View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by University of Tennessee, Knoxuville: Trace

University of Tennessee, Knoxville

Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2008

Hardware Design and Implementation of Role-

Based Cryptography

Scott Edward Fields

University of Tennessee - Knoxville

Recommended Citation

Fields, Scott Edward, "Hardware Design and Implementation of Role-Based Cryptography. " Master's Thesis, University of Tennessee,
2008S.

https://trace.tennessee.edu/utk_gradthes/1880

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

https://core.ac.uk/display/268806320?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Scott Edward Fields entitled "Hardware Design and
Implementation of Role-Based Cryptography.” I have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Computer Engineering.

Don Bouldin, Major Professor
We have read this thesis and recommend its acceptance:

Gregory Peterson, Itamar Elhanany

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

| am submitting herewith a thesis written by Sé&attvard Fields entitled “Hardware
Design and Implementation of Role-Based Cryptogyddhave examined the final
electronic copy of this thesis for form and contamd recommend that it be accepted in
partial fulfillment of the requirements for the deg of Master of Science, with a major
in Computer Engineering.

Don Bouldin
Major Professor

We have read this thesis
and recommend its acceptance:

Gregory Peterson

Itamar Elhanany

Accepted for the Council:

Anne Mayhew
Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official sttt records.)

HARDWARE DESIGN AND IMPLEMENTATION OF ROLE-BASED
CRYPTOGRAPHY

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Scott Edward Fields
December 2005

Acknowledgments

| would like to thank all those who have helpedaxchieve my Master of Science
degree in Computer Engineering. First, | woul@ lik thank Dr. Don Bouldin for
introducing me to FPGA design and for his contirgiatiance, insight, and support.
Second, | would like to thank Ersin Domangue abAssure, Inc. for his explanation of a
number of cryptographic concepts. | would alse lik thank Adam Miller and Shawn
Carrithers for their co-authorship of several cogmaphic modules. Finally, | would like
to thank Dr. Greg Peterson and Dr. Itamar Elharantheir many suggestions and for
serving on my committee.

To my family and friends, thank you for your perabencouragement and
support. Without you, this work would not have h@essible.

This work was partially supported by the OfficeNdval Research grant number
N00014-04-1-0562 via the National Center for Adveth&ecure Systems Research.

Abstract

Traditional public key cryptographic methods pravatcess control to sensitive
data by allowing the message sender to grant #&esiagipient permission to read the
encrypted message. The Need2Know® system (N2Kpaw@s upon these methods by
providing role-based access control. N2K defirgs dccess permissions similar to
those of a multi-user file system, but N2K striatlyforces access through cryptographic
standards. Since custom hardware can efficientptement many cryptographic
algorithms and can provide additional security, N2&nds to benefit greatly from a
hardware implementation. To this end, the main NMROrithm, the Key Protection
Module (KPM), is being specified in VHDL. The dgsiis being built and tested
incrementally: this first phase implements the ametrol logic of the KPM without
integrating its cryptographic sub-modules. Both_.Rimulation and formal verification
are used to test the design. This is the first N@glementation in hardware, and it
promises to provide an accelerated and securanaivee to the software-based system.
A hardware implementation is a necessary step thighly secure and flexible

deployments of the N2K system.

1

oo [[i o] o PO PP POTPRPPP 1
1.1 The Growing Need for COmpUter SECUNMY.. o evvreriiiiiiieee e eeeeeeeeeiiieens 1
1.1.1 Example 1: Military COmMMUNICALIONS..... o eeeeerrrrnnnnnninieeeseeeeeeeeeeeeen 1
1.1.2 Example 2: Corporate COmMMUNICALIONS .. ccommmseeeeeeeeeeeeeeeeeeeienrinnnnnnnns 2
1.1.3 Example 3: Multi-user PC File SYSIEM ... eeeeeeiriiiiiiiiiiieeeeeeeeeeeeeeeee, 2
1.2 NEEA2ZKNOW SYSTEIM....uuiiiiiiiii i e e e e e e e e e e e eeeeeebbbnennnaeeee 3
1.2.1 Centralized Role-based Access CONtrol.....cccccceeeeeeeiiiieiiiiiiiiiieeee 3
1.2.2 Information CentriC SECUIILY eummmeeeerrrnnniiaaaeeeeeeeeeeeeeeeeeeeeraneees 4
1.2.3 CryptographiC ENfOrCEMENL..............ommmmmeeeeeeeeeeeeeeeeereeeeeeraiiinnnn 4.
1.2.4 Enabling New Capabilities ... 5
1.3 Implementation CoNSIAErationsScccccceeevieeeeeeeer e e 5
1.3.1 LOW Time-to-Marketoooiiiiiieee e 6
1.3.2 HIgh-TRroUugNPULeee e e 6
1.3.3 LOW POWET ...t e ettt e e e e e e e e e e e e enans 6
134 LOW COST ...t e e e e e e e e e e e e e enne 7
1.3.5 Feature FIexibDility ... 7
1.3.6 IMplementation SECUNLYuiiiieiee e e 7
1.4 Technology Trad@offS.......ccooiiiiiiiiiiii e 8
1.4.1 LOW TimMe-tO-Marketcoooiiiiii e 8
1.4.2 HIgh-TRroUugNPUL ... 8
1.4.3 LOW POWET ... ettt e e 8
144 LOW COSE ... ittt e e e e et e e e e e e ean e e e e e e eeenes 9
1.4.5 Feature FIexibility ... e 9
1.4.6 IMplementation SECUNMLYuiiiieeee e 9
15 FPGA IMpPIementationuuueiorieeeeeeeeeeeisiiinen s e e e e e e e eeeeeeeeeeeeeees 10
BacKground StUAY..........ouuuuuuuiiii e 11
2.1 Programmable CryptographiC COProCESSOIS wmmmmmmmerrrrrrrniseeeeseeeeereeereeeennnns 11
211 Generalized Functional UNItSceueeeeeeneeee e 11
2.1.2 Integrated Specialized Functional UNitS...............coovvvvvviiiiiiiiiiieeneenn. 14
2.1.3 External Specialized Functional UNitS. . .oooveeeeiiiiiiiiiiiiieee e 15
2.2 Reconfigurable Cryptographic COProCeSSOIS..uummruuiiiiiieeeeeeeiieieeeeeiineeinnnnns 17
221 Whole-FPGA Reconfigurationcceoeeeeiiiiiiiiiiiiiiiiiieee e 18
2.2.2 Partial Reconfigurationcccceeeeeuiiiiiiiiiee e 18
2.3 Loosely-Integrated Cryptographic Coprocess@teS.ooeevvvvvvniveeereennnnnn. 20
2.3.1 Partial ProtoCol SUPPOI.......ccoi i 21
2.3.2 FUll ProtoCOl SUPPOIT......ceevviiiiiimmmmmmee e s 22
2.4 Tightly-Integrated Cryptographic COProCeSSOIS.........uuuvuiiiiiieeeeeeeeeeeeeeenne. 23
(CT=] 0[] - 1 PR UPRPPPPPPPPRRPPRPT 26
3.1 N2K Organization...........ccoevieeeeeees e cetesnsssssseaeeeeaeeeesesesssnsssnnnnnnnnsennns 26
3.2 KPM ENCIYPUON ..ttt e e e e eeetae e mnnanennee 27
3.3 [N |V =Tox Y/ o] 1o o ISR 29
3.4 KPM Keying Material........ccooouiiiiiiiii e e 29
34.1 RANAOM VAIUESoviiiiiiiiiiiiii e e 29
3.4.2 Ephemeral Key Pairs..........ooooiiiiicoemmmeiiiiie s 31

3.5 KPM Labels and Label Combining LOGIC.....ccceeeuuiiiiiiiiieiieiiiiieieeeeeiiiiiiiis 31

3.5.1 Disjunctive and Conjunctive Label SetS ca.vveceieieiiiieiiiiiiieeieeviiiis 31
3.5.2 Special Labelseue e 32
3.6 [N Y S VAL = o] o1 T P 32
3.6.1 Shared ValUEScooooiiiiii e 33
3.6.2 Key ENCryption K@Yccvuviiiiiiiiiccemeeeeeeiiieieass e e e e e e eeeeeeeeeeeesnnnnnnnas 33
3.6.3 KEY WIaPPING ..ottt e s e e e e e e e e e e e e e eeeeesnenesnnnnnnnes 33
3.7 KPM Symmetric ENCrYPLiON.........uueiiiice e e e e 34
3.8 N2K Packet HEAUETc..ouiuiiiiiii e ettt eeeeee e 34
N (107 o [T o T T o1 = o o 36
4.1 KPM AFCHITECIUIE ...t 36
411 MEMOTY IMAP .eeviiiiiie ettt ettt e e e e et e e e ea e e e rnnaas 38
4.1.2 Main CONtrOllEr......ccoeeee e 41
4.1.3 o Tod Y/ 1 0] o PR 41
4.1.4 D= Tox Y/ o] 1o o 1R PUUTURTRPRR 43
4.1.5 BUIlt-IN Self TESE (BIST) ...uuuiiiiiiiiiimmmme e e 45
4.2 Cryptographic MOAUIESoiiiiiie e 47
4.2.1 Advanced Encryption Standard (AES-256)....cccc.cccvvvvvvviiiviiiiniiinnnnnnn. a7
4.2.2 AES Key Wrap (AESKW)....coo oo 48
4.2.3 Deterministic Random Bit Generator (DRBG).ccc..vvvvviiiieeeieeeeeeeeeeee, 48
4.2.4 Digital Signature Algorithm (DSA).......o i 49
4.2.5 Elliptic Curve Diffie-Hellman (ECDH).....ciiiiieieiiiiiiiiiiiiieeieeeeeeeeen 49
4.2.6 Key Derivation FUNCION (KDF)........uuuiaeieiiiiiiiiiiineae e 49
4.2.7 Secure Hash Algorithm (SHA-512).......cccceiiiieeiiieiieeeee e 50
5 ReSUItS and DISCUSSIONuuuuiiiiiiieeie ettt e e e e e e e e e e eeeseeeeneeeeeeenee 51
5.1 RTL VerifiCation.........oooiiiiiiiteeeee st 51
5.1.1 Mentor MOdelSImoooiiiiiiiiiiit e 51
5.1.2 Cadence FOrmalCheECKee e 52
5.2 SYNINESIS RESUILS ... 57
5.3 Post-synthesis SImulationceceeeeuiiiiiiiiie e 59
5.4 Place and Route RESUIS............uii e 59
B CONCIUSION ..ttt ettt e e e e e e e e e e e e sttt s e e e eee s s e e e s nnannne 63
6.1 SUMIMABIY ...ttt ettt e e e e e ettt e e e e e eeata e e e e eeesamneaeeeeeeenes 63
6.2 FUTUIE WOTK ...ttt ettt e e e e e 64
] (=] €= o =T R UUSPPPPT 66
Y- VPP PP PPPPPPPPPPPPPPPPR 70

Figure 1: The CrypoManiac processing architectsesigeneralized functional units. . 13
Figure 2: The CryptoManiac functional unit is opized for cryptographic applications.

... 13
Figure 3: Various specialized functional units banntegrated into the processing. 15
Figure 4: Specialized functional units are attackegrnal to the main CPU................. 16
Figure 5: An external specialized functional urbhtains its own input, output, and

(o0 110 I8 (o o [PPSR 16
Figure 6: A processor, controller, and coprocessamprise the algorithm-agile

CryptographiC COPIOCESSOL. .. .cceeeiiiieieeeceeeeeeeetnnnnass s e e e e eeeeaeeeeeeessesnsnsnnnnnnsnnnns 19
Figure 7: The adaptive cryptographic engine usesuayc bit-stream synthesis............ 19
Figure 8: CryptoBooster’s architecture allows dymareconfiguration of the encryption

=1 (6 [0 11 0] o PP 20
Figure 9: This loosely-integrated architecture IfAES (Rijndael) and HMAC-SHA-1

functionality with a minimum of control l0gIC. .cee..vvvvieiiiiiiiie 21
Figure 10: The Discretix CryptoCell is a looselyeigrated coprocessor with full protocol

10] 01] ¢ F TP UPPPT 23
Figure 11: The SafeNet SafeXcel-1840 is a tighthggrated coprocessor with packet

PIOCESSING. . iiiiiiiiiiiettittttte s e e eeee e e e e s e e e e e e e e et e e e eeeesetbbbban e e e e e e e aaaaaasaaeaaaaaaeeeees 25
Figure 12: Label sets, random values, and datas®e to generate encrypted data and

header information (INfOASSUre N2K, 2004)......ccoooiriiiiiiiiiiiiiiiiiiee el 82
Figure 13: A label set, the header, and the enedypata are decrypted to recover the

original data (INfOASSUre N2K, 2004).cummmeerrnnnianaaaeeeeeeeeeeeeeeeeennnnnnnnnaaans 30
Figure 14: Simulation-based FPGA involves multigilaulation cycles before the final

IMPIEMENTALION. .eiiiiiiiiiiiiiiee et e e ettt eeeee e e e e e e e e e eaaas 37
Figure 15: The KPM architecture is a tightly-integd coprocessor external to the CPU.

... 37
Figure 16: The KPM architecture is a controlleedity linked to many cryptographic

MOAUIES. ..ttt e e e e e e e e e e e e e e e e eeeaaaeeeeeeeeneees 38
Figure 17: The memory map defines four regions: fovacontrol, one for metadata, and

one for the MeSSage CaCNE.......cooo oo 39
Figure 18: The main state machine oversees KPMatip@B.cccoevvvvvvvvinnnninnnnnn. 42
Figure 19: The encryption state machine followsKRé algorithm............................ 42
Figure 20: Parallelism is exploited during steps8ef the KPM algorithm. 44
Figure 21: The decryption state machine followsKRé decrypt algorithm................ 46
Figure 22: For encryption, the BIST checks for vipagh key, encryption, and hash

FESUITS. ettt e+ttt e e e e e e e e e e e e e e e e aaaaeeeeeerarre 47
Figure 23: Assertion-based test benches facildatematic iterative testing of modules.

... 52
Figure 24: Functional simulation with the GUI isetid for debugging module behavior.

... 53

Figure 25: The top-level controller test bench amdeds to check the BIST report bits. 53

Figure 26: The controller test bench only needshieck a single memory address and
(0T (0] 4 TRV 7= T o (o ORI 54

Figure 27: The assertion-based post-synthesibéesth completes successfully........... 60

Vi

Figure 28: The post-synthesis test bench wavefamoborates the assertion-based

(=25 | PP RPPPPP 60
Figure 29: The result of automatic placement shitnegelative distribution of logic
among the MOAUIES.cooo i e e 61

Vii

1 Introduction

This thesis addresses the hardware implementatiamew cryptographic
system. The system itself aims to provide newilbliéiky in secure communication over
insecure networks, and the implementation providesneans of successfully realizing
the system under practical constraints. This imletation is the first attempt to render
the core system algorithm in hardware.

This introduction examines the need for the newrdlgm and discusses the
practical considerations involved in implementati&@@hapter 2 presents a study of
relevant previous work. Chapter 3 gives a genmratview of the algorithm and the
design process. Chapter 4 presents the desigenmepitation, and chapter 5 presents a
discussion of the results. Finally, chapter 6 samnes, gives conclusions, and presents

possibilities for future work.

1.1 The Growing Need for Computer Security

With the increased reliance of governments, buse®sand individuals on
information technology, the need for computer sigis continually increasing.
Modern computing practices allow data to existamplex multi-user environments, to
be transmitted via insecure public networks, anbdei@ent across organizational
boundaries. As technology enables these new venvkflit also creates a need for new

means to control sensitive information (Stalling803).

1.1.1 Example 1. Military Communications

One area in need of new security measures is myili@mmunications. To pull
an example from present-day politics, the U.Suisently operating in Iraqg, and its chief
ally is Great Britain. A number of other countriexluding Japan, have also contributed
to the effort. If the U.S. decides that it is gpbo launch an offensive in one particular
area, it needs to make sure that the allies anckpezepers are aware of the attack, but it
also needs to keep this information from the inentg. Additionally, it might want to

send in-depth operational details to the allies shauld not be divulged to the peace-

keepers, or it might want to selectively delivdiommation only to particular allies. The
current methods require that individual, directuise communication links be established
with the involved parties. Maintaining so manywedinks is a complicated and
expensive operation, and a better solution shoelddssible.

1.1.2 Example 2: Corporate Communications

Another area that can make use of new security unesiss corporate
communications. Like military communications, corgte communications can involve
multiple communicating entities who need acceddifterent levels of information. For
instance, the vice president of the company migritvo distribute the specifications for
a new product. To his manager, he might wantgtridute financial forecasts along with
functional specifications and packaging detail®.e Thanager might then pass along the
functional specifications to his workers and outseuhe packaging to a second
company. Certainly, the second company shouldeethe functional specifications or
the financial forecasts. While no harm is donhé employees see the packaging detalils,
that is probably useless information for them. diranally a number of documents
would be created by the vice-president, and he avbale to deliver the documents to
the manager with explicit instructions as to tlseicurity levels. But, this imposes the
task of managing the documents on the manageithanel should be an easier, automatic

way to keep track of which parties need which infation.

1.1.3 Example 3: Multi-user PC File System

A third area that stands to benefit from new ségumieasures is the multi-user
PC. If the PC is running any modern multi-userrapeg system, then individual users
can easily set permission levels to restrict acttefiseir files. The problem with this is
that those permissions are, in general, enforcatidopperating system which assigns
them. With relative ease, anyone with accessd@lttysical machine can bypass the
operating system and read the data stored thefdia.operating system can also be
bypassed by an application that takes advantageafn system weaknesses. Several

available software packages make use of encrypi@notect the stored data, but in

general they remove the fine-grained control thatdperating system gives and limit
access to a single user with the correct passwdiare subtle levels of access should be
available with the same level of security, but ¢hare few products that currently fill this

niche.

1.2 Need2Know System

The Need2Know System was developed to addressefiwethcies of other
security systems and to meet the growing infornmagecurity needs of complex
organizations (InfoAssure N2K, 2004). Need2Knowafes an algorithm for data
processing that includes the following key features

» Centralized Role-based Access Control,
* Information Centric Security, and

» Cryptographic Enforcement.

1.2.1 Centralized Role-based Access Control

Centralized role-based access control describem#magement and permissions
model used by Need2Know. In this model, the ta@ll@nit is a domain. The domain
can be logically divided into a set of roles basadhe flow of information within the
domain, and members belong to one or more dom#&imeanagement officer oversees
the domain, and adding a member means issuingrdrai$eto the member to bind him to
his associated roles. With the credentials hesgatcess to pertinent information, and
the management officer can revoke or update traeat&ls in accordance with changing
roles. Since management is centralized, contnolamtained over the domain
membership, and the system is scalable to verg larganizations.

When Need2Know information is created or modifieslauthor can select a
number of credentials to limit the readership.e8&bn can be as fine or as broad as
desired, allowing the author to target any numlbeecipients, from a single individual
up to the entire system. Valid permission levetsvarite-only and read/write, and
furthermore they can be time-based, limiting trediership to members who have been

with the system for some set amount of time.

1.2.2 Information Centric Security

The mantra behind Need2Know is that simfermationneeds to be protected,
security practices should be implemented onrif@mationitself. This is known as
Information Centric Security, and it improves ugmevious practices that relied on
physical security of networks and computer systenmotect data (InfoAssure About,
2005). Physical security still plays an importesie in a total security scheme, but tying
information security to the data objects themsellmsates the communication and
computer systems from strict requirements. Usirigrination Centric Security
practices, public networks and public informatigngessing systems can often be used
in the place of expensive and unruly dedicatedsscoesources. Since Need2Know is
infrastructure independent, it can ideally allowws®e access to information and services

nearly anytime and anywhere (InfoAssure Produ@65®

1.2.3 Cryptographic Enforcement

Central to implementing Information Centric Sequate the concepts of
cryptography, which allow data to be mathematicabgcured. By making use of
cryptographic algorithms, data can be protectedpeddent of the system in which it
resides. Through the processatryption the originalplaintextcan be altered to
produce codediphertext With the correct digital credentials, it is pidss to decryptthe
ciphertext and obtain the original plaintext, buthout them decryption can be
computationally infeasible (Stallings, 2003).

With cryptographic enforcement, encrypted datasssourely cross organizational
boundaries, insecure channels, and various pragesavironments before being
received and decrypted by its intended recipientifs)contrast, a system that relies on a
secure environment to enforce its access only gesvinformation security within that
environment. Once the data is passed outsideedftisted realm, for instance by being
moved to a floppy disk or by being sent on the mubkernet, the plaintext can be
viewed by any interested party.

The Need2Know system can only be as secure asderlying cryptography, so

choosing good algorithms is a key concern. Inséurity community, cryptographic

4

algorithms are heavily scrutinized to determinertlevel of security. In the U.S., a
number of organizations publish cryptographic séadd that have been approved for
widespread public (government) and private (co@nase. The main standards bodies
are the National Institute of Standards (NIST) angkerican National Standards Institute
(ANSI), and the Need2Know system makes use of theitished standards wherever

they are applicable.

1.2.4 Enabling New Capabilities

With the aforementioned features, the Need2Knouegygives new information
security capabilities to its users, enabling mdeaible access to shared secure
information. With regards to the military commuations example, wartime updates of
U.S. troop movements could be sent over publiclesgseor internet channels, even being
broadcast at a known frequency and time. Despédédct that the transmission could be
intercepted by any party, only those nations vhta¢orrect permission levels would be
able to access the privileged information. Fordbgporate communications example,
one set of documents could be distributed with elxiument being protected against
unauthorized use. Then, even if the outsourcedoaomor the engineers received the
marketing data, they would not be able to readFihally, with regards to the multi-user
PC example, files would be assigned permissionschas Need2Know rather than the
operating system. The same fine-grain access psions would be possible, but in
cases when the operating system was replaced, s8ghas forgotten, the files would

still maintain their intended access controls.

1.3 Implementation Considerations

In Need2Know, the main algorithm resides in the Regtection Module (KPM).
The KPM makes use of the various cryptographicdsteds in order to encrypt and
decrypt Need2Know data. Therefore, each Need2Kmember needs an
implementation of the KPM in order to interact wilie system. Need2Know, by design,
has great potential to allow flexible, secure asdesnformation. However, to realize

this potential, the implementation must meet sdverpiirements:

* low time-to-market,
* high-throughput,
* low power,
* low cost,
» feature flexibility, and
* implementation security.
In making implementation choices it is necessamMaluate the tradeoffs among these

metrics.

1.3.1 Low Time-to-Market

Design-time is critical because Need2Know aims é&ha current need, not a
need that is only projected to exist in the futuvéith a fast turn-around, development
costs for the implementation are kept down. ThasoNeed2Know is ready to be
deployed, the sooner it can benefit its users hadooner its developers can earn a

return on their investment.

1.3.2 High-Throughput

High-throughput refers to how quickly the implemagidan can encrypt and
decrypt information. The two contributing factdéosthroughput will be the number of
recipient roles and the size of the data to beygted. For every additional recipient
role, an extra set of cryptographic operations mekd to be performed, and increasing
data size will necessarily extend the length ofaheryption/decryption operation.
Regardless of the source of the latency, a praogs$sne that is too great negates the
usefulness of the device. Often, the need to shéyemation is time-critical, many users

need to be targeted, and large amounts of datatodesdtransferred.

1.3.3 Low Power

Low power becomes of interest when taking into aotonobile, battery-life
constrained devices such as radios or laptop cargufor these devices, a power-

intensive implementation can limit or even remosefulness of the implementation.

Additionally, power consumption generates heat, thecheed for active cooling can
radically affect a device’s design and viabilityd@ms, 2002). Certainly, if the
implementation has the power and cooling requirgmeha modern desktop CPU, then
the mobility and installation requirements are tedi

1.3.4 Low Cost

A low product cost is a concern of any commercelide, and the KPM is no
exception. With a high cost, maximum performanrae loe realized, but the product
might be unaffordable. Conversely, an ultra lowtdmwlsters widespread distribution,
but low performance might make the product undbiraUpfront non-recurring
engineering costs (NRES) can be an important fadtarg with per-unit costs, and the

relative tradeoffs need to be evaluated in the laglihe business plan (Adams, 2002).

1.3.5 Feature Flexibility

Feature flexibility is an important consideratiomen that during the design cycle
or after deployment the changes might be requingéde implementation. Since the
Need2Know specification is relatively new, it imsenably likely that changes or
clarifications in the specifications will be issuedliso, the core cryptographic algorithms
are continually being analyzed and refined, ss iinportant to be able to support new
developments to maintain the security of the im@etation.

1.3.6 Implementation Security

Even though the Need2Know algorithm uses cryptdgcagtandards to provide
strong security during data transmission, datasaueget information can exist in
relatively unprotected forms within the implemerdat If a potential attacker believes
that the implementation is a weak point in the sgcacheme, he will focus his efforts
on attacking it. While it is virtually impossibte guarantee security of a device, a

number of implementation decisions can improvedénce’s physical security.

1.4 Technology Tradeoffs

Three technologies were considered for this impleaten: software running on
a general purpose CPU, Field Programmable Gatey&\(FePGAs), and Application
Specific Integrated Circuits (ASICs). With any ereering design, it is difficult to find a
single technology that optimizes every constrairtie relative tradeoffs are evaluated

against each other in the following subsections.

141 Low Time-to-Market

Software provides the fastest migration from cotgaigzation to
implementation. Software easily leverages exidiimgries of functionality and can be
quickly debugged and deployed on off-the-shelf R€@lware. FPGA and ASIC designs
can also make use of existing designs, but integy#&tgacy functionality generally
requires more extensive testing and debuggingo,Alisice FPGA and ASIC
developments take place at a lower level of abstrathan software development,
development and debug cycles are longer. ASIGprping further entails a multi-week

to multi-month wait while the device is fabricatethereas FPGAs designs offer rapid

prototyping.

1.4.2 High-Throughput

While either large number of recipient roles oglamessage size can dominate
processing time, both of the involved operation&en@eavy use of cryptography.
Software is relatively inefficient when dealing Witryptographic algorithms, but those
algorithms can be very efficiently implemented ardware. Typically, FPGAs and
ASICS can offer an order of magnitude increaseerfigpmance compared to general
purpose processors. For a given design, ASICgererally able to offer higher clock

speeds than FPGAS, so their scalability will alsmbticeably higher.

1.4.3 Low Power

Modern general purpose processors needed to rtmasefemploy high clock

frequencies in the gigahertz)@ange, whereas FPGAs and ASICs use lower clock

frequencies of tens or hundreds of megahert) (18ardware power dissipation scales
linearly with clock frequency, and ASIC implemeindat fully realize this potential
power savings: they can be expected to consumd' 1810108 the power of their
general purpose counterparts. FPGAs, on the btad, are unable to realize low power
implementations due to higher transistor countskagher internal losses. While their
power usage is much less than that of a mainstdesktop CPU, it is often still too high

for power-conscious mobile applications.

144 Low Cost

While high-end general purpose processors areragtyeexpensive, their
embedded counterparts are priced much more redgonabthese processors are off-
the-shelf components, they have no additional cast@ask costs. FPGAs offer the same
performance as a much more expensive general pufpiesl at a lower per-unit cost
while still remaining free of extra costs. ASI@4djile offering the best per-unit cost of
the three, have associated mask costs that camsodne millions-of-dollars range.
ASICs thus offer the lowest total cost only wheroatizing mask costs over high

production volumes.

1.4.5 Feature Flexibility

Software offers the ultimate in feature flexibilityost feature updates can be
instituted with an update to the code. Thus, ckarm@an be made throughout the
development cycle and after deployment. In a sinmmlanner, FPGA designs can be
updated by altering the configuration memory, thoiigs possible that the new features
cannot be accommodated by the available logic ressu In contrast to software and
FPGA implementations, ASICs provide absolutely eatdire flexibility, even during the
design debug phase.

1.4.6 Implementation Security

From a security standpoint, a software implemenitais the least secure. In an
OS environment, there are a number of opportunitiesogue programs and users to
snoop on activity of other programs and data. Ewmenlimited software environment,

9

the system is more open to attack through alteregrams or through analysis of the
well-understood hardware. The dedicated hardwBFGAs and ASICs provides an
extra layer of security since access to the comgugsources can be more closely
controlled. FPGAs, allowing reconfiguration, havpotential weakness that ASICs lack;
the possibility exists that they can be surrepigiyg reconfigured to open vulnerabilities
in the system, though admittedly this is a muchemovolved procedure than an attack

on a software implementation.

1.5 FPGA Implementation

After weighing the tradeoffs, an FPGA implementatwas chosen. The
implementation needs to provide a computationa iashigh mobility, high
performance electronic devices for use with thed&mow system. Hardware is
necessary to realize the goal of providing secacess to information anywhere,
anytime, and the FPGA technology provides a balahtégh performance and
flexibility necessary for prototyping. Choosing BRGA implementation also gives a
clear migration path to an ASIC implementation,idddhe potential benefits of that
technology be desired in the future.

This document describes in full the FPGA implemgataof the Need2Know
KPM. Organization is as follows: Chapter 2 expotiee previous work on cryptographic
coprocessors. Chapter 3 gives in-depth coverageedPM algorithm and FPGA
design steps. Chapter 4 describes the logic desitire implementation. Chapter 5
discusses the implementation results. Chaptenéledes this work and outlines

possible directions for future work.

10

2 Background Sudy

The need for cryptographic coprocessors is widdtrassed in literature, both by
academic researchers and by commercial desigAarper its name, a coprocessor
works in conjunction with some other microprocessomicrocontroller to produce a
desired result. Thus, the major design considerdtir a coprocessor is how much of the
processing to offload from the host processormaking this choice, there is a tradeoff
between flexibility and performance. The explodedign strategies for cryptographic
coprocessors are, in decreasing order of flexybilit

* Programmable coprocessors,
* Reconfigurable coprocessors,
» |oosely-integrated coprocessors, and

» tightly-integrated coprocessors.

2.1 Programmable Cryptographic Coprocessors

Programmable cryptographic coprocessors offer idfieelst level of flexibility.
Like any programmable processor, they implementesbasic set of operations and
provide these as sequentially-linked building bkéik complex algorithms. A
coprocessor’s design differs from that of a genpuapose processor because it is
assumed that only certain types of algorithms balrun. This being the case, the
instruction set architecture (ISA), data path lpgied control logic can be optimized for a
limited selection of workloads. To differentiajgesialized programmable processors
from general purpose processors, they are sometatkesl domain-specific processors
(Hodjat and Verbauwhede, 2004).

2.1.1 Generalized Functional Units

One technique used is that of generalized functioniés. In this case, the
processor’s functional units do not single out pasticular algorithm. Rather, they
perform operations applicable to a class of algorg. A selection of algorithms, e.g. a

number of symmetric encryption algorithms, is faslyzed to determine the most

11

common operations. These operations are then ginehighest value through the
design, but the functional units must still maintanough functionality to be able to
compute general purpose results, consuming sonoegsimg overhead. Obviously, such
a processor will perform much better on those algas that were considered by its
designers, so it is important to note what consitilens went into the design.

CryptoManiac is an architecture that makes uggeagralized functional units
(Wu, Weaver, and Austin, 2001). The design isvade 32-bit Very Long Instruction
Word (VLIW) architecture with a 4-stage pipeling,shown in Figure 1. Each word
contains up to four independent instructions tlaat lse computed in parallel. There is no
cache, and a simple branch target buffer (BTB)sidun the branch predictor.

The functional units are optimized for symmetrig lemcryption algorithms. In
particular, the following algorithms were analyzding the design stages: Blowfish,
3DES, IDEA, Mars, RC4, RC6, Rijndael, and Twofishhe resulting analysis showed
commonalities among the algorithms, and the des@moptimized to reflect these. As
shown in Figure 2, the units make use of a muépka substitution box (SBOX), an
adder, a rotator, and two logical units.

The CryptoManiac processor supports a number aflgoent encryption sessions
with separate keys and data. Each VLIW processoalied a processing element, and a
number of these processing units are used withyptGManiac. Input requests are
loaded into a shared input queue and processedtlyegluler. The scheduler directs
each instruction to a processing unit, which loésisession info from a key store.
Finally, results are deposited in a shared outpetg.

Another coprocessor based on generalized functiom#d is Cryptonite (Butchy,
2002). The stated mindset of the processor’s desigas to “not be a collection of
specialized hardware. Instead, it should be basadeally primitive and reusable
hardware functions.” Just as with the CryptoMananumber of symmetric encryption
algorithms were analyzed (DES, AES, SHA, MD5, IDBAd RC6) and the common
operations were determined.

The Cryptonite architecture, while being VLIW, @if§ significantly from that of
CryptoManiac. Cryptonite uses a 3-stage pipeliith fetch, decode, and ex/writeback.

12

-+——Fetch———p» -«+——Decode/RF————» = » -a—Write Back——»

FU -
- BTB N
Y
FU >
|
Decode/
; e - Output Cueus-a-
Register Fetch FU -
-]
Fu -
Irstr, Mem
-
0y
—r Data Mem e
| [—————Keysioe————— =
-

Figure 1: The CrypoManiac processing architecture uses géped functional units.

S
- P e
P
_ Logical Unit
(AND/OR)
- -
o Ty
Pipelined 32-bit 1 KBYTE SBOX 32-bit Adder i
Multiplier Cache o
= | —
= =

Logical Unit

(AND/OR)

Figure 2: The CryptoManiac functional unit is optimized fogptographic applications.

13

It makes a strict distinction between data path@nmdrol, maintaining the SBOX data
outside the functional units, unlike the CryptoMamdesign. Also, while the Cryptonite
architecture supports two execution paths, it mailsesof two separate memories to feed
the two separate ALUs. The design uses 64-bisteg, and the execution cycle is
strictly single-cycle, unlike CryptoManiac’s pipesid multipliers.

The generalized approach has also been appliesytoraetric algorithms.
Researchers at Sun have created a VLIW public &pyocessor for RSA and ECC
(Eberle, et al., 2004). This processor makes tisptamized 64-bit multipliers to
accelerate the multiple precision operations commasymmetric cryptography. Also
of note, each instruction word is split into twgians — one for a control operation and

its operands and one for a data operation and oggra

2.1.2 Integrated Specialized Functional Units

Another approach to accelerating cryptographic apams is to start with a
general purpose processor and add custom instngdiiothe ISA (Ravi, et al., 2002).
This is accomplished by integrating specializeccfiomal units into the existing pipeline.
When custom instructions travel down the procepgmeline, the specialized functional
units take the place of the general purpose funatianit to execute them. Since the
fetch, decode, and pipeline logic is shared betvieemgeneral purpose and specialized
functional units, this scheme efficiently reusesdiaare resources. An architecture with
custom DSP, security, and networking functionatauis shown in Figure 3.

The design was based on the Tensilica Xtensa TX0d0nfigurable 32-bit RISC
processor. First, the authors built a set of safewibraries to implement the symmetric
algorithms DES, 3DES, and AES as well as the asymragorithms RSA and EI-
Gamal. Care was given to specify the librariea merarchical fashion with high-level
algorithms composed of low-level functions. Thiey profiling the libraries, it was
possible to determine which functions would benmfitst from hardware acceleration.
The hardware design space was iteratively explasgollows: the functions of interest

were hand-optimized as hardware implementatiomsptbcessor was profiled, and

14

Memory

Fetch

)

Decode

¥ [] ¥ Y

DsP ALL Sacurity MNetworking

Figure 3: Various specialized functional units can be ing¢ed into the processing.

overall area and delay were inspected. These stefgsrepeated, resulting in a final
design that met the performance goals.

2.1.3 External Specialized Functional Units

For coarse-grained hardware acceleration, it isssary to move the specialized
functional units outside the main CPU'’s pipelifiéhis scheme uses loosely-coupled
independent coprocessors that connect to the nRith&er a dedicated interface. Since
the coprocessors are outside the main pipeling,dhae be larger and can perform more
complex operations. The downside is that this migggion incurs some overhead for the
interface and data buffering. A high-level viewtlils type is shown in Figure 4, in
which a main CPU has been linked to DSP, secuartg,networking coprocessors.

A programmable AES coprocessor was designed wighotiganization in mind,
as shown in Figure 5 (Hodjat and Verbauwhede, 2004jike the previously discussed
programmable architectures, this one makes useave instructions that are specific to
a single algorithm. Instructions from the CPU ieeived over a memory mapped
interface, giving the CPU direct access to the eogssor’s two 8-bit instruction and
configuration registers and two 32-bit input andpot registers. Two categories of

15

Memory

Li
- DsP
Y
Y
Main CPLU = L= Sacurity
L |
. MNetworking
v

Figure 4. Specialized functional units are attached exteiméthe main CPU.

:

Coprocessor
Top Controller
Pl B |) e
Input _ | Encryption _ _ Imput
. Data Path | Buf [Data Path | Buf [Data Path >

Figure5: An external specialized functional unit contaitssawn input, output, and control logic.

16

instructions are used: single and continuous. &Wiigle operations are standard,
continuous instructions facilitate operations aeams of data.

The coprocessor internals are modular, compriseoh ahput module, output
module, encryption module, and top controller. feamdule incorporates a state
machine, and the machines are linked in a hiereatfashion. The design uses a three-
stage block pipeline, reading one block of data the input stage, processing one block
in the encryption stage, and outputting one bldekilve output stage. To match the
pipeline cycle count to the slowest stage, eadesté the pipeline takes 11 clock cycles

to complete.

2.2 Reconfigurable Cryptographic Coprocessors
In addition to flexibility through programmability, hardware coprocessor can

achieve flexibility through reconfiguration. Inmgeral, these solutions maintain a store of
encryption algorithms and can dynamically load ahthe supported algorithms into the
device in order to complete a request. The cdimgpCPU is responsible for selecting
the desired algorithm.

Reconfiguration offers a couple of distinct advgesover a fixed design. First,
a number of modern security standards, such aSdabere Socket Layer (SSL) and
Internet Protocol Secure (IPSec), define framewarkghich to use various symmetric
or asymmetric algorithms. Using reconfiguratidre tequired algorithm can be
dynamically paged into the coprocessor, and thercdimtrolling CPU can tie various
algorithms together into some high-level standartis results in an area savings since
the peak number of gates required is the numbegatafs required by the single largest
algorithm. Second, since the configuration menwany be reprogrammed, the hardware
can be field-upgradeable. This is a useful featuren algorithms need to be updated or
replaced to handle changing standards or to coampptographic attacks.

Since reconfigurable coprocessors generally sugmdytone encryption
algorithm at a time, they cannot take advantageaodware’s potential for parallelism.
Also, since they make use of FPGAs rather thardfgates, they generally have higher

power consumption, lower throughput, and higheryet cost.

17

2.2.1 Whole-FPGA Reconfiguration

One approach to reconfiguration is to reconfigheedntire FPGA when a new
encryption algorithm is required. One such ardhite2, an Algorithm-Agile
Cryptographic Coprocessor, is shown in Figure @f{P@hetwynd, Connor, Deng,
Marchant, 1999). In order to interact with theti®€, a number of external blocks are
used, including a system controller and an algorilibrary processor. The algorithm
library processor is responsible for paging erffiir& A bit-streams into the FPGA.

This architecture focused on implementing the syimmencryption AES
candidates. While the input, output, and conttotks are the same for any bit-stream,
there is a custom algorithm core. The architeatuag&es use of a standard interface to
each of the custom cryptographic cores. The numbsupported algorithms is limited
only by the algorithm library, and this architedisrlibrary has a seven-algorithm
capacity. A similar reconfigurable architecturghwininor updates was explored in
(Mingyu, Jinahua, Guangwei, 2003).

Another architecture, the Adaptive Cryptographigige (ACE) shown in Figure
7, aggressively addresses the storage limitatibtieeaalgorithm library (Dandalis and
Prasanna, 2000). The configuration bit-stream®&ganized in memory as
parameterized configuration skeletons and vari@uarpeter sets. The skeletons and
parameters are combined at run time to generateitiséream for device configuration.
Furthermore, a variant of LZ compression suitablehfardware is used to realize
compression ratios of 65%-95%.

2.2.2 Partial Reconfiguration

The CryptoBooster architecture shown in Figure &esause of dynamic partial
reconfiguration, reconfiguring only a portion oethonfigurable gates when a new
algorithm is required (Mosanya, 1999). This has petential advantages over whole-
FPGA reconfiguration: algorithm-switching can betéa and configuration storage
requirements are lower.

Because part of the processor fabric can be replacelemand, the architecture

must be highly modular. This modularity is enfatd¢brough the use of a standard point-

18

A
[I T L |
I || |
I Algorithm Library I I Data I
| Processor =I I S e *—™| Bufiers I
I <l | |
| |] 1
'\ I
I Y Wl _ _ _ _ _ _ _ —
I I | ———————————— I
| _ | |
Algorithim I
| Library | I
I | I L Cryptographic Coprocessor |
|
| | | |
L _ _ s - _ _ _ _ _ _ _

Figure 6: A processor, controller, and coprocessor comghiealgorithm-agile cryptographic
COProcessor.

Rqu.nest
_____ i
[Cryptographic Library |
I | Algarithim A | Configuration
| Configuration 1 | Controlier
I Configuration 2 |
{ I A
| [AlgorithmB | Y
I Configuration 1 |
| Configuration 2 |
I | FPGA
1 |
|| |
L————— ;
e
Y

Figure7: The adaptive cryptographic engine uses dynamistteam synthesis.

19

i
L)
L

Interface Adapter
' 3
|
Host Interface

&
|————‘IF _______

Sassion Control = Adapter LT | Sassion Mamory

Figure 8: CryptoBooster’s architecture allows dynamic reggunfation of the encryption algorithm.

to-point interface between the encryption algoritmodule, or CypherCore, and the
session control module. The standard communicaigmals support a query/response
system, allowing the “intelligent” algorithm moduie reports its capabilities to the
controller. Queries and responses are packetsntfat or data information.

The architecture also supports multiple encrypsiessions, requiring a session
adapter module and access to session memory. eEems adapter is specific to the
encryption algorithm, so it, too, is dynamicallgoafigured when a new encryption
algorithm is loaded. A query/response point-toapoink also exists between the session

control module and the session adapter.

2.3 Loosdy-Integrated Cryptographic Coprocessor Systems

Fixed cryptographic coprocessors can be divideddas the level of integration
of their algorithms. In loosely-integrated systemsiumber of algorithms are supported,
but the host CPU is responsible for tying theiuhesstogether for use in a high-level

protocol. Various approaches have made use of F&¥Gi&ed-gate technologies. Both

20

provide higher performance compared to the recardigie cryptographic coprocessors
since they remove the latency of reconfiguratiblowever, this benefit comes at the

expense of increased area needed to support neuddiggdrithms.

2.3.1 Partial Protocol Support

Modern communications protocols, such as IPSecT&s] define support for
numerous cryptographic algorithms, but some comsmearchitectures offer only partial
protocol support. This approach lessens the cofitplef the design and reduces chip
area, but it is most useful if only a part of thhetpcol will be needed or if only the most
common case needs to be sped up. With the redueadequirements, these designs
can be implemented in an FPGA.

An architecture that supports AES and SHA/HMAC tfoe IPSec protocol is
shown in Figure 9 (McLoone and MCanny, 2002). e cores can operate in parallel,
providing an increase in the encryption performangs shown in the figure, the

architecture contains a minimum of control, andrbst CPU is responsible for

e = AES Ot
o
I HMAC-SHA-1 Ot

Figure9: This loosely-integrated architecture offers AEgr{&ael) and HMAC-SHA-1 functionality with

a minimum of control logic.

21

providing all the setup and control signals anaiporating the results into some high-
level protocol. This design was tested in a Xilirtex XCV1000E FPGA.

Another architecture that has partial protocol supjs outlined in Crowe, Daily,
Kerins, and Marnane, 2004. This architecture supp&ES, SHA-512, and RSA DSA,
and it is designed to accelerate IPSec and TLS aonimations. Unlike the previous
architecture, this design offers public key aldoritacceleration along with symmetric
key operations. This design, as with the previallews the AES encryption block to
run in parallel with the other blocks.

In this architecture, the designers attempted torope whole-chip performance
rather than the performance of a single algoritl@®me technique they used was to insert
a FIFO buffer between the shared memory interfacktlae algorithm blocks (both on
the input and output sides). This allows the symicmencryption and the SHA/DSA
operations to run in parallel from the same inutree. The architecture also makes use
of multiple clock domains, allowing the RAM and iogo run at different rates. This
design was implemented and tested on a Xilinx XiX€V2000E FPGA.

2.3.2 Full Protocol Support

Loosely-integrated architectures with full protosabport implement all of the
functions needed by the high-level protocol. Iseexe, they connect a number of
algorithm-specific cores on a system bus and peothé various core functions to the
host CPU. These architectures have high arearssgants to support the various
algorithms, and the bus is a necessity to handaduded complexity of so many cores.
In the interest of increasing throughput, they rmighorporate supporting algorithms
such as random number generators, and in the shi@frencreasing security, they might
implement attack resistance measures.

The Discretix CryptoCell, shown in Figure 10, pabes full protocol support
(Discretix, 2005). A number of algorithm-speciiores are implemented on a bus. The
symmetric key operations of AES, DES, and 3DESsapported, the hash operations of
SHA1, MD5, and HMAC are supported, and the pubdig kperations of RSA, DSA,
ECC, and DH are supported. In order to implemieatPSec protocol, or any other

22

e PKl Coprocassor

- - Symmelric Encryption Coprocessor

Bus

Interface [™ Hash Coprocessor

Randam NMumbser Ganerator

F
L)

- - Secret Cryplokey

Figure 10: The Discretix CryptoCell is a loosely-integratespmcessor with full protocol support.

high-level protocol, the host CPU ties togetherrgmults of the various cores.
Additionally, a random number generator is includesiare unspecified attack resistance
components.

IBM offers a similar full protocol coprocessor, tbéraCypher Cryptographic
Engine (IBM, 1998). The UltraCypher provides spézed cores for DES, 3DES, MAC,
3MAC, RSA, modular exponentiation, modular arithimeBHAL, and random number
generation. Its interface is via the ISA bus, #relhost CPU has read/write access to

various control, setup, and status registers. Datfering is via FIFO buffers.

2.4 Tightly-Integrated Cryptographic Coprocessors

Tightly-integrated coprocessors offer the hardveareeleration. Instead of
relying on the host-CPU to direct the links amoagaus cryptographic operations, link
some or all of these operations using internalrobntThe input to these processors can
be entire communication packets, rather than rawa, @ad the processor can be
responsible for parsing the header and traileifyeg and decoding the payload, and

creating the output packet. Rather than necegdmihg more restrictive, these

23

coprocessors can offer a superset of the loosébgriated functionality. Some or all of
the packet processing functionality can be reveadte host CPU, resulting in the same
level of access to low-level cryptographic functon

The SafeNet SafeXcel-1840 coprocessor, shownguargill, uses the tightly-
integrated approach (SafeNet, 2005). Its overahitecture links a public key
accelerator with a number of packet processingnesgvia a bus. Each packet
processing engine incorporates a symmetric enanygtigorithm and a hashing
algorithm, and along with those are input/outputdrs, header and trailer parsing logic,
context memory, and control logic.

The SafeNet coprocessor supports AES, DES, 3DEBARC4 symmetric
encryption algorithms, MD5 and SHAL1 hashing aldons, and DH, RSA, and DSA
public key algorithms. A random number generagalso included. For interfacing,
PCI, PCl-express, or a shared memory interfacewgsported. Since the packet engines
and public key accelerators are separate entitieg,can run in parallel for a
performance boost. Performance is also increasealse a dedicated hardware
controller chooses which engine receives whichtimaecket, communication with the
host CPU is packet-based, and burst packet tranaferpossible.

Another tightly-integrated coprocessor is the Hifi*P 7855 (Hifn, 2005).
Feature-wise, this coprocessor is similar to thelSet design, but the architectural
details are not made available to the public.

24

Packet Engines

|
| |
lg—| - Cantraller |
| |
—!—p-1 Header Processing I | I
| ' L] y |
! Hash Crypto |
! Block Black I
| |
L Bus -¢—|—| Trailer Processing |
7| Interface - I* :
+|-=| Random Mumber Genearator
Public Key Accelerator
- [= Fublic Key Coprocessor

A
i

[Public Key Exponentiator

Figure 11: The SafeNet SafeXcel-1840 is a tightly-integratedrocessor with packet processing.

25

3 General

In the N2K, the KPM specifies how various cryptqure standards are linked to
provide cryptographic Role Based Access ControlARB The following sections are
organized as follows. First, the basic N2K orgatian is presented. Next, the various
steps of the KPM, as well as their associated ogmaphic standards, are elaborated in

the order that they are conducted. Finally, th&A&Rlesign flow is presented.

3.1 N2K Organization

N2K has a carefully defined centralized managersenéme that enforces
separation of duty. That is, a number of managémodes are defined, and no one role
has the power to compromise the integrity of infation protected by N2K. The details
of N2K administrative roles, while important, hditde to do with the KPM and are not
discussed here (InfoAssure N2K, 2004). Additicadhinistrative steps, while
mentioned, are not discussed in detail.

Administrators oversee cryptographic domains, narnyhich might be
represented within a single organization. A donusgfines the elliptic curve math to be
used by specifying the curve, base polynomial,lzask point. The NIST-approved K-
571 and B-571 curves are the only approved cutugshe base polynomial and base
point are generated by the administrators.

Access control in N2K is based upon possessioall lkey pairs, or labels.
Labels are pre-computed elliptic curve Diffie-Hellm(ECDH) key pairs coupled with a
globally-unique identifier, or GUID. For ECDH, tipaiblic key is a point on an elliptic
curve, and the private key is a large integer. W\Meta is encrypted, a number of labels
are assigned to set the access permissions. Biossetthe required public keys gives a
user write access, while possession of the reqpinedte keys gives a user read/write
access. Except for the responsibility of maintagnprivate key secrecy, the security of
the system is enforced via cryptographic means.

It is the responsibility of the N2K administratacsgenerate and distribute the
labels. Also, at any time, the administrators gpdate labels, enabling access to be

26

temporally restricted. Another duty of the admiragon is to select appropriate
cryptographic algorithms used in the scheme. Thdace is made according to the
organization’s needs, and for the rest of the disiaun it is assumed that a subset of the
available options has been selected.

3.2 KPM Encryption

The KPM encryption process is the sequence of stepassary to create an N2K
packet. A user must select the desired accessgsoms and create the initial content,
and then these inputs are run through the KPM #hgorto produce the encrypted
output. The process of data encryption is as\ialo

1) The user chooses labels (named key pairs) thatniet permissions of the
encrypted data.

2) A valid symmetric keyK) and initialization vectorl{) are generated randomly.

3) An ephemeral private keyld) for each domain is generated.

4) A public key Q) is calculated for each ephemeral private key.

5) For each label set, a key encryption kii£K) is derived.

6) For each label se is wrapped with &EK to generate the wrapped kayk).

7) The datal) is signed with the user’s private kady(to generate the inner
signature).

8) P is encrypted withk andlV to generate the encrypted data. (

9) The metadata and encrypted data are packaged.

10)The package is signed with the user's private 8gytd generate the outer
signature $H). This binds the encrypted message and the ntatadd finalizes
the N2K packet.

A top-level view of the KPM encryption process wn in Figure 12, and the
various steps are discussed in more detail indhewing sections.

27

Sharsd Valuss calculated from a Conjunctive Labe! Set

VARV ARV A

SV, .GUID; SV, GUID, SV, .GUID,

Y

wh

Encryoiad
DATA

ancryot

Figure 12: Label sets, random values, and data are usectwaje encrypted data and header information
(InfoAssure N2K, 2004).

28

3.3 KPM Decryption

The KPM decryption process is the reverse of tleeygion process. When an
authorized user receives the packet, he or shéwible decrypt the packet and
regenerate the original input content. The KPMadkEcryption steps are as follows:

1) The encrypting user’s public ke@{) is used to verify the outer signatu&H).

2) A shared valuesS)\) is calculated for the label for which the recigi@olds
private keys.

3) From the set 08V, KEK is derived.

4) KEK s used to unwragK and recovekK.

5) KandlV are used to decrypt the d&ta

6) Using the encrypting user’s public ka4, the inner signatures| is verified
against the decrypted text.

A top-level view of the KPM decryption process ®wn in Figure 13, and the various

steps are discussed in more detail in the folloveections.

3.4 KPM Keying Material

Various keys are used throughout the N2K proc&ssne of this keying material is
generated by administrative processes outsidecthigesof the KPM, such as the label
keys. The KPM itself, however, is responsiblegenerating data encryption keys,
initialization vectors, and ephemeral key pairan&m values are needed for all of these
parameters, and secure random number generagsseastial for the security of the
scheme. Pseudo-random number generation staratardsiployed, but they must be

seeded with a high-quality source of entropy.

3.4.1 Random Values

A NIST-approved pseudo-random number generator f&diS X9.63, Annex
A.4.1, is used for the KPM (Accredited Standardsn@uttee ANS X9.63, 2002). This
generator is seeded with a non-deterministic randomber and then relies on
successive applications of the cryptographic h&gbrighm SHA-1 to generate its values.
The pseudo-random number generation function ineéfas
29

Shared Valves calculated from a Conjunctive Label Set

SV, .GUID; SV, GUID, SV, .GUID,

W

Encsyplad |

L dacrypt CATA

Figure 13: A label set, the header, and the encrypted datdesrypted to recover the original data
(InfoAssure N2K, 2004).

30

png(l, n, x, y)
where the output israndom values, each less thranin generalnis 2 - 1, where b is
the number of bits needed for the random valudse xBandy values are both b-bit real

random values used for seeding the generator.

3.4.2 Ephemeral Key Pairs

During encryption, ephemeral key pairs are gendrateeach domain spanned
by the relevant label set. The ephemeral privaied, is generated with the
pseudorandom number generator such that

de = png(1, r, XKEY, XSEED)
wherer is the order of the elliptic curve and tiKEY andXEED values are generated
randomly. The ephemeral public k&€, is then derived from the ephemeral public key
via
Qe=dG
whereG is the domain base point. Note that since kathndG are points, they are

represented with bold type.

3.5 KPM Labelsand Label Combining Logic

To assign access permissions to data, a contatbcrmust select some number
of labels. These labels can be combined usingptiieal “AND” and “OR” operators to

narrow or broaden permissions, respectively.

3.5.1 Digunctive and Conjunctive Label Sets

Disjunctive Normal Form (DNF) is the standard fdionentering label sets at the
user or application level. In this form, labels abombined with “OR” operators to form
a label set, and multiple label sets can be condbivith “AND” operators. An example
is:

L1 AND (L2, OR L2 OR ...) AND (L31 OR L2 OR ...) AND ...

where a label;; represents thi' label of thaé™ disjunctive label set.

31

Conjunctive Normal Form (CNF) is the label senidhat is needed at the
algorithm level, so the DNF form must be convertadmeans of standard Boolean
algebra. The example above can be rewritten as:

(L1 AND L3 AND L33 AND ...) OR (L AND L2 AND L32AND ...) OR ...
In this CNF expression, each parenthetical statemenConjunctive Label Set (CLS).
In the KPM, each CLS is used in the generationwfapping key. Each label in a CLS
is used to calculate a shared value, and the skateds become the input to a key

derivation function that outputs a CLS-specific ppang key.

3.5.2 Special Labels

Special labels called sensitivity labels are usespecify how data is handled.
These labels denote the type and strength of gmifetation and authentication needed
to log in, the minimum strength of cryptographigaithms that can be used, whether a
digital signature is required, and what integritglaize the digital signature should be.
For an encryption operation, exactly one sensytilbel is used. In the previous
disjunctive and conjunctive example equations Lihgterm represents the sensitivity
label.

Another special label is the foreign label, whistailabel from another domain.
In the domestic domain, a corresponding shadow lalmeeated. Each domain has its
own set of parameters, so each label has diffel@miain parameters associated with it.
Whenever the foreign label is used in an operatlmacorresponding shadow label must

also be used in order to allow key recovery withi& domestic domain.

3.6 KPM Key Wrapping

The labels from the previous section are used nergee wrapping keys unique to
each CLS. Since labels consist of public/privage pairs, the public keys can be used to
encrypt data in such a way that only members visghcorresponding private keys have
access to the data. This is done by generatingrdoar of CLS-specific wrapping keys

to protect one symmetric encryption key.

32

3.6.1 Shared Values

Shared valuesSV, are generated for each label in the CLS. Forygption, the
shared values are calculated by multiplying thegte ephemeral keyld) with the
label’s public key @;) and taking the x-value of the resulting poinheTprocess is

Z; = deQ

SV =Xz
wherej is the index of thg" label. After encryption, these shared valuegiéearded,
and the shared values for one CLS need to be gedeagain during the decryption.
This entails multiplying the public ephemeral k€})(and the private label key;fdas
follows:

Z; = Qd

SV = Xz

3.6.2 Key Encryption Key

The key encryption key is derived by means of e derivation function of

ANSI X9.63, Section 5.6.3 (Accredited Standards @uttee ANS X9.63, 2002):

KEK = kdf(Z, SharedInfo)
Z is a concatenation of the shared values:

Z = Xz||Xz2[...|[Xzq

whered, is the number of labels in the CLS. Tlearedinfgoarameter is

SharedIinfo = k|L2]|...]|Lq
wherelL; refers to the GUID of thi" label. The key derivation function makes usehef t
SHA-512 hash function (National Institute of Stamt$aand Technology FIPS Pub 180-2,
2002). Note that the size of the key encryption ike256 bits.

3.6.3 Key Wrapping

The Advanced Encryption Standard (AES) key wragfiom is used to wrap the
data encryption key (National Institute of Standa#dES Key Wrap, 2002). For
encryption, the process is

WK; = Wikeki(K)

33

whereK is the data encryption keWkei is the key wrap functiorKEK; is the key
encryption key from th&" CLS, and wKis the wrapped key. Similarly, for unwrapping,
the process is

K = Ukeki(WKi)
whereUkek; is the unwrap function.

3.7 KPM Symmetric Encryption

The symmetric encryption used in the KPM is the-Bitkey AES algorithm in
cipher-block chaining (CBC) mode (National Instwaf Standards AES, 2001). For
encryption, the process is

Ci = Ex(Pi XOR G3), G = IV
where Ris thei™ block (of 128 bits)Ex is encryption operation with kdg; IV is the
initialization vector, and; is thei™ encrypted block. For decryption, the process is
Pi = Dk(C) XOR G4, G =1V

whereDy is the decryption operation with ké&y

3.8 N2K Packet Header

The N2K packet header accompanies the encrypted distpurpose is to package
the metadata needed to manage packets successfudlyas the author’s user ID,
wrapped keys, digital signatures, and the ephenpeitaic key. The packet also carries
any additional information needed to recreate tigir@ml data. The packet contents can
be seen in Table 1. In the talhtds the total number of CLSd,is the total number of
disjunctive label setg is the total number of domains spanned by theerhtabels and

u is the number of authoring users.

34

Table 1: The N2K packet header contains metadata needaett@ssfully decrypt the message
(InfoAssure N2K, 2004).

Name Symbol Tvpe Size Instances
Version H Short Integer 2 1
DateTime DT Character 14 1
Wrapped Key wh; Value 85— 32 r
[nitialization Vector IV Value 58— 16 1
Algorithm A Code 4 1
Ephemeral Public Key (2; EC Point 286 q
Domain 1D D GUID 16 q
Label 1D L GUID 16 c-d
Label Maintenance Level My Short Integer 2 c-d
Inner Dhigital Signature S5 Value 256 — 512 | 0 or more
Digital Certificates Y 25009 500 — 2000 | 0 or more
User ID (if no certificate) wid GUID 16 u
Outer Digital Signature SH Value 256 — 512 1
Other Data o Binary Variable 0 or more

35

4 Implementation

This implementation makes use of the standard sitionl-based FPGA design
flow, shown in Figure 14. First, the design reqmients are enumerated. Next, an
architectural specification is developed with régigransfer logic (RTL); its behavior is
specified using a hardware description languagk as¢/HDL. Then, functional
simulations are performed until the desired levalarectness is reached. Following
correct behavioral simulation, the flow is pasdadugh a synthesis tool to translate the
description into generic logic primitives. Simudats are performed to check the design
after synthesis. The next step is placing andmgudf the design logic, which is
accomplished by vendor-specific tools. A third glation step can be used to verify the
design with all of its logic and routing delaysin&lly, the implementation is
programmed into the FPGA.

4.1 KPM Architecture

The KPM architecture is that of a tightly-integteyptographic coprocessor; it
is external to a host CPU, and it performs allhaf bperations needed to implement the
KPM algorithm. The host CPU gives high-level conrmasito the coprocessor and
supplies the necessary N2K packet data. The ClEW@processor are linked by a bus
with 32 or 64-bit data width, and communicatiowis shared dual-port RAM. This
arrangement is shown in Figure 15.

The coprocessor’s main functional block is the oalldr, which handles the high-
level steps of the KPM algorithm. The controll&edts the shared memory operations
and also controls the various cryptographic moduwigsch implement specific
cryptographic algorithms. To optimize the areghef design, each module is only used
once within the design; the controller arbitratesess to the cryptographic modules since
more than one KPM step might require the same neodUhis organization is shown in
Figure 16.

Rather than using a bus, direct links are useddsst the controller and the

cryptographic modules. A bus would add latencygesiih would require large

36

(Design Reqguirements)

Y

(Architeciural Spac.)

Y
(Behavioral Spec.)4

h J

Tool Library Synthesis)

h
Technology Library Map, Place and Routs)
[Implementation)

Figure 14: Simulation-based FPGA involves multiple simulataycles before the final implementation.

Simulation

)

Host CPU

Coprocessor

-

Dual-Fort
Fam

Logic

Figure 15: The KPM architecture is a tightly-integrated ca@ssor external to the CPU.

37

Logic

= - DREG - Discrete Random Bit Generator

SHA-512 - Secure Hash Algorithm 512

KDF — Key Derivaticn Function

Shared /1;)\
32/64-bit Dual-port 64-bit
RAM \I—‘/ KPM Controller AES-256 — Advanced Encryplion Standard 256

AESKW — AES Key Wrap

ECDH - Elliptic Curve Diffie-Helman

- - DSA — Digital Signature Algorithm

Figure 16: The KPM architecture is a controller directly latkto many cryptographic modules.

cryptographic words to be split into bus-width westand sent over multiple clock
cycles. While this might be less of a problenh# tryptographic modules were all
pipelined, many of them are not, in the interestafing area. Using direct links, which
offer decreased latency, has the downside of isargaouting complexity.

411 Memory Map

The shared dual-port is divided into four regioasdxd on function, as depicted in
Figure 17. The first and second regions are fatrobto the KPM and to the host CPU,
respectively. The third region holds the N2K matacand CPU-generated data, such as
the random seeds, elliptic curve parameters, aymdng keys, and label sets. The fourth
region holds the message cache.

Region 1 bits set the configuration of the curiegperation, and a single 64-bit
word is used for this purpose. Using this wore, @PU selects whether the coprocessor
will proceed with encryption, decryption, or buittself test (BIST). It also sets other

information not included in the N2K header, suchhesstatus of the message cache and

38

Dx000000D00 CONTROL. Host CPU to KPM
0x00000001 CONTROL, KPM to Host CPU
METADATA:
HKEY
X3EED
N - curve order
G - base point
0x00000002- Ds — user private signing key
Top of Region 3 Qs — user public signing key
Oa = ephemeral public key
CLS Amray
L GUID Array
wh Array
SH
Top of Region 3 (+1) " E
- Top of Region 4 Message Cache

Figure 17: The memory map defines four regions: two for calntwne for metadata, and one for the
message cache.

whether to use the default curve parameters (a¢efgature). The significance of each
bit in region one is given in Table 2.

Region 2 bits report the coprocessor status thidlse CPU, and a single 64-bit
word is reserved for this region. The 0-byte isdukr mid-operation status, namely
whether the cache has been replenished with emctyfatta and is ready to be read by the
host CPU. The 1-byte is used for end-of-operasiatus that reports bad metadata keys
or signatures. The remaining used bits are usegpiort BIST status and to specify the
exact cause of failure. The used bits and thescgtions are shown in Table 3.

Region 3 contains the N2K metadata needed foreéksaetl operation, as listed in
Figure 17. It also contains large vectors of dgiaerated by the CPU, such as true-
random seed values. In the implementation, eachanelocation is defined relatively
so that the physical memory locations are assigmedmpile time. This facilitates
future updates to the memory map, releasing thigukasfrom the need to manually
recalculate how each metadata field should fit theo64-bit memory slots.

The fourth region, or memory cache, is used to Balusets of the message data.
The host CPU initially writes input data to the lvacand the coprocessor overwrites this
input with the processed output. The existence memory buffer such as this cache

39

Table 2: Region 1 contains the Host CPU to KPM control bits.

Bit Name Description
0 ENC_DEC_BIT 1=encrypt, O=decrypt
1 BIST_BIT 1=run BIST, 0 = normal
2 LAST_CACHE_BIT 1=last cache fill/partial, 0=mocache fills ahead
3 B571_BIT 1=B571 curve, 0=K571 curve
4 DEFAULT_G_BIT 1=use default curve base point,kesfy point
5-7 Unused
8-15 CACHE_Sz Number-1 of 128-bit message blocksaiche
16-23 C Number of CLS blocks in cache
24-63 Unused
Table 3: Region 2 contains the KPM to Host CPU control.bits
Bit Name Description
0 CACHE_FULL_BIT 1=done with cache, O=ready or m@s&ing
2-7 Unused 0-byte reserved for mid-operation status
8 DONE_BIT 1=done with everything, O=processinghesc
Qe_INVALID_BIT 1=invalid ephemeral public key (@e
10 WK_INVALID_BIT 1=invalid wrapped key (dec)
11 OS_INVALID_BIT 1=invalid outer signature (dec)
12-15 | Unused 1-byte reserved for end-of-operatiatus
16 BIST_ENC_CTRL_FAIL_BIT| 1=failed enc ctrl BIST
17 BIST_DEC_CTRL_FAIL_BIT| 1=failed dec ctrl BIST
18 BIST_ENC_FAIL_BIT 1=failed enc encrypt BIST
19 BIST DEC_FAIL BIT 1=failed dec decrypt BIST
20 BIST_WK_FAIL_BIT 1=failed key wrap generation BT
21 BIST_OS_FAIL_BIT 1=failed outer signature gerieraBIST
22-63 | Unused

40

allows burst transfers that can increase perforeyahe host CPU can fill the cache and
then perform some other tasks while waiting ford¢bprocessor to continue. Also, since
the shared memory is of limited size, it is possiblat multiple transfers of data will be
required in order to fully process a single endgiptequest. It is assumed that the
memory is large enough to contain all of the meatadat that it can only accommodate a
fraction of the message; that fraction is loade¢d the message cache. The host CPU
and the coprocessor may need to read and updateahé&ol signals several times
before the full message is processed.

4.1.2 Main Controller

The main controller implements a state machineveosee all operations in the
coprocessor. The controller sits in ready staté tgteiving a start signal. It then
fetches the control word from memory, decodes threiguration bits to determine the
operation, and proceeds with the desired operafitamn.encryption and decryption, sub-
state machines are used. For the built-in seif iesd and check states are bound to both
the encryption and decryption states. Upon conguieif the operations, the controller

returns to the ready state. The main state machidepicted in Figure 18.

4.1.3 Encryption

The encryption state machine follows the KPM alidponi through all the states
necessary for encryption. From the initial reat#yes the curve parameters are loaded
and the pseudo-random ke¢){ initialization vector V), and ephemeral private kegeX
are generated. Then, the ephemeral public ®)yi$ calculated. Loops are used to find
the shared value$y) from the CLSs and CLS GUIDs, to generate thedwgryption
keys kelk), and to generated the wrapped kayK), Following these operations, the
encrypted data and hash are generated. Finadlyntter and outer signatures are
computed. The entire cycle is depicted in Figuge 1

Exploiting parallelism at the KPM level is in somm&ses possible, when both (a)
successive states do not require the same moddlgathe function inputs have been

previously generated. Steps 8-10 of the KPM atgorimeet this requirement. Since

41

Figure 19: The encryption state machine follows the KPM aton.

42

these steps encrypt and sign the message whidhearetically range from 0 td"% bits,
they stand to be a major bottleneck in the KPM.difidnally, they encompass the data
passing with the host CPU, which can suffer froghHatency. Thus, these relatively
slow operations are parallelized as follows: messdgcks are read from shared dual-
port RAM, the data is encrypted (using AES-256¢, H2K package is constructed in
RAM, the hash value is generated (using SHA-511), requests for more data are sent
to the host CPU. The cycle graph is shown in lEd@@. The scheme needs to be
unusually flexible since the AES-256 module is macycle, the RAM is pipelined, and
the SHA-512 module is both pipelined and sometimaki-cycle.

The effect of this parallelism can be examinedigigimdahl’'s Law:

1

Speedu .
p p: I:raCtIonenhanced

S peed ughanced

(L-Fraction, . ced +

which sets a bound on the performance gain (Hegreess Patterson, 2003). The
Fractionnhanced€rm is the portion of the cycles used by SHA-5IR] SpeeduphancedS

the speedup of SHA-512 due to parallel computatidsing a 17-cycle encryption
module and 80-cycle SHA-512 module, the SHA-5128ponsible for 33% of the
cycles and 25% of its cycles are in parallel. This,speedup is a modest 1.09. Further
enhancement of this block would require additianabules or modules with lower-
latencies.

When multiple recipient roles are specified, st¢psd 5 also meet the
parallelization requirements. Making use of a stage pipeline, step 4 could begin
generating a new KEK while step 5 wraps K with pineviously generated KEK. The
implementation, however, does not take advantagiei®f While steps 8-10 are potential
bottlenecks, steps 4 and 5 generally consist afively few hashes and encrypt

operations, so no effort is made to pipeline them.

4.1.4 Decryption
The decryption state machine follows the KPM alidpon through all the states
necessary for decryption. From the initial reatifes the curve parameters are loaded
and validated. The shared val®/) from the appropriate CLS and CLS GUIDs is
43

Process Data in RAM

Request RAM Refill from Host CPU

DsA AES-256

Memory

-

SHA-
512 |

i o

-

/SHA- A

siz |

Sync. Host CPU

Start RD
CTRL

44

Figure 20: Parallelism is exploited during steps 8-10 of k&M algorithm.

found, and one of the key encryption kelsl{ can be calculated. Loops are needed to
traverse the memory arrays of CLS and CLS GUIDsth\Wiekek a wrapped keywK)
can be unwrapped to reveal the data encryptior(lkey The message can then be
decrypted, and a hash can be generated. Aftamntte message has been passed
through the message cache, the outer and inneatsigs can be verified. The entire
cycle is depicted in Figure 21.

Parallelization potential for the decrypt operatiswery similar to that for
encryption. The SHA-512 and AES-256 modules caruben parallel as the message is
being processed. The main difference betweenrtbeygtion and decryption operations
is the order of operations — in the decrypt cdse stgnature is generated with the input to
the AES-256 module rather than with its output.

4.15 Built-In Self Test (BIST)

The BIST mode simulates both encrypt and decryqiests from the host CPU.
Initially, it loads test data into dual-port RAMhen it begins the encryption process.
Upon completion, the results in RAM are comparehternally-stored “golden” outputs,
and the discrepancies are noted. Control siggatsrated keys, encrypted results, and
hash results are tested in this manner, and tteerstachine for these checks is shown in
Figure 22. The memory-loading process is thenatsgkto test decryption, and the
decrypt BIST checks the control signals and dewyptesults. The decrypt BIST can be
simpler since a number of verification steps an#t lmto the decryption steps
themselves. When the BIST completes, it returassthtus of its various modules to the
host CPU.

BIST tests are based on standard test vectoredantlividual cryptographic
algorithms. Currently, tests use four basic vectdong with keying materials from the
AES Key Wrap specification. The golden vectorssiceged in parameterized arrays
stored in look-up tables. Increasing the numbeestf vectors is a matter of changing the
array size and updating the array values, anceitébt vectors are increased to a

sufficiently large size then the synthesis tool wibke use of on-FPGA RAM resources.

45

Figure 21: The decryption state machine follows the KPM dptajgorithm.

46

Figure 22: For encryption, the BIST checks for wrapped kergption, and hash results.

4.2 Cryptographic Modules

While the main contribution of this work is the KRdntroller, the controller is
necessarily dependent upon the design of its steadules. To implement and test the
controller, the modules had to be created anddektamselves. While the modules are
not the focus, their implementations are brieflyodissed below, as their design affects

the design and performance of the entire system.

4.2.1 Advanced Encryption Standard (AES-256)

The AES-256 algorithm performs symmetric encryptperations for the KPM.
The algorithm consists mainly of substitution, ditei, and XOR operations, making it
relatively efficient for hardware implementationBhere are a number of tradeoffs when
choosing an implementation for AES-256, and thesehalgorithm aims for relatively
low area usage with modest performance. The imgheation uses a non-pipelined,
LUT-based loop architecture. It uses 17 cyclesfaryption or decryption, and there is

47

an additional penalty for the key scheduler whenavweew key is loaded for decryption.
While the LUT-based approach uses slightly morécltdgan a RAM-based approach, it
offers improved performance. Performance is lesdday the choice of a non-pipelined
and looped architecture, but this configuratioredfsignificant area savings.

4.2.2 AESKey Wrap (AESKW)

The AES Key Wrap algorithm packages an encrypteynlky encrypting it with a
data integrity check. For key wrapping, a key vpiag key is supplied, and the input
key is encrypted for secure storage and transmmisgipon unwrap, the wrapped key can
be recovered, and the algorithm verifies whetherctbrrect result was generated. The
algorithm involves shifts and XOR operations andugt on top of AES-256. Thus, the
KPM controller passes control of the AES-256 modalthe AESKW module when key

wrapping/unwrapping needs to take place.

4.2.3 Deterministic Random Bit Generator (DRBG)

The DRBG implements the N2ghgfunction by means of the SHA-1 algorithm.
The SHA-1 algorithm is efficiently implemented iardware since it consists of rotation,
addition, and XOR operations. The core of the @ligm takes a 512-bit input block
made of 32-bit words and produces 160-bit out@king 80 cycles to process one block.
In a typical SHA-1 implementation, the hashing @pien is wrapped with a padding
operation, but wrapping is not required for the ORBnplementation.

Random number generation begins with a true ransked passed from the host
CPU. The seed is used as the initial input tc3HA-1 hash function, and an initial
block is processed by SHA-1. The initial returfueais stored for later use as well as
being used to generate a new input to the hashidumcThen, the hashing process is
repeated with the new input, and the new outpstased. The process repeats until it has
generated a sufficient number of pseudo-random bits

Though the output from the hash function is a mldtof 160-bits, KPM keying
material needs to be either 571-bit (for elliptiz\e keys) or 256-bit (for AES keys).

For EC, the value must belong to a particular fistwthe modulus of a 640-bit number

48

needs to be found. The implementation thus mageotia generic-divisor binary
division algorithm. For the symmetric key, the ggss is simpler, and the 256-bits can

simply be extracted from the concatenated hashutsitp

4.2.4 Digital Signature Algorithm (DSA)

Generating a digital signature via DSA involvesIgmg elliptic curve encryption
to a message hash. The SHA-512 module is useastothe message contents. Unlike
with the AESKW module’s use of AES, the DSA moddtes not directly control the
SHA-512 module. Rather, hashing is carried outeutide direction of the KPM
controller, in order to keep the elliptic curve oggeons as independent modules. The
motivation for separating the elliptic curve moduis to keep them as black boxes during
the testing of the KPM controller. The ellipticreea math was not implemented at the
time of the controller’'s design, so the DSA implenation is merely a stub architecture
for testing.

4.2.5 Elliptic Curve DiffieeHellman (ECDH)

The ECDH module is designed to perform one of tfueetions. First, it can
validate a public key input point. Second, it gemerate a public key from a private key
and base point. Third, it can generate the shaakg result from input public and
private keys under the given curve parameterswitsthe DSA module, the ECDH
module is not fully implemented because the etliptirve math designs were not
available at the time of the KPM controller implemtegion. A stub module was designed
with the necessary inputs and outputs to allonB8®H module to base its calculations

on the current session’s curve parameters.

4.2.6 Key Derivation Function (KDF)

The KDF module uses a hashing function to gendseyang material for
AESKW. It operates under a similar principle as BRBG: the input values are
concatenated and hashed. With the KDF, howevere thre two distinct input arrays of

non-pre-determined length: the shared values an@€ts GUIDs. First, the shared

49

values are concatenated, then a count of the kdys generated is added, and finally the
GUIDs are appended.

When the KDF module is in use, the KPM controlldimquishes complete
control of the SHA-512 module. The input concatemais built dynamically and
streamed to the SHA-512 module. Once hashingngptete, a 512-bit hash is output.

From this result, 256 bits are saved and usedeasitpping key.

4.2.7 SecureHash Algorithm (SHA-512)

SHA-512 is the hash algorithm that is used for gatineg digital signatures. As
discussed previously, the SHA-512 algorithm is ex@ato be part of the bottleneck in
the KPM implementation. Unlike the SHA-1 implematian, the SHA-512 algorithm is
pipelined to begin processing before the full inplaick has been passed. Inputs are
1024 bits wide and composed of 64-bit words, ardctire processing takes 80 cycles.
Post-processing can add another 80 or 160 cycles.

Except for the larger input block and data worlls, $HA-512 algorithm is very
similar to SHA-1 with minor arithmetic difference$Vhereas the SHA-1 is encapsulated
by the DRBG algorithm, the SHA-512 algorithm is npahated directly by the KPM
controller. Because of this, the block wrappingdtion is also implemented. The block
wrapping functionality pads input blocks to thereot size and, if necessary, adds an

empty block on the end of the input stream.

50

5 Resultsand Discussion

The design was built incrementally, and each modiae tested after it was
specified. Then, upon adding one module to thérother and updating the control logic,
the integrated whole was verified before repeaiiegprocess for another module. This
iterative testing process was used to verify armidehe RTL design completely.
Following the incremental verification, the desigas synthesized into a netlist. The
synthesized results were then re-verified beforegopassed through placement and

routing. In the following sections, the resultsloése processes are presented.

5.1 RTL Verification

Two types of verification were used to test the KBdatroller design. The
Mentor ModelSim tool was used for functional (amdihg) simulation, and the Cadence
FormalCheck tool was used for formal verificatioWhile functional verification verifies
the basic functionality of the design, formal vieation checks for the existence of hard-
to-locate deadlocks, control failures, and correecbugs. Functional verification is
standard practice for any logic design, and it wsed on both the modules and the
controller. Formal verification is most applicalidéecontrol-oriented designs, making the
controller a good candidate since it offers siguaifit complexity in the steps related to

parallel encryption, hash computations, memory sse® and host CPU communication.

5.1.1 Mentor ModelSim

As part of the incremental testing, initial teshblees were applied to verify the
behavior of individual modules. In general, a testch was built to test each of the
modules using standard test vectors. The testiesnoade use of assertions, which
allowed the correct functionality to be specifiethin the test bench. Using this
approach, it was possible to run iterative tesimfthe console, letting the test bench
automatically verify outputs. An example of suafakoutput for the console-based
testing of the AESKW module is shown in Figure Z¥. course, the graphical user

interface (GUI) can also be used to gain a visndeustanding of the module function, as

51

e e BEGIMMIMG TESTEEMCH --eeeeeeemeeeeav

B Time 2 nz lteration: O Instance: faeskw_th

= Failure: - TESTEBEMCH COMPLETED SUCCESSFULLY -

f Time: 70575 ne lteration: 1 Process: Jaeskw_tbdmonitor File: .. Achdlitbd ae sk aeskw_th.vhd
Break at .. fvhdl/tb/ aezkwtaeskm_thvhd line 191

Figure 23: Assertion-based test benches facilitate autontatiative testing of modules.

shown in Figure 24. Using the GUI can be helpfuldebugging but can be a hindrance
to iterative testing. Each of the implemented meslwas successfully tested using
assertion-based functional test benches.

For integrated testing of the controller combinathuwnodules, the controller test
bench was written. Since the KPM controller inésidhe BIST, the controller test bench
was designed to take advantage of this. When amesule was added to the controller,
the BIST would also be updated. Then, to teshthe system, the test bench would
initialize the BIST. The new BIST logic then testhe new module code, and the test
bench monitored the BIST return values for sucoegailure. This technique eased the
task of writing the test bench; since the test hemas able to test functionality at a high
level, it was only necessary for it to check a $mamber of return values, as shown in
Figure 25 and Figure 26.

As the KPM controller was built, it was often nexsay to test partially-
functioning versions. Empty or reduced-behaviatest were often added to the state
machines, and assertions were useful in thesenresto monitor when these states were
being entered or exited. Additionally, when thetes$ needed to operate on a non-
existent module, a stub module was inserted irgad#sign. The stub modules define the

interface for the module but do not fully define thehavior of the module.

5.1.2 Cadence FormalCheck

By applying formal verification tools such as CadeformalCheck, it is possible
to guarantee that a design’s logic behaves asediesBeveral challenges exist, ensuring
that formal techniques are not a verification paaacOne problem is that these
techniques suffer from state-space explosion, ngakicomputationally infeasible to

52

faesk

w_th/my_aszkw/wrap

Faeskw_th/my_aeskwkek

000102030405060702039

an OEQF1011

Faeskw_th/my_aesskwdinput

fae i e
Faegkw_th/my_aeskw/done

{28CIF404C4B510F 4 CBI

faeskw_tb/my_aeskw/dinvalid

faeskw_th/my_aeskw/output

:_Tunup

Cursar 1

Figure 24: Functional sim

assert not din(BIST_

4E87E ng

ulation with the GUI is useful foeltigging module behavior.

CIRL

I

HC

report failed during CTIRL "

severity warning;

assert not din(BIST WK _FAIL BIT) = "1'

report "BIST failed during EEY WRAFP GEMERATICH (EHC)"
severity warning;

assert not din(BIST_ 1t

report "BIST failed

severity warning;

assert not din(BIST OS5 FATIL BIT)="1"

report "BIST failed during CUTER SIGHATURE GEMERATICH (EHC)"™

Severlity warning;

Figure 25: The top-level controller test bench only needsheck the BIST report bits.

53

CIDTETE

—

b2k _tes
b2k _test0/din

i

-

Curgar 1 1013596 ns

Figure 26: The controller test bench only needs to checkglsimemory address and return vector.

verify large designs. This problem manifests ftegpecially when trying to verify a
design’s data path. A 32 or 64-bit vector candezerhuch for formal verification
techniques to handle. With the KPM controller,uanter of 128, 256, and 571-bit
vectors are used, so formal verification must baiag with care.

There are a number of ways to limit the numbetates applicable to a formal
verification task. One of these methods is singatitioning the design into smaller
verification tasks according the natural desigmadrighy. A complimentary method is to
restrict the signals. Some environmental restitiare necessary for correct operation
of the circuit, such as defining a clock and ates&ther restrictions might reflect the
behavior of logic external to the design. Furthera since control logic is the most
likely place to find logic errors, data path caltidns can be largely ignored. Large
arithmetic operands and results can be considerbd short vectors for the purpose of
formal verification, and then the data flow ver#imon task is relegated completely to
functional verification. All of these techniquegm@ used in the verification of the KPM
controller (Fields “Formal Verification,” 2005).

FormalCheck is based on logical properties andiesieiProperties specify
particular design behaviors, and queries link pridpe that are assumed with properties
to be verified. The properties rely on user-defimendows of interest, which consist of
several conditions: enabling condition, fulfillimgndition, and discharging condition. A
window is triggered by one event and released loyheam, and during the window some

condition is examined. Only the fulfilling conditi is necessary — leaving off the

54

enabling condition implies that the window is iaity enabled, and leaving off the
discharging condition implies that the window iveedischarged. A user specifies an
enabling condition usingfter orif_repeatedly Fulfilling conditions are specified with
always never eventually or eventually _always Discharging conditions are specified
with unlessandunless_after Semantically, these specifications are the sasrstandard
English.

Properties are used to specify two types of fumetioequirements: safety
requirements and liveness requirements. Safetyinregents state that the design should
never behave in certain ways, while liveness remuénts state that the design should
always be able to respond to certain stimuli.

One safety requirement is that the device shaddh theeadystate
immediately after a reset is issued. The requirgnsetriggered on a rising edge during
which the reset signal falling and the_top_attnstart signal is 0. The requirement is
that the top level state machine is always inrfaslystate for one cycle after the trigger
event. Because of the asynchronous reset andah¢he timing is specified in this
property, the enabling condition must includ®p_attn = Oor else the state machine
could advance immediately after the reset signakdow. This is defined as:

property -create timely_startup {
after {
n2k_control:clk = rising and
n2k_control:rst = falling and
n2k_control:i_top_attn =0

}
always {

n2k_control:state = ready
}

within -delay 0 -duration 1 { n2k_control:clk =sing }

The main signaling from the KPM to the CPU is #éissertion that processing has
completed. Thus, another safety requirement isttiga“done bit” should only be
asserted when processing actually has completezte$sing has been completed when
the top level state machine is “done”, and onlthiait state should the “done bit”
n2k_control:o_top_dout(&)e written tctCONTROL_ADDR_OUT This property is:

55

property -create only_done_bit_ when_done {

never {
n2k_control:o_top_we =1 and
@CONTROL_ADDR_OUT and
n2k_control:o_top_dout(8) =1

}

unless { n2k_control:state = done }

Since the control words to and from the host CRinautually exclusive, the
KPM controller should never write to the CPU's woikhis is a third safety requirement,

stated simply:

property -create never_write_cpu_word {

never {
n2k_control:o_top_we =1 and

@CONTROL_ADDR_IN

}

Liveness requirements are used to ensure thatetign cannot hang in a certain
state. The CPU should always be able to issue @rmmsuch that the KPM processes
input and returns a result. The return of theltessignaled by the assertion of the
“done bit” in theCONTROL_ADDR_OUTmemory location. This property is checked
by:

property -create eventual_done_bit {

eventually {
n2k_control:o_top_we =1 and
@CONTROL_ADDR_OUT and

n2k_control:o_top_dout(8) =1

}

Theeventual _done_bjroperty could be fulfilled if the design werehang in
thedonestate, continually asserting the “done_bit”. Qway to be assured that this is

not the case is to define a second liveness prgseting that the controller can always

reach theeadystate:

property -create eventual_ready_state {
eventually { n2k_control:state = ready }

56

}

Of course, if the reset were asserted, the coatralbuld revert to the ready state.
However, reset was defined to be constant aftémitial pulse, so together the
eventual_done_bdndeventual ready_statequirements ensure that the controller will
always be responsive to valid input.

These safety and liveness properties were incogiato queries and fully
verified using Cadence FormalCheck. Thus, thegiesi guaranteed to perform in
accordance with the properties. From the safetipgty verifications, it will never stall
at reset, it will only signal the done bit whemés finished its processing, and it will
never write into the host CPU’s restricted memargce. From the liveness properties, it
will always eventually notify the CPU of its compte, and it will always eventually be

ready to process another requests for data.

5.2 Synthesis Results

The implementation was synthesized with Synpli&yyplify Pro targeting a
Xilinx Virtex-1l Pro XC2VP30 FPGA. This FPGA corites 13,696 slices that each
contain two storage elements and two function gdnes. The device can be configured
to offer up to 27,392 register bits and 27,392 lapktables (LUTSs) (Xilinx, 2005). The
resource usage is broken down by modules and shioWable 4. Note that the reported
usage percentages were calculated by Synplify Ridleat hand-calculated values based
on component usage and the Xilinx data sheet diffghtly.

The table shows the expected result that mosteoséquential functionality takes
place in the controller. The controller has highister requirements because it is
buffering long cryptographic vectors as they asgrfom memory or passed among the
various modules. This is expected since the dasigs point-to-point connections to
increase performance. Using a bussed architeatouéd reduce the register
requirements but result in a negative impact ofopeance.

57

Table 4:

The KPM resource usage reported by synthesis @2\¥30 is shown.

Register bits Register Usage | LUTs LUT Usage
Controller 15,888 53% 12,717 43%
AES-256 1,047 2.05% 3,225 6.3%
AESKW 1,042 2.04% 750 1.47%
DRBG 4,092 8.00% 16,556 32.35%
SHA-512 2,212 16.4% 5,397 10.55%
Total 17,429 59% 39,315 133%

The LUT usage of the controller, while not surpagghat of the combined
modules, is also high. The chief cause for thegyess the implementation of a number
of shift registers to transfer data between thesvaiyptographic buffers and the narrow
memory bus. This is an area-inefficient schemesgtanly positive benefit is ease of
specification, and it would be more efficient topl@ment only a single wide shift
register to handle the needs of the many cryptdgcdpiffers. In addition to the
repeated shift registers, though, the large nurabehecks required by the state
machines contributes significantly to the LUT usage

The DRBG module stands out among the modulesg sintses nearly a third of
the device's LUTs. This is because of the vergdanodulus operation that is required
by the DRBG block. The binary division consumearge amount of resources since it
cannot be efficiently implemented in logic gat@$e division is also responsible for the
relatively high register usage, since very widagstegs are used to shift the intermediate
division values.

Second to the DRBG module, the SHA-512 module os@® resources than the
other cryptographic modules. Unlike the modulethwower resource usages, this
module operates on 1024-bit vectors. These opastthough implemented efficiently,
result in the high LUT usage. The high registexgesis a result of the buffering and
padding operations needed to prepare input datéiéocore processing functions.

The estimated performance of the controller bsffitis 68.4 MHz. The critical
path here is a result of passing through hieraatisimte machines and then through a

58

wide shift register. Once the implemented modatesadded, then the estimated
performance is 35.3 MHz, limited by the AES-256 mied The AES-256 design has
been prototyped on an older technology with 33 Nddormance, so this performance
is in-line with what is expected when using the AESS module with Virtex-II
technology. The expected throughput, based oAB®256 critical path and 28.6
cycles per 128-bit word, is 150Mb/s.

5.3 Post-synthesis Simulation

In accordance with the FPGA design flow in Figude the synthesis result was
again simulated. This post-synthesis simulatiaifies that the synthesis tool correctly
translated the design into a netlist, and it atetuides logic delays, specified in the
vendor's component libraries. Figure 27 and Fi¢i8eshow the assertion-based test
result and the BIST state transitions, respectivdlyese outputs show that the post-
synthesis result operates correctly.

For simulation, the synthesis tool outputs a stnadtVerilog design description.
The existence of Verilog post-synthesis componantsVHDL test bench and library
components can be seen in both of the post-systhgares — Verilog components are
represented by light blue ball icons, while VHDLhgoonents are represented by dark
blue boxes. Figure 27 shows the various modul&sthe DSA module is missing

because its stub architecture was optimized awagdogynthesis tool.

5.4 Place and Route Results

Without the full implementation of the DSA and EChldcks, a full prototype
cannot be tested. However, the existing desigrbeanin through the FPGA vendor
place and route tools, resulting in a layout teatseful for visualization. The design was
fit into a Xilinx Virtex-1l Pro XC2VP70 device, antthe result is shown in Figure 29.

The design as routed assumes that the internat bdmas of the FPGA are used as the
shared memory between the host CPU and the copceAall Virtex-Il Pro devices

include embedded PowerPC cores that are suitableséas the host CPU. However,

59

Workspace x|
et # Loacling work shas1 2 &
| nstance Ay # Loaing fswilin- ks iing Jiiverilogimti_selumisims_ver Jut2_muxd
é]— n2k_tapo # Loading feudsiling-libs/Rilinsg . Sitverilogimti_sefunisims_ver Jutd_musxd
& n2k_control) # Loadding fswxiling-libarHilin:G Jitverilogimti_seunisims_ver Jut3_muxd
D_ # Loading fmntiswimentorModel Sirm_ SES SdimodeltechizunosSr feee vital_timingdbody s
P s # Loading fswlsilins-libsrAilinsg Sithdlimti_selAilins Core Libool_utils(body)
o aeskwl # Loading fswlziline-libsyilin=g Sisvhdlimti_serFilin: Core Lib blkmemdp_merm_init_file_pack_w&_1{bocy)
Loading fswlzilins-libsrRilines Jithdlimti _seSKilins CoreLib blkmerndp_pkg_vB_1 {body)
o ecohi
Loading work dprarm 4036 _Gd{dpramd096_54_a)
o kelfD # Loading fswlsilins-libslAilinsg ithdlimti_seSKilins CoreLib blkmemdp _vE_1 {behavioraly
o progd # Loading fswisiing-libsfyilin=6 . Jifverilogimti _sefunisimns _ver utl_mus=2
P shaS12_topd # Loadding fwfsiling-libsHilinsg. Jidverilogimti _sefunizims _ver Jutd_|_mu=4
. # Loading fswsilins-libsAilinsg Siterilogimti _sefunisims _ver Jut2_|_mux=4
GMD_cZ
< & # Loading fswizilines-libsyilinsE Jisverilogimti _sefunisims_ver Juts_|_muox4
o WCC_cZ # Loading work n2k_test{test)
|- GND_cZ # oo . vhdltbistim-post-synth-th-viog.do
VEC cF # " Mote: --------m- BEGIMMING TESTEEMCH ------m--mmmmmmeme
— £ J # Trne: 2ns Meration: O Instance: fbin2k_test0
[e # " Failure: ------ TESTEEMCH COMPLETED SUCCESSFULLY ------
L # Time: 101575 ns Iteration: 1 Process: fthin2k_testQimonitar File: . fehdlftbingk_test whd
Wl n2k_testO
bk J Ko vE 1 ’, # Break at _ivhdlithinz2k_test vhd line 155
MEMOR pRG v # Simulation Breakpoint: Break at _ivholftbinZk_testvhd line 155
H | - # MACRO J Mvhdlithstim-post-synth-th-viog.do FAUSED at line 9
Library | sim [Files WS I paLsed) i
|N0w: 101,575 ns Delta: 1 sim:ithinz2k_testO P

Figure 27: The assertion-based post-synthesis test benchlesuccessfully.

R AARCAOORT
U] | u]uin]u]n]
oo

101575 ns

Figure 28: The post-synthesis test bench waveform corrobethteassertion-based result.

60

Figure 29: The result of automatic placement shows the reatistribution of logic among the modules.

61

this requires the use of additional glue logic hags an on-chip bus, and that logic is not
included in the placed and routed design shown.

The placed and routed result is colorized to ctfllee area usage of the various
design components, and these results mirror thioke gynthesis tool. The controller
takes up the majority of the chip, and the DRBG SAES6, and SHA-512 are the largest
cryptographic modules. The KDF and AESKW modulesmainimal, and their logic is
mixed with the controller logic. The DSA and ECDtbdules are not highlighted since
their stubs contribute negligibly to the resoursage.

62

6 Conclusion

This work leads the way to the first hardware-bdsgalementation of the KPM.
Its development is a necessary step toward higidyre and flexible deployments of the
N2K system. This implementation provides the féitly and ease-of-prototyping
needed for prototypes to be developed and testagenenvironments, and following

these steps next-generation secure communicateonbecrealized.

6.1 Summary

There is a clear need for improved computer sgcurithe form of
cryptographically-enforced role-based access cbnirbe Need2Know system aims to
provide this increased security and enable seauarainications for government,
corporate, and personal entities. Commensuratetivise goals, an implementation of
the N2K KPM must be designed with consideratioa otimber of tradeoffs: low time-
to-market, high throughput, low power, low cosgttee flexibility, and implementation
security. Considering the merits of various apphes, an FPGA implementation was
selected.

A tightly-integrated coprocessor architecture wagsen for the FPGA
implementation. This architecture implements athe algorithms required by the top-
level KPM algorithm and includes a hardware cotgrpko the host CPU needs only to
communicate at a high level of abstraction withabetroller. Various cryptographic
algorithms are implemented as modules, and the lesdhave direct links to the
controller. The controller directs their actiomglas in turn controlled by the host CPU
by means of shared dual-port RAM. To minimize dhea requirements, each module is
instantiated only once, and the KPM controllerdsponsible for switching control of the
modules when required. The implementation inclugtesyption, decryption, and BIST
modes of operation. The BIST includes standardviestors to verify the operation of
the cryptographic modules and the overall functbthe controller.

Verification was performed iteratively throughobetdesign process. The
cryptographic modules were functionally verifiedlividually before being integrated

63

into the controller; the controller was both functally verified with the modules and
formally verified on its own. The implemented méstuand controller passed all the
verification tests, though a full implementationtioé KPM is not possible since elliptic
curve arithmetic functions for the DSA and ECDH mied have yet to be implemented.
Synthesis results for the KPM controller and moduiere presented, showing a
breakdown of the resource usage for various conrmgerand the expected performance
of the coprocessor. The device required more thgaoriginally expected, using more
than 100% of the Xilinx Virtex-1l Pro XC2VP30 de¥c However, the performance

expectations were within range of previously prgpetd modules.

6.2 Future Work

Several techniques are possible to optimize thipeance of the
implementation. For one, the bandwidth betweerhtbe¢ CPU and coprocessor is
typically a bottleneck in system performance. While message cache is an
improvement over single-word passing, other schdm&sthe potential for higher
throughput. For example, tiered memory cachesdcallbw one memory cache to be
operated on by the coprocessor while the host CR&JfiNing the other one. Similarly, a
shared FIFO buffer would allow parallelization @ftd passing and data processing.

Another option for improving performance involvée ttonnections between the
modules and the controller. The point-to-pointrections of the modules to the
controller allow the potential for maximum performea, but there might be other more
efficient means of achieving good performance. igkdrchy of busses, for instance,
might make sense, or simply a 128 or 256-bit bAside from the additional latency, one
downside of these techniques is that the pre-aegistiodules would need to be wrapped
in order to support communication across the bus.

Still other performance gains can be realizedafdhea-savings requirements are
relaxed. For instance, pipelining the slowest mmodt frequently-used module, AES-
256, would increase the total system performamdso, modules could be replicated to
increase the exploitable parallelism. The CLS esstg is a good candidate for parallel
processing, since a number of shared values welline be calculated from independent

64

CLSs. As another option, the entire data pathacbalpipelined, though this mainly
makes sense in a multi-user or multi-connectionmaimg environment where multiple
packets are waiting for processing.

One of the stated design considerations was lowepcand FPGA devices are
known be inefficient in this respect. Neverthe]eéksre are several techniques that can
be examined and implemented in order to reducedlaer consumption of an FPGA
device. Multiple clock domains and/or clock gatif@ instance, can help to minimize
the power consumption when the coprocessor ismase.

Finally, since the implementation is designed twuse data, it needs to include
defense mechanisms against all known securitykattdoth active and passive.
However, design up to this point has focused mainlperformance and flexibility.
Effort should also be spent on thwarting timingekss, differential power analysis
attacks, and temperature-based attacks. Perheyid$fi can be extended to more-fully
examine the coprocessor’s behavior at regularvaterand to shut down the device when
an undesired intrusion is detected. Also, physealrity is important, and logic
integration with tamper-detecting packaging shdaddnvestigated.

65

References

66

Accredited Standards Committee X9. “ANS X9.63-20@ablic Key Cryptography for
the Financial Services Industry: Key Agreement Keg Transport Using Elliptic
Curve Cryptography.” 2002. Available from http:¥w.x9.0rg.

Adams, L., “Choosing the Right Architecture for R€ane Signal Processing Designs,”
[Online] Available:http://focus.ti.com/lit/an/spra879/spra879.pd&ccessed
August 24, 2005.

Crowe, F., Daly, A., Kerins, T., Marnane, W., “SieChip FPGA Implementation of a
Cryptographic Co-Processor,” FP, 2004.

Dandalis, A., Prasanna, V., Rolim, J., “An Adapt@e/ptographic Engine for IPSec
Architectures,” IEEE Symposium on FPGAs for Cust@omputing Machines,
2000. [Online] Available:
http://ieeexplore.ieee.org/iel5/7244/19546/00903@0fParnumber=903400
Accessed August 30, 2005.

Discretix, “CryptoCell Overview,” [Online] Availale!
http://www.discretix.com/PDF/DiscretixCryptoCellfopdAccessed August 30,
2005.

Eberle, H., et al., “A Public-key Cryptographic Bessor for RSA and ECC,” ASAP
2004. [Online] Available:
http://research.sun.com/projects/crypto/ASAP200%lfiv4.pdf Accessed
August 30, 2005.

Fields, S., “Formal Verification of the Need2KnoveKProtection Module using
Cadence FormalCheck,” 2005. Available:
http://web.utk.edu/~sfields1/academics/projects/Gisbrt.pdf

Hennessy, J., Patterson, D., Computer Architectii@uantitative Approach, 3rd ed.
San Francisco, CA: Morgan Kaufmann, 2003. pp 41.

Hifn, “Hifn HIPP Security Processor 7855,” 200%0rline] Available:
http://www.hifn.com/docs/7855 8 05.pdAccessed August 30, 2005.

Hodjat, A., Verbauwhede, 1., “High-Throughput Pragmrmable Cryptocoprocessor,”
IEEE Micro, 24 (3), 2004, pp. 34-45.

IBM, “UltraCypher CRYPTOGRAPHIC ENGINE,” 1998. [@ine] Available:
ftp://wwwe6.software.ibm.com/software/cryptocardgiatypher.pdf Accessed
August 30, 2005.

InfoAssure, Inc., “InfoAssure — About / MissionOfline] Available:
http://www.infoassure.net/mission.htmAccessed July 23, 2005.

InfoAssure, Inc., “InfoAssure — Products / Missigi@nline] Available:
http://www.infoassure.net/need2know.htnficcessed July 23, 2005.

InfoAssure, Inc., “Need2Know Cryptography,” Propaigy. August 26, 2004.

McLoone, M., McCanny, J., “A Single-Chip IPSec Ciygraphic Processor,” IEEE
Workshop on Signal Processing Systems (SiPS) Desigrimplementation,

67

California, 2002. [Online] Accessible:
http://ieeexplore.ieee.org/iel5/8127/22481/01049688 Accessed August 30,
2005.

Mingyu, F., Jinahua, W., Guangwei, W., “A DesignHdrdware Cryptographic Co-
Processor,” Proceedings of the 2003 IEEE Workshmomfmrmation Assurance,
West Point, NY, 2003.

Mosanya, E., Teuscher, C., Restrepo, H., GalleyS&hchez, E., “CryptoBooster: A
Reconfigurable and Modular Cryptographic Coproce$§&HES 1999. Lecture
Notes in Computer Science. [Online] Availaliép://www.teuscher-
research.ch/download/christof/papers/mosanya9996hedf Accessed August
30, 2005.

National Institute of Standards and Technology, SAEey Wrap Specification,” 2001.
[Online] Availablehttp://csrc.nist.gov/CryptoToolkit/kms/AES _key wrpgf.
Accessed April 20, 2005.

National Institute of Standards and TechnologyP%[197: Advanced Encryption
Standard (AES),” 2001. [Online] Available
http://csrc.nist.gov/publications/fips/fips197/fp87.pdf Accessed April 20,
2005.

National Institute of Standards and TechnologyP%[180-2: Secure Hash Standard,”
2002. [Online] Availablénttp://csrc.nist.gov/publications/fips/fips180- 4l 80-
2withchangenotice.pdfAccessed April 20, 2005.

Paar, C., Chetwynd, B., Connor, T., Deng, S. Y.rdlant, S., “An Algorithm Agile
Cryptographic Co-Processor Based on FPGAs,” SPHE@gium on Voice,
Video, and Data Communications, Boston, MA, 1980nline] Available:
http://www.crypto.ruhr-uni-
bochum.de/imperia/md/content/texte/brendonpaarSpie® Accessed August
30, 2005.

SafeNet, Inc., “SafeXcel-1840 High-Performance &igcCo-Processor,” 2005.
[Online] Available:http://www.safenet-inc.com/Library/3/SafeXcel-
1840_ProductBrief.pdf Accessed August 30, 2005.

Ravi, S. et al., “System Design Methodologies fWiaeless Security Processing
Platform,” Proc. 39 Design Automation Conf. (DAC 02), ACM Press, 2002,
pp.777-782. [Online] Available:
http://www.princeton.edu/~npotlapa/files/papersfifapdf Accessed August 30,
2005.

Stallings, W., Cryptography and Network SecuritsinBiples and Practices, 3rd ed.
Upper Saddle River, NJ: Prentice-Hall, 2003. pf7124.

Stallings, W., Cryptography and Network SecuritsinBiples and Practices, 3rd ed.
Upper Saddle River, NJ: Prentice-Hall, 2003. &8-268.

68

Wu, L., Weaver, C., Austin, T., “CryptoManiac: Agtdlexible Architecture for Secure
Communication,” Proc. 28Int'| Symp. Computer Architecture (ISCA-01), IEEE
CS Press, 2001, pp. 110-1109.

Xilinx, “Virtex-1l Pro and Virtex-ll Pro X PlatformFPGAs: Complete Data Sheet,” v4.4,
September, 2005, pp. 54. Available:
http://direct.xilinx.com/bvdocs/publications/dsOg88f. Accessed October 4,
2005.

69

Vita
Scott Edward Fields was born in Oak Ridge, TN, ard 6, 1981. He attended
Karns High School in Knoxville, TN and graduatedvakedictorian in 1999. He then
studied Computer Engineering at the University ehifessee in Knoxville. During his
undergraduate study, he completed a co-op withafgtinc. in Huntsville, AL, where he
first used programmable logic devices. He earne®achelor of Science degree
Summa cum Laude in 2004 and is currently pursuiadvtaster of Science degree in

Computer Engineering.

70

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2005

	Hardware Design and Implementation of Role-Based Cryptography
	Scott Edward Fields
	Recommended Citation

	fields_MS_thesis

