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ABSTRACT 

Moore’s Law speculated a trend in computation technology in terms of number of 

transistors per unit area that would double roughly every two years. Even after 40 years 

of this prediction, current technologies have been following it successfully. There are 

however, certain physical limitations of current CMOS that would result in fundamental 

obstructions to continuation of Moore’s Law. Although there is a debate amongst experts 

on how much time it would take for this to happen, it is certain that some entirely new 

paradigms for semiconductor electronics would be needed to replace CMOS and to delay 

the end of Moore’s Law. Silicon nanowires (SiNW) and Carbon nanotubes (CNT) 

possess significant promise to replace current CMOS. Digital circuits can be synthesized 

using programmable junctions (crosspoints) in 2-D arrays of CNTs of pitches of the order 

of a few nanometers. Programmable Logic Arrays and memories using this technology 

have also been proposed. This technology, however exhibits significantly high defect 

rates, creating failures in configurations. Some researchers have proposed methods that 

can detect defective crosspoints, and others have also proposed techniques that avoid 

configuration at the defective crosspoints with a very high success rate. These techniques, 

however, have certain limitations that may produce poor yield from the configuration; i.e. 

programming of some defective or non-programmable crosspoints.  Also, these 

techniques need exhaustive defect mapping before the configuration algorithms are 

applied. This adds to the time complexity for overall configuration and routing process. 

Paper I deals with redundancy methods to minimize the defects in configuration and in 

turn decrease the time complexity for configuration. Paper II proposes a Built-in Self Test 

(BIST) technique to generate the defect map in a 2-D nano-array. 
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PAPER I 

NANOFABRIC PLA ARCHITECTURE WITH REDUNDANCY 
ENHANCEMENT 

 
Mandar V. Joshi, Waleed K. Al-Assadi 
Electrical and Computer Engineering 

Missouri University of Science and Technology, Missouri, U.S.A 65409 
Email: mvjvx8@mst.edu, waleed@mst.edu  

 

Abstract 

 

    Fundamental electronic structures such as Diodes and FETs have been shown to be 

constructed using selectively doped semiconducting Carbon Nanotubes or Silicon Nanowires 

(CNTs, SiNWs) at nanometer scale. Memory and Logic cores have been proposed, that use the 

configurable junctions in 2-D crossbars of CNTs. These Memory and Logic arrays at this scale 

exhibit a significant amount of defects that account for poor a yield. Configuration of these 

devices in the presence of defects demands an overhead in terms of area and programming time. 

This work introduces a PLA configuration that makes use of fixed and adaptive redundancy in 

terms of the number of nanowires. This is done in order to simplify the process of programming 

the PLA, increase the yield, reduce the time complexity, and in turn, reduce the cost of the system. 

 

 

1. Introduction 

 

    Recent advances in Photolithographic techniques have made possible the miniaturization of 

electronic circuits. According to Moore’s Law, the number of transistors per unit area will 

continue to double approximately every two years. However, the applicability of Moore’s law 

will cease to continue as the pitch sizes approach molecular dimensions. It therefore becomes 
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necessary to explore devices and technologies that can match these trends of an increase in 

transistors per area [1]. Programmable Logic Array (PLA) architectures using Carbon Nanotubes 

that make use of their semiconducting properties have been previously suggested and are briefly 

dealt with. This paper proposes a technique to tolerate defects in those PLA architectures at 

Nanometer scale using Carbon Nanotubes and Si Nanowires. 

     Semiconducting Carbon-Nanotubes and SiNWs exhibit electronic properties similar to those 

of conventional lithographic-scale CMOS devices in terms of electron and hole mobilities. 

Chemical passivation of SiOx shell surrounding single crystal SiNW cores has been shown to 

significantly enhance conductance-gate voltage behavior making these wires highly suitable to be 

used as Field Effect Transistors [2], and in turn as building blocks for digital circuits. The 

electronic applications of NWs are based on diode and FET-like properties of NW junctions or 

“Crosspoints” in 2-D arrays, called as Nanofabrics or Crossbars. Crosspoints can be grouped to 

form a memory or logic device. Cha et al. [3] have shown electro-mechanical switching devices 

using suspended nanotubes. The Crosspoints at the junctions are programmed using this 

“Bistable” property that they exhibit. Their ON-state behavior is similar to that of a diode. When 

the two wires forming a junction are in close contact, the junction resistance is very small; when 

the wires are far away, their resistance increases by a great extent (~33MΩ in one state and 

~10kΩ in the other) [3]. A Crosspoint can be programmed ON or OFF by applying a voltage 

differential of ~3.6V. The Crosspoint takes part in the evaluation of Boolean expressions in the 

state in which they show diode-like properties. 

    Figure 1 illustrates the setups for a Nano-crossbar as an AND array and OR array, respectively. 

The working is based on diode-like properties of Crosspoints and the presence of a pull-up/pull-

down network. The programmable Crosspoints allow this network to implement logical 

sum/product terms on it. The inputs that take part in the evaluation of the sum/product terms are 

called ON inputs, and the ones that do not are called OFF inputs. Due to the presence of defects, 

these Crosspoints may lose their programmability. Thus, if an ON input corresponds to a 
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defective Crosspoint, then it results in a faulty output. The defect mechanisms will be discussed 

in section 2. 

    The Synthesis of Boolean expressions can be made possible on PLAs based on crossbars. A 

row in a crossbar can be made to act as a Boolean product/sum term by programming ON only 

the junctions or Crosspoints that correspond to the variables that take part in the term, as shown in 

Figure 1. Inputs A and C in first row of Figure 1(a) are the ON inputs, as they take part in the 

evaluation of the product term. The Rest of the inputs are called the OFF inputs. The 

programmability of a Crosspoint is statistical in nature [8], and therefore such a configuration of 

PLAs gives a poor number of successfully configured Crosspoints even for a small number of 

junctions to be programmed on a NW. This work proposes redundancy schemes to tolerate the 

occurrence of Crosspoint defects to obtain an acceptable yield for PLA configuration. 

    The paper is organized as follows; Sections 2 and 3 describe the defect model and mapping. 

Section 4 gives previous work of PLA architectures and configuration algorithm. Section 5 

introduces the two Variable Redundancy approaches for defect tolerance. Finally Section 6 

details the simulation results with respect to both the approaches. 

 

                                    (a)                                                                           (b)  

Figure 1. (a) AND-array (b) OR-array using nanowires 
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2. Crosspoint defect model

 

    The bistable property of Crosspoints can be used to implement logic blocks in a PLA [4] or 

memory cells [5] [9]. The Crosspoints can lose their programmability because of the mechanisms 

discussed below. For the simulation in this work, a random distribution of such defects is 

assumed throughout the crossbar. 

 

Breaks in Nanowires: It has been observed that the probability of having breaks in a nanowire 

increases with the increase in its length. Some breaks may occur during the fabrication of 

nanowires on account of the limitation of the fabrication techniques and axial stress. Therefore, 

their lengths should, nominally, not exceed 10 –30 microns. It is reasonable to assume that as 

high as 5% of the Nanowires exhibit breaks and therefore are unusable [6]. 

Non-Programmable Crosspoints: These defects are characterized by the inability of a 

Crosspoint to be programmed as “closed” or “open.” The latter is observed to be extremely 

unlikely and therefore is not considered in the present discussion. The occurrence of defective 

Crosspoints is a function of the fabrication technique, size of the array, and the random 

distribution of molecules at the junction area. With reasonable assumptions of operating 

conditions, it can be proved that the occurrence of a “permanently open” defect is largely due to 

the absence of sufficient electrons at the junction area [8].  
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3. PLA configuration and mapping 

 

    Consider a domain of four digital variables, A, B, C, and D.  Consider a function F1 given by 

F1=ABC. This expression can be rewritten by F1=1110, taking all the variables in the sequence A-

B-C-D. A “1” is placed if the variable takes part in a logical evaluation, and a “0” is placed if it 

does not. Therefore A, B and, C are considered ON inputs and D is an OFF input of the variable 

F1. It is possible to have n number of such output variables from F1 to Fn. “F” therefore becomes a 

matrix with n elements, which provides all the ON and OFF inputs of the logical functions to be 

evaluated. It is therefore necessary that the locations in the PLA that correspond to ON inputs 

should be defect free.  Another Matrix P provides all the locations of defective Crosspoints of a 

PLA, where a defect is denoted by “0” and a defect-free Crosspoint is denoted by “1.” In order to 

have a successful match between F and P, the following condition must be satisfied: Pi,j ≥Fi,j 

 

Figure 2. Edges and Matches between F and P 

 

If every column of F and P are to be denoted as a single point as shown in Figure 2, then two 

rows result one for the Matrix P and the other for Matrix F. In order to get a full yield, every 

element of F needs to find a match with at least one element of P. Therefore, the problem 

becomes a classical example of a “Bipartite Graph.” In a bipartite graph, two possible relations 

exist between two points from different matrices. 
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Let the number of elements in Matrix F be “n.” Two points are said to share an “EDGE” if the 

row corresponding to point in matrix F can be successfully mapped to the row corresponding to 

the point in Matrix P. Let the number of edges between a pair of matrices be E. Two points are 

said to have a “MATCH” if and only if they have an edge, and the maximum number of points in 

Matrix F also has edges with UNIQUE points in Matrix P. Figure 2 illustrates the difference 

between the graph of edges and the graph of matches. 

If the number of matches between a pair of matrices is M and if M cannot be greater than n, the 

solution lies in maximizing the value of M.  Therefore, designer’s objective is to be able to 

program the Nano-PLA in the presence of these defects that amount to approximately 20% or 

more.  

 

 

4. Previous Work 

 

    Nanofabric Molecular Logic Array (MLA) proposed by Goldstein et al. [7] requires the 

introduction of both real and inverted inputs from the west and north sides of the array, 

respectively. This architecture is based on configurable junctions that act as diodes, and 

consequently, it is incapable of complementing the inputs. The entire Nanofabric is composed of 

MLAs that either act as “NanoBlocks” (programming elements) or “SwitchBlocks” (switching 

elements). The present work is targeted primarily for MLA architecture. DFT strategies in 

Nanowire based PLAs are discussed in [10]. 

    Algorithms that use “detect and avoid” strategies for Crosspoint defects have previously been 

suggested by DeHon et al. in [8]. For those, it is necessary to have a defect map of the PLA under 

consideration in order to program it. A defect-tolerant methodology that is proposed in [8] uses a 

Greedy Heuristic Algorithm to find a solution to the mapping problem discussed above. This 

algorithm sorts in descending order the functions of the number of ON inputs contained in them, 
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which enhances the probability of a successful match. This algorithm is intended to be used with 

Nano-PLA architecture, and the results of this study will be compared with those obtained using 

the Greedy Heuristic algorithm. It is shown that the time complexity for sorting is an exponential 

function of the defect rate and number of Crosspoints to be programmed. Therefore, it becomes 

infeasible to use this algorithm for Nano-PLA with high defect rates and a number of ON inputs 

greater than 10%. 

The proposed redundancy technique in this work can be used in conjunction with NanoPLA in 

[4] or Nanofabric Molecular Logic Array (MLA) Proposed by Goldstein et al. in [7].  

 

5.  Nanowire Redundancy 

 

      This work targets a NanoPLA with higher defect rates than 20%. It can be noted that the 

Greedy Algorithm in [8] consumes a very high time complexity for higher defect rates in 

crossbars. To minimize this time complexity, redundancy was introduced in terms of the number 

of nanowires. A redundancy scheme has been discussed in [11] that proposes a dynamic 

reconfiguration algorithm. But it needs the knowledge of presence of defects before 

reconfiguration, unlike methods suggested in this paper. Two redundancy schemes are proposed 

here, viz. Double Variable Redundancy and Adaptive Variable Redundancy. The yield rates and 

area overhead were observed. In Double Variable Redundancy (or DVR) scheme, two horizontal 

and two vertical NWs are dedicated per input variable. If ‘n’ number of NWs per input variable 

were dedicated, where the value of ‘n’ is governed by the number of times the variable is used in 

the function set.  It follows that a set of “n” Crosspoints, any of which are programmable, will 

make the PLA work. It follows that in DVR, “n” always equals two. In Adaptive Variable 

Redundancy (or AVR) scheme, the number of Crosspoints allocated for a particular sum or 

product term depends on a number of factors such as the defect rate, size of the PLA in use, and 
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number of variables taking part in the evaluation of a product term. It is expected that the value of 

‘n’ will increase with the number of Crosspoints to be programmed in a row. This value will also 

increase with an increase in the defect rate and size of the array. 

 

 5.1. Double Variable Redundancy 

 

      We propose to obtain greater yield rates for the configuration of a NanoPLA without having 

to compromise for Time Complexity, seen in [8]. We introduce redundancy in terms of number of 

nanowires [12]. We allocate two vertical Nanowires per Product (or Sum) term in order to 

achieve a better yield in presence of crosspoint defects. This is illustrated in Figure 3. If any of 

the two Vertical Nanowires have a programmable junction with any of the two Horizontal 

Nanowires in consideration, the condition is equivalent to having a programmable resource. We 

term this method as Double Variable Redundancy (DVR). 

 

 

Figure 3. The DVR based proposed PLA Architecture with an 

illustration of pre-configured Boolean function
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 It can be mathematically proved that the probability of getting a pair of NWs unsuitable for a 

given minterm is significantly low as compared to the defect rate in the crossbar. This fact is the 

result of the three redundant crosspoints present. On account of this, the need of sorting the 

rows/columns to configure the PLA for given logical functions can be eliminated. The address 

decoding scheme can be same as that in [3]. The location of Pull-up and Pull-down networks 

determines the working of the array as AND array or OR array, as seen in Figure 3. In this work, 

we only make use of the “Diode-like” working of a crosspoint during the evaluation of Boolean 

functions. Therefore the NanoBlock does not have an ability to invert the inputs, and hence we 

introduce both, the real and inverted inputs externally. This also eliminates the need of “inverting 

block” in [3]. The DVR based PLA architecture is illustrated in Figure 3. It shows 

implementation of product-sum terms using DVR-based PLA. 

 

5.1.1 Calculation of fault probability in DVR based PLA configuration: The following is the 

list of parameters governing the defect probability. 

 

Pcp= 0.05 to 0.2 (Probability that a single crosspoint is non programmable) 

 

c= number of columns in PLA 

 

r= number of rows in PLA (After introducing redundancy, total crosspoints become n= c*r*4) 

 

Pon= Probability that a given crosspoint-quad is to be programmed 

 

Each product/sum term to be programmed has to follow a certain “path” through each section of 

the PLA. The failure of a product/sum term would mean that there is AT LEAST ONE quad that 

did not get programmed. 
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A quad being non-programmable has a probability equal to fourth power of the probability, that 

two consecutive crosspoints are defective. If we have “n” crosspoints, and the probability of 

occurrence of defective crosspoint is “Pcp”, the expected number of defective crosspoints is given 

by (1), 

 

               d= integer (n* Pcp)                                          (1) 

 

The probability of a given Quad of crosspoints being defective is: 

 

                  P (defective quad) = (n-4) C (d-4)/ nCd 

 

Where nCd is the number of combinations of “d” elements among “n” elements, and is given by 

 

nCd = n! / ((n-d)! d!) 

 

Now, the probability that a given programmable quad is to be programmed and it is defective is 

given by, 

 

Pon *(n-4) C (d-4)/ nCd 

This applies to all the quads in the same column. We know that the total number of quads in a 

column is same as the number of rows in the device. Therefore, the probability of finding ONE 

defect on a given NW column is given by expression (2) 

  

P (1) = r * Pon * (n-4) C (d-4)/ nCd                                            (2) 

 



 
 

11

The NW column is unusable if there is AT LEAST one defective quad at a location that needs to 

be programmed. Therefore, the probability of getting a non-programmable NW column is given 

by, 

                  r 

Pdcrosspoint = Σ P (i)  

                 i=1 

        r 

 =    Σ {r *   (Pon) i     * (n-4i) C (d-4i)/ nCd}          (3) 

       i=1 

Expression (3) gives us the defect probability exclusively due to crosspoint-defects. As an 

example, for a 50x50 NanoPLA having a crosspoint defect rate of 15%, this probability is of the 

order of 2%, i.e. a yield of 98%. Average yield in CMOS based FPGA’s is however, of the order 

of 83% to 89.5% [13], much lesser than that achieved at Nanoscale using DVR. The calculations 

given in [8] suggest that the defect density in nano-crossbars would be of the order of 15% to 

20%. For DVR analysis, therefore, we analyze the yield for defect density that ranges from 10% 

to 20%. 

 

5.2 AVR allocation algorithm 

 

    Adaptive Variable Redundancy is assigned to each variable using the algorithm discussed 

below. It can be seen in Figure 4, that the number of redundant NWs assigned depends on the 

number of times the variable is used. E.g. “A” in Figure 4 is used eight times and four NWs are 

allocated to it. On the other hand, “B” is used only three times, so only two NWs are assigned. 

The following pseudo code describes the allocation algorithm.  
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Initialize the size of the Function Matrix F 

Initialize the defect Density d=Pdef 

Initialize the probability of ON input occurrence, P (ON) 

Initialize threshold 

 

FOR   i= 1 to (size of F) 

          Flex[i] =1; // Stores the redundant wires needed 

         LOOP:   d=d ^ flex[i]; 

                       a[i]= P(defect for all possible defect orientations)  

                                           //assuming ‘i’ crosspoints are to be programmed 

          b[i]= P(i crosspoints to be programmed) = nCi  di (1-d)(n-i) 

                                         // found using Binomial Distribution 

                      c[i]= a[i] * b[i];      

   

                     IF (c[i]>threshold) 

                          Flex[i] =Flex[i] +1; 

                         GOTO LOOP; 

                   END IF 

      END LOOP 

END FOR 
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Figure 4. Illustration of AVR 

6. Simulation results 

6.1 Yield and time complexity in DVR 

    The MATLAB simulations based on the configuration sequence gives us the following results 

for different array sizes and defect rates. Yield results can be seen in Figure 5.  The simulations 

are carried out by varying the following parameters: 

Defect rate: 10% to 20% 

PLA size: 50x50 to 500x500  and P (on) =50% to 90% 
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Figure 5. (a)    Pon=50% 

Yield Vs Defect Rates for different PLA sizes. It also establishes the 

relation between Yield and the Probability Pon.  
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                                                         (b) Pon=70% 

Figure 5. contd. 

 

Summarizing the results in [8], we have the time complexity for Greedy Heuristic Algorithm as, 

Tc(GA)= O (|F| log (|F|))  + O (|F| · PJ
−cm · cm)               (5)                                                                                              

Where, 

Tc(GA)= Time complexity for Greedy Heuristic Algorithm 

 |F| = size of the array of Boolean functions 

cm= maximum number of crosspoints to be programmed in a minterm 

PJ= Probability that the given junction is Programmable. 

The time complexity involved in the configuration of a DVR based PLA is given as: 

Tc= Total number of crosspoints to be Programmed.  

Therefore the Time complexity in DVR is given by, 

Tc(DVR) = O(r*c*Pon)                                                     (6) 

Double Variable Redundancy is therefore observed to be distinctly advantageous in terms of yield 

and time complexity over Greedy Heuristic Algorithm, as seen in Figure 5 and 6. 
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(b) 

Figure 6. Comparison between the time complexities in the PLA 

configuring mechanisms: Greedy Heuristic Algorithm and DVR for 

different Array sizes. (a) Array size 50 x 50 (b) Array size 100 x 100  

6.2 Yield and area overhead in AVR 
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    The AVR Allocation Algorithm has been developed in such a way that the redundancy 

allocation for a given defect rate and ON input density depends on how many Crosspoints in a 

row need to be configured. The algorithm first calculates the probability of having a defective 

configuration for a given number of Crosspoints to be programmed in a row. It then compares 

this value with a certain pre-defined threshold to iterate the amount of redundancy required. It 

follows that the more likely a certain combination is, the more redundancy that is allocated to it, 

as shown in Figure 7. More redundant resources ensure an acceptably high yield. For a typical 

case where P(on)= 0.4 and 20% defect density, a yield higher than 95% is shown at a cost of an 

area overhead approximately equal to 4.8. It can be observed in Figure 8 and Figure 9 that a lesser 

threshold value gives the system a greater yield at an expense of area overhead. It is noted that at 

higher defect rates than 40%, the yield becomes unacceptably low (seen in Figure 8) even at the 

expense of higher resource allocation (seen in Figure 9). 

: 

Figure 7. Redundancy levels vs. number of ON inputs 



 
 

17

 

(a) 

 

(b) 

Figure 8. Yield and Area overhead vs. P(on) at constant Defect rate 
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(a)   

 

(b) 

Figure 9. Yield and Area overhead vs. Defect Rate at constant P(on)  
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7. Conclusion 

 

    Variable Redundancy greatly increases the yield in a NanoPLA configuration even with defect 

rates well above 20%. Double Variable Redundancy improves Yield and lowers the Time 

Complexity of configuration of the PLA by a great extent. Adaptive Variable Redundancy 

algorithm allocates redundancy based on the factors that affect the yield directly, and therefore it 

shows better yield results than DVR. Because AVR and DVR both use sequential configuration, 

no sorting algorithm is needed before configuration. The need to obtain the defect map is 

completely eliminated using Variable Redundancy, also eliminating the need to sort the functions. 

It is seen that the sorting of functions in descending order of number of ON inputs in case of the 

Greedy Heuristic algorithm increases its time complexity. The time complexity for the 

configuration for both AVR and DVR is significantly lower, at the expense of increased area 

overhead. It is important to note that NW PLA-based FPGA would still require much less area 

compared to a CMOS FPGA, even after the substantially increased area overhead of the proposed 

NW-PLA. 
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Abstract — The sustainability of Moore’s Law has faced challenges as the physical limits of 

transistor miniaturization have begun to appear. CMOS scaling with current technology 

setup introduces new difficulties that include device parameter variation and increased 

leakage current. New technologies are therefore being evaluated for their feasibility as 

replacement for present CMOS. Ultra-miniaturized Diodes and Field–Effect Transistors 

with pitches of well below 30 nm have demonstrated effectiveness. These structures are 

synthesized in 2-D arrays of Silicon nanowires (SiNWs) or Carbon Nanotubes (CNTs). 

Memory and Logic cores using these technologies that use the configurable junctions in 

two-dimensional crossbars of CNTs have been proposed. These devices, however, exhibit a 

significantly higher number of transistor defects and, in turn, faults, than present 

technology. Configuring these devices in the presence of defects demands an overhead in 

terms of area and programming time. It also imposes the challenge of obtaining acceptably 

high yield by tolerating these defects. This work proposes a Built-in Self Test (BIST) 

approach to test crossbars for a defined set of faults. The BIST can classify the different 

programmable elements in the crossbars as non-defective or defective with a certain fault 

type. The logic synthesis can then configure the crossbar by avoiding these defective 

elements. 

 

Index Terms— Crossbar, Nanofabrics, Nanowires, BIST, Recovery 
 

I. INTRODUCTION 
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Bottom-up techniques that enable us to fabricate circuits of molecular dimensions, exploiting 

mechanical and electronic properties of CNTs and SiNWs have been suggested for digital 

systems [1] [2] [3]. A junction of two SiNWs or CNTs is termed a “crosspoint.” A complete 

NanoPLA architecture uses the “stochastic addressing” developed by De Hon and takes 

advantage of programmable crosspoints [4]. All such architectures assume a certain assembly of 

NWs or CNTs, but crossbar (also referred to as “nanofabric”) architectures are the most common 

of all. The key idea of configurability is that each NW can be uniquely addressed with a very high 

probability by introducing redundancy in terms of the number of wires. Redundancy ensures that 

even in the presence of a very high number of defects (nominally 13% to 20%); the desired 

digital circuits can be synthesized. 

 

Our previous work pertaining to PLA architectures introduced the new concept of introducing 

fixed [5] or variable nanowire (NW) redundancy [6] to obtain higher yields than most of the other 

proposed logic blocks in a PLA. In this work, however, we invoke a higher level of abstraction in 

which we divide our crossbar into a number of Programmable Blocks (PBs) equal in size to each 

other and equidistant, as shown in Figure 1. To build a Built-in Self Test for such a crossbar, 

researchers have developed self-testing algorithms. In the BIST procedure, they configure the 

nanofabric array in a defined sequence of macros (logic circuits) and observe the outputs of 

neighboring logic blocks to find and analyze defects. The performance of such BIST procedures 

is governed by the types of configurations they need and the number of configurations in which 

the entire nanofabric array is checked for defects. Each PB can be thought of as a PLA block, 

which has a rich interconnect. Each PB is either defective or defect free for a given configuration. 

If a PB is found to be defective, BIST techniques will tag it and the synthesizer will not be 

allowed to use it for the corresponding configuration. The entire nanofabric array gets divided 

into sets of blocks that act either as the Blocks Under Test (BUTs) or Checker Blocks that test the 
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validity of the outputs of the BUTs. A NanoBlock is a configurable block and a SwitchBlock is 

used as interconnect between different NanoBlocks. 

 

 

Fig.1 nanofabric PLA as an Array of Programmable Blocks 

 

II. OVERVIEW OF PREVIOUS BIST TECHNIQUES PROPOSED FOR NANOFABRICS 

 

M. Tehranipoor proposed a Built-in Self Test procedure for nanofabrics [7]. In this procedure, 

the nanofabric is split into NanoBlocks and SwitchBlocks that perform logical and routing 

operations, respectively. In the self-test, each NanoBlock is configured either as a Pattern 

Generator (PG) or a Response Generator (RG). A Test Group is created using a set of PGs, RGs 

and SwitchBlock(s) between the two. Test Groups of the same kind form a Test Architecture, or 

TA, as shown in Figure 2. TAs are generated based upon the direction of fault in each NanoBlock 

and SwitchBlock. During the test sequence, every NanoBlock is configured as both a PG and an 

RG in different Test Architectures. The NanoBlock configured as a PG tests itself and generates 

the test pattern for RG. An external device is needed to program the NanoBlocks and read the 

RGs’ responses. 3n2/4 devices are configured. In the test configurations, stuck-at, stuck-open, 

forward biased and reverse biased diode and AND & OR bridging faults are targeted. A specific 

configuration of PGs and RGs is used for every type of fault. If the size of the RG is K x K, it is 

estimated that 8K + 5 configurations are needed to provide 100% fault coverage. The main 
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disadvantage of this scheme is that it requires an external tester. Moreover, faults in the 

SwitchBlocks are not considered. 

 

Fig. 2: Test Architecture for BIST 

 

Z. Wang proposed a BIST approach that is similar in many ways to the approach discussed 

above [8]. In this BIST procedure, NanoBlocks can be configured as Test Pattern Generators 

(TPGs), Block Under Test (BUTs) or Output Response Analyzers (ORAs) as shown in Figure 3. 

These blocks, along with the corresponding SwitchBlocks, comprise a TG (Test Group) similar to 

one discussed in [7]. In a TG, the TPG generates the testing patterns for a BUT and ORAs 

examine the BUT output response. A TG and a set of Fault Detecting Configurations (FDCs) are 

used where different BUT faults can be tested. They provide 100% fault coverage for stuck-at, 

stuck-open, bridging and connection faults. The metric defined for the quality of the test is called 

“recovery,” which is defined as the ratio of non-defective blocks identified to the actual number 

of non-defective blocks. A BUT is declared defect-free only if it operates correctly under all 

FDCs. The separate test procedure for each type of TG needed to achieve full fault coverage 

results in three partial defect maps. The types of FDCs used in the test sequence are identical to 

test configurations used in [7]. A NanoBlock is defect free when it bypasses all three partial 

defect maps. It is assumed in the test sequence that ORAs can be read out using the mechanism 

that configured the fabric. The test results show that a 10x10 nanofabric with a 10% defect 

density yields a recovery of 76.9%.   
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(a) AND-OR ORA                 (b) OR ORA 

Fig. 3: Different Test Groups Implementing FDCs 

 

Another BIST approach called CAEN-BIST was proposed by J. Brown [9]. CAEN stands for 

Chemically Assembled Electronic Nanotechnology and in this case, refers to programmable 

nano-arrays. Their research involved a behavioral modeling of SwitchBlock and NanoBlock. A 

nanofabric would consist of numerous NanoBlocks of size k x k each. A k x k array can have (2k-

1) inputs and one output or (2k-2) inputs and two outputs, and so on, if the I/Os are introduced at 

the block’s northwest boundary. To inject defects, a random sequence of bits applied at the 

block’s horizontal and vertical inputs simulate stuck-line and connection faults. Bridging faults 

can also be introduced by arbitrarily implementing AND/OR logic functions between the wires. 

Once obtained, this defect map is used to further estimate the test’s accuracy. One more defect 

map is obtained after applying the test, and a comparison between the two maps is used to find 

the recovery. The CAEN-BIST algorithm not only enables the nanofabric to test itself, but also 

stores the results of the test internally. Because the defect density of nanofabrics is very high, 

BIST algorithms cannot be used internally and an external tester is required to generate the test 

patterns and check responses. A walking sequence of 1s and 0s is applied to the BUT during a 

test. The response is stored in the neighboring NanoBlock. This technique eliminates the 

possibility of a defective block marking itself as non-defective. The BIST works in a wave-like 
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manner, creating tests for diagonal elements. There are square root of “n” diagonals to be tested, 

where “n” represents the total number of blocks and k2 patterns are applied for each block. 

 

III. NEW APPROACH FOR NANOFABRIC BIST 

 

A. Test Configuration 

 

In the new approach, we model the nanofabric as a set of NanoBlocks similar to those in [7]. 

The types of blocks that can be targeted are single stuck-at and bridging faults. A test architecture 

consists of three blocks: two BUTs and one Comparator (denoted as “C”), as shown in Figure 4. 

Therefore, all the NanoBlocks take part in each test, and the test for a particular set of faults is 

completed in two configuration sequences. The BIST configures the blocks externally using the 

device’s I/O interface.  

                                                           

  

  

  

  

  

   

 

Fig. 4: Test Configuration for Proposed BIST 

 

Since the defect rate is of the order of 10%-15%, it is assumed that the probability of two 

defective BUTs being compared by the same comparator is very low. Every block in the 

nanofabric has the ability to store the result of the comparison. It is assumed that a comparator 
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always generates correct results storing a “0” for a successful comparison and a “1” for an 

unsuccessful comparison. In other words, the BIST remembers which comparison went wrong 

and reports it to the external tester. This helps generate an intermediate defect map called the 

“Raw Defect Map” and, in turn, the final defect map. A test is run for each type of fault to be 

targeted to create Raw Defect Maps for corresponding faults. Combining all the Raw Defect 

Maps gives the final defect map, which the logic synthesizer can use to synthesize a given logic 

by avoiding the defective blocks in the nanofabric. 

 

B. BIST Algorithm and Illustration 

 

A block is declared fault-free only if it does not manifest any of the faults targeted. If the BIST 

can generate tests for “f” number of faults, 2f sets of test vectors are needed to test all blocks. 

These vectors create a Raw Defect Map for every fault targeted. All Raw Defect Maps are then 

read together to create the final defect map. 

 

The following algorithm describes the BIST sequence: 

 

 

FOR i=1 to types of faults targeted ---BIST STEP 1 to f 

          Generate test vectors for fault (i) in the first fault  

          Detection loop; 

         Generate Raw_Defect_Map(i); 

END FOR 

Initialize final_defect_map=NULL; 

 

FOR i=1 to types of faults             ------BIST STEP f+1 
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         Final_defect_map = final_defect_map +  

                                         Raw_Defect_Map(i); 

END FOR 

 

 

During the initial “f” steps, the BUTs are configured for a certain logic that detects the targeted 

fault.  

Figure 5 illustrates the two possible Fault Detection Loops into which the whole nanofabric can 

be divided. To enable the conversion of every block in a nanofabric into a BUT, two such loops 

are needed. A Comparator compares the outputs of two neighboring BUTs and stores the results 

of comparison. Differences in the outputs of the two BUTs indicate the presence of a fault. At this 

time, the Comparator does not know which of the BUTs possesses the fault. Thus, the 

Comparator marks both BUTs as defect suspects.  When the next Fault Detection Loop is applied, 

the actual faulty member is identified and is marked as “1.” The Raw Defect Map is updated 

accordingly. This process is illustrated in Example 1. 

 

 

Fig. 5: An Illustration of Fault Detection Loops 

 

Raw Defect Maps are obtained by sequencing through all the possible fault types. A final 

defect map is obtained by combining all of their 0s. The presence of a “1” essentially signals the 
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inability of the corresponding block to be configured for a given logic function. The following 

example illustrates how a defect map is obtained using our BIST approach. 

 

C.  Example 1 

 

 Assumptions made: 

1. The fault universe has 2 faults: F1 and F2. 

2. The size of the nanofabric is 4 x 4 blocks.  

3. Blocks 3 and 11 have fault F1, and Block 10 has fault F2, as shown in Figure 6. 

4. All the comparisons generate the correct results. 

 

Fig. 6: A Case Supporting Example 1 

 

Fault Simulation: 

 

Each fault will be simulated in one-hot two bits. MSB will correspond to the presence/absence 

of fault F1, and LSB will correspond to the presence/absence of fault F2. The presence of a fault 

will set the corresponding bit. Therefore, in the simulated fault list following is obtained: 

B3:   “10” (F1 present) 

B11: “10” (F1 present) 

B10: “01” (F2 present) 

The rest of the blocks will contain “00”. Note that this encoding of faults is only done for the 

example in consideration. Actual BIST can encode a fault in other formats, too. 
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BIST Step 1 

Fault F1 is targeted in this step. The configuration applied to the nanofabric is shown in Figure 

7. 

 

Fig. 7: Configuration to Target Fault F1 

 

Blocks B2, B4, B5, B7, B10, B12, B13, and B15 are used as comparators to compare the 

outputs of their neighboring BUTs per the arrow directions. 

 

The comparison would produce the following results: 

C2: B1 or B3 has fault F1 

C4: B3 or B8 has fault F1 

C10: B9 or B11 has fault F1 

(Although C10 is faulty, it generates the right result because the comparisons are assumed to 

generate the correct results.) 

C12: B11 or B16 has fault F1 

The remaining comparisons are successful. 

Analyzing these four results, following is obtained: 

 

B1 reported once 

B3 reported twice 
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B8 reported once 

B9 reported once 

B11 reported twice 

B16 reported once 

 

Therefore, eliminating all the blocks reported once and retaining blocks reported twice as 

suspects to generate the following “Raw Defect Map for F1.” 

 

0 0 0 0 

0 0 0 0 

1 0 1 0 

0 0 0 0 

 

 

BIST Step 2 

Fault F2 is targeted in this step. The configuration applied to the nanofabric is shown in Figure 

8. 

Blocks B2, B4, B5, B7, B10, B12, B13, and B15 are now used as BUTs. Their outputs are 

given to the respective comparators, as shown in Figure 8. The comparisons would produce the 

following results: 

 

C9: B10 or B13 has fault F2 

C11: B10 or B12 has fault F2 

 

The remaining comparisons are successful. 
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Fig. 8: Configuration to Target Fault F2 

 

It is seen that: 

 

B10 is reported twice 

B13 is reported once 

B12 is reported once 

 

Eliminating the blocks reported once and retaining the block reported twice as a “suspect.” 

Therefore, B10 is a suspect. 

 

The “Raw Defect Map for fault F2” follows: 

 

0 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

 

BIST Step 3: Obtaining the final defect map 

By combining the two defect maps obtained, the final defect map as follows is obtained: 
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0 0 0 0 

0 0 1 0 

1 0 1 0 

0 0 0 0 

 

This map detects all faults. The blocks labeled “1” can be ignored by synthesis tools whenever 

a logic is to be implemented using the given nanofabric. 

 

 

IV. RESULTS AND ANALYSIS 

 

The coding and simulations were carried out using MATLAB for the proposed BIST on a 

machine with the following configuration: 

AMD Turion 64 Processor 1.6 GHz 

1280 MB RAM 

128 KB split L1 Cache 

1024 KB L2 Cache 

 

The fault universe consisted of two to five faults at a given time. The results were obtained in 

terms of recovery and computation time. The Defect Density or Defect Rate was varied from 10% 

to 70% for all  fault universes to obtain the output parameters, namely recovery and computation 

time. 
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Recovery =
Blocks Logic defective-non ofNumber  Actual

Blocks Logic defective-non identified ofNumber        (1) 

 

Defect Density =   
Blocks Logic ofnumber  Total

Blocks Logic defective ofNumber                   (2) 

 

Fig. 9: Recovery and Computation time for 20 x 20 Array 

 

 

Fig. 10: Recovery and Computation time for 30 x 30 Array 
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Fig. 11: Recovery and Computation time for 50 x 50 Array 

 

 

Fig. 12: Recovery and Computation time for 80 x 80 Array 

 

A. Effect of Defect Density 

 

As the defect density increases, the ambiguity between the blocks marked as suspects and the 

actual defective blocks increases. Moreover, the BIST assumes that only one of the two blocks 

being compared is defective. This assumption ceases to hold true for higher defect densities, 

resulting in lower recovery rates at higher defect densities. This trend is independent of the array 

sizes and, thus, results in exactly identical recovery values for all array sizes. 
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The results were based on different array sizes varying from 20x20 to 80x80. Figures 9-12 

illustrate the recovery versus defect density. Because the recovery largely depends on the defect 

orientation rather than array size, it remains constant for all array sizes, as seen in figures 9-12. 

 

B. Effect of Array size 

 

The simulations were conducted on square arrays to maintain symmetry. Since the 

computational complexity has a square relationship to the size, the computation time grows 

exponentially as size increases, as seen in Figures 9-12. The mathematical relationship of array 

size and computation will be established in section 4.4. For faults simulated = 2, the effect of 

array size on computation time is illustrated in Figure 13. 

 

C. Effect of Number of Faults in Fault Universe 

 

 Number of Faults plays a crucial role in terms of BIST performance, recovery, and 

computation time. As the fault universe develops more faults, more Raw Defect Maps are 

generated. At a constant defect density, as the number of Raw Defect Maps increases, the number 

of defects identified in each Raw Defect Map decreases substantially reducing the computation 

time needed to locate defects. Therefore, the computation time is reduced for more faults in the 

fault universe, as shown in Figures 9-12. Due to the scattered nature of faults, the ambiguity of 

identifying a non-defective element as defective (false positives) is reduced. This, in turn, 

increases the recovery and proves useful in terms of both computation time and recovery. 
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Fig. 13: Computation time Vs. Array width 

D. Computation Time  

 

The following computations are involved in the completion of self-test: 

 

1. Configuration time for each Fault Detection Loop =Tcfg 

2. Comparison time consumed by each comparator =Tcom 

3. Calculation time consumed by external Tester when computing the final defect map =Tcalc 

 

It follows that the configuration time, Tcfg, is taken by each fault type and is repeated twice 

because there are two Fault Detection Loops per fault. Similarly, the comparison takes place 

twice. Given the above considerations, the time complexity “T” is given by 

 

T = O ((Tcfg x f) + (Tcom x f) + Tcalc ) 

 

                      = O (T1+T2+Tcalc)                               (3) 

where 
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 f = Number of faults in the fault universe 

T1 = Tcfg  x f 

T2 = Tcom x f 

 

When the number of ‘f’ increases, the values of T1 and T2 increase linearly, whereas that of 

Tcalc decreases rapidly due to the reasons discussed above. This increase reflects in decreased 

value of overall computation time. This change happens for all array sizes except 20 x 20. 

The computation time gain caused by the increase in faults simulated is less than the penalty 

paid for comparison time for more arrays. Therefore seen that in case of the 20 x 20 array, the 

computation time is greater for f=5, as shown in Figure 9. 

 

E. Comparison with previously proposed BISTs 

 

In the previous BIST techniques discussed in section II, the BUT is tested using Test Pattern 

Generator and Output Response Analyzer. This follows that, out of three (or more in some cases) 

blocks used, only one is tested for presence of a fault. In our technique, out of every two blocks 

used, one is tested. Therefore it takes fewer cycles to complete the testing of the entire nanofabric 

array. The previous BIST techniques require different configurations for checking elements 

(ORA’s) namely AND, OR etc. depending on the tests. Our techniques, on the other hand always 

require a fixed configuration (comparator) for all the checking elements. This ease of 

configuration helps reduce the configuration complexity of the BIST, and the external tester 

requires less memory to store all the configurations. It is also seen that the recovery stays constant 

for different sizes at a given defect rate. This is a great advantage, as bigger arrays can be tested 

effectively and quickly. 
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V. CONCLUSION 

 

BIST technique discussed here is substantially faster than the previously proposed BIST 

techniques. Only two configurations are needed to cover all the NanoBlocks to test a particular 

block, whereas the other techniques require a set of configurations depending on size and the type 

of fault targeted. In our technique, the number of blocks tested at any time is a constant and 

equals half the total blocks. This technique is much more area efficient because two of the three 

NanoBlocks configured in our technique are tested at a time and there is no need to dedicate two 

blocks exclusively to pattern generation and response analysis. It is flexible in terms of fault 

analysis. The fault set can be previously defined, and the configurations can be developed based 

on each fault. Two NanoBlocks in the test architecture are tested at the same time. The entire 

nanofabric is tested in just two configuration sequences, which reduces the overall time required 

to test the complete fabric for a given fault. Another advantage of the new BIST approach is its 

constant recovery rate with respect to array size. Scaling of arrays without loss of recovery 

becomes possible. 
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