ing interactive communication andmobile devices. The use of
compression in hypertext transfer protocol data [33], [34] and
in wireless sensor networks [35] are two notable examples
thereof.

In many of the applications described above, decompres-
sion performance (in terms of time and energy consump-
tion) is equally as or more important than compression
performance. Decompression time is critical to minimize
delay in high-performance network contexts [1], [2], [36],

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 81283

https://orcid.org/0000-0001-6020-7618
https://orcid.org/0000-0001-9301-4337
https://orcid.org/0000-0001-8939-1666
https://orcid.org/0000-0003-4729-9292

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

in particular when headers need to be obtained for routing
and other purposes in intermediate nodes [1], [32], [35],
and to allow fast access to data in cloud and distributed file
systems [5], [37]–[39]. In the context of high-performance
computing, it is paramount to quickly retrieve compressed
data [3], [4], [9], especially in data-driven applications [6],
[36], [40] using distributed databases and compressed
columns. Furthermore, minimizing energy spent at the
decoder can extend the availability of battery-powered
devices, e.g., for mobile networks and IoT [32], [32], [35],
robot coordination in rescue situations [28] and mobile web
browsing [34], to name a few. Power efficiency in the decod-
ing process also has a positive effect on the carbon footprint
of data centers where it is intensively applied [1]–[5], [9],
[37]–[39], notably when the same data are typically decoded
at different points in time [6], [40].

Variable-to-fixed (VF) coding produces fixed-length
words, each representing multiple input symbols [41]–[53].
In this work, we present an HT compressor-decompressor
pair based on VF codes, designed to provide signifi-
cantly higher decoding speed while yielding compression
ratios and coding speeds comparable to state-of-the-art
HT entropy codecs. A method is first proposed to cre-
ate dictionaries (equivalent to code trees) stochastically
optimized for any given symbol probability distribution.
An extension using code forests allows adding a parametriz-
able number of coding contexts, enabling configurable
time-compression ratio trade-offs. Further improvements are
proposed based on selectively dedicating more effort to
more compressible parts of the input data. This enables the
design of more efficient codes and minimizes the impact
of low-probability symbols and of incompressible noise.
The proposed codec extends upon our previous conference
works [21], [54] with theoretical contributions, exhaustive
experimental results to assess their performance, and a stan-
dalone code container released with digital object identifier
(DOI) 10.24433/CO.2752092.v21 as supplementary materi-
als to enable full experimental reproducibility.

The remainder of this paper is structured as follows:
Section II discusses the closest relatedworks in the state of the
art. Section III provides definitions and a concise review of
the VF coding literature. The proposed HT codec is described
in Section IV, and exhaustive experimental evaluation is pre-
sented in Section V. Section VI concludes this work.

II. RELATED WORK
Some of the best-performing HT algorithms in the state of
the art are based on a Lempel-Ziv (LZ) [55] decomposi-
tion, and/or a fast entropy coding stage. LZ decomposition
removes data redundancy by expressing the input as a series
of position-length references to a dynamically built dictio-
nary [55]. These references can be directly output –e.g.,
as in LZ4 [15] and Google’s Snappy [16]–, compressed
with fast bit mangling techniques [17], encoded with a fast

1Also available at https://codeocean.com/capsule/9466901/.

version of Huffman’s entropy coder –e.g., as in LZO [18] and
Gipfeli [19]–, or coded with a combination of fast Huffman
and asymmetrical numeral system (ANS) [56] algorithms,
for example as in Zstandard [20]. Random data sources –
e.g., with Laplacian distributions– appear naturally when
dealing with image, audio and other sensor signals when
using differential pulse-code modulation (DPCM) and other
common prediction and/or transform-based methods. For
these and other random sources, LZ decomposition does not
yield good results, and especially low efficiency has been
reported for medium and low source entropy rates [21].
Competitive codecs have been proposed that obviate any LZ
decomposition and rely on a fast entropy codec. A modified
version of Huffman is used in Huff0 [22]. Finite State Entropy
(FSE) [23] provides a fast implementation of ANS; and Rice
codes are used in fast JPEG-LS implementations such as
CharLS [24]. FAPEC [25], a recent compression algorithm
designed for space missions, includes an HT entropy codec
that is adaptively applied to blocks of prediction errors.

In all cases above,2 HT compression is attained by repeat-
edly coding one [22]–[25] or several [18]–[20], [56] input
symbols into variable-length words. Even though these com-
pression schemes enable fast encoding and reasonable com-
pression ratios, one-pass decoders cannot know a priori
the boundaries between coded words [15]–[25]. Therefore,
they must continually execute conditional branches that
hinder efficient pipelining of the decoding process, thus
limiting maximum decoding speed and increasing energy
consumption.

By construction, VF codes can be decoded very efficiently
without requiring conditional branches at the most critical
parts of the decoding loop. Tunstall proposed an algorithm
that produces codes optimal within a subclass of all possible
VF codes called prefix free [41]. Since then, more general
classes of VF codes have been described that improve upon
Tunstall. Savari introduced the concept of plurally parsable
dictionaries, and proposed a generation algorithm for the
binary case [44]. Yamamoto and Yokoo described the class of
plurally parsable codes called almost-instantaneous variable-
to-fixed (AIVF) codes, which can also be employed in the
non-binary case [47]. Some improvements have been pro-
posed to [47], reporting small gains in terms of compressed
sizes [49], [51] and memory efficiency [52]. This work
contributes with a new method for constructing VF codes
that provide an advantageous trade-off between compression
efficiency and computational complexity, specifically for the
decoder. It should be highlighted that other variable-to-fixed
codecs not discussed in this work have been proposed in
the literature, e.g., [42], [43], [45], [46], [48], [52]. How-
ever, these are based on arithmetic coding as opposed to
dictionary-based coding, which enables higher (better) com-
pression ratios but at a prohibitive complexity cost in the
scope of HT codecs.

2Except arguably for [15] and [16], which can be considered variable-
to-fixed codecs since they output fixed-length LZ dictionary references.

81284 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

III. BACKGROUND
A. DEFINITIONS AND NOTATION
1) SOURCES, SEQUENCES AND CODECS
Let ℵ be a discrete source that produces symbols from a
finite alphabet A =

{
a1, . . . , a|A|

}
. When the probabil-

ity of emission of the symbols is known, A also denotes
a sequence sorted in decreasing order of probability. Let
A+ be the set of all finite, nonempty sequences of ele-
ments in A. Elements W ∈ A+ are referred to as words
and denoted as W = w1 w2 · · ·w|W|, where wi ∈ A
denotes the i-th symbol in the word. Let B+ be the set of
all finite, nonempty binary sequences. A lossless entropy
codec can be defined as a pair of coder and decoder functions(
E : A+ −→ B+, D : B+ −→ A+

)
that satisfy D(E(A)) =

A for all A ∈ A+. Hereafter, lossless entropy codecs as per
this definition are considered exclusively.

2) VARIABLE-TO-FIXED DICTIONARIES
Variable-to-fixed coders split A ∈ A+ into a finite sequence
of words whose concatenation yields A. Each word is then
represented by a binary sequence of fixed length l > 0, and
E(A) ∈ B+ is defined as the concatenation of all binary
sequences. Each l-bit sequence can be considered an index
to a dictionary W that contains at most 2l words and unam-
biguously describes its associated variable-to-fixed code.

VF decoders can be implemented very efficiently by itera-
tively reading l bits from E(A) and outputting the correspond-
ing word’s symbols. Dictionaries associated with VF codes
can be defined a priori, or dynamically constructed as input
samples are processed, e.g., with the LZ algorithm [55].
A dictionary W fully defines a codec assuming the criterion
of using the longest word possible. This criterion is general
in the literature and is embraced as well in this work. In what
follows, only complete dictionaries are considered, i.e., for
any valid input sequence A ∈ A+, there exists at least one
concatenation of words in W such that A is a prefix of that
concatenation.

The statistical properties of ℵ, in particular the probability
of emission of each a ∈ A, can be exploited to optimize
dictionary performance. Sources are hereafter assumed to be
ergodic –e.g., stationary– with symbol probability distribu-
tion P. As discussed in Section I, probability-driven design
enables more efficient compression than LZ-based methods
for sources well modeled by random variables, e.g., following
a Laplacian distribution [21]. Therefore, this approach to
dictionary design is considered exclusively hereinafter.

3) CODE TREES
VF dictionaries can always be expressed as a code tree,
in which each edge is assigned a symbol a ∈ A. Each node is
associated with a word W formed by the symbols associated
with the edges of its path from the root node, and a present
flag determining whether that word is Included or Excluded
from W . The code tree T equivalent to a dictionary W is
defined as the one that satisfies these conditions:

Algorithm 1 VF Coding of an Input Sequence A Using a
Code Tree T
1: function TreeCoding(T , A)
2: n← T .root F n: current node
3: for each a ∈ A F a: current input symbol
4: if n.HasEdge(a) then

// Follow edge associated with a
5: n← n.Child(a)
6: else

// Word defined by the path from T .root
7: EmitWord(n.W)
8: n← T .root.Child(a)
9: end if
10: end for
11: if n 6= T .root then
12: FlushLastSymbols(n)
13: end if
14: end function

1) For each wordW in the dictionary, there exists exactly
one node with associated word W and present flag set
to Included .

2) All Included nodes have words included in W .
3) The present flag is Included for all leaf nodes. A node

is a leaf when it has no children.
4) No two nodes can have the same associated word.
The encoding process using a code tree is described in

Algorithm 1. It starts at the root node, and each input symbol
is processed sequentially. If the current node has an edge with
associated symbol equal to the input, and the edge connects
a child node, the algorithm advances to that child node. Else,
the algorithm emits the current node’swordW, i.e., it appends
that word’s index binary representation to the current output.
Any one-to-onemapping between the words and the available
binary indices can be used, as long as it is known by both the
coder and the decoder. A routine called EmitWord is assumed
to be available in this and subsequent algorithms to invoke
this functionality. After emission of a word, the algorithm
returns to W’s root and the process is repeated. If the dictio-
nary completeness assumption described above holds, nodes
associated to emitted words are guaranteed to be Included
inW . After the main coding loop, one or more symbols might
remain uncoded. By construction, these symbols are prefix of
some Included words inW . The FlushLastSymbols function
emits any of those words and sends as side information the
number of symbols coded this way.

A common decompression algorithm exists for all
VF codes. Each emitted fixed-length index identifies a single
Included word, that can be looked up in a table that contains
that word’s symbols. In case the FlushLastSymbols function
emitted a word during compression, the decoder truncates
that word to match the decompressed symbol sequence with
the original one. Side information needed to perform this
truncation is negligible for long enough sequences and not
considered hereafter.

VOLUME 8, 2020 81285

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

Algorithm 2 Tunstall’s Algorithm for Creating an Optimal
Prefix-Free Dictionary for AlphabetA and Symbol Probabil-
ity P of up to max_size Words
1: function Tunstall(A, P, max_size)

// Initialization
2: W ← {Wa}a∈A,Wa = a

// Node expansion
3: while |W| + |A| ≤ max_size do
4: W← argmax

W∈W
{Pword (W)}

5: W ←W \ {W} F \: set subtraction
6: for each a ∈ A
7: W′←W⊕ a F ⊕: concatenation
8: W ←W

⋃
{W′} F

⋃
: set union

9: end for
10: end while
11: return W
12: end function

B. PREFIX-FREE DICTIONARIES
A dictionary W is prefix-free (or proper) if it satisfies
∀W,W′ ∈W ,W 6= w′1w

′

2 · · ·w
′

|W|, i.e., noword is the begin-
ning of another. Under this constraint, no valid inputA ∈ A+
can be expressed by more than one concatenation of words
in W . Tunstall [41] proposed a method to design optimal
prefix-free dictionaries assuming amemoryless sourceℵ, i.e.,
one that produces symbols independently. Tunstall’s method
is listed in Algorithm 2. First, the dictionary is initialized with
|A| words, each one representing a different input symbol
(line 2). In successive iterations, each word W ∈ W is
assigned a probability

Pword (W) =
∏
w∈W

P (w) , (1)

where w iterates overW’s symbols. The most probable word
W based on Pword is then substituted by |A| new words, each
resulting from concatenating W and a different symbol from
A (lines 4 to 10). The algorithm stops when no more words
can be expanded without exceeding the specified maximum
number of words.

Using code tree notation, each iteration of Tunstall’s algo-
rithm can be regarded as adding |A| children to the leaf
node with the highest estimated probability. To satisfy the
prefix-free constraint, only words represented by leaf nodes
are included in the output dictionary W . Fig. 1 shows an
example of an iteration of Tunstall’s algorithm using code tree
notation for A = {a, b, c, d} and associated probabilities
0.8, 0.1, 0.07, and 0.03. In this example, the words included
in W are {aa, ab, ac, ad, b, c, d}, and the node to be
expanded in the next iteration (not shown in the figure) is that
withW = aa and associated probability 0.64.

C. PLURALLY PARSABLE DICTIONARIES
The optimality of Tunstall codes is restricted to the prefix-
free case. More general, plurally parsable (or non-proper)
dictionaries that remove the prefix-free constraint were

FIGURE 1. Tree representation of an iteration of Tunstall’s algorithm:
(left) tree initialization; (right) expansion of the most probable node.
Nodes with maximum probability are highlighted with a thicker line in
both depicted states.

introduced in [44]. Using tree notation, words associated with
non-leaf nodes can also be included in W when removing
the prefix-free constraint. This has enabled more flexible and
efficient designs [47], [49]–[51], [53].

In [44], Savari designs dictionaries that outperform Tun-
stall’s for the case of predictable, memoryless binary sources,
i.e., ℵ producing symbols from A = {0,1} independently
with large P (0) or large P (1). She considers the encoding
process as a Markov chain and analyzes its steady state
to appraise dictionary performance, although her analysis
applies only to the binary case and is described as cumber-
some [44] and difficult to apply to the non-binary case [47].
Rababa et al. improve upon Savari’s method by removing the
constraint of always emitting the longest possible word [51].
Input can then be expressed using different word sequences
with the same length as that obtainedwith the aforementioned
constraint, and the choice made in the coding process is used
as a side channel between the coder and the decoder.

In [47], a class of plurally parsable dictionaries called
almost instantaneous variable to fixed (AIVF) codes is pro-
posed. A complete dictionary W is AIVF if and only if its
associated code tree satisfies the following conditions:

1) All leaf nodes in the code tree represent words included
in W .

2) Non-leaf nodes that have |A| children (complete nodes)
represent words not included in W .

3) Words represented by non-leaf nodes with fewer than
|A| are included in W .

The algorithm in [47] differs from Tunstall’s in the fact
that nodes can be partially expanded, leading to more flex-
ible designs. This is illustrated with an example in Fig. 2
for A = {a, b, c, d, e} and associated probabili-
ties {1/3, 1/4, 1/6, 3/20, 1/10}. In [47], multiple plurally
parsable dictionaries are also proposed to exploit some depen-
dencies between consecutively emitted words. Further analy-
sis and improvements to [47] based on dynamic programming
are proposed in [49], [53]. The code tree by [53] for the same
example is shown in Fig. 2b.

IV. PROPOSED HT CODEC
A novel HT codec based on plurally parsable dictionaries
is proposed in this section. An algorithm for creating indi-
vidually optimized code trees is proposed in Section IV-A,

81286 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

FIGURE 2. Example of plurally parsable code trees from [53]: (a) created
using [47]; (b) created using [53].

based on stochastic optimization. In Section IV-B, multiple
code trees are optimized jointly to generate code forests
that improve upon individual code trees. Further improve-
ments to the code forest generation algorithm are proposed
in Section IV-C to prioritize resource allocation to the most
compressible parts of the input.

A. STOCHASTICALLY OPTIMIZED CODE TREES
The description of the proposed algorithm for generating
stochastically optimized code trees is presented in three
parts. Section IV-A.1 defines the generation of basic trees.
Section IV-A.2 models code trees as stochastic processes,
enabling the creation of better adapted trees. Section IV-A.3
describes the iterative process used in the proposed codec to
generate stochastically optimized code trees.

1) BASIC TREE GENERATION
Given a node n with associated word W, the probability of
the encoder emittingW is lower if that node has a nonempty
set of children, hereafter denoted children(n). This is because
some occurrences of W in the sequence of input symbols
will be coded by words associated with nodes contained in
children(n). Since longer words are preferred to maximize
compression efficiency, a child word will be used whenever
the next input symbol a can be matched, i.e., when an edge
associated with a is connected to n in the code tree. Based on
this, for the first coded word, the probability of a node being
emitted can be calculated as

Pnode (n) = Pword (W) ·

1−
∑

m∈children(n)

P (symbol(m))

 , (2)

where symbol(m) denotes the symbol of the edge connecting
m and its parent n. By definition, when children(n) is empty,
Pnode (n) = Pword (W). As discussed in IV-A.2, Pnode is not
always accurate for the second and subsequent coded words.
For the sake of simplicity, Pnode is assumed to be exact for
basic tree generation.

Algorithm 3Basic Code Tree GenerationWithout Stochastic
Optimization for Alphabet A, Symbol Probability P and
max_size Included Nodes
1: function GetBasicTree(A, P, max_size)
2: W ← {Wa}a∈A,Wa = a
3: T ← TW F Tree with the root and |A| children
4: while |T .IncludedNodes()| ≤ max_size do
5: n← argmax

n∈T .IncludedNodes()
{Pnode (n)}

// A’s symbols sorted by decreasing probability.
6: n.AddChild(a|children(n)|+1)
7: if |children(n)| = |A| − 1 then

// Last possible symbol
8: n.AddChild(a|A|)
9: n.present ← Excluded
10: end if
11: end while
12: return T
13: end function

The proposed method is given in Algorithm 3. It follows
a generalization of Tunstall’s iterative algorithm, with the
following three main differences:

1) In each iteration, the selected node is the one with
the highest Pnode (n) instead of the highest Pword (W)
(line 5). This is hereafter referred to as the node being
expanded.

2) Only one node m is created and connected to the
expanded node n (line 6). The expanded node can
be selected again in subsequent iterations. This is as
opposed to Tunstall’s algorithm, which connects all
possible children to the node being expanded in a single
iteration. Note that nodes added with AddChild are
flagged as Included by default.

3) If an expanded node n is connected to |A|−1 children,
a second node m is connected to n associated to the
last symbol in A, a|A| (line 8). Then n is flagged
as Excluded , removing its associated word from the
dictionary (line 9). These changes can be safely applied
after 2 by construction, because the emission of n’s
wordW can only take place if symbol a|A| is produced
afterW by the source, or the end of the input sequence
is reached afterW. Otherwise, by construction, another
word would have been emitted. The changes benefit
compression performance by increasing the average
number of symbols per word included in the dictionary.

Algorithm 3 can be regarded as fast approximation to the
average-sense optimal almost instantaneous VF code tree
generation algorithm presented in [47]. In [47], sometimes
all children of a node n are added instead of creating a
single child in the node with highest associated probability.
This occurs when the average word length gain due to the
automatic expansion of n’s last symbol outweighs creating
otherwise suboptimal children. Empirically, we observed that
this has little impact in most cases.

VOLUME 8, 2020 81287

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

2) CODE TREES AND STOCHASTIC PROCESSES
Plurally parsable dictionaries introduce temporal dependen-
cies between words. For instance, consider the code tree
depicted in Fig. 2 for A = {a, b, c, d, e}. If word W = a
is emitted, since longer words are always preferred for cod-
ing, the next emitted word must start with symbols d or e.
Otherwise, words aa, ab or ac would have been emitted
instead ofW. Therefore, a tree obtained by direct application
of Algorithm 3 will generally not be optimally adapted for
the next symbol. This is because P (a), P (b) and P (c) were
not assumed to be 0 in its creation. In general, suboptimal
probability estimationwill occur after emitting any non-leaf’s
word. Algorithm 4 is proposed below based on stochas-
tic analysis to address this issue and generate an improved
tree, which maximizes expected emitted word length for a
long-enough sequence of symbols. This is as opposed to con-
sidering only the expected word length of a dictionary, which
is accurate to measure the dictionary’s efficiency only in the
prefix-free case due to the lack of temporal dependencies
between words discussed above.

The coding procedure using a tree T is modeled as
a stochastic process XT with |A| − 1 states, 6XT =

{σ1, . . . , σ|A|−1}, which are transitioned whenever a word
is emitted. When T is obvious from the context, X is used
instead of XT . Hereafter, X is defined to be in state σi when
T ’s structure and the last emitted word determine that the
next coded word cannot start with any of the i − 1 most
probable symbols, i.e., the first i − 1 symbols in A. After
emitting a leaf node’s word, the process will transition to state
σ1 because there are no restrictions on the next input symbol.
By design, Algorithm 3 adds children associated with sym-
bols in decreasing order of probability, i.e., in the order given
by A. Therefore, after emitting the word associated with a
node n, X will be in state σ|children(n)|+1. Using this definition,
the probability of a node’s word being emitted can now be
expressed as

PX (n) =
∑
σ∈6X

PX (n | σ) π (σ) , (3)

where π (σ) is the probability of X being in state σ before
emitting a word, and PX (n | σ) is that node’s conditional
probability, given that the process is in state σ before emis-
sion.3 The new measure PX can directly replace Pnode in
line 5 of Algorithm 3. The resulting function for producing
trees given a finite discrete process X is hereafter denoted
GetProcessTree(A, P, 6X , π , max_size), where 6X is X ’s
state set and π is a function satisfying

∑
σ∈6X

π (σ) = 1.

3) STOCHASTIC OPTIMIZATION
To obtain PX (n), both the conditional probabilities and
the process state probabilities must be computed. A node’s

3Note that the Greek letter π is hereinafter employed to denote state
probability measures, as opposed to the Latin P used for symbols and words.

conditional probability in (3) can be calculated as

PX (n | σi) =
δ(σi, n) · Pnode (n)∑

m∈NodesFrom(T , σi) Pnode (m)
(4)

=
δ(σi, n) · Pnode (n)∑
a∈A.FirstAt(σi) P (a)

, (5)

where NodesFrom(T , σ) is the set of all nodes whose word
can be emitted while in a state σ , where δ is a function defined
as

δ(σ, n) =

{
1 if n ∈ NodesFrom(T , σ)
0 otherwise,

(6)

and where A.FirstAt(σ) is the set of symbols valid in the
first position of the next emitted word. Assuming sym-
bols are sorted in descending order of emission probability,
A.FirstAt(σi) = {aj ∈ A : j ≥ i} is the set of all but
the first i − 1 symbols in A. Note that equation (5) holds
by construction, because all nodes in NodesFrom(T , σi) are
associated with words that start with a ∈ A.FirstAt(σi). The
Pnode sum of all nodes in any branch remains constant with
node expansions as defined in Algorithm 3, hence symbol
probabilities are unaffected by X ’s state in the second and
subsequent positions of a word.

Continuing with PX ’s calculation, X ’s state probabilities
can be accurately computed assuming ergodicity of the source
ℵ. StationaryMarkov chain analysis is applied by considering
the state transition probability matrix. The transition proba-
bility to σj given state σi can be expressed as

T(σi, σj) =
∑

n∈NodesTo(T , σj)
PX (n | σi) , (7)

where

NodesTo(T , σj) = {n ∈ T : |children(n)| = j− 1} (8)

is the set of nodes in T whose associated word’s emission
entails a transition to state σj. It is trivial to verify that T
satisfies all necessary conditions for X to be a stationary
Markov chain. In the proposed codec, π is defined as X ’s
stationary state probability measure, which can be computed
as shown in Algorithm 5: state probabilities are iteratively
updated by multiplication with T until probability conver-
gence of π . A small tolerance ε is allowed, e.g., ε ≈ 10−10,
to avoid numerical instability. It was empirically found that
Algorithm 5 converges within a few iterations.

The proposed method for generating individual, stochasti-
cally optimized code trees is given in Algorithm 4. Function
MarkovOptimizedTree takes an alphabet A, symbol proba-
bility P and a maximum number of nodes. A basic tree as
described in Section IV-A.1 is generated for initialization
purposes (line 3). The stationary state probabilities are com-
puted using Algorithm 5 (line 6). These probabilities are then
used to update the current tree with a new one using the
routine defined in Section IV-A.2. If the newly generated
code tree is not identical to the previous one, probabilities and
trees are updated again. Otherwise, convergence is achieved,

81288 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

Algorithm 4 Generation of Code Trees Optimized Based on
Stationary Markov Chain Analysis
1: functionMarkovOptimizedTree(A, P, max_size)
2: t ← 0
3: T ← GetBasicTree(A, P, max_size)
4: forever do
5: π ← TreeStationaryProbability(T)
6: X ← XT
7: T ′← GetProcessTree(
8: A, P, 6X , π , max_size)
9: if T = T ′ then

// Tree generation convergence
10: return T
11: end if
12: T ← T ′
13: end forever
14: end function

Algorithm 5 Calculation of the Stationary State Probabilities
Associated With a Code Tree T
1: function TreeStationaryProbability(T)
2: X ← XT
3: T(σi, σj)←

∑
n∈NodesTo(T , σj)

PX (n | σi)

4: π (σ)← 1
|6X |

∀σ in 6X F Uniform initialization
5: forever do
6: π ′(σi)←

∑
σj∈6X

π (σj) · T(σj, σi) ∀σi ∈ 6X

7: if
∑
σ∈6X

(
π (σ)− π ′(σ)

)2
< ε then

// State probability convergence
8: return π
9: end if
10: π ← π ′

11: end forever
12: end function

i.e., the current code tree is optimized for sufficiently long
input sequences. This iterative process was empirically found
to converge in a few iterations.

B. OPTIMIZED CODE FORESTS
In Section IV-A, optimization is performed, assuming that a
single tree is used to code all input symbols. In this section,
multiple trees are jointly optimized assuming that different
words can be emitted by different trees. Each emitted word
determines the next tree to be used for coding. A code forest
F is defined as a finite set of code trees, {T1, . . . , T|F |},
alongside the rules that dictate what tree within the set to use
after emitting each word. Hereafter, |F | denotes the number
of trees in the code forest. The general coding procedure for
any code forest is provided in Algorithm 6.

In [47]’s algorithm, a code forest with exactly |A| − 1
trees is produced. Ti’s root has children for all but the i − 1
most probable symbols. Therefore, Ti is designed specifically
for state σi as defined in Section IV-A.2, where none of the

Algorithm 6 VF Coding of an Input Sequence A Using a
Code Forest F
1: function ForestCoding(F , A)
2: T ← F0 F F0: Arbitrary initial tree
3: n← T .root F n: current node
4: for each a ∈ A F a: current input symbol
5: if n.HasEdge(a) then
6: n← n.Child(a)
7: else
8: EmitWord(n.W) F n.W: n’s word
9: T ← n.Tnext F n.Tnext: defined transition
10: n← T .root.Child(a)
11: end if
12: end for
13: if n 6= T .root then
14: FlushLastSymbols(n)
15: end if
16: end function

i − 1 most probable symbols may appear at the beginning
of the next word. In [47], after emitting a node n’s word,
the next tree is the one designed for state σ|children(n)|+1. In this
section, we propose a more general forest design algorithm
that produces a parametrizable number of trees. In contrast
to [47], all tree roots of the proposed method have exactly
|A| children so that any input sequence can be coded with
any of these trees. Code trees in the forest T ∈ F are
optimized based on the transition rules of F , as described
below in Section IV-B.1. The number of trees determines
the number of coding contexts that are effectively used for
coding. In Section IV-B.2 a method is proposed to arrange
word indices that allows highly competitive decompression
throughput.

1) STOCHASTIC FOREST OPTIMIZATION
In the proposed Algorithm 7, 2� trees are produced, F =
{T1, . . . , T2�}. Each tree contains exactly |Ti| = 2K

Included nodes. Parameters � and K are integers that must
satisfy K ≥ � ≥ 0, and K ≥

⌈
log2 |A|

⌉
. For each tree

in the forest, 2K−� of its words are defined so that T1 is
used for coding after emitting them. The same number of
words is devoted to the remaining trees inF . For example, for
K = 8 and� = 2, 4 trees are created. Each tree contains 256
Included words, 64 of which define a transition to the first
tree (T1), 64 to the second tree (T2), and so forth. As detailed
later in Section IV-B.2, this design structure is imposed so that
implementations can attain competitive HT performance.

A stochastic process Y is used to model the proposed for-
est’s coding procedure. For each tree T in the forest, |A| − 1
states are defined, {σT1 , . . . , σ

T
|A|−1}. The process Y is in

state σTi when tree T is selected to emit the next wordW, and
none of the i − 1 most probable symbols may appear at the
beginning of W. Therefore, 2� · (|A| − 1) states are defined
in total for Y , 6Y = {σ

T
i }T ∈F , 1≤i≤|A|−1. The probability

VOLUME 8, 2020 81289

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

Algorithm 7 Generation of Code Forests Optimized Based
on Stationary Markov Chain Analysis
1: functionMarkovOptimizedForest(A, P, K , �)
2: Tω ← GetBasicTree(A, P, 2K)
3: ∀ω ∈ {1, . . . , 2�}
4: F ← {Tω}2

�

ω=1
5: DefineTransitions(F)
6: forever do
7: Y ← YF
8: π ← ForestStationaryProbability(F)
9: for each ω ∈ {1, . . . , 2�}
10: 6← {σTi ∈ 6Y : T = Tω}
11: T ′ω ←GetProcessTree(A, P, 6, π , 2K)
12: end for
13: F ′←

{
T ′ω
}2�
ω=1

14: DefineTransitions(F ′)
15: if F = F ′ then
16: return F
17: end if
18: F ← F ′
19: end forever
20: end function

of a node n’s word being emitted can then be expressed as a
weighted sum of conditional probabilities,

PY (n) =
∑

σTi ∈6Y

PY
(
n
∣∣∣ σTi) · π (σTi) , (9)

where π
(
σTi

)
is the probability of emitting a word while in

state σTi . The conditional probability of a node n given σTi
is given by

PY
(
n
∣∣∣ σTi) = δ(σTi , n) · Pnode (n)∑

n∈NodesFrom(T , σTi) Pnode (n)
(10)

=
δ(σTi , n) · Pnode (n)∑
a∈A.FirstAt(σTi) P (a)

. (11)

As in Section IV-A, NodesFrom(T , σTi) denotes the set
of nodes whose word can be emitted while in state σTi ,
A.FirstAt(σTi) is the set of all but the i − 1 most probable
symbols in A, and δ(σTi , n) is given by

δ(σTi , n) =

{
1 if n ∈ NodesFrom(T , σTi)
0 otherwise.

(12)

The state transition probability matrix of the forest’s pro-
cess Y can be expressed as

T(σTi , σ
T ′
j) =

∑
n∈NodesTo(T , σT ′j)

PY
(
n
∣∣∣ σTi) . (13)

Here, NodesTo(T , σT ′j) contains the nodes in T after which
the process transitions to σT

′

j and T ′ is used for the
next word. Equation (11) holds by construction. Similar to

Section IV-A,T defines a stationaryMarkov chain. Stationary
state probabilities can be computed using the same iterative
approach as in Algorithm 5. The new routine is hereinafter
denoted ForestStationaryProbability(F). In this case, transi-
tions between any two states are considered, including tran-
sitions between different trees. Therefore, the obtained prob-
abilities well describe the long-run behavior of the coding
process given a code forest.

Algorithm 7 is proposed to generate optimized code forest
for an alphabet A, symbol probability P, and parameters
K and �. During initialization, 2� trees are created, each
with 2K Included nodes and tree transitions as defined in
DefineTransitions (lines 3 to 5). This routine sets those tran-
sitions with the restriction that 2K−� words from each tree
in the forest must transition to any given T ∈ F . Since
there are 2K+� total Included words inF , (K +�)-bit words
are emitted. Therefore, any one-to-one mapping between the
Included words and 0, . . . , 2K+�− 1 is valid. The proposed
mapping used in DefineTransitions, which is optimized for
highly efficient decompression, is detailed in Section IV-B.2.
The remainder of Algorithm 7 alternates between stationary
state probability updates (line 8), and the generation of 2�

trees and their transition rules (lines 9 to 14). Empirically,
it was found that this iterative algorithm converges after a
few minutes on a commercial desktop CPU for all tested
parameters.

2) CONTEXT PARAMETRIZATION AND OVERLAPPED WORD
INDICES
Each of the 2� trees produced in an Algorithm 7’s forest
F can be considered a coding context, as they are selected
based on the input symbols. As described in Section IV-B.1,
trees are optimized based on their transitions as well as on
the Included words’ emission probability. DefineTransitions
assigns which 2K−� words from each tree cause transition to
each other T ∈ F . Finding optimal word-to-tree transitions
is not trivial, so a heuristic is proposed as follows:

1) Nodes of each T ∈ F are assigned to one of |A| − 1
groups, denoted Gi. A node with |children(n)| children
is assigned to group G|children(n)|+1. A list of Included
nodes is produced.

2) Within each group Gi, Included nodes are sorted by
Pnode.

3) The sorted list of Included nodes is split into 2� con-
secutive blocks of size 2K−�. Words of the i-th block
are defined to transition to Ti.

This heuristic is designed so that trees Ti ∈ F with lower
indices are adapted to receiving transitions from more prob-
able words. Moreover, the number of trees optimized based
on the words inGi depends on the number of words that tran-
sition to Gi. This results in more specialized trees available
for the most probable cases, while less probable scenarios
are still represented proportionally to an estimation of their
likelihood.

81290 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

FIGURE 3. Diagram describing the reading of three overlapped words for
K = 4 and � = 2. In addition to the word index, the binary identifier of
the current and next trees is obtained with every read operation.

The chosen transition structure enables a very efficient
decoder implementation that removes the necessity for a
memory access per emitted word to find the next tree to
be used. More specifically, we propose to employ the �-bit
suffix of each index’s binary representation to identify which
of the 2� possible trees to use next. In addition, words are
proposed to have (K + �)-bit binary indices, of which the
first � bits identify the tree to which a word’s node belong.
Therefore, with a single read operation ofK+� bits, both the
coded word and the next tree to be used are acquired. The next
read starts K bits after the previous one. As a result, the last
� bits of each word (identifying the next tree to use) are the
first � bits of the next read of K + � bits. An example of
the proposed overlapped word scheme is shown in Fig. 3 for
K = 4 and� = 2. It should be highlighted that theK+� bits
read for each coded word contain information to reconstruct
the intended list of symbols, as well as to signal the transition
next tree to be used. Note that such an optimization is not
possible with methods such as Yamamoto et al.’s, which
require at least an additional memory access to determine the
next tree to be used.

C. SELECTIVE INFORMATION CODING
The general motif of sections IV-A and IV-B is based on
investing more resources –e.g., number of words within a
tree’s branch– to more probable events, in order to increase
average word length and enhance compression ratio in those
cases, to the detriment of less probable events. This motif
can be generalized to further skew codec resources towards
design aspects that can improve overall performance. The
following improvements are proposed:

1) MODIFIED GOLOMB-RICE CODES
By considering the index x ∈ {0, . . . , |A| − 1} of each input
symbol in A, r and q can be defined based on an integer
parameter S ≥ 0 as

r = x mod 2S (14)

q =
⌊ x
2S

⌋
. (15)

Similar to Golomb-Rice codes, q and r are processed sepa-
rately, and entropy coding is applied only to q. The binary
expression of r corresponds to the S least significant bits
of the input, which are output without further coding.

Hereafter, S is referred to as the shift parameter. The quotients
obtained in (15) are then compressed using a code forest,
created as described in Section IV-B. The main advantage is
that the effective alphabet size is divided by 2S , and therefore
it is easier to obtain longer average word lengths for a fixed
dictionary size. For sources with r values distributed uni-
formly enough, gains due to longer word lengths are greater
than the loss due to outputting r values without coding them.

2) UNREPRESENTED SYMBOLS
Lossless codecs must be able to represent any valid input,
including those that contain highly improbable symbols.
This is a source of inefficiency especially for large alpha-
bets, because a non-negligible fraction of the words may be
devoted to considering unlikely symbol events. Complemen-
tary to the modified Golomb-Rice method, another improve-
ment to Algorithm 7 is proposed to address this issue. A sym-
bol probability threshold2 is selected, and the largest subset
of symbols with probability sum below 2 are discarded.
Algorithm 7 is used to produce an optimized code forest
for the remaining symbols. The coding process is identical,
except for the fact that when an unrepresented symbol is
found, it is skipped. Instead, an auxiliary binary sequence
is defined during initialization, and updated every time an
unrepresented symbol is found, appending the unrepresented
symbol’s index in the input sequence, and its index in the
original A. For sufficiently low values of 2, the number
of such updates is small, hence it suffices to output those
indices using fixed length binary representations. Empiri-
cally, we found 2 in the order of 10−6 to yield performance
improvements for low entropy sources for which enough
symbols can be discarded for that 2.

V. PERFORMANCE EVALUATION
Given a codec (E,D) and an input A ∈ A+, the compressed
data rate is defined as

R (E, A) =
|E(A)|
|A|

, (16)

where |E(A)| is the length of the coded sequence in bits, |A|
is the number of coded symbols, and R (E, A) is expressed
in bits per sample (bps). In this work, codec performance
is evaluated based on three measures: compressed data rate,
coding time, and decoding time. Section V-A discusses
compressed data rate efficiency for synthetic memoryless
sources and provides comparison with the state of the art in
VF codecs. Compression rate for natural sources is evalu-
ated jointly with coding and decoding time for the proposed
codec and the best-performing publicly available HT codecs
in Section V-B.

In order to attain full reproducibility of the performed
experiments, except for the obtained time measurements,
a code container is provided as supplementary materials for
this manuscript. The interested reader is referred to this con-
tainer for implementations of the tested codecs as well as of

VOLUME 8, 2020 81291

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

the benchmark employed for generating the figures displayed
in this document.

A. PERFORMANCE ON SYNTHETIC
MEMORYLESS SOURCES
For a memoryless ergodic source ℵ and long enough input
sequences, Shannon proved that the lower bound for a codec’s
compressed data rate is the source’s entropy [57],

H (ℵ) = −
∑
a∈A

P (a) · log2 P (a) . (17)

In this work, the compression efficiency of a codec (E,D) for
a given input A ∈ A+ produced by ℵ is defined as the ratio
between that lower bound and the attained compressed data
rate:

ηℵ (E,A) =
H (ℵ)

R (E, A)
. (18)

Synthetic pseudorandom sources are defined with
|A| = 16 and symbol probabilities based on a Laplacian
distribution,

P (ai) = γ · L (i | b, µ = 0) = γ ·
e−i/b

2b
, (19)

where γ is a constant defined so that
∑

a∈A P (a) = 1,
and b is a parameter that determines the resulting source
entropy. For each source ℵ, an input sequence Aℵ of length
|Aℵ| = 106 symbols is generated so that symbol a appears
max(1, [P (a) · |Aℵ|]) times. Symbols are then reordered
in 16 pseudorandom ways to simulate the ergodicity and
memoryless properties, The efficiency of a codec (E,D) for
a source ℵ’s generated input is defined as

ηℵ (E,ℵ) = ηℵ (E,Aℵ) , (20)

and average results for all trials are reported. Note average
differences below 0.3% are observed between the trials.

1) CODE TREE EFFICIENCY
The stochastic optimization approach proposed in Algo-
rithm 4 is compared to Algorithm 3 and to the single tree gen-
eration algorithm described by Yamamoto and Yokoo (YY)
in [47]. Code trees are created for each algorithm with
exactly |T | = 28 nodes, and their compression efficiency
is measured for ℵ as described above. Efficiency results for
these algorithms are shown in Fig. 4. Significant efficiency
gains are observed for Algorithm 4, when compared to both
Algorithm 3 and YY’s code tree. Efficiency improvements
are more noticeable for low entropy sources. This can be
explained by the fact that the most probable symbol is rarely
the first in a word for this type of sources and code trees.
The proposed stochastic optimization correctly predicts this
behavior and adapts code tree designs accordingly. Average
compression efficiency gains due to stochastic optimization
range from 0.08 to 0.11, depending on the parameter choice.
The effect of K on the proposed code trees is also studied.

Fig. 5 shows efficiency results for the proposed method for

FIGURE 4. Compression efficiency for several code trees with identical
number of words.

FIGURE 5. Compression efficiency for different code tree sizes.

K between 6 and 14, e.g., between 64 and 16384 Included
words. As can be observed, better compression is observed
for larger values of K . Notwithstanding, improvements due
to increasing K become small when K is already large.
For |A| = 16, no significant efficiency gains are observed
beyond K = 14. In practical applications, K should be
ideally selected so that the code forest structure can be fit
inside the L1 cache while providing competitive compression
efficiency. Therefore, the optimal value of K depends on the
alphabet size and the machine’s cache size.

81292 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

FIGURE 6. Compression efficiency for several code forests.

2) CODE FOREST EFFICIENCY
The code forest generation method proposed in Algo-
rithm 7 is evaluated for different number of trees, |F | ∈
{20, . . . , 24}, each with exactly |T | = 28 Included nodes.
Note that for |F | = 1, Algorithm 7 is equivalent to
Algorithm 4. Compression efficiency for these forests, as well
as for the ones obtained with YY’s code tree and code forest
generation algorithms for the same number of nodes per tree,
is plotted in Fig. 6. Compression efficiency is consistently
improved by usingmore than one tree in the code forest. In the
proposed method, performance is increased with�, although
increments beyond a certain point yield no significant gains.
For � = 4, the obtained compression efficiency curve is
on average 0.95% worse than YY’s code forest. It should be
highlighted that YY’s code forest structure does not admit the
overlapped word structure described above, nor an equally
efficient HT implementation. Note that the oscillatory nature
of all performance curves is related to the intrinsic ability of
variable-to-fixed codes to efficiently represent some symbol
probability distributions. The interested reader is referred
to [58], [59] for a more complete explanation to this behavior.

3) MODIFIED GOLOMB-RICE SHIFT
To study the impact of the modified Golomb-Rice shift
parameter S in the proposed coded forest, compression effi-
ciency is evaluated for S ∈ {0, 1, 3} and for Yamamoto et al.’s
forest generation algorithm. Results are shown in Fig. 7.
Parameter values S > 0 reduce compression efficiency for
medium and low entropies. This is as expected, since low
entropy sources are more easily compressible, and therefore
it is preferable to apply entropy coding to all bitplanes. On the
other hand, for sources with high enough entropy, S enhances
performance because the least significant bitplanes, which are

FIGURE 7. Impact of the modified Golomb-Rice shift parameter S on the
compression efficiency of the proposed code forest.

TABLE 1. Test dataset properties.

hardly compressible, are output uncompressed. Therefore,
more nodes can be devoted to encode more compressible
parts of the input. Also as expected, the interception point
between the unshifted (S = 0) and shifted (S > 0) plot lines
is translated towards higher frequencies as S is increased. For
the same reasons as before, performance efficiency for the
maximum entropy depends on whether the total number of
nodes, 2K , is a power of symbols in the source alphabet after
modified Golomb-Rice, i.e., d|A|/2Se.

B. PERFORMANCE ON NATURAL SOURCES
The proposed code forest generation algorithm is also tested
on natural sources using data produced by real sensors of
different types including image, scientific and textual. For
these data, neither ergodicity nor the memoryless properties
can be assumed, hence efficiencies higher than 1 are both
theoretically possible and observed in practice. The following
datasets containing visual contents have been included in
the comparison: the RGB encoded ISO 12640-2 [60] stan-
dard color image set, the Kodak PhotoCD set [61], and the
Rawzor [62] set. Data produced by other types of sources
have also been included in the comparison. Namely, floating
point data from chemical sensors [63], semi-structured text
data describing medical product reviews and scores [64] and
structured data from several physical dimensions taken at
the Intel Berkeley Research lab [65] (grouped as Mixed in
in Tables 1 and 2) are used in the comparison. This choice

VOLUME 8, 2020 81293

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

TABLE 2. Average compression efficiency (ηℵ), encoding speed (Es, 109·samples/s) and decoding speed (Ds, 109·samples/s).

is intended to provide a representative, albeit non-exhaustive,
selection of binary and text sources relevant to HT entropy
codecs and exhibiting diverse properties. For compression,
all files in these datasets are interpreted as one-dimensional
sequences of 8-bit samples, i.e., |A| = 256. In particular,
image data is presented in band-sequential mode, components
in raster order. The number of samples in each dataset as well
as their average zero-order entropy is provided in Table 1. All
input and output files are stored in an in-memory file system
to decouple performance results from the type of long-term
storage used.

Code forests produced by Algorithm 7 for parameters K ∈
{8, 10}, � ∈ {0, 2} are used to compress the aforemen-
tioned input sequences. Each sequence is divided in blocks
of 4096 samples, and the zero-order entropy of each block
determines which of 10 precomputed code forests to use for
a given choice ofK and�. This additional stage is included in
the reported execution times, although it would not be needed
when the sources’ entropy is known a priori or otherwise
calculated. Note that the optimal shift parameter S for each
code forest is determined as a part of the precomputation.
The proposed algorithm is compared with the best perform-
ing, publicly available HT entropy codecs. These include
(in alphabetic order): FAPEC [25], FSE [23], Gipfeli [19],
Huff0 [22], LZ4 [15], LZO [18], Snappy [16] and Zstd [20].
Rice and RLE were also implemented for this work for the
sake of a more complete comparison. Note that compression
algorithms specific for only one data type –e.g., images–,
or with significantly higher computational complexity (e.g.,
JPEG-LS [66], JPEG 2000 [67], CALIC [68]), are out of
the scope of this work and are not analyzed here.4 To the
best of the authors’ knowledge, the tested algorithms are
representative of the state of the art in HT coding/decoding.
All compression and decompression routines in the tested
algorithms are invoked with default parameters, except for

4For instance, for the Rawzor image set, JPEG-LS compresses 5.2 times
more slowly than the proposed method, while Kakadu JPEG 2000 and
CALIC are, respectively, 9.7 and 18.4 times slower.

FAPEC. For this method, the -mt 1 -dtype 8 -np us
parameters are specified to guarantee that only one thread is
employed, and that no decorrelation transformation is applied
to the data before compression. This is to provide a fair
comparison, since such transforms are out of the scope of this
work and are not present in any of the other tested algorithms.

For each input sequence, entropy is obtained as described
in (17), and used to calculate each codec’s efficiency ηℵ as
defined in Eq. (18). Compression and decompression speeds
for each codec-sequence combination are obtained as the
number of samples in that sequence, divided respectively
by the encoding and decoding times, defined as the sum of
measured CPU and System times on an Intel Xeon Plat-
inum 8175M CPU at 2.50 GHz. To guarantee stability in the
measurements, each codec-sequence combination is repeated
until the accumulated computation time reaches a minimum
of 1 s, and the average time is returned. All codecs are con-
figured to use exactly one thread. Average efficiency results
for each dataset are provided in Table 2. Average results for
all input sequences are also included in Table 2, and plotted
in Fig. 8.

1) COMPRESSION EFFICIENCY (ηℵ)
The proposed code forests yield compression efficiency
results comparable to the best codec for all tested datasets,
i.e., Huff0, FSE and Zstd. On average, and depending on the
choice of K and �, the proposed code forests yield com-
pressed sizes 4.27% and 5.98% larger than Huff0. Consistent
with previous discussion, using more than one tree in the
forest (� > 0) typically yields higher compression perfor-
mance, with gains of up to 0.03. On the other hand, increasing
the number of included nodes per tree, i.e., increasing the
value of K beyond 8, enhances compression only if � = 0.
It should be highlighted that the observed efficiency differ-
ences between the proposed and the most efficient codecs is
as expected, due to the additional design constraints imposed
by VF codes as opposed to variable-to-variable codes such as
Huff0, FSE and Zstd. Also note that for the ISO, Kodak and

81294 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

FIGURE 8. Average compression and decompression speeds as a function
of compression efficiency.

Rawzor image datasets, most codecs attain efficiencies higher
than 1. This is due to the fact that zero-order entropy (used in
efficiency calculations) cannot detect any redundancy present
among neighboring samples, whereas many of the tested
codecs exploit it to obtain higher efficiency. In particular for
the proposed algorithm, higher-order redundancy is exploited
mainly via the shift parameter S, the use of several coding
trees in the forest when � > 0, and the per-block dictionary
selection described above.

2) COMPRESSION AND DECOMPRESSION SPEED (Es, Ds)
The proposed code forests exhibit compression speeds com-
parable to the algorithms with the highest compression effi-
ciency. On average, our implementation of Algorithm 7 is
able to encode 2.0 · 108 samples per second for (K , �) =
(8, 0), i.e., 17.6% faster than Zstd and 16.7% slower than
Huff0 and FSE. Golomb-rice codes yield good compression
efficiency and speed, although their decoding speed is sig-
nificantly lower than those of the proposed code forests.

Other tested algorithms achieve a significantly higher sample
throughput, most notably FAPEC, although their compres-
sion efficiency is not as high as that of the most efficient
algorithms.

In terms of decompression speed, the proposed code forests
yield a very competitive throughput, higher than those of
the methods that yield the highest compression efficiency,
i.e., Huff0, FSE and Zstd. This is one of the main goals
of the proposed algorithm, based on variable-to-fixed codes.
On average, the slowest of the tested code forests is 3.77 times
faster than FSE, which in turn exhibits faster decompression
than Huff0 and Zstd. Entropy codecs with lower compression
efficiency (i.e., ηℵ < 1.0 for the test sensor data) are able to
decode faster than the proposed code forests. FAPEC dom-
inates decompression speeds overall, in part due to the use
of a heavily optimized, commercial implementation, which
employs hardware-specific tuning such as single-instruction
multiple-data (SIMD) assembly instructions.5 In contrast,
the proposed codec implementation is hardware agnostic.
Note that the development of an optimized platform-specific
version of the proposed codec is possible, but out of the scope
of this paper.

For both compression and decompression, increasing K
reduces attained speed. Even though the best value ofK based
on compression efficiency and execution speed depends onℵ,
empirically we found K = 8 to yield a favorable trade-off
on the tested datasets. Increasing the shift parameter S also
increases execution time, although very similar compression
performance and execution times are observed for K ∈

{8, 10} and S > 0.

VI. CONCLUSION
The design of HT entropy codecs with competitive perfor-
mance is paramount to meet the ever increasing demands
in terms of latency, bandwidth requirements, storage space
usage and energy consumption. In many scenarios such as
high-performance communication and computation systems,
special importance is placed on decompression, since data
are often decompressed multiple times or at critical points
in the information pipeline. Notwithstanding, in most HT
entropy codecs available, design decisions favor compres-
sion speed and efficiency, in detriment of decompression
speed. The code forests proposed in this work are based
on variable-to-fixed codes, which prioritize decompression
speed while maintaining competitive compression efficiency.
These forests are optimized using stationary Markov chain
analysis, and achieve compression efficiency results within
1% of the state of the art in variable-to-fixed codes when
tested on synthetic sources. In addition, the structure of
the proposed codes enables highly efficient implementa-
tions that are not possible with other VF codes in the state
of the art. When tested on natural sources against several
paradigms of HT entropy codec, the proposed code forests

5Available at https://www.dapcom.es/get-fapec/ at the time
of writing.

VOLUME 8, 2020 81295

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

attain compression efficiency competitive with the state of the
art, with average decompression speeds 3.8 times faster than
tested codecs with similar compression efficiency.

REFERENCES
[1] A. Beirami, M. Sardari, and F. Fekri, ‘‘Wireless network compression via

memory-enabled overhearing helpers,’’ IEEE Trans. Wireless Commun.,
vol. 15, no. 1, pp. 176–190, Jan. 2016.

[2] M. Jägemar, S. Eldh, A. Ermedahl, and B. Lisper, ‘‘Automatic mes-
sage compression with overload protection,’’ J. Syst. Softw., vol. 121,
pp. 209–222, Nov. 2016.

[3] P. Ratanaworabhan, J. Ke, and M. Burtscher, ‘‘Fast lossless compression
of scientific floating-point data,’’ in Proc. Data Compress. Conf. (DCC),
Mar. 2006, pp. 133–142.

[4] M. Burtscher and P. Ratanaworabhan, ‘‘High throughput compression
of double-precision floating-point data,’’ in Proc. Data Compress. Conf.
(DCC), Mar. 2007, pp. 293–302.

[5] B. Nicolae, ‘‘High throughput data-compression for cloud storage,’’ in
Data Management in Grid and Peer-to-Peer Systems, A. Hameurlain,
F. Morvan, and A. M. Tjoa, Eds. Berlin, Germany: Springer, 2010,
pp. 1–12.

[6] D.Dong and J. Herbert, ‘‘Content-aware partial compression for big textual
data analysis acceleration,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput.
Technol. Sci., Dec. 2014, pp. 320–325.

[7] Y. Liang and Y. Li, ‘‘An efficient and robust data compression algo-
rithm in wireless sensor networks,’’ IEEE Commun. Lett., vol. 18, no. 3,
pp. 439–442, Mar. 2014.

[8] A. Makhoul and H. Harb, ‘‘Data reduction in sensor networks: Perfor-
mance evaluation in a real environment,’’ IEEE Embedded Syst. Lett.,
vol. 9, no. 4, pp. 101–104, Dec. 2017.

[9] S. Huang, J. Xu, R. Liu, and H. Liao, ‘‘A novel compression algorithm
decision method for spark shuffle process,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 2931–2940.

[10] H. Harb and A. Makhoul, ‘‘Energy-efficient sensor data collection
approach for industrial process monitoring,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 661–672, Feb. 2018.

[11] N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. W. Wong, and C. H. Liu,
‘‘Highly parallel rate-distortion optimized intra-mode decision on mul-
ticore graphics processors,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 11, pp. 1692–1703, Nov. 2009.

[12] C. Song, Y. Li, and B. Huang, ‘‘AGPU-accelerated wavelet decompression
system with SPIHT and Reed–Solomon decoding for satellite images,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3,
pp. 683–690, Sep. 2011.

[13] F. Auli-Llinas, P. Enfedaque, J. C.Moure, andV. Sanchez, ‘‘Bitplane image
coding with parallel coefficient processing,’’ IEEE Trans. Image Process.,
vol. 25, no. 1, pp. 209–219, Jan. 2016.

[14] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, ‘‘GPU implementation of
bitplane coding with parallel coefficient processing for high performance
image compression,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 8,
pp. 2272–2284, Aug. 2017.

[15] Y. Collet. (2011). LZ4. [Online]. Available: http://lz4.github.io/lz4
[16] Z. Tarantov and S. Gunderson. (2011). Snappy. [Online]. Available:

http://www.google.github.io/snappy
[17] A. Farruggia, P. Ferragina, and R. Venturini, ‘‘Bicriteria data compression:

Efficient and usable,’’ in Proc. Eur. Symp. Algorithms. Berlin, Germany:
Springer, 2014, pp. 406–417.

[18] M. Oberhumer. (1996). LZO: Lempel Zip Oberhumer. [Online]. Available:
http://www.oberhumer.com/opensource/lzo

[19] R. Lenhardt and J. Alakuijala, ‘‘Gipfeli–high speed compression algo-
rithm,’’ in Proc. Data Compress. Conf., Apr. 2012, pp. 109–118.

[20] Facebook. (2016). Zstandard. [Online]. Available: http://facebook.
github.io/zstd/

[21] M. Martinez, M. Haurilet, R. Stiefelhagen, and J. Serra-Sagrista, ‘‘Marlin:
A high throughput variable-to-fixed codec using plurally parsable dictio-
naries,’’ in Proc. Data Compress. Conf. (DCC), Apr. 2017, pp. 161–170.

[22] Y. Collet. (2013). Huff0. [Online]. Available: http://fastcompression.
blogspot.de/p/huff0-range0-entropy-coders.html

[23] Y. Collet. (2013). Finite State Entropy. [Online]. Available:
http://github.com/Cyan4973/FiniteStateEntropy

[24] J. de Vaan. (2007). CharLS. [Online]. Available: http://www.github.
com/team-charls/charls

[25] J. Portell, R. Iudica, E. García-Berro, A. G. Villafranca, and G. Artigues,
‘‘FAPEC, a versatile and efficient data compressor for space missions,’’
Int. J. Remote Sens., vol. 39, no. 7, pp. 2022–2042, Apr. 2018.

[26] J. Bartrina-Rapesta, I. Blanes, F. Auli-Llinas, J. Serra-Sagrista, V. Sanchez,
and M. W. Marcellin, ‘‘A lightweight contextual arithmetic coder for on-
board remote sensing data compression,’’ IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 8, pp. 4825–4835, Aug. 2017.

[27] I. Blanes, A. Kiely, M. Hernández-Cabronero, and J. Serra-Sagristà,
‘‘Performance impact of parameter tuning on the CCSDS-123.0-B-2
low-complexity lossless and near-lossless multispectral and hyperspectral
image compression standard,’’Remote Sens., vol. 11, no. 11, p. 1390, 2019.

[28] M. Coatsworth, J. Tran, and A. Ferworn, ‘‘A hybrid lossless and lossy
compression scheme for streaming RGB-D data in real time,’’ in Proc.
IEEE Int. Symp. Saf., Secur., Rescue Robot., Oct. 2014, pp. 1–6.

[29] G. S. Martins, D. Portugal, and R. P. Rocha, ‘‘A comparison of general-
purpose FOSS compression techniques for efficient communication in
cooperative multi-robot tasks,’’ in Proc. 11th Int. Conf. Informat. Control,
Autom. Robot. (ICINCO), vol. 2, 2014, pp. 136–147.

[30] M. Vecchio, R. Giaffreda, and F. Marcelloni, ‘‘Adaptive lossless entropy
compressors for tiny IoT devices,’’ IEEETrans.Wireless Commun., vol. 13,
no. 2, pp. 1088–1100, Feb. 2014.

[31] C. J. Deepu, C.-H. Heng, and Y. Lian, ‘‘A hybrid data compression scheme
for power reduction in wireless sensors for IoT,’’ IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 2, pp. 245–254, Apr. 2017.

[32] D. Palma and R. Birkeland, ‘‘Enabling the Internet of arctic things
with freely-drifting small-satellite swarms,’’ IEEE Access, vol. 6,
pp. 71435–71443, 2018.

[33] P. Deutsch,DEFLATECompressed Data Format Specification Version 1.3,
document RFC 1951, Netw. Work. Group, 1996, vol. 15.

[34] D. Harnik, E. Khaitzin, D. Sotnikov, and S. Taharlev, ‘‘A fast implementa-
tion of deflate,’’ in Proc. Data Compress. Conf., Mar. 2014, pp. 223–232.

[35] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki, ‘‘Practical
data compression in wireless sensor networks: A survey,’’ J. Netw. Comput.
Appl., vol. 35, no. 1, pp. 37–59, Jan. 2012.

[36] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, ‘‘Integrating
online compression to accelerate large-scale data analytics applications,’’
in Proc. IEEE 27th Int. Symp. Parallel Distrib. Process., May 2013,
pp. 1205–1216.

[37] Y. Zhang, Y. Wu, and G. Yang, ‘‘Droplet: A distributed solution of
data deduplication,’’ in Proc. ACM/IEEE 13th Int. Conf. Grid Comput.,
Sep. 2012, pp. 114–121.

[38] R. Filgueira, M. Atkinson, Y. Tanimura, and I. Kojima, ‘‘Applying selec-
tively parallel i/o compression to parallel storage systems,’’ in Euro-Par
Parallel Processing, F. Silva, I. Dutra, and V. S. Costa, Eds. Cham, Switzer-
land: Springer, 2014, pp. 282–293.

[39] J. Janet, S. Balakrishnan, and E. R. Prasad, ‘‘Optimizing data move-
ment within cloud environment using efficient compression techniques,’’
in Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICICES), Feb. 2016,
pp. 1–5.

[40] D. Abadi, S. Madden, and M. Ferreira, ‘‘Integrating compression and exe-
cution in column-oriented database systems,’’ in Proc. Int. Conf. Manage.
Data (SIGMOD), 2006, pp. 671–682.

[41] B. P. Tunstall, ‘‘Synthesis of noiseless compression codes,’’
Ph.D. dissertation, Georgia Inst. Technol., Atlanta, GA, USA, 1967.

[42] C. G. Boncelet, ‘‘Block arithmetic coding for source compression,’’ IEEE
Trans. Inf. Theory, vol. 39, no. 5, pp. 1546–1554, Sep. 1993.

[43] T. Raita and J. Teuhola, ‘‘Arithmetic coding into fixed-length codewords,’’
IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 219–223, Jan. 1994.

[44] S. A. Savari, ‘‘Variable-to-fixed length codes and plurally parsable dictio-
naries,’’ in Proc. Inf. Theory Netw. Workshop, 1999, pp. 453–462.

[45] M. D. Reavy and C. G. Boncelet, ‘‘An algorithm for compression of
bilevel images,’’ IEEE Trans. Image Process., vol. 10, no. 5, pp. 669–676,
May 2001.

[46] D.-Y. Chan, J.-F. Yang, and S.-Y. Chen, ‘‘Efficient connected-index finite-
length arithmetic codes,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, no. 5, pp. 581–593, May 2001.

[47] H. Yamamoto and H. Yokoo, ‘‘Average-sense optimality and competitive
optimality for almost instantaneous VF codes,’’ IEEE Trans. Inf. Theory,
vol. 47, no. 6, pp. 2174–2184, Sep. 2001.

[48] Y. Xie, W. Wolf, and H. Lekatsas, ‘‘Code compression using variable-to-
fixed coding based on arithmetic coding,’’ in Proc. Data Compress. Conf.
(DCC), 2003, pp. 382–391.

81296 VOLUME 8, 2020

M. M. Torres et al.: HT Variable-to-Fixed Entropy Codec Using Selective, Stochastic Code Forests

[49] S. Yoshida and T. Kida, ‘‘An efficient algorithm for almost instantaneous
VF code using multiplexed parse tree,’’ in Proc. Data Compress. Conf.,
2010, pp. 219–228.

[50] S. Yoshida and T. Kida, ‘‘Analysis of multiplexed parse trees for almost
instantaneous VF codes,’’ in Proc. IIAI Int. Conf. Adv. Appl. Informat.,
Sep. 2012, pp. 36–41.

[51] A. Al-Rababa’a and D. Dube, ‘‘Using bit recycling to reduce the redun-
dancy in plurally parsable dictionaries,’’ inProc. IEEE 14th Can.Workshop
Inf. Theory (CWIT), Jul. 2015, pp. 62–65.

[52] F. Auli-Llinas, ‘‘Context-adaptive binary arithmetic coding with
fixed-length codewords,’’ IEEE Trans. Multimedia, vol. 17, no. 8,
pp. 1385–1390, Aug. 2015.

[53] D. Dube and F. Haddad, ‘‘Individually optimal single- and multiple-tree
almost instantaneous variable-to-fixed codes,’’ in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2192–2196.

[54] M. Martinez, K. Sandfort, D. Dube, and J. Serra-Sagrista, ‘‘Improving
Marlin’s compression ratio with partially overlapping codewords,’’ inProc.
Data Compress. Conf., Mar. 2018, pp. 325–334.

[55] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres-
sion,’’ IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May 1977.

[56] J. Duda, ‘‘Asymmetric numeral systems,’’ 2009, arXiv:0902.0271.
[Online]. Available: http://arxiv.org/abs/0902.0271

[57] C. E. Shannon and W. Weaver, The Mathematical Theory of Communica-
tion. Champaign, Il, USA: Univ. Illinois Press, 1949.

[58] O. Johnsen, ‘‘On the redundancy of binary Huffman codes (Corresp.),’’
IEEE Trans. Inf. Theory, vol. IT-26, no. 2, pp. 220–222, Mar. 1980.

[59] I. Blanes, M. Hernandez-Cabronero, J. Serra-Sagrista, and
M. W. Marcellin, ‘‘Lower bounds on the redundancy of Huffman
codes with known and unknown probabilities,’’ IEEE Access, vol. 7,
pp. 115857–115870, 2019.

[60] Graphic Technology—Prepress Digital Data Exchange—Part 2: RGB
Encoded Standard Colour Image Data, Standard 12,640, International
Standard Organization, 2004.

[61] R. Franzen. (1999). Kodak Lossless True Color Image Suite: PhotoCD
PCD0992. [Online]. Available: http://r0k.us/graphics/kodak/

[62] S. Garg. (2011). The New Test Images. Accessed: Jun. 28, 2019. [Online].
Available: http://www.imagecompression.info/test_images

[63] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta,
‘‘Chemical gas sensor drift compensation using classifier ensembles,’’
Sens. Actuators B, Chem., vols. 166–167, pp. 320–329, May 2012.

[64] F. Gräßer, S. Kallumadi, H. Malberg, and S. Zaunseder, ‘‘Aspect-based
sentiment analysis of drug reviews applying cross-domain and cross-data
learning,’’ in Proc. Int. Conf. Digit. Health. New York, NY, USA: ACM,
Apr. 2018, pp. 121–125, doi: 10.1145/3194658.3194677.

[65] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin,
and R. Thibaux. (2004). Intel Lab Data. [Online]. Available:
http://db.csail.mit.edu/labdata/labdata.html

[66] M. J.Weinberger, G. Seroussi, andG. Sapiro, ‘‘The LOCO-I lossless image
compression algorithm: Principles and standardization into JPEG-LS,’’
IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324, Aug. 2000.

[67] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards, and Practice. Boston, MA, USA: Springer,
2012.

[68] X. Wu and N. Memon, ‘‘Context-based, adaptive, lossless image coding,’’
IEEE Trans. Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.

MANUEL MARTÍNEZ TORRES received the
Ph. D. degree from the Karlsruhe Institute of Tech-
nology (KIT), Germany, in 2017.

He is currently a Postdoctoral with the Com-
puter Vision for Human-Computer Interfaction
Lab, KIT, where he focuses on applying computer
vision to monitor sleep quality, and to develop
assistive technologies for the visually impaired.
He is passionate about teaching how to build
complex systems that integrate multidisciplinary
technologies.

Dr. Torres’s practical course initiated, in 2011, received the best Practical
Course Award at KIT, in 2016. In addition, he has contributed to the fields of
object localization, deep learning, data compression, depth cameras among
other sensing technologies. He has (co)authored over 25 articles and confer-
ence papers in the above domains, receiving the Best Poster Award.

MIGUEL HERNÁNDEZ-CABRONERO received
the B.Sc. degrees in computer science and in
mathematics from the Universidad Autónoma de
Madrid, Madrid, Spain, in 2010, and the M.Sc.
and Ph.D. degrees in computer science from
the Universitat Autònoma de Barcelona, Spain,
in 2011 and 2015, respectively.

He has held postdoctoral research positions at
the University of Warwick, Coventry, U.K., and
the University of Arizona, Tucson, AZ, USA.

Since April 2019, he has been with the Universitat Autònoma de Barcelona.
His research interests include data compression, especially medical and
remote sensing image coding, and signal processing. He has coauthored
multiple articles in these areas. He has also served as a reviewer for several
journals and conferences in the field.

IAN BLANES (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer sci-
ence from the Universitat Autònoma de Barcelona
(UAB), Barcelona, Spain, in 2007, 2008, and 2010,
respectively.

In 2010, he was a Visiting Postdoctoral
Researcher with the Centre National d’Etudes Spa-
tiales, Toulouse, France. Since 2011, he has been
actively involved in the creation of new on-board
data compression standards within the framework

of the CCSDS Multispectral Hyper-Spectral Data Compression Working
Group. Since 2003, he has also been with the Group on Interactive Coding
of Images, UAB, where he is currently an Associate Professor. His research
interest includes data compression in spaceborne instruments.

Dr. Blanes was the Second-Place Finisher in the 2007 Best
Computer-Science Student Awards by the Spanish Ministry of Education.

JOAN SERRA-SAGRISTÀ (Senior Member,
IEEE) received the Ph.D. degree in computer sci-
ence from the Universitat Autònoma de Barcelona
(UAB), Barcelona, Spain, in 1999.

From 1997 to 1998, he was with the University
of Bonn, Bonn, Germany, funded by DAAD. He is
currently a Full Professor with the Department
of Information and Communications Engineering,
UAB. He has coauthored more than 100 articles.
His research interests include data compression,

especially image coding for remote sensing applications.
Dr. Serra-Sagristà was a recipient of the Spanish Intensification Young

Investigator Award, in 2006. He serves or has served as the Committee
Chair for the Data Compression Conference. He serves or has served as
an Associate Editor for the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING and the IEEE TRANSACTIONS ON IMAGE PROCESSING.

VOLUME 8, 2020 81297

http://dx.doi.org/10.1145/3194658.3194677

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	DEFINITIONS AND NOTATION
	SOURCES, SEQUENCES AND CODECS
	VARIABLE-TO-FIXED DICTIONARIES
	CODE TREES

	PREFIX-FREE DICTIONARIES
	PLURALLY PARSABLE DICTIONARIES

	PROPOSED HT CODEC
	STOCHASTICALLY OPTIMIZED CODE TREES
	BASIC TREE GENERATION
	CODE TREES AND STOCHASTIC PROCESSES
	STOCHASTIC OPTIMIZATION

	OPTIMIZED CODE FORESTS
	STOCHASTIC FOREST OPTIMIZATION
	CONTEXT PARAMETRIZATION AND OVERLAPPED WORD INDICES

	SELECTIVE INFORMATION CODING
	MODIFIED GOLOMB-RICE CODES
	UNREPRESENTED SYMBOLS

	PERFORMANCE EVALUATION
	PERFORMANCE ON SYNTHETIC MEMORYLESS SOURCES
	CODE TREE EFFICIENCY
	CODE FOREST EFFICIENCY
	MODIFIED GOLOMB-RICE SHIFT

	PERFORMANCE ON NATURAL SOURCES
	COMPRESSION EFFICIENCY ()
	COMPRESSION AND DECOMPRESSION SPEED (Es, Ds)

	CONCLUSION
	REFERENCES
	Biographies
	MANUEL MARTÍNEZ TORRES
	MIGUEL HERNÁNDEZ-CABRONERO
	IAN BLANES
	JOAN SERRA-SAGRISTÀ

