
Todd W. Goforth 13th AIAA/USU Conference on Small Satellites1

SSC99-XI-3

Space Testing of the Advanced Instrument Controller

*Todd Goforth, +Scott R. Cannon, ~James Lyke

*Maxwell Technologies, Alb., NM.   gofortht@plk.af.mil

+Utah State University, Logan, UT.  scott@cannon.cs.usu.edu

~Air Force Research Lab, Space Vehicles Directorate, Alb., NM.  lyke@plk.af.mil

ABSTRACT.  An extremely compact, low-power instrument controller and data processor system has been
developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device
contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 cm in size. Based on
the Intel 8031/51 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports 128k of
SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communications ports, 32 analog 12-bit A/D channels,
and eight D/A channels. Rugged (30k g) with a wide operating temperature range (-120 to +80 C), the AIC supports
a number of power saving modes, nominally consuming <50mW with 0.5mW in standby sleep mode. A space
experiment was designed to exercise the controller in a harsh environment. Flying on the small STRV-1d satellite, a
joint US and British program, the experiment will collect data on AIC operation during 600+ minute highly-
elliptical orbits which will expose the experiment to high radiation levels and possibly significant solar flare events.
Scheduled to fly in spring 2000, STRV-1d will be commissioned for one year.

Introduction

Over the next ten years, hundreds of new operational
satellites costing billions of dollars will be inserted into
orbit 1. Each operational satellite requires that a myriad
of different functions be controlled and monitored;
ranging from very complex attitude or tracking
functions to low complexity spacecraft temperature or
spacecraft battery voltage monitoring. Often these tasks
are performed by a single central computer. Because
there are many different micro-processors designed for
space which can provide the necessary processing
power, the spacecraft designer may  only need to match
satellite processing needs to a particular processor's
capabilities. For small satellite applications however,
there are significant gaps in the spectrum of space pro-
cessors available for use at the lower performance
(<1MIPS), low power, and small size end. This gap
often forces the designer to use high-performance or
high current processors for low complexity tasks.  This
results in power budget problems as well as greater
investment, development time, and system complexity.

By contrast in non-space applications, the plummeting
cost for a fixed quanta of computational capability has
driven an engineering economy which favors the
inclusion of many individual processors in all but the

simplest systems.  Yet space systems, for the most part,
continue to employ a limited number of processors and
seem to follow a centralized model.  The reason for this
difference is not clear, but it is reasonable to suggest
that the size, weight, and power of many processor
boxes is a factor.  Because small satellite systems have
significant dimensional, power, and weight constraints;
reducing flight hardware is a prudent engineering goal.

Distributed processing is an attractive design model,
since the wiring complexity of the overall spacecraft
harness can often be substantially reduced by localizing
processing at the point of use. Furthermore, the ability
to delegate subsystem processing makes the
engineering of complex, real-time systems more
tractable.  In this case, each co-located processor is
responsible for managing only one set of real-time
interactions. This effect is not unlike introducing a
"temporal slip-ring" to the central processor, greatly
alleviating an otherwise complex, interwoven set of
real-time interactions with subsystems.  If the size,
weight, power consumption, and cost of an embeded
processor could be reduced, it would be possible to
more completely realize the potential benefits of
distributed processing. Distribution of processing also
reduces the burden faced by any particular processor. If
the system designer could reduce the number of overall

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32552586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Todd W. Goforth 13th AIAA/USU Conference on Small Satellites2

tasks that a central spacecraft computer was required
to do by using lower performance processors in a

distributed processing scheme, the overall development
cost would also be reduced.

A practical distributed processing scheme would
involve using many low cost, low power and low
complexity processors, distributed over the entire
satellite. These processors could be used to handle low-
level tasks such as controlling subsystems and
monitoring the status of various sensors.  Each Remote
Processor Unit (RPU) would provide processing and
instrumentation services for various satellite functions,
and would be linked to the central microprocessor via a
simple serial or parallel data path.  The RPU's could be
used to control, monitor, and process satellite health
and status data such as attitude, voltage and current
levels, temperatures, solar panel position, etc. The
RPU's could also request service from the central
microprocessor for a subsystem if a condition
warranted an action on its part.

This paper addresses the issue of using flexible but
lower performance processors in a distributed process-
ing scheme by examining the suitability of a relatively
new micro-controller, the Advanced Instrument Con-
troller (AIC) Multi-Chip Module (MCM), for use as an
RPU.  The AIC approximates the "system-on-a-chip"
model through the synergistic combination of
integrated circuit and advanced packaging technology.
The AIC, by virtue of its extremely small size, weight,
and power consumption,  can readily support the
paradigm for pervasively distributed processing in
spacecraft. In order to address the obviously wide
range of applications that such an integrated miniature
computer could support, it is important to examine how
AIC operates in harsh environments.

The AIC was originally developed for the NASA New
Millenium Program's Deep Space II (DS2) mission.
Though this Mars mission is a physically demanding
test, the radiation exposure that the AICs will
experience in that mission is very low. One section of
this paper will discuss the use of the AIC in a more
stressing radiation environment. In this case, AIC was
applied as the core of a Low-Power Electronics (LPE)
experiment. The details of the design, development,
test, and qualification process of this LPE experiment
will be described.  As a consequence of this and other
applications, it was also necessary to develop software
to provide a better support environment conducive to
software development and testing.  A common
dilemma of system-on-a-chip modules is the lack of
commodity in-circuit emulation facilities. A creative

solution in the form of extended resident debug
monitor was established to support more fluidly the
development of embedded software. The design of this
software is also described in detail.

AIC MCM Design

The AIC is an embedded, mixed signal MCM that pos-
sesses features to address the issue of distributed pro-
cessing in an enabling way.  These features include: the
ability for stand-alone and self-contained operation, a
rich collection of built-in analog and digital instrumen-
tation control and sampling capabilities, a large number
of communications ports, and an in-system non-volatile
program and data storage facility.  Because the unit is
miniaturized, low-power, ruggedized, and self-
contained, it is easily embeddable in almost any point
location and is an ideal candidate to support the wide-
range of low-level processing requirements that exist in
complex electronic systems.  The novel design of the
AIC MCM consists of a digital micro-controller ASIC
(Applications Specific Integrated Circuit), an analog
ASIC, and a resistor ASIC 2,3.

Figure 1 illustrates some of the components contained
in the AIC MCM, which include a) a 0.35 micron,
3.3V CMOS technology central processing unit, b) two
commercial memory devices (Hitachi 128kx8 SRAM
and EEPROM), and c) a 70,000 device analog ASIC
built in 2 micron CMOS (Orbit) process.

Figure 1. Some of the ICs used in the AIC. (a)
AIC51 central processing unit, shown here during
an intermediate fabrication step (HDI traces visible
over die and bond pads). (b) Analog ASIC. (c)
Resistor ASIC.

The AIC MCM is packaged in a version of the High-
Density Interconnect (HDI) MCM process that
employs a plastic substrate 4. A simplified view of the
MCM fabrication sequence is shown in Figure 2.
Fabrication of plastic MCMs in the HDI process begins
with a thin (1 mil) Kapton polyimide sheet (Fig. 2a).
The internal ICs described are introduced through
placement (Fig. 2b) onto the Kapton sheet through a
thermoplastic adhesive interface. The plaskon substrate

  
(a)     (b)    (c)



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites3

of the MCM (Fig. 2c) is poured or molded over the
placed components.  Next, the standard formation of a

multilayer copper-Kapton interconnect system creates a
dense wiring manifold (Fig. 2d) between the contacts
of ICs, while also forming the conductor land areas for
surface mount component (Fig. 2e) and leadframe (Fig.
2f) contacts.

(e)

(d)
(a)

(f)
(c)

(b)

Figure 2.  AIC MCM fabrication sequence.

The form of MCM technology used in the AIC,
referred to as plastic HDI, has several important
advantages,  some of which were particularly important
to its original application as an interplanetary probe
controller.  First, the patterned overlay technology
allows for tightly coupling IC components.   The
custom ASICs took advantage of this situation by
employing smaller pad driver cells for bond pads, due
to the reduced capacitance of intra-modular wiring.
This design approach permitted lower propagation
delay and power consumption.  Second, the MCM
design approach provided for superior impedance con-
trol, particularly for the analog portions of the design.
Signal integrity models developed for the AIC
indicated that noise coupling onto signal lines going
into the A/D convertor were well below one quarter of
the signal level corresponding to a least significant bit.
The HDI construction provided for minimum size and
weight.  Here, components were mounted both within
the substrate and onto its surface. The use of plastic
instead of ceramic resulted in a 50% weight reduction
and undoubtedly contributed to its extremely rugged
design.

Although the AIC was not specifically designed to be
radiation tolerant, ground testing has shown that device
is still suitable for most LEO applications [5].  In light
of this limitation, development of radiation hardened
versions of the analog ASIC and the central processing
unit are currently being funded by two different USAF
program offices 3.

A simplified block diagram of the AIC architecture is
shown in Figure 3, and a digitized picture of an AIC
MCM is shown in figure 4.  The AIC was designed to
be a versatile, easy to use tool, with many features and
functions which allow it operate as a stand-alone
system.

32
digital

I/O

Program

  /Reset

32 analog
inputs

RESISTOR
BLOCK

ANALOG BLOCK

Data bus

Addr. bus

Select

/Select

Write

Read

PROM enable

AIC enable

/Enable

Enable

/Reset

Data bus

Addr. bus

PROM /Write

HITACHI
HN58V1001
EEPROM

128KX8

POWER
CONTROL

HITACHI
HN62V8128

RAM
128KX8

8 analog outputs

AIC51
BLOCK

HXTAL

Ext. clock and
enable inputs

Synch. ser.
ports (2ea.)

Asynch.
ser. ports
(4ea.)

Control
signals

Figure 3. AIC function block diagram

The AIC is based upon the Intel 80C51FC micro-con-
troller instruction set and is binary compatible with that
family of processors. In addition, the latency of the
MOVX (move using external memory) instruction has
been significantly reduced. Added to the instruction set
is a special write-to-EEPROM instruction (MOVN).

The operating speed is 11/n MHz (n = 1, 2, ...) from a
built-in clock. External memory consists of 128k x 8
EEPROM and 128k x 8 SRAM (64k program, 64k
data). The miniaturized AIC is only 3.22cm x 2.0cm x
0.3cm and weights less than 5 grams. On reset, 64k of
program is automatically copied from EEPROM into
RAM -- execution then proceeds from RAM.



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites4

Figure 4.   AIC MCM Wire-Bonded Test Board.

AIC MCM peripheral features consist of the following:

• 32 digital I/O pins; 24 bi-directional, 8 output only
(4 default high, 4 default low.

• Two 16-bit timer/event counters (one timer
contains a powerful capture/compare module).

• Six serial ports; four RS-232 format at CMOS
levels (asynchronous) and two half-duplex
synchronous.

• A 12-bit A/D converter with four operating modes,
32 multiplexed input channels (0 - 4 volts), a 40
usec conversion time, and a 15 KHz conversion
rate.

• Eight channels of D/A conversion (each 10-bit
resolution).

• Seven sources of interrrupt.

There are several important AIC special features that
facilitate embedded and distributed applications:

• Power-on reset
• A built-in oscillator
• In-situ reprogrammable through serial port 0.
• Two operation modes; nominal (clock rate choices

of 11, 5, 2.5, or 2 MHz) and a standby or lower
power mode (clock rate 200 Hz).

• Low power consumption: 50 mW typical at 5
MHz, <1 mW during low-power mode.

• Fully static design.
• Power supply; 5 volts (+/- 5%) and 3.3 volts (+/-

5%).
• Highly rugged design; 30k G forces with an

operating temperature range of -120 C to +80 C.

The LPE Experiment

Recent work with the US/UK Space Test Research
Vehicle (STRV) series of satellites has created the
opportunity for the demonstration of space experiments
in harsh radiation environments.  The STRV-1d
satellite, which will be launched with the STRV-1c
companion spacecraft, will be placed into highly
elliptical orbits where they will pass in and out of the
Van Allen radiation belts every 10.5 hours during their
one-year mission 6.

Because of the obvious power and weight savings of
the AIC MCM over conventional data acquisition and
microcontroller circuits, the successful demonstration
of the AIC MCM in a space environment will benefit
many future space projects. This demonstration will
also prove the viability of the AIC MCM as a candidate
for remote processing applications.

The Low-Power Electronics (LPE) experiment (Figures
5 and 6) was designed to demonstrate circuits 10 - 100
times more power efficient than are currently used, and
in particular examines (1) reduction in feature size, and
(2) digital/analog integrated co-design and how these
systems might perform in a synergistic environment.
The main focus of the experiment is the AIC MCM. (A
more detailed description of the complete LPE
experiment is presented elsewhere 7).

Figure 5. Top View of the LPE Experiment Board.



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites5

Figure 6. Bottom View of the LPE Experiment
Board.

LPE Experiment Description

The LPE experiment board is designed to evaluate the
performance of two low-power integrated circuits in a
space environment.  One of these integrated circuits,
the AIC MCM, is a custom component available
through the Air Force Research Laboratory.*1  The
criteria used to determine the success of the experiment
will be based largely on the duration of proper
operation of the AIC MCM.

The LPE experiment board will functionally test the
AIC MCM by applying appropriate stimulus inputs and
then collecting the response data.  Once collected, the
data is transferred to the main spacecraft computer via
a serial communications link, and then transmitted to a
ground station for evaluation. The following
subsections give brief descriptions of the several LPE
experiment board functions. In addition to processor
operation, the AIC MCM functions which are
monitored by the LPE experiment board are;

• Power Dissipation in Active and Standby modes,
• ADC Zero Offset Error,
• ADC Full-Scale Error,
• ADC Linearity,
• DAC Zero Offset Error,
• DAC Full-Scale Error,

                                                       
*1 Air Force Research Lab, 3550 Aberdeen Ave. SE
Kirtland AFB NM 87117-5776 (505)846-5812
Point of Contact - Mr. James Lyke

• DAC Linearity,
• Self-Test Mode Initialization and Execution,
• On-Chip RAM Performance and Integrity,
• On-Chip ROM Performance and Integrity,
• I/O Port Functionality,
• Synchronous Serial Port Functionality, and
• Asynchronous Serial Port Functionality.

The LPE experiment functions are controlled by a
separate on-board SA3865 radiation hardened 8-bit
microcontroller.  The SA3865 is functionally
equivalent to the Intel 80C51BX micro-controller
which simplified interfacing to the AIC. The SA3865
controls all of the AIC experiment functions and
timing, and collects data from the AIC MCM. The
SA3865 is periodically commanded by the spacecraft
data handling computer to exercise the AIC MCM and
then interrogate the device to collect experiment data
packets.

This data consists of 143 bytes from the AIC MCM per
interrogation showing the status of the above bulleted
functions. The SA3865 uses an 11.0592MHz crystal,
and communicates with the spacecraft data handling
computer system at 9600 baud through an RS-422
interface. The SA3865 communicates with the AIC via
a two-wire handshake which is controlled by the AIC
MCM.  Data transfered to the spacecraft data handling
system is stored to on-board radiation tolerant RAM
for eventual ground telemetry.

AIC MCM A/D Converter Evaluation

The AIC MCM ADCs are tested in a variety of ways.
Four of the ADC inputs are connected to the output of
a buffer amplifier, which is driven by a radiation
hardened voltage reference. Using this reference will
give a clear indication of how stable a typical AIC
MCM ADC channel is when used in a temperature and
total dose varying environment such as space.

The other 28 analog inputs are broken up into groups
of either 3 or 4, with each group being driven by one of
the AIC MCM DAC outputs.  Each of the DAC outputs
is coupled to a group of ADC inputs through a 10K
Ohm resistor. Because the DACs will be programmed
to output one of four different voltage levels, it is
hoped that ADC and DAC  linearity, zero offset error,
and full-scale error performance can be tracked as a
function of temperature and total dose radiation. One
important thing to point out is that if these tests show
degradation, it might not be absolutely clear if the
degradation occurred in the DAC or the ADC.  If



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites6

degradation does occur laboratory testing to determine
the exact source of degradation may need to be carried

out.

AIC MCM I/O Port Functionality Evaluation

Each of the four, 8-bit I/O ports are exercised to some
degree or another. The main test function uses two bits
from each port to transfer every data byte from the AIC
MCM memory to the main experiment microprocessor
as part of the normal data collection passes. A different
I/O line is tested by serving as an interrupt input for the
AIC MCM. This I/O is a dual function I/O and is tested
for both its interrupt function as well as its standard I/O
function. These tests provide a clear indication of I/O
functionality over temperature and exposure to total
dose radiation but will give no indication of I/O drive
capability.

AIC MCM Asynchronous Serial Port Evaluation

The AIC MCM contains one asynchronous serial port
but this single port is multiplexed to four sets of asyn-
chronous serial port pins.  Because the asynchronous
serial ports will operate in full duplex mode, it was
possible to evaluate the transmit and receive operations
simultaneously. Asynchronous serial port operation
was verified in each of the four possible modes. After
each test operation is completed the receive buffer and
the control register are written to internal AIC MCM
RAM to be later downloaded to the SA3865 as part of
a data packet.

AIC MCM Random Access Memory (RAM) Evaluation

The AIC MCM has 128K x 8 of internal random access
memory, which is split into an upper block and a lower
block each 64K x 8.  The AIC MCM controller
software uses the RAM for storage of experiment data
prior to transmitting it to the SA3865 controller.  The
RAM is checked prior to every data collection pass by
writing and reading four different patterns;  0x55,
0x00, 0xFF, and 0xAA.  The test results are stored as
codes in internal AIC MCM RAM to be later
downloaded to the SA3865.

AIC MCM EEROM Evaluation

The AIC MCM has 128K x 8 of internal ROM which is
also split into an upper block and a lower block each
64K x 8.   Because the  AIC MCM system software is
stored in ROM, and because testing ROM requires the
continual resetting of the MCM, the ROM tests that are
done on-orbit utilize the Built-In Self-Test (BIST)
functinality of the AIC.  This built-in routine verifies

system ability to read ROM.  The BIST results are
stored in internal AIC MCM RAM and later
downloaded to the SA3865. Although the BIST is only
performed on power up, the BIST result will be
transmitted with every data download.

LPE Software Development

The AIC MCM software for the LPE experiment was
written using a commercial off-the-shelf code
development package for the Intel 80C51.  The
assembled hex code was then downloaded to the AIC
MCM, which was soldered onto the flight board.  The
download was accomplished in-situ through a three-pin
header which was designed into the board for ease of
re-programmability, and not removed until final
integration began.  Two other two-pin headers, also
designed into the board and removed before final
integration, were used for assertion and de-assertion of
/Reset and the Program pins. Use of these headers
allowed newly developed revisions of software to be
loaded into the AIC MCM by using the Utah State
University, AIC Debug Monitor (described below).
This procedure required only the use of a laptop
computer and an in-line voltage level  shifter, which
was required to mate the PC UART voltage levels to
the AIC MCM UART voltage levels.  Although the
LPE board was not designed to take advantage of
stand-alone in-situ re-programmability, the necessary
functions to do this could have easily been designed
into the board and handled by the main system micro-
processor.  Taking this concept one step further, it is
possible to completely control in-situ reprogramma-
bility on-board assuming that new software programs
are stored in on-board memory.

Code Development Support

The AIC was designed for extrememly compact and
low-power embedded designs. As a result, there are no
external connections for in-circuit emulation probes or
pods, nor are there dedicated JTAG or other emulation
test ports. Code development and testing for complex
software on the AIC requires additional support. Two
software packages were developed during this
experiment to provide an efficient and dependable code
development environment.

AIC Debug Monitor

To support interactive debugging and code testing, a
semi-independent Debug Monitor module (DM) was
developed. The DM is intended to co-reside with an
application in AIC EEPROM code memory. This



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites7

debug monitor serves as a background routine to
support interactive application debugging with a host

console through the AIC serial port 0. It can be
controlled with a simple terminal connected to the AIC
or by a host PC running the AIC debugger Graphical
User Interface (described later). The intented purpose
of the DM was to use a small software routine on the
AIC to emulate the essential controls normally
available with an in-circuit emulation probe.

The AIC Debug Monitor is compatible with the Keil
8051 development tools (C Compiler, Assembler, and
Linker), although only minor modifications would be
required for another commercial compiler and linker
package. The DM is linked with a user application into
a single HEX file to be loaded into AIC EEPROM.

Upon leaving reset, the DM initially obtains control of
the AIC and initializes serial port 0 to a known baud
rate and known communications settings. It then
enables serial port interrupts and jumps to the
beginning of the application code. While the
application is running, all serial port 0 input characters
are first examined by the DM. Reception of the ‘!’
character places the AIC in debug mode and control is
assumed by the DM (fig. 7).

Figure 7.  Debug Monitor operation

While the AIC is not in debug mode, the DM simply
passes all control and all other characters to the
application serial port interrupt service routine (if
present) for any input character handling. All transmit

interrupts are ignored by the DM and thus are available
to the applications interrupt service routine. As a result,
an application is essentially uneffected by the presence
of the DM as long as the special ‘!’ character is not
transmitted to the AIC during operation.

When the AIC enters the DM for debug mode, the cur-
rent state of the application is saved in a protected area
of memory. This includes all special function registers
(interrupt states, program counter, flags, etc.) that the
debug monitor may modify. Clocks or timers are not
stopped, but all internal and external interrupts are dis-
abled or suspended until the application is resumed.

Debug Monitor Commands

The following commands (Table I, Table II) can be
entered as text strings from a dumb terminal (or can be
generated by a special graphical user interface in
response to window controls as described later):

Table I: Debug Monitor Notation

xx xx … Up to 128 2-byte hex values (00 to
FF) separated with spaces.

xx A 2-byte hex value (00 to FF).

aaaa A 4-byte hex address (0000 to FFFF)

aa A 2-byte hex address (00 to FF)

n A single digit (0 to 9)

Table II: Debug Monitor Commands

Command Action DM response

! Enter debug
mode

<version>:

D Read local
RAM

D xx xx …:

X aaaa Read extended
RAM

X[aaaa] xx xx
… :

Serial port 0 interrupt
in

Char == '!'

Save
state

DM

Restore
state

Init. DM
And
serial
Port 0

yes

no
reset

App.
Interrupt
service

application



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites8

E aaaa Read code
RAM

E[aaaa] xx xx
…:

S Read spec.
function regs.

S xx xx …:

W aaaa xx
xx …

Write local
RAM

W[aaaa]:

M aaaa xx
xx …

Write extended
RAM

M[aaaa]:

A aaaa xx
xx …

Write code
RAM

A[aaaa]:

Z aa xx Write spec.
function reg.

Z[aa]:

Y aa x Immediate
write spec.
func. Reg.

Y[aa]:

P aaaa Change prog.
counter

P[aaaa]:

B aaaa Set breakpoint Bn[aaaa]:

C n Clear
breakpoint

C n:

When the operator enters the ‘G’ or Go command in
debug mode, the application state is restored and the
application continues -- unless a breakpoint is reached.
When a breakpoint is encountered, the AIC again
enters the debug mode and the address of the
breakpoint is transmitted to the host terminal or PC.

The ‘Write SFR’ and ‘Change PC’ commands do not
take effect until the ‘Go/Continue’ command is exe-
cuted. The ‘Write SFR’ command is used for registers
A, B, DPTR, SP, and PSW. The ‘Immediate write
SFR’ command occurs immediately and is normally
used for other SFRs including ports and port control
registers.

The write commands expect a string of 128 2-byte hex
values, the user must provide the entire list even if only
a single byte is to be written. In the case of the ‘Read

SFRs’ command, the debugger returns 130 hex values;
the first 2 values (xx xx) represent the current applica-
tion program counter. The ‘Write SFR’ and ‘Immediate
write SFR’ commands expect the actual SFR address.

The AIC debugger does not echo user input. In general,
the AIC debugger ignores spaces and will not send
<cr> or <lf> control characters. The AIC debugger is
case sensitive and all ASCII hex values must be
entered in upper case.

Obviously, the user is able to directly change AIC
special function registers and memory upon which the
application program and debugger may be depending.
For example, the debugger uses some local and
external ram memory for variable space. If the user
overwrites these variables with new values, the
debugger may be harmed. The user should carefully
consider a load map listing prior to modifying memory
to be sure only application variables or unused memory
locations are being modified. Similarly, an immediate
write to the stack pointer may harm the debugger, since
it may be currently using the stack pointer register. In
any case, a hardware reset on the AIC will force a fresh
version of the code to be loaded into the AIC ram
memory.

Breakpoints

Both static and dynamic breakpoints are available in
the debug monitor. A static breakpoint can be forced in
application code with a call to the BP() function macro.
The argument is any positive integer. For example;

if (a == b)
{  x = y + b;
   BP(1);  // force breakpoint
  // pause and enter debug mode
}

The BP() function simply simulates the reception of a
‘! debug-mode character on the serial port. As such,
when the application program executes the BP()
function, the application will pause and the system will
enter the debug mode as described above. Control is
returned to the application with the ‘G’ command.

Dynamic breakpoints are added to the application
while the AIC is in debug mode. The ‘B’ and ‘C’
commands may be utilized to set and clear up to 10
dynamic breakpoints. When the “Set Breakpoint”
command is sent to the AIC in debug mode, a
breakpoint is defined for the address specified. When
the breakpoint is successfully registered in the AIC, the
display will show the breakpoint number and address



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites9

in the form “n[aaaa]”. To clear a breakpoint, send the
“Clear Breakpoint” command with the appropriate

breakpoint number.

Dynamic breakpoints are effected by saving and then
replacing the existing instruction at the breakpoint
address with a BP() function call. Setting a breakpoint
in ram-resident code has no effect on EEPROM – when
the AIC is reset, a new copy of code is loaded from
EEPROM and all breakpoints will be erased.

There are certain restrictions imposed by a software-
implemented debug monitor regarding breakpoints.
Setting dynamic breakpoints in assembly is not a trivial
activity and requires some understanding of linker map
files. It is the operator’s responsibility to set a
breakpoint on a valid instruction address.  If for
example, a breakpoint is specified for the second byte
of a 2-byte instruction, unpredictable operation will
result. A breakpoint results in 3 code bytes being
replaced in the original code. As such, the operator
must avoid setting a dynamic breakpoint on a 1 or 2
byte instruction if possible. If this is not possible, one
can avoid setting a breakpoint directly above a
destination or labeled instruction since the destination
instruction may be replaced by the breakpoint but not
be in the instruction sequence reaching the breakpoint.
If the application is in C, simply placing a breakpoint at
the beginning of a line containing executable
instructions (as indicated in the linker output file) will
insure the above conditions are met. The user may not
place a breakpoint at the end of a block (on a ‘}’ line).

AIC Graphical User Interface

The AIC Graphical User Interface (GUI) was devel-
oped to support code development and debugging on
the AIC by providing a more intuitive and user-friendly
interface to the Debug Monitor described above. While
the GUI is not necessary for code development, its use
provides the programmer with a simpler and more
robust interface. The GUI runs on a PC host and gener-
ates the appropriate Debug Monitor command strings
associated with a simple window display of buttons,
options, and dialogs. Responses from the Debug Moni-
tor are intepreted by the GUI and displayed (fig. 8).

Figure 8. Development System Configuration

Data displays

Three data display window areas are presented to the
user in the GUI (fig 9.). In the “Status” display area,
information messages regarding the state of the system
and PC interface are displayed. In the “AIC comm”
display area, text sent by the AIC is displayed. In the
“Data” display area, AIC memory segments are dis-
played. This last display area is generally editable and
is useful for modifying AIC memory segments using
the Read Data and Write Data control buttons.

Figure 9. Graphical User Interface Window

Operation Controls

• LOAD FILE  Downloads a hex file to
EEPROM. The filename is first entered in the
Filename text window. After downloading a
program, this button becomes inactive and
unavailable. While the program is being
downloaded, the message “downloading” is
presented in the status window followed by
“download complete” when EEPROM has been
loaded. This may take several minutes – dot
progress markers are displayed to show the is
active.

•  RESET/RUN Reset the AIC and run the
application program currently

Application

DM

Win95

GUI

Serial com.



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites10

           in EEPROM. While running, the application
program communications from the AIC appear
in the AIC comm display. When a reset com-
mand is successful, the message “AIC reset” is
displayed in the status window.

• DEBUG Interrupt the application
program on the AIC and enter the debug mode.
The Register Values, Read Data, and Write
Data button groups are only available while in
the debug mode. After entering the debug
mode, this button changes to “User” (see
below).

• RUN Leave the debug mode and
continue with the suspended application
program.

• BREAKPOINTS Show the breakpoint control
form (see below)

Read Data controls

• IRAM Read the lower 128 bytes of local
ram from the AIC and display in the Data
display area.

• XRAM Read 128 bytes of extended ram
block 1 (upper 64k) beginning at the address in
the “Addr” window into the Data display area.
The Addr window should contain a 4-character
hex address in the range 0000 to FF80.

• CODE Read 128 bytes of code from
extended ram block 0 (lower 64k) beginning at
the address in the “Addr” window into the Data
display area. The Addr window should contain
a 4-character hex address in the range 0000 to
FF80.

• SFRs Read 128 bytes of special function
registers from the upper 128 bytes of local ram
and display in the Data display area and into the
Register Values display group. The Addr
window should contain a 4-character hex
address in the range 0000 to FF80.

Write Data controls

• IRAM Write the bytes currently in the Data
display area into the AIC local ram at the
address in the Addr window. The Addr window
should contain a 4-character hex address in the

range 0000 to FF80.

• XRAM Write the bytes currently in the Data
display area into the AIC extended ram block 1
(upper 64k) beginning at the address in the
“Addr” window. The Addr window should
contain a 4-character hex address in the range
0000 to FF80.

• CODE Write the bytes currently in the Data
display area into the AIC extended ram code
ram (lower 64k) beginning at the address in the
“Addr” window. The Addr window should
contain a 4-character hex address in the range
0000 to FF80.

Register Values controls

When the Read Data control button “SFRs” is clicked,
these display windows are filled according to the
special function registers read from the AIC. Most of
these windows are editable. Hitting the RETURN
keyboard key in one of these register display windows
causes the current value in the display to be written
back to the associated SFR in the AIC.

The effect of changing program control registers may
not be immediate. For example, changing the PC, A, B,
and dptr  registers cannot take effect until the
application program is resumed (see the User operation
command above). The effect of changing any of the
port or port control registers is immediate.

Breakpoint control form

The Breakpoint control form (fig. 10) is used to enter
dynamic breakpoints into the ram-resident application
program on the AIC. Up to 10 breakpoints may be
specified. When the “Set Breakpoint” button is
selected, a breakpoint is defined for the address in the
“Address” window. This window should contain a 4-
character address in the range 0001 – FFFE.

When the breakpoint is successfully registered in the
AIC, the display list will show the breakpoint number
and address in the form “n[aaaa]”. To clear a
breakpoint, select or highlight the breakpoint in the
display list and select the “Clear Breakpoint” button. If
no breakpoint is selected, this button will clear the top
breakpoint by default.

When the application program reaches a breakpoint,
the program is paused and the AIC enters the debug
mode. Setting a breakpoint in ram-resident code has no
effect on EEPROM – when the AIC is reset, a new



Todd W. Goforth 13th AIAA/USU Conference on Small Satellites11

copy of code is loaded from EEPROM and all
breakpoints will be erased. To hide the breakpoint

control form and return to the main control form, the
user selects the “Done” button.

Figure 10. Breakpoint Control Form

Summary

Even as the commercial industry (e.g., laptop comput-
ers) continue to exploit advances in low-power micro-
electronics and distributed processing, this venue of
research is particularly enabling in space systems,
where every required joule of energy comes with a
price tag, and costs associated with central processor
development is very high.  The advancement of
electronics for space requires examination of these new
trends, both in terms of technology development and in
testing/verification of the space worthiness of these
technologies.

The AIC promises to be a very practical instrument
controller for small satellite applications where
distributed processing can be utilized, particularly
those satellites requiring both digital and analog
controls and sensors. The Debug Monitor and
Graphical User Interface software developed to support
the AIC provide a practical and efficient code develop-
ment environment for applications implementation,
debugging, and testing. The success of the STRV-1d
test satellite will provide valuable data on the robust
nature of this device.

Since the delivery of the AIC MCM to Deep Space II,
other AIC MCM demonstration systems have been
provided to several NASA centers to enable quick
prototyping and evaluation of the unit.  The Marshall,
Lewis, and Johnson space flight centers are planning
missions using the AIC MCM, and JPL is looking into
using the AIC MCM for the Mars 2003 mission [3].
The U.S. Air Force is considering the AIC MCM for

new applications such as satellite attitude control and
process control 3.

The AIC MCM is also being considered for several
terrestrial distributed processing applications.
Contracts are currently in place with the U.S. Navy and
the Joint Strike Fighter program, which envision using
the AIC MCM in a condition-based maintenance
application 3.

Acknowledgments

Acknowledgment is given to the Boeing Corp. (Jay
Clement, Scott Davis), Mission Research Corp. (Dave
Alexander, Robert Turfler, Mike Williams), and Utah
State University for providing technical support during
the development of the LPE space experiment
hardware and software.

References

[1]   Troy Thrash, “Little LEOs: Bigger Isn’t Always
Better”, Launchspace, pp. 46, 47, January/February,
1999.

[2]   James Lyke and Curt Jingle, “AIC/DS2 Users
Guide”, Phillips Laboratory technical report, 1998.

[3]   James Lyke and David Alexander, “Design of an
Ultra-Miniature Control Processor for Space
Application”, 1999 GOMAC Digest of Papers, pp. 256-
259.

[4]   James Lyke and Robert Wojnarowski et al.,
“Three Dimensional Patterned Overlay High Density
Interconnect (HDI) Technology”, Journal of
Microelectronic Systems Integration, 1(35), July 1993.

[5]   William X. Culpepper et al., “Radiation Test
Summary Report For The Experiment Controller For
The Mars In-Situ Propellant Production Precursor
(MIP)”, Document Number JSC 28504, November
1998.

[6]   Wells, Nigel. “STRV-1c & 1d Mission Definition
Specification”, Phillips Laboratory technical report,
July 1997.

[7]   Todd W. Goforth, “Design and Development of a
Low-Power Electronics (LPE) Space Experiment”,
1999 GOMAC Digest of Papers, pp. 320-323.


