102 research outputs found

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Programmable built-in self-testing of embedded RAM clusters in system-on-chip architectures

    Get PDF
    Multiport memories are widely used as embedded cores in all communication system-on-chip devices. Due to their high complexity and very low accessibility, built-in self-test (BIST) is the most common solution implemented to test the different memories embedded in the system. This article presents a programmable BIST architecture based on a single microprogrammable BIST processor and a set of memory wrappers designed to simplify the test of a system containing a large number of distributed multiport memories of different sizes (number of bits, number of words), access protocols (asynchronous, synchronous), and timing

    Defect-tolerance and testing for configurable nano-crossbars

    Get PDF
    Moore\u27s Law speculated a trend in computation technology in terms of number of transistors per unit area that would double roughly every two years. Even after 40 years of this prediction, current technologies have been following it successfully. There are however, certain physical limitations of current CMOS that would result in fundamental obstructions to continuation of Moore\u27s Law. Although there is a debate amongst experts on how much time it would take for this to happen, it is certain that some entirely new paradigms for semiconductor electronics would be needed to replace CMOS and to delay the end of Moore\u27s Law. Silicon nanowires (SiNW) and Carbon nanotubes (CNT) possess significant promise to replace current CMOS --Abstract, page iv

    Space Testing of the Advanced Instrument Controller

    Get PDF
    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communications ports, 32 analog l2-bit AID channels, and eight D/A channels. Rugged (30k g) with a wide operating temperature range (-120 to +80 C), the AIC supports a number of power saving modes, nominally consuming \u3c 50m W with 0.5m W in standby sleep mode. A space experiment was designed to exercise the controller in a harsh environment. Flying on the small STRV-ld satellite, a joint US and British program, the experiment will collect data on AIC operation during 600+ minute highlyelliptical orbits which will expose the experiment to high radiation levels and possibly significant solar flare events. Scheduled to fly in spring 2000, STRV-ld will be commissioned for one year

    Algorithm-circuit co-design for detecting symptomatic patterns in biological signals

    Get PDF
    The advancement in scaled Silicon technology has accelerated the development of a wide range of applications in various fields including medical technology. It has immensely contributed to finding solutions for monitoring general health as well as alleviating intractable disorders in the form of implantable and wearable systems. This necessitates the development of energy efficient and functionally efficacious systems. This thesis has explored the algorithm-circuit co-design approach for developing an energy efficient epileptic seizure detection processor which could be used for implantable epilepsy prosthesis. Novel wavelet transform based algorithms are proposed for accurate detection of epileptic seizures. Energy efficient techniques at circuit level such as power and clock gating are utilized along with error resiliency at algorithm level to implement these algorithms in TSMC 6565nm bulk-Si technology. Furthermore, the methodology is extended to develop a generic pattern detection system, which could be used for health monitoring. The wavelet transform along with mathematical metrics and Mel cepstrum are used to develop an algorithm which can detect generic patterns in biological audio signals. The application of algorithm-circuit co-design methodology helps in practically implementing this system into a low power design. Using approximation of coefficients and multiplier-less implementation, the Mel cepstrum algorithm is modified to optimize the hardware cost without losing its functional efficacy. The system is user-specific and scalable for detecting various patterns in biological signals. The methodologies mentioned in this thesis are intended towards development of user-scalable, energy efficient and highly efficacious systems for detection of patterns in variety of biological signals

    Microsemi RTG4 Rev C Field Programmable Gate Array Single Event Effects (SEE) Heavy-Ion Test Report

    Get PDF
    The goal of this study was to perform an independent investigation of single event destructive and transient susceptibility of the Microsemi RTG4 device. The devices under test were the Microsemi RTG4 field programmable gate array (FPGA) Rev C. The devices under test will be referenced as the DUT or RTG4 Rev C throughout this document. The DUT was configured to have various test structures that are geared to measure specific potential susceptibilities of the device. DesignDevice susceptibility was determined by monitoring the DUT for Single Event Transient (SET) and Single Event Upset (SEU) induced faults by exposing the DUT to a heavy ion beam. Potential Single Event Latch-up (SEL) was checked throughout heavy-ion testing by monitoring device current

    Towards the development of flexible, reliable, reconfigurable, and high-performance imaging systems

    Get PDF
    Current FPGAs can implement large systems because of the high density of reconfigurable logic resources in a single chip. FPGAs are comprehensive devices that combine flexibility and high performance in the same platform compared to other platform such as General-Purpose Processors (GPPs) and Application Specific Integrated Circuits (ASICs). The flexibility of modern FPGAs is further enhanced by introducing Dynamic Partial Reconfiguration (DPR) feature, which allows for changing the functionality of part of the system while other parts are functioning. FPGAs became an important platform for digital image processing applications because of the aforementioned features. They can fulfil the need of efficient and flexible platforms that execute imaging tasks efficiently as well as the reliably with low power, high performance and high flexibility. The use of FPGAs as accelerators for image processing outperforms most of the current solutions. Current FPGA solutions can to load part of the imaging application that needs high computational power on dedicated reconfigurable hardware accelerators while other parts are working on the traditional solution to increase the system performance. Moreover, the use of the DPR feature enhances the flexibility of image processing further by swapping accelerators in and out at run-time. The use of fault mitigation techniques in FPGAs enables imaging applications to operate in harsh environments following the fact that FPGAs are sensitive to radiation and extreme conditions. The aim of this thesis is to present a platform for efficient implementations of imaging tasks. The research uses FPGAs as the key component of this platform and uses the concept of DPR to increase the performance, flexibility, to reduce the power dissipation and to expand the cycle of possible imaging applications. In this context, it proposes the use of FPGAs to accelerate the Image Processing Pipeline (IPP) stages, the core part of most imaging devices. The thesis has a number of novel concepts. The first novel concept is the use of FPGA hardware environment and DPR feature to increase the parallelism and achieve high flexibility. The concept also increases the performance and reduces the power consumption and area utilisation. Based on this concept, the following implementations are presented in this thesis: An implementation of Adams Hamilton Demosaicing algorithm for camera colour interpolation, which exploits the FPGA parallelism to outperform other equivalents. In addition, an implementation of Automatic White Balance (AWB), another IPP stage that employs DPR feature to prove the mentioned novelty aspects. Another novel concept in this thesis is presented in chapter 6, which uses DPR feature to develop a novel flexible imaging system that requires less logic and can be implemented in small FPGAs. The system can be employed as a template for any imaging application with no limitation. Moreover, discussed in this thesis is a novel reliable version of the imaging system that adopts novel techniques including scrubbing, Built-In Self Test (BIST), and Triple Modular Redundancy (TMR) to detect and correct errors using the Internal Configuration Access Port (ICAP) primitive. These techniques exploit the datapath-based nature of the implemented imaging system to improve the system's overall reliability. The thesis presents a proposal for integrating the imaging system with the Robust Reliable Reconfigurable Real-Time Heterogeneous Operating System (R4THOS) to get the best out of the system. The proposal shows the suitability of the proposed DPR imaging system to be used as part of the core system of autonomous cars because of its unbounded flexibility. These novel works are presented in a number of publications as shown in section 1.3 later in this thesis

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Hardware Design and Implementation of Role-Based Cryptography

    Get PDF
    Traditional public key cryptographic methods provide access control to sensitive data by allowing the message sender to grant a single recipient permission to read the encrypted message. The Need2Know® system (N2K) improves upon these methods by providing role-based access control. N2K defines data access permissions similar to those of a multi-user file system, but N2K strictly enforces access through cryptographic standards. Since custom hardware can efficiently implement many cryptographic algorithms and can provide additional security, N2K stands to benefit greatly from a hardware implementation. To this end, the main N2K algorithm, the Key Protection Module (KPM), is being specified in VHDL. The design is being built and tested incrementally: this first phase implements the core control logic of the KPM without integrating its cryptographic sub-modules. Both RTL simulation and formal verification are used to test the design. This is the first N2K implementation in hardware, and it promises to provide an accelerated and secured alternative to the software-based system. A hardware implementation is a necessary step toward highly secure and flexible deployments of the N2K system
    corecore