
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2008

Defect-tolerance and testing for configurable nano-crossbars Defect-tolerance and testing for configurable nano-crossbars

Mandar V. Joshi

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Joshi, Mandar V., "Defect-tolerance and testing for configurable nano-crossbars" (2008). Masters Theses.
6775.
https://scholarsmine.mst.edu/masters_theses/6775

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6775?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

i

i

DEFECT-TOLERANCE AND TESTING FOR CONFIGURABLE NANO-

CROSSBARS

by

MANDAR VIJAY JOSHI

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE
IN COMPUTER ENGINEERING

2008

Approved by

Waleed K. Al-Assadi, Advisor
Scott C. Smith

Minsu Choi
Theodore McCracken

ii

© 2008

Mandar Vijay Joshi

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis consists of the following two articles that have been submitted for

publication as follows:

 Pages 1-20 are accepted at the IEEE INTERNATIONAL SYMPOSIUM ON

DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS 2007

Pages 21-40 are submitted to IEEE TRANSACTIONS ON VLSI SYSTEMS,

2008

iv

ABSTRACT

Moore’s Law speculated a trend in computation technology in terms of number of

transistors per unit area that would double roughly every two years. Even after 40 years

of this prediction, current technologies have been following it successfully. There are

however, certain physical limitations of current CMOS that would result in fundamental

obstructions to continuation of Moore’s Law. Although there is a debate amongst experts

on how much time it would take for this to happen, it is certain that some entirely new

paradigms for semiconductor electronics would be needed to replace CMOS and to delay

the end of Moore’s Law. Silicon nanowires (SiNW) and Carbon nanotubes (CNT)

possess significant promise to replace current CMOS. Digital circuits can be synthesized

using programmable junctions (crosspoints) in 2-D arrays of CNTs of pitches of the order

of a few nanometers. Programmable Logic Arrays and memories using this technology

have also been proposed. This technology, however exhibits significantly high defect

rates, creating failures in configurations. Some researchers have proposed methods that

can detect defective crosspoints, and others have also proposed techniques that avoid

configuration at the defective crosspoints with a very high success rate. These techniques,

however, have certain limitations that may produce poor yield from the configuration; i.e.

programming of some defective or non-programmable crosspoints. Also, these

techniques need exhaustive defect mapping before the configuration algorithms are

applied. This adds to the time complexity for overall configuration and routing process.

Paper I deals with redundancy methods to minimize the defects in configuration and in

turn decrease the time complexity for configuration. Paper II proposes a Built-in Self Test

(BIST) technique to generate the defect map in a 2-D nano-array.

v

ACKNOWLEDGMENTS

I am highly thankful to my thesis advisor, Dr. Waleed Al-Assadi for his immense

support, guidance and encouragement during my course-work, research and projects I

was involved in. I am also grateful to my thesis committee members, Dr. Minsu Choi, Dr.

Ted McCracken and Dr. Scott Smith for their cooperation. I would also like to thank my

family members, room-mate Poorna, lab-mates Sagar, Sasikiran, Sindhu and Vipin for all

their constant help and support.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION... iii

ABSTRACT... iv

ACKNOWLEDGMENTS .. v

LIST OF ILLUSTRATIONS... viii

PAPER ... 1

 I. NANOFABRIC PLA ARCHITECTURE WITH REDUNDANCY
 ENHANCEMENT……...…...…………………………………………………....…1

 ABSTRACT ... 1

 1. Introduction .. 1

 2. Crosspoint defect model .. 4

 3. PLA configuration and mapping .. 5

 4. Previous Work.. 6

 5. Nanowire Redundancy... 7

 5.1. Double Variable Redundancy .. 8

 5.1.1. Calculation of Fault Probability in DVR based PLA
 Configuration………………………….. .. 9

 5.2. AVR Allocation Algorithm.. 11

 6. Simulation results.. 13

 6.1. Yield and Time Complexity in DVR .. 13

 6.2. Yield and Area Overhead in AVR .. 16

 7. Conclusion……………………………..................................... ………………..19

 References…………………………… ... ………………..19

vii

 II. A BIST APPROACH FOR CONFIGURABLE NANOFABRIC ARRAYS……..21

 ABSTRACT... 21

 I. INTRODUCTION.. 21

 II. OVERVIEW OF PREVIOUS BIST TECHNIQUES PROPOSED FOR
 NANOFABRICS .. 23

 III. NEW APPROACH FOR NANOFABRIC BIST.……………..…………………26

 A. Test Configuration……………………………………..……………………...26

 B. BIST Algorithm and Illustration ... 27

 C. Example 1 ..29

 IV. RESULTS AND ANALYSIS... 33

 A. Effect of Defect Density .. 35

 B. Effect of Array Size………………………...…………………………….……36

 C. Effect of Number of faults in the Fault Universe...36

 D. Computation Time...37

 E. Comparison with Previously proposed BIST……………………...…….…….38

 V. CONCLUSION…………………………………...………………………………39

 REFERENCES…………………………………...…………………………….……39

 VITA..41

viii

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. (a) AND Array using nanowires ... 3

 (b) OR Array using nanowires.. 3

2. Edges and Matches between F and P.. 5

3. DVR based proposed PLA Architecture with illustration of pre-configured Boolean
 function ... 8

4. Illustration of AVR ... 13

5. (a) Yield versus defect rate for different PLA sizes (Pon =50%) 13

 (b) Yield versus defect rate for different PLA sizes (Pon =70%) 14

6. (a) Comparison between the time complexities in the PLA configuring mechanisms
 with array size=50 x 50... 15

 (b) Comparison between the time complexities in the PLA configuring mechanisms
 with array size=100 x 100... 15

7. Redundancy levels versus number of ON inputs.. 16

8. Yield and Area overhead vs. P(on) at constant Defect rate .. 17

9. Yield and Area overhead vs. Defect rate at constant P(on) .. 18

ix

Figure Page

PAPER II

1. Nanofabric PLA as an array of programmable blocks.. 23

2. Test Architecture for BIST ... 24

3. Different test groups implementing FDCs.. 25

4. Test configuration for proposed BIST .. 26

5. An illustration of fault detection loops ... 28

6. A case supporting Example 1 ... 29

7. Configuration to target fault F1 .. 30

8. Configuration to target fault F2 .. 32

9. Recovery and computation time for 20 x 20 array ... 34

10. Recovery and computation time for 30 x 30 array ... 34

11. Recovery and computation time for 50 x 50 array ... 35

12. Recovery and computation time for 80 x 80 array ... 35

13. Computation time versus array width ... 37

1

PAPER I

NANOFABRIC PLA ARCHITECTURE WITH REDUNDANCY
ENHANCEMENT

Mandar V. Joshi, Waleed K. Al-Assadi
Electrical and Computer Engineering

Missouri University of Science and Technology, Missouri, U.S.A 65409
Email: mvjvx8@mst.edu, waleed@mst.edu

Abstract

 Fundamental electronic structures such as Diodes and FETs have been shown to be

constructed using selectively doped semiconducting Carbon Nanotubes or Silicon Nanowires

(CNTs, SiNWs) at nanometer scale. Memory and Logic cores have been proposed, that use the

configurable junctions in 2-D crossbars of CNTs. These Memory and Logic arrays at this scale

exhibit a significant amount of defects that account for poor a yield. Configuration of these

devices in the presence of defects demands an overhead in terms of area and programming time.

This work introduces a PLA configuration that makes use of fixed and adaptive redundancy in

terms of the number of nanowires. This is done in order to simplify the process of programming

the PLA, increase the yield, reduce the time complexity, and in turn, reduce the cost of the system.

1. Introduction

 Recent advances in Photolithographic techniques have made possible the miniaturization of

electronic circuits. According to Moore’s Law, the number of transistors per unit area will

continue to double approximately every two years. However, the applicability of Moore’s law

will cease to continue as the pitch sizes approach molecular dimensions. It therefore becomes

2

necessary to explore devices and technologies that can match these trends of an increase in

transistors per area [1]. Programmable Logic Array (PLA) architectures using Carbon Nanotubes

that make use of their semiconducting properties have been previously suggested and are briefly

dealt with. This paper proposes a technique to tolerate defects in those PLA architectures at

Nanometer scale using Carbon Nanotubes and Si Nanowires.

 Semiconducting Carbon-Nanotubes and SiNWs exhibit electronic properties similar to those

of conventional lithographic-scale CMOS devices in terms of electron and hole mobilities.

Chemical passivation of SiOx shell surrounding single crystal SiNW cores has been shown to

significantly enhance conductance-gate voltage behavior making these wires highly suitable to be

used as Field Effect Transistors [2], and in turn as building blocks for digital circuits. The

electronic applications of NWs are based on diode and FET-like properties of NW junctions or

“Crosspoints” in 2-D arrays, called as Nanofabrics or Crossbars. Crosspoints can be grouped to

form a memory or logic device. Cha et al. [3] have shown electro-mechanical switching devices

using suspended nanotubes. The Crosspoints at the junctions are programmed using this

“Bistable” property that they exhibit. Their ON-state behavior is similar to that of a diode. When

the two wires forming a junction are in close contact, the junction resistance is very small; when

the wires are far away, their resistance increases by a great extent (~33MΩ in one state and

~10kΩ in the other) [3]. A Crosspoint can be programmed ON or OFF by applying a voltage

differential of ~3.6V. The Crosspoint takes part in the evaluation of Boolean expressions in the

state in which they show diode-like properties.

 Figure 1 illustrates the setups for a Nano-crossbar as an AND array and OR array, respectively.

The working is based on diode-like properties of Crosspoints and the presence of a pull-up/pull-

down network. The programmable Crosspoints allow this network to implement logical

sum/product terms on it. The inputs that take part in the evaluation of the sum/product terms are

called ON inputs, and the ones that do not are called OFF inputs. Due to the presence of defects,

these Crosspoints may lose their programmability. Thus, if an ON input corresponds to a

3

defective Crosspoint, then it results in a faulty output. The defect mechanisms will be discussed

in section 2.

 The Synthesis of Boolean expressions can be made possible on PLAs based on crossbars. A

row in a crossbar can be made to act as a Boolean product/sum term by programming ON only

the junctions or Crosspoints that correspond to the variables that take part in the term, as shown in

Figure 1. Inputs A and C in first row of Figure 1(a) are the ON inputs, as they take part in the

evaluation of the product term. The Rest of the inputs are called the OFF inputs. The

programmability of a Crosspoint is statistical in nature [8], and therefore such a configuration of

PLAs gives a poor number of successfully configured Crosspoints even for a small number of

junctions to be programmed on a NW. This work proposes redundancy schemes to tolerate the

occurrence of Crosspoint defects to obtain an acceptable yield for PLA configuration.

 The paper is organized as follows; Sections 2 and 3 describe the defect model and mapping.

Section 4 gives previous work of PLA architectures and configuration algorithm. Section 5

introduces the two Variable Redundancy approaches for defect tolerance. Finally Section 6

details the simulation results with respect to both the approaches.

 (a) (b)

Figure 1. (a) AND-array (b) OR-array using nanowires

4

2. Crosspoint defect model

 The bistable property of Crosspoints can be used to implement logic blocks in a PLA [4] or

memory cells [5] [9]. The Crosspoints can lose their programmability because of the mechanisms

discussed below. For the simulation in this work, a random distribution of such defects is

assumed throughout the crossbar.

Breaks in Nanowires: It has been observed that the probability of having breaks in a nanowire

increases with the increase in its length. Some breaks may occur during the fabrication of

nanowires on account of the limitation of the fabrication techniques and axial stress. Therefore,

their lengths should, nominally, not exceed 10 –30 microns. It is reasonable to assume that as

high as 5% of the Nanowires exhibit breaks and therefore are unusable [6].

Non-Programmable Crosspoints: These defects are characterized by the inability of a

Crosspoint to be programmed as “closed” or “open.” The latter is observed to be extremely

unlikely and therefore is not considered in the present discussion. The occurrence of defective

Crosspoints is a function of the fabrication technique, size of the array, and the random

distribution of molecules at the junction area. With reasonable assumptions of operating

conditions, it can be proved that the occurrence of a “permanently open” defect is largely due to

the absence of sufficient electrons at the junction area [8].

5

3. PLA configuration and mapping

 Consider a domain of four digital variables, A, B, C, and D. Consider a function F1 given by

F1=ABC. This expression can be rewritten by F1=1110, taking all the variables in the sequence A-

B-C-D. A “1” is placed if the variable takes part in a logical evaluation, and a “0” is placed if it

does not. Therefore A, B and, C are considered ON inputs and D is an OFF input of the variable

F1. It is possible to have n number of such output variables from F1 to Fn. “F” therefore becomes a

matrix with n elements, which provides all the ON and OFF inputs of the logical functions to be

evaluated. It is therefore necessary that the locations in the PLA that correspond to ON inputs

should be defect free. Another Matrix P provides all the locations of defective Crosspoints of a

PLA, where a defect is denoted by “0” and a defect-free Crosspoint is denoted by “1.” In order to

have a successful match between F and P, the following condition must be satisfied: Pi,j ≥Fi,j

Figure 2. Edges and Matches between F and P

If every column of F and P are to be denoted as a single point as shown in Figure 2, then two

rows result one for the Matrix P and the other for Matrix F. In order to get a full yield, every

element of F needs to find a match with at least one element of P. Therefore, the problem

becomes a classical example of a “Bipartite Graph.” In a bipartite graph, two possible relations

exist between two points from different matrices.

6

Let the number of elements in Matrix F be “n.” Two points are said to share an “EDGE” if the

row corresponding to point in matrix F can be successfully mapped to the row corresponding to

the point in Matrix P. Let the number of edges between a pair of matrices be E. Two points are

said to have a “MATCH” if and only if they have an edge, and the maximum number of points in

Matrix F also has edges with UNIQUE points in Matrix P. Figure 2 illustrates the difference

between the graph of edges and the graph of matches.

If the number of matches between a pair of matrices is M and if M cannot be greater than n, the

solution lies in maximizing the value of M. Therefore, designer’s objective is to be able to

program the Nano-PLA in the presence of these defects that amount to approximately 20% or

more.

4. Previous Work

 Nanofabric Molecular Logic Array (MLA) proposed by Goldstein et al. [7] requires the

introduction of both real and inverted inputs from the west and north sides of the array,

respectively. This architecture is based on configurable junctions that act as diodes, and

consequently, it is incapable of complementing the inputs. The entire Nanofabric is composed of

MLAs that either act as “NanoBlocks” (programming elements) or “SwitchBlocks” (switching

elements). The present work is targeted primarily for MLA architecture. DFT strategies in

Nanowire based PLAs are discussed in [10].

 Algorithms that use “detect and avoid” strategies for Crosspoint defects have previously been

suggested by DeHon et al. in [8]. For those, it is necessary to have a defect map of the PLA under

consideration in order to program it. A defect-tolerant methodology that is proposed in [8] uses a

Greedy Heuristic Algorithm to find a solution to the mapping problem discussed above. This

algorithm sorts in descending order the functions of the number of ON inputs contained in them,

7

which enhances the probability of a successful match. This algorithm is intended to be used with

Nano-PLA architecture, and the results of this study will be compared with those obtained using

the Greedy Heuristic algorithm. It is shown that the time complexity for sorting is an exponential

function of the defect rate and number of Crosspoints to be programmed. Therefore, it becomes

infeasible to use this algorithm for Nano-PLA with high defect rates and a number of ON inputs

greater than 10%.

The proposed redundancy technique in this work can be used in conjunction with NanoPLA in

[4] or Nanofabric Molecular Logic Array (MLA) Proposed by Goldstein et al. in [7].

5. Nanowire Redundancy

 This work targets a NanoPLA with higher defect rates than 20%. It can be noted that the

Greedy Algorithm in [8] consumes a very high time complexity for higher defect rates in

crossbars. To minimize this time complexity, redundancy was introduced in terms of the number

of nanowires. A redundancy scheme has been discussed in [11] that proposes a dynamic

reconfiguration algorithm. But it needs the knowledge of presence of defects before

reconfiguration, unlike methods suggested in this paper. Two redundancy schemes are proposed

here, viz. Double Variable Redundancy and Adaptive Variable Redundancy. The yield rates and

area overhead were observed. In Double Variable Redundancy (or DVR) scheme, two horizontal

and two vertical NWs are dedicated per input variable. If ‘n’ number of NWs per input variable

were dedicated, where the value of ‘n’ is governed by the number of times the variable is used in

the function set. It follows that a set of “n” Crosspoints, any of which are programmable, will

make the PLA work. It follows that in DVR, “n” always equals two. In Adaptive Variable

Redundancy (or AVR) scheme, the number of Crosspoints allocated for a particular sum or

product term depends on a number of factors such as the defect rate, size of the PLA in use, and

8

number of variables taking part in the evaluation of a product term. It is expected that the value of

‘n’ will increase with the number of Crosspoints to be programmed in a row. This value will also

increase with an increase in the defect rate and size of the array.

 5.1. Double Variable Redundancy

 We propose to obtain greater yield rates for the configuration of a NanoPLA without having

to compromise for Time Complexity, seen in [8]. We introduce redundancy in terms of number of

nanowires [12]. We allocate two vertical Nanowires per Product (or Sum) term in order to

achieve a better yield in presence of crosspoint defects. This is illustrated in Figure 3. If any of

the two Vertical Nanowires have a programmable junction with any of the two Horizontal

Nanowires in consideration, the condition is equivalent to having a programmable resource. We

term this method as Double Variable Redundancy (DVR).

Figure 3. The DVR based proposed PLA Architecture with an

illustration of pre-configured Boolean function

9

 It can be mathematically proved that the probability of getting a pair of NWs unsuitable for a

given minterm is significantly low as compared to the defect rate in the crossbar. This fact is the

result of the three redundant crosspoints present. On account of this, the need of sorting the

rows/columns to configure the PLA for given logical functions can be eliminated. The address

decoding scheme can be same as that in [3]. The location of Pull-up and Pull-down networks

determines the working of the array as AND array or OR array, as seen in Figure 3. In this work,

we only make use of the “Diode-like” working of a crosspoint during the evaluation of Boolean

functions. Therefore the NanoBlock does not have an ability to invert the inputs, and hence we

introduce both, the real and inverted inputs externally. This also eliminates the need of “inverting

block” in [3]. The DVR based PLA architecture is illustrated in Figure 3. It shows

implementation of product-sum terms using DVR-based PLA.

5.1.1 Calculation of fault probability in DVR based PLA configuration: The following is the

list of parameters governing the defect probability.

Pcp= 0.05 to 0.2 (Probability that a single crosspoint is non programmable)

c= number of columns in PLA

r= number of rows in PLA (After introducing redundancy, total crosspoints become n= c*r*4)

Pon= Probability that a given crosspoint-quad is to be programmed

Each product/sum term to be programmed has to follow a certain “path” through each section of

the PLA. The failure of a product/sum term would mean that there is AT LEAST ONE quad that

did not get programmed.

10

A quad being non-programmable has a probability equal to fourth power of the probability, that

two consecutive crosspoints are defective. If we have “n” crosspoints, and the probability of

occurrence of defective crosspoint is “Pcp”, the expected number of defective crosspoints is given

by (1),

 d= integer (n* Pcp) (1)

The probability of a given Quad of crosspoints being defective is:

 P (defective quad) = (n-4) C (d-4)/ nCd

Where nCd is the number of combinations of “d” elements among “n” elements, and is given by

nCd = n! / ((n-d)! d!)

Now, the probability that a given programmable quad is to be programmed and it is defective is

given by,

Pon *(n-4) C (d-4)/ nCd

This applies to all the quads in the same column. We know that the total number of quads in a

column is same as the number of rows in the device. Therefore, the probability of finding ONE

defect on a given NW column is given by expression (2)

P (1) = r * Pon * (n-4) C (d-4)/ nCd (2)

11

The NW column is unusable if there is AT LEAST one defective quad at a location that needs to

be programmed. Therefore, the probability of getting a non-programmable NW column is given

by,

 r

Pdcrosspoint = Σ P (i)

 i=1

 r

 = Σ {r * (Pon) i * (n-4i) C (d-4i)/ nCd} (3)

 i=1

Expression (3) gives us the defect probability exclusively due to crosspoint-defects. As an

example, for a 50x50 NanoPLA having a crosspoint defect rate of 15%, this probability is of the

order of 2%, i.e. a yield of 98%. Average yield in CMOS based FPGA’s is however, of the order

of 83% to 89.5% [13], much lesser than that achieved at Nanoscale using DVR. The calculations

given in [8] suggest that the defect density in nano-crossbars would be of the order of 15% to

20%. For DVR analysis, therefore, we analyze the yield for defect density that ranges from 10%

to 20%.

5.2 AVR allocation algorithm

 Adaptive Variable Redundancy is assigned to each variable using the algorithm discussed

below. It can be seen in Figure 4, that the number of redundant NWs assigned depends on the

number of times the variable is used. E.g. “A” in Figure 4 is used eight times and four NWs are

allocated to it. On the other hand, “B” is used only three times, so only two NWs are assigned.

The following pseudo code describes the allocation algorithm.

12

Initialize the size of the Function Matrix F

Initialize the defect Density d=Pdef

Initialize the probability of ON input occurrence, P (ON)

Initialize threshold

FOR i= 1 to (size of F)

 Flex[i] =1; // Stores the redundant wires needed

 LOOP: d=d ^ flex[i];

 a[i]= P(defect for all possible defect orientations)

 //assuming ‘i’ crosspoints are to be programmed

 b[i]= P(i crosspoints to be programmed) = nCi di (1-d)(n-i)

 // found using Binomial Distribution

 c[i]= a[i] * b[i];

 IF (c[i]>threshold)

 Flex[i] =Flex[i] +1;

 GOTO LOOP;

 END IF

 END LOOP

END FOR

13

Figure 4. Illustration of AVR

6. Simulation results

6.1 Yield and time complexity in DVR

 The MATLAB simulations based on the configuration sequence gives us the following results

for different array sizes and defect rates. Yield results can be seen in Figure 5. The simulations

are carried out by varying the following parameters:

Defect rate: 10% to 20%

PLA size: 50x50 to 500x500 and P (on) =50% to 90%

10 11 12 13 14 15 16 17 18 19 20
65

70

75

80

85

90

95

100

Defect Rate %

Y
ie

ld

Yield for different
sizes of PLA for
Pon=50%

50X50

500X500

100X100

Figure 5. (a) Pon=50%

Yield Vs Defect Rates for different PLA sizes. It also establishes the

relation between Yield and the Probability Pon.

14

10 11 12 13 14 15 16 17 18 19 20
55

60

65

70

75

80

85

90

95

100

Defect Rate %

Y
ie

ld
Yield for different
sizes of PLA for
Pon=70%

500X500

100X100

50X50

 (b) Pon=70%

Figure 5. contd.

Summarizing the results in [8], we have the time complexity for Greedy Heuristic Algorithm as,

Tc(GA)= O (|F| log (|F|)) + O (|F| · PJ
−cm · cm) (5)

Where,

Tc(GA)= Time complexity for Greedy Heuristic Algorithm

 |F| = size of the array of Boolean functions

cm= maximum number of crosspoints to be programmed in a minterm

PJ= Probability that the given junction is Programmable.

The time complexity involved in the configuration of a DVR based PLA is given as:

Tc= Total number of crosspoints to be Programmed.

Therefore the Time complexity in DVR is given by,

Tc(DVR) = O(r*c*Pon) (6)

Double Variable Redundancy is therefore observed to be distinctly advantageous in terms of yield

and time complexity over Greedy Heuristic Algorithm, as seen in Figure 5 and 6.

15

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
103

104

105

106

Defect Rate

Ti
m

e
C

om
pl

ex
ity

Time Complexity
Vs
Defect Rate
Array Size: 50 x 50

With Greedy
Heuristic Algorithm

With DVR

(a)

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
103

104

105

106

107

108

109

Defect Rate

Ti
m

e
C
om

pl
ex

ity

Time Complexity Vs
Defect Rate
Array Size: 100 x 100

With DVR

With Greedy
Heuristic Algorithm

(b)

Figure 6. Comparison between the time complexities in the PLA

configuring mechanisms: Greedy Heuristic Algorithm and DVR for

different Array sizes. (a) Array size 50 x 50 (b) Array size 100 x 100

6.2 Yield and area overhead in AVR

16

 The AVR Allocation Algorithm has been developed in such a way that the redundancy

allocation for a given defect rate and ON input density depends on how many Crosspoints in a

row need to be configured. The algorithm first calculates the probability of having a defective

configuration for a given number of Crosspoints to be programmed in a row. It then compares

this value with a certain pre-defined threshold to iterate the amount of redundancy required. It

follows that the more likely a certain combination is, the more redundancy that is allocated to it,

as shown in Figure 7. More redundant resources ensure an acceptably high yield. For a typical

case where P(on)= 0.4 and 20% defect density, a yield higher than 95% is shown at a cost of an

area overhead approximately equal to 4.8. It can be observed in Figure 8 and Figure 9 that a lesser

threshold value gives the system a greater yield at an expense of area overhead. It is noted that at

higher defect rates than 40%, the yield becomes unacceptably low (seen in Figure 8) even at the

expense of higher resource allocation (seen in Figure 9).

:

Figure 7. Redundancy levels vs. number of ON inputs

17

(a)

(b)

Figure 8. Yield and Area overhead vs. P(on) at constant Defect rate

18

(a)

(b)

Figure 9. Yield and Area overhead vs. Defect Rate at constant P(on)

19

7. Conclusion

 Variable Redundancy greatly increases the yield in a NanoPLA configuration even with defect

rates well above 20%. Double Variable Redundancy improves Yield and lowers the Time

Complexity of configuration of the PLA by a great extent. Adaptive Variable Redundancy

algorithm allocates redundancy based on the factors that affect the yield directly, and therefore it

shows better yield results than DVR. Because AVR and DVR both use sequential configuration,

no sorting algorithm is needed before configuration. The need to obtain the defect map is

completely eliminated using Variable Redundancy, also eliminating the need to sort the functions.

It is seen that the sorting of functions in descending order of number of ON inputs in case of the

Greedy Heuristic algorithm increases its time complexity. The time complexity for the

configuration for both AVR and DVR is significantly lower, at the expense of increased area

overhead. It is important to note that NW PLA-based FPGA would still require much less area

compared to a CMOS FPGA, even after the substantially increased area overhead of the proposed

NW-PLA.

References

[1] M. Mishra and S. Goldstein, “Defect Tolerance: at the end of the Roadmap,” International

Test Conference (ITC) 2003, pp. 1201-1210.

[2] Y. Cui, Z. Zhong, D. Wan, W. Wang and C. Lieber, “High Performance Silicon Nanowire

Field Effect Transistors,” Nano Letters 2003, vol. 3, no. 2, pp. 149-215.

[3] S. Cha, J. Jang, Y. Choi, G. Amaratunga, D. Kang, D. Hasko, J. Jung and N. Kim,

“Fabrication of a Nanoelectromechanical switch using a Suspended Carbon Nanotube,”

Applied Physics Letters 2005, vol. 86, no. 8, id. 083105.

20

[4] A. DeHon and M. J. Wilson, “Nanowire-Based Sublithographic Programmable Logic

Arrays,” International Symposium on Field Programmable Gate Arrays (FPGA’04), pp. 123-

132.

[5] A. DeHon, S. Goldstein and P. Kuekes, “Nonphotolithographic, Nanoscale Memory Density

Prospects,” IEEE Transactions on Nanotechnology, 2005, vol. 4, no. 2, pp. 215-221.

[6] T. Hogg and G. Snider, “Defect-tolerant logic with Nanoscale Crossbar Circuits,” HP Labs,

2004 URL:http://www.hpl.hp.com/research/idl/papers/molecularAdder/circuits.pdf

[7] S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular

Electronics,” International Symposium on Computer Architecture (ISCA) 2001, pp. 178-191.

[8] H. Naeimi, “A Greedy Algorithm for Tolerating Defective Cross points in Nano PLA

Design,” MS Dissertation 2005, California Inst. of Technology, Pasadena, California.

[9] C Jeffery and R. J. O. Figueiredo, “Hierarchical Fault Tolerance for Nanoscale Memories,”

IEEE Transactions on Nanotechnology, July 2006, vol. 5, no. 4, pp. 407-414.

[10] M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFabrics using

Built-In Self-Test Procedure,” Proceedings of the 20th IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT) 2005, pp. 305- 313.

[11] W Rao, A. Orailoglu and R Karri, “Nanofabric Topologies and Reconfiguration Algorithms

to Support Dynamically Adaptive Fault Tolerance,” Proceedings of the 24th IEEE VLSI Test

Symposium (VTS) 2006, pp. 214-221.

[12] M. V. Joshi and W. K. Al-Assadi, “Nanofabric PLA architecture to minimize Configuration

Time Complexity,” Proceedings of IEEE Region 5 Technical Conference, 2007, Fayetteville,

Arkansas.

[13] P. Maidee, and K. Barzagan, "Defect-tolerant FPGA architecture exploration,"

International conference on Field Programmable Logic and applications (FPL), 2006.

21

PAPER II

A BIST APPROACH FOR CONFIGURABLE NANOFABRIC ARRAYS

Mandar V. Joshi, Waleed K. Al-Assadi
Electrical and Computer Engineering

Missouri University of Science and Technology, Missouri, U.S.A 65409
Email: mvjvx8@mst.edu, waleed@mst.edu

Abstract — The sustainability of Moore’s Law has faced challenges as the physical limits of

transistor miniaturization have begun to appear. CMOS scaling with current technology

setup introduces new difficulties that include device parameter variation and increased

leakage current. New technologies are therefore being evaluated for their feasibility as

replacement for present CMOS. Ultra-miniaturized Diodes and Field–Effect Transistors

with pitches of well below 30 nm have demonstrated effectiveness. These structures are

synthesized in 2-D arrays of Silicon nanowires (SiNWs) or Carbon Nanotubes (CNTs).

Memory and Logic cores using these technologies that use the configurable junctions in

two-dimensional crossbars of CNTs have been proposed. These devices, however, exhibit a

significantly higher number of transistor defects and, in turn, faults, than present

technology. Configuring these devices in the presence of defects demands an overhead in

terms of area and programming time. It also imposes the challenge of obtaining acceptably

high yield by tolerating these defects. This work proposes a Built-in Self Test (BIST)

approach to test crossbars for a defined set of faults. The BIST can classify the different

programmable elements in the crossbars as non-defective or defective with a certain fault

type. The logic synthesis can then configure the crossbar by avoiding these defective

elements.

Index Terms— Crossbar, Nanofabrics, Nanowires, BIST, Recovery

I. INTRODUCTION

22

Bottom-up techniques that enable us to fabricate circuits of molecular dimensions, exploiting

mechanical and electronic properties of CNTs and SiNWs have been suggested for digital

systems [1] [2] [3]. A junction of two SiNWs or CNTs is termed a “crosspoint.” A complete

NanoPLA architecture uses the “stochastic addressing” developed by De Hon and takes

advantage of programmable crosspoints [4]. All such architectures assume a certain assembly of

NWs or CNTs, but crossbar (also referred to as “nanofabric”) architectures are the most common

of all. The key idea of configurability is that each NW can be uniquely addressed with a very high

probability by introducing redundancy in terms of the number of wires. Redundancy ensures that

even in the presence of a very high number of defects (nominally 13% to 20%); the desired

digital circuits can be synthesized.

Our previous work pertaining to PLA architectures introduced the new concept of introducing

fixed [5] or variable nanowire (NW) redundancy [6] to obtain higher yields than most of the other

proposed logic blocks in a PLA. In this work, however, we invoke a higher level of abstraction in

which we divide our crossbar into a number of Programmable Blocks (PBs) equal in size to each

other and equidistant, as shown in Figure 1. To build a Built-in Self Test for such a crossbar,

researchers have developed self-testing algorithms. In the BIST procedure, they configure the

nanofabric array in a defined sequence of macros (logic circuits) and observe the outputs of

neighboring logic blocks to find and analyze defects. The performance of such BIST procedures

is governed by the types of configurations they need and the number of configurations in which

the entire nanofabric array is checked for defects. Each PB can be thought of as a PLA block,

which has a rich interconnect. Each PB is either defective or defect free for a given configuration.

If a PB is found to be defective, BIST techniques will tag it and the synthesizer will not be

allowed to use it for the corresponding configuration. The entire nanofabric array gets divided

into sets of blocks that act either as the Blocks Under Test (BUTs) or Checker Blocks that test the

23

validity of the outputs of the BUTs. A NanoBlock is a configurable block and a SwitchBlock is

used as interconnect between different NanoBlocks.

Fig.1 nanofabric PLA as an Array of Programmable Blocks

II. OVERVIEW OF PREVIOUS BIST TECHNIQUES PROPOSED FOR NANOFABRICS

M. Tehranipoor proposed a Built-in Self Test procedure for nanofabrics [7]. In this procedure,

the nanofabric is split into NanoBlocks and SwitchBlocks that perform logical and routing

operations, respectively. In the self-test, each NanoBlock is configured either as a Pattern

Generator (PG) or a Response Generator (RG). A Test Group is created using a set of PGs, RGs

and SwitchBlock(s) between the two. Test Groups of the same kind form a Test Architecture, or

TA, as shown in Figure 2. TAs are generated based upon the direction of fault in each NanoBlock

and SwitchBlock. During the test sequence, every NanoBlock is configured as both a PG and an

RG in different Test Architectures. The NanoBlock configured as a PG tests itself and generates

the test pattern for RG. An external device is needed to program the NanoBlocks and read the

RGs’ responses. 3n2/4 devices are configured. In the test configurations, stuck-at, stuck-open,

forward biased and reverse biased diode and AND & OR bridging faults are targeted. A specific

configuration of PGs and RGs is used for every type of fault. If the size of the RG is K x K, it is

estimated that 8K + 5 configurations are needed to provide 100% fault coverage. The main

24

disadvantage of this scheme is that it requires an external tester. Moreover, faults in the

SwitchBlocks are not considered.

Fig. 2: Test Architecture for BIST

Z. Wang proposed a BIST approach that is similar in many ways to the approach discussed

above [8]. In this BIST procedure, NanoBlocks can be configured as Test Pattern Generators

(TPGs), Block Under Test (BUTs) or Output Response Analyzers (ORAs) as shown in Figure 3.

These blocks, along with the corresponding SwitchBlocks, comprise a TG (Test Group) similar to

one discussed in [7]. In a TG, the TPG generates the testing patterns for a BUT and ORAs

examine the BUT output response. A TG and a set of Fault Detecting Configurations (FDCs) are

used where different BUT faults can be tested. They provide 100% fault coverage for stuck-at,

stuck-open, bridging and connection faults. The metric defined for the quality of the test is called

“recovery,” which is defined as the ratio of non-defective blocks identified to the actual number

of non-defective blocks. A BUT is declared defect-free only if it operates correctly under all

FDCs. The separate test procedure for each type of TG needed to achieve full fault coverage

results in three partial defect maps. The types of FDCs used in the test sequence are identical to

test configurations used in [7]. A NanoBlock is defect free when it bypasses all three partial

defect maps. It is assumed in the test sequence that ORAs can be read out using the mechanism

that configured the fabric. The test results show that a 10x10 nanofabric with a 10% defect

density yields a recovery of 76.9%.

25

(a) AND-OR ORA (b) OR ORA

Fig. 3: Different Test Groups Implementing FDCs

Another BIST approach called CAEN-BIST was proposed by J. Brown [9]. CAEN stands for

Chemically Assembled Electronic Nanotechnology and in this case, refers to programmable

nano-arrays. Their research involved a behavioral modeling of SwitchBlock and NanoBlock. A

nanofabric would consist of numerous NanoBlocks of size k x k each. A k x k array can have (2k-

1) inputs and one output or (2k-2) inputs and two outputs, and so on, if the I/Os are introduced at

the block’s northwest boundary. To inject defects, a random sequence of bits applied at the

block’s horizontal and vertical inputs simulate stuck-line and connection faults. Bridging faults

can also be introduced by arbitrarily implementing AND/OR logic functions between the wires.

Once obtained, this defect map is used to further estimate the test’s accuracy. One more defect

map is obtained after applying the test, and a comparison between the two maps is used to find

the recovery. The CAEN-BIST algorithm not only enables the nanofabric to test itself, but also

stores the results of the test internally. Because the defect density of nanofabrics is very high,

BIST algorithms cannot be used internally and an external tester is required to generate the test

patterns and check responses. A walking sequence of 1s and 0s is applied to the BUT during a

test. The response is stored in the neighboring NanoBlock. This technique eliminates the

possibility of a defective block marking itself as non-defective. The BIST works in a wave-like

26

manner, creating tests for diagonal elements. There are square root of “n” diagonals to be tested,

where “n” represents the total number of blocks and k2 patterns are applied for each block.

III. NEW APPROACH FOR NANOFABRIC BIST

A. Test Configuration

In the new approach, we model the nanofabric as a set of NanoBlocks similar to those in [7].

The types of blocks that can be targeted are single stuck-at and bridging faults. A test architecture

consists of three blocks: two BUTs and one Comparator (denoted as “C”), as shown in Figure 4.

Therefore, all the NanoBlocks take part in each test, and the test for a particular set of faults is

completed in two configuration sequences. The BIST configures the blocks externally using the

device’s I/O interface.

Fig. 4: Test Configuration for Proposed BIST

Since the defect rate is of the order of 10%-15%, it is assumed that the probability of two

defective BUTs being compared by the same comparator is very low. Every block in the

nanofabric has the ability to store the result of the comparison. It is assumed that a comparator

27

always generates correct results storing a “0” for a successful comparison and a “1” for an

unsuccessful comparison. In other words, the BIST remembers which comparison went wrong

and reports it to the external tester. This helps generate an intermediate defect map called the

“Raw Defect Map” and, in turn, the final defect map. A test is run for each type of fault to be

targeted to create Raw Defect Maps for corresponding faults. Combining all the Raw Defect

Maps gives the final defect map, which the logic synthesizer can use to synthesize a given logic

by avoiding the defective blocks in the nanofabric.

B. BIST Algorithm and Illustration

A block is declared fault-free only if it does not manifest any of the faults targeted. If the BIST

can generate tests for “f” number of faults, 2f sets of test vectors are needed to test all blocks.

These vectors create a Raw Defect Map for every fault targeted. All Raw Defect Maps are then

read together to create the final defect map.

The following algorithm describes the BIST sequence:

FOR i=1 to types of faults targeted ---BIST STEP 1 to f

 Generate test vectors for fault (i) in the first fault

 Detection loop;

 Generate Raw_Defect_Map(i);

END FOR

Initialize final_defect_map=NULL;

FOR i=1 to types of faults ------BIST STEP f+1

28

 Final_defect_map = final_defect_map +

 Raw_Defect_Map(i);

END FOR

During the initial “f” steps, the BUTs are configured for a certain logic that detects the targeted

fault.

Figure 5 illustrates the two possible Fault Detection Loops into which the whole nanofabric can

be divided. To enable the conversion of every block in a nanofabric into a BUT, two such loops

are needed. A Comparator compares the outputs of two neighboring BUTs and stores the results

of comparison. Differences in the outputs of the two BUTs indicate the presence of a fault. At this

time, the Comparator does not know which of the BUTs possesses the fault. Thus, the

Comparator marks both BUTs as defect suspects. When the next Fault Detection Loop is applied,

the actual faulty member is identified and is marked as “1.” The Raw Defect Map is updated

accordingly. This process is illustrated in Example 1.

Fig. 5: An Illustration of Fault Detection Loops

Raw Defect Maps are obtained by sequencing through all the possible fault types. A final

defect map is obtained by combining all of their 0s. The presence of a “1” essentially signals the

29

inability of the corresponding block to be configured for a given logic function. The following

example illustrates how a defect map is obtained using our BIST approach.

C. Example 1

 Assumptions made:

1. The fault universe has 2 faults: F1 and F2.

2. The size of the nanofabric is 4 x 4 blocks.

3. Blocks 3 and 11 have fault F1, and Block 10 has fault F2, as shown in Figure 6.

4. All the comparisons generate the correct results.

Fig. 6: A Case Supporting Example 1

Fault Simulation:

Each fault will be simulated in one-hot two bits. MSB will correspond to the presence/absence

of fault F1, and LSB will correspond to the presence/absence of fault F2. The presence of a fault

will set the corresponding bit. Therefore, in the simulated fault list following is obtained:

B3: “10” (F1 present)

B11: “10” (F1 present)

B10: “01” (F2 present)

The rest of the blocks will contain “00”. Note that this encoding of faults is only done for the

example in consideration. Actual BIST can encode a fault in other formats, too.

30

BIST Step 1

Fault F1 is targeted in this step. The configuration applied to the nanofabric is shown in Figure

7.

Fig. 7: Configuration to Target Fault F1

Blocks B2, B4, B5, B7, B10, B12, B13, and B15 are used as comparators to compare the

outputs of their neighboring BUTs per the arrow directions.

The comparison would produce the following results:

C2: B1 or B3 has fault F1

C4: B3 or B8 has fault F1

C10: B9 or B11 has fault F1

(Although C10 is faulty, it generates the right result because the comparisons are assumed to

generate the correct results.)

C12: B11 or B16 has fault F1

The remaining comparisons are successful.

Analyzing these four results, following is obtained:

B1 reported once

B3 reported twice

31

B8 reported once

B9 reported once

B11 reported twice

B16 reported once

Therefore, eliminating all the blocks reported once and retaining blocks reported twice as

suspects to generate the following “Raw Defect Map for F1.”

0 0 0 0

0 0 0 0

1 0 1 0

0 0 0 0

BIST Step 2

Fault F2 is targeted in this step. The configuration applied to the nanofabric is shown in Figure

8.

Blocks B2, B4, B5, B7, B10, B12, B13, and B15 are now used as BUTs. Their outputs are

given to the respective comparators, as shown in Figure 8. The comparisons would produce the

following results:

C9: B10 or B13 has fault F2

C11: B10 or B12 has fault F2

The remaining comparisons are successful.

32

Fig. 8: Configuration to Target Fault F2

It is seen that:

B10 is reported twice

B13 is reported once

B12 is reported once

Eliminating the blocks reported once and retaining the block reported twice as a “suspect.”

Therefore, B10 is a suspect.

The “Raw Defect Map for fault F2” follows:

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

BIST Step 3: Obtaining the final defect map

By combining the two defect maps obtained, the final defect map as follows is obtained:

33

0 0 0 0

0 0 1 0

1 0 1 0

0 0 0 0

This map detects all faults. The blocks labeled “1” can be ignored by synthesis tools whenever

a logic is to be implemented using the given nanofabric.

IV. RESULTS AND ANALYSIS

The coding and simulations were carried out using MATLAB for the proposed BIST on a

machine with the following configuration:

AMD Turion 64 Processor 1.6 GHz

1280 MB RAM

128 KB split L1 Cache

1024 KB L2 Cache

The fault universe consisted of two to five faults at a given time. The results were obtained in

terms of recovery and computation time. The Defect Density or Defect Rate was varied from 10%

to 70% for all fault universes to obtain the output parameters, namely recovery and computation

time.

34

Recovery =
Blocks Logic defective-non ofNumber Actual

Blocks Logic defective-non identified ofNumber (1)

Defect Density =
Blocks Logic ofnumber Total

Blocks Logic defective ofNumber (2)

Fig. 9: Recovery and Computation time for 20 x 20 Array

Fig. 10: Recovery and Computation time for 30 x 30 Array

35

Fig. 11: Recovery and Computation time for 50 x 50 Array

Fig. 12: Recovery and Computation time for 80 x 80 Array

A. Effect of Defect Density

As the defect density increases, the ambiguity between the blocks marked as suspects and the

actual defective blocks increases. Moreover, the BIST assumes that only one of the two blocks

being compared is defective. This assumption ceases to hold true for higher defect densities,

resulting in lower recovery rates at higher defect densities. This trend is independent of the array

sizes and, thus, results in exactly identical recovery values for all array sizes.

36

The results were based on different array sizes varying from 20x20 to 80x80. Figures 9-12

illustrate the recovery versus defect density. Because the recovery largely depends on the defect

orientation rather than array size, it remains constant for all array sizes, as seen in figures 9-12.

B. Effect of Array size

The simulations were conducted on square arrays to maintain symmetry. Since the

computational complexity has a square relationship to the size, the computation time grows

exponentially as size increases, as seen in Figures 9-12. The mathematical relationship of array

size and computation will be established in section 4.4. For faults simulated = 2, the effect of

array size on computation time is illustrated in Figure 13.

C. Effect of Number of Faults in Fault Universe

 Number of Faults plays a crucial role in terms of BIST performance, recovery, and

computation time. As the fault universe develops more faults, more Raw Defect Maps are

generated. At a constant defect density, as the number of Raw Defect Maps increases, the number

of defects identified in each Raw Defect Map decreases substantially reducing the computation

time needed to locate defects. Therefore, the computation time is reduced for more faults in the

fault universe, as shown in Figures 9-12. Due to the scattered nature of faults, the ambiguity of

identifying a non-defective element as defective (false positives) is reduced. This, in turn,

increases the recovery and proves useful in terms of both computation time and recovery.

37

Fig. 13: Computation time Vs. Array width

D. Computation Time

The following computations are involved in the completion of self-test:

1. Configuration time for each Fault Detection Loop =Tcfg

2. Comparison time consumed by each comparator =Tcom

3. Calculation time consumed by external Tester when computing the final defect map =Tcalc

It follows that the configuration time, Tcfg, is taken by each fault type and is repeated twice

because there are two Fault Detection Loops per fault. Similarly, the comparison takes place

twice. Given the above considerations, the time complexity “T” is given by

T = O ((Tcfg x f) + (Tcom x f) + Tcalc)

 = O (T1+T2+Tcalc) (3)

where

38

 f = Number of faults in the fault universe

T1 = Tcfg x f

T2 = Tcom x f

When the number of ‘f’ increases, the values of T1 and T2 increase linearly, whereas that of

Tcalc decreases rapidly due to the reasons discussed above. This increase reflects in decreased

value of overall computation time. This change happens for all array sizes except 20 x 20.

The computation time gain caused by the increase in faults simulated is less than the penalty

paid for comparison time for more arrays. Therefore seen that in case of the 20 x 20 array, the

computation time is greater for f=5, as shown in Figure 9.

E. Comparison with previously proposed BISTs

In the previous BIST techniques discussed in section II, the BUT is tested using Test Pattern

Generator and Output Response Analyzer. This follows that, out of three (or more in some cases)

blocks used, only one is tested for presence of a fault. In our technique, out of every two blocks

used, one is tested. Therefore it takes fewer cycles to complete the testing of the entire nanofabric

array. The previous BIST techniques require different configurations for checking elements

(ORA’s) namely AND, OR etc. depending on the tests. Our techniques, on the other hand always

require a fixed configuration (comparator) for all the checking elements. This ease of

configuration helps reduce the configuration complexity of the BIST, and the external tester

requires less memory to store all the configurations. It is also seen that the recovery stays constant

for different sizes at a given defect rate. This is a great advantage, as bigger arrays can be tested

effectively and quickly.

39

V. CONCLUSION

BIST technique discussed here is substantially faster than the previously proposed BIST

techniques. Only two configurations are needed to cover all the NanoBlocks to test a particular

block, whereas the other techniques require a set of configurations depending on size and the type

of fault targeted. In our technique, the number of blocks tested at any time is a constant and

equals half the total blocks. This technique is much more area efficient because two of the three

NanoBlocks configured in our technique are tested at a time and there is no need to dedicate two

blocks exclusively to pattern generation and response analysis. It is flexible in terms of fault

analysis. The fault set can be previously defined, and the configurations can be developed based

on each fault. Two NanoBlocks in the test architecture are tested at the same time. The entire

nanofabric is tested in just two configuration sequences, which reduces the overall time required

to test the complete fabric for a given fault. Another advantage of the new BIST approach is its

constant recovery rate with respect to array size. Scaling of arrays without loss of recovery

becomes possible.

REFERENCES

[1] M. Mishra and S. Goldstein, “Defect Tolerance at the End of the Roadmap,” International

Test Conference (ITC) 2003, pp. 1201-1210.

[2] Y. Cui, Z. Zhong, D. Wan, W. Wang and C. Lieber, “High Performance Silicon nanowire

Field Effect Transistors,” Nano Letters 2003, vol. 3, no. 2, pp. 149-215.

[3] S. Cha, J. Jang, Y. Choi, G. Amaratunga, D. Kang, D. Hasko, J. Jung and N. Kim,

“Fabrication of a Nanoelectromechanical Switch Using a Suspended Carbon Nanotube,”

Applied Physics Letters 2005, vol. 86, no. 8, id. 083105.

40

[4] A. DeHon and M. J. Wilson, “nanowire-Based Sublithographic Programmable Logic Arrays,”

International Symposium on Field Programmable Gate Arrays (FPGA’04), pp. 123-132.

[5] M. V. Joshi and W. K. Al-Assadi, "nanofabric PLA architecture to minimize configuration

time complexity," to IEEE Region 5 Technical Conference, April 2007.

[6] M. V. Joshi and W. K. Al-Assadi, "nanofabric PLA architecture with Flexible nanowire-

redundancy,” NSTI Nanotech conference, May 2007.

[7] M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFabrics Using

Built-In Self-Test Procedure,” Proceedings of the 20th IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT), 2005.

[8] Z. Wang and K. Chakraborty, “Built-in Self-Test of Molecular Electronics-Based

nanofabrics,” Proceedings of European Test Symposium (ETS), 2005.

[9] J. G. Brown and R. D. Blanton, “CAEN-BIST: Testing the NanoFabric,” Proceedings of

International Test Symposium (ITC), pp. 462-471, 2004.

41

VITA

Mandar V. Joshi was born in Nasik, India, on June 27, 1982. In July 2004, he

received his Bachelor of Engineering with First Class in Electronics Engineering from the

University of Mumbai, India. He joined Don Bosco Institute of Technology, Mumbai,

India in July 2004 as a lecturer in the department of Computer Engineering where he

taught undergraduate level courses in digital electronics. After one and half years of

lectureship in India, he got an offer from UMR to be a research assistant for M.S. degree.

From September 2007 to January, 2008, he did internship in Intel’s Server Platforms

Group, Chandler, Arizona as a Front End Validation engineer and took a part into the

pre-silicon validation of Storage Controller Chip. In May 2008, he received his M.S. in

Computer Engineering from Missouri University of Science & Technology (formerly

University of Missouri-Rolla), Rolla, Missouri, USA.

	Defect-tolerance and testing for configurable nano-crossbars
	Recommended Citation

	Defect-tolerance and testing for configurable nano-crossbars BIST approach for configurable nanofabric arrays. Defect tolerance and testing for configurable nano crossbars Nanofabric PLA architecture with redundancy enhancement.

