133 research outputs found

    Passive microwave derived snowmelt timing: significance, spatial and temporal variability, and potential applications

    Get PDF
    Snow accumulation and melt are dynamic features of the cryosphere indicative of a changing climate. Spring melt and refreeze timing are of particular importance due to the influence on subsequent hydrological and ecological processes, including peak runoff and green-up. To investigate the spatial and temporal variability of melt timing across a sub-arctic region (the Yukon River Basin (YRB), Alaska/Canada) dominated by snow and lacking substantial ground instrumentation, passive microwave remote sensing was utilized to provide daily brightness temperatures (Tb) regardless of clouds and darkness. Algorithms to derive the timing of melt onset and the end of melt-refreeze, a critical transition period where the snowpack melts during the day and refreezes at night, were based on thresholds for Tb and diurnal amplitude variations (day and night difference). Tb data from the Special Sensor Microwave Imager (1988 to 2011) was used for analyzing YRB terrestrial snowmelt timing and for characterizing melt regime patterns for icefields in Alaska and Patagonia. Tb data from the Advanced Microwave Scanning Radiometer for EOS (2003 to 2010) was used for determining the occurrence of early melt events (before melt onset) associated with fog or rain on snow, for investigating the correlation between melt timing and forest fires, and for driving a flux-based snowmelt runoff model. From the SSM/I analysis: the melt-refreeze period lengthened for the majority of the YRB with later end of melt-refreeze and earlier melt onset; and positive Tb anomalies were found in recent years from glacier melt dynamics. From the AMSR-E analysis: early melt events throughout the YRB were most often associated with warm air intrusions and reflect a consistent spatial distribution; years and areas of earlier melt onset and refreeze had more forest fire occurrences suggesting melt timing\u27s effects extend to later seasons; and satellite derived melt timing served as an effective input for model simulation of discharge in remote, ungauged snow-dominated basins. The melt detection methodology and results present a new perspective on the changing cryosphere, provide an understanding of melt\u27s influence on other earth system processes, and develop a baseline from which to assess and evaluate future change. The temporal and spatial variability conveyed through the regional context of this research may be useful to communities in climate change adaptation planning

    IMPLICATIONS OF MODULATING GLACIERS AND SNOW COVER IN MONGOLIA

    Get PDF
    Mongolia’s cryosphere (glaciers and snow cover) drives ecosystem services and in turn, supports emerging economies in the water-restricted country. However, as Mongolia experiences long-term drought conditions and an increase in annual air temperatures at twice the global rate, the potential adverse effects of the changing cryosphere during a period of climate uncertainty will have cascading implications to water availability and economic development. Using several data sources and methods, I partitioned my dissertation into two components to determine the hydrologic and economic implications of modulations in Mongolia’s cryosphere. The first component is an examination of glacier recession in Mongolia’s Altai Mountains, where I identified the major drivers of glacier recession and the role of glaciers in the regional hydrology. In the second component we created novel techniques to detect snowmelt events and to determine their role in large annual livestock mortality across Mongolia. In chapter 2 we identified a rate of glacier recession of 6.4 ± 0.4 km2 yr-1 from 1990-2016, resulting in an overall decrease in glacier area of 43%, which were comparable to rates of recession in mountain ranges across Central Asia. In chapter 3 we found that glaciers contributed up to 22% of the regional hydrology in the glaciated Upper Khovd River Basin (UKRB) and glacier melt contributions began to decrease after 2016, suggesting an overall depletion of accumulation zones. In chapter 4, we developed a novel approach to detect snow melt events in Alaska, USA – due to its high satellite coverage, climate monitoring network, and previous existing studies – and produced a gridded geospatial data product. In chapter 5, we expanded on the novel methods developed in chapter 4 to determine the spatio-temporal role of snowmelt events on large annual livestock mortality in Mongolia. Results showed strong correlations between snowmelt events and mortality in the southern Gobi during the fall and the central and western regions during the spring. As Mongolia continues to develop climatically vulnerable economic industries, future modulations in Mongolia’s cryosphere will likely decrease regional water-availability and amplify annual livestock mortality

    Recent glacier surface snowpack melt in Novaya Zemlya and Severnaya Zemlya derived from active and passive microwave remote sensing data

    Get PDF
    The warming rate in the Russian High Arctic (RHA) (36~158˚E, 73~82˚N) is outpacing the pan-Arctic average, and its effect on the small glaciers across this region needs further examination. The temporal variation and spatial distribution of surface melt onset date (MOD) and total melt days (TMD) throughout the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) archipelagoes serve as good indicators of ice mass ablation and glacier response to regional climate change in the RHA. However, due to the harsh environment, long-term glaciological observations are limited, necessitating the application of remotely sensed data to study the surface melt dynamics. The high sensitivity to liquid water and the ability to work without solar illumination and penetrate non-precipitating clouds make microwave remote sensing an ideal tool to detect melt in this region. This work extracts resolution-enhanced passive and active microwave data from different periods and retrieves a decadal melt record for NovZ and SevZ. The high correlation among passive and active data sets instills confidence in the results. The mean MOD is June 20th on SevZ and June 10th on NovZ during the period of 1992-2012. The average TMDs are 47 and 67 days on SevZ and NovZ from 1995 to 2011, respectively. NovZ had large interannual variability in the MOD, but its TMD generally increased. SevZ MOD is found to be positively correlated to local June reanalysis air temperature at 850hPa geopotential height and occurs significantly earlier (~0.73 days/year, p-value \u3c 0.01) from 1992 to 2011. SevZ also experienced a longer TMD trend (~0.75 days/year, p-value \u3c 0.05) from 1995 to 2011. Annual mean TMD on both islands are positively correlated with regional summer mean reanalysis air temperature and negatively correlated to local sea ice extent. These strong correlations might suggest that the Russian High Arctic glaciers are vulnerable to the continuously diminishing sea ice extent, the associated air temperature increase and amplifying positive ice-albedo feedback, which are all projected to continue into the future

    A Review of Global Satellite-Derived Snow Products

    Get PDF
    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow

    Outlet Glacier Dynamics in East Greenland and East Antarctica

    Get PDF
    Ice mass from the interior of Greenland and Antarctica is transported to the ocean by numerous large, fast-flowing outlet glaciers. Changes in the flow configuration of these outlet glaciers modulate ice sheet mass balance and sea level. Several recent studies have highlighted rapid increases in glacier speed in both Greenland and Antarctica, implying that the near-term contribution to sea level from ice sheets is under-estimated by current models. Here, the mass balance and force budget of several large outlet glaciers in East Greenland and East Antarctica are investigated using remote-sensing and field-based measurements. Recent estimates show that Greenland’s contribution to sea level more than doubled in the past decade, and that the majority of this additional mass loss is due to changes in the dynamics of a few large outlet glaciers. Our measurements indicate that up to ~10% of global sea level rise over the period 2001 – 2006 was contributed by just two glaciers, Helheim and Kangerdlugssuaq, in Southeast Greenland. We also find a latitudinal pattern of glacier behavior in East Greenland, where large and rapid changes are taking place south of 70°N while glaciers north of 70°N are stable. The East Antarctic Ice Sheet is Earth’s largest source of freshwater and has the potential to raise sea level by 57 m. The dynamics of outlet glaciers draining the ice sheet through the Transantarctic Mountains are largely unknown, but the glaciers are often assumed to be stable. In this study we investigate the dynamics of four large East Antarctic outlet glaciers. Together, these glaciers drain ~1,500,000 km2, or 12% by area of the entire Antarctic Ice Sheet. Mass balance calculations show modest imbalances for some glaciers, and a large imbalance for Byrd Glacier. Observations indicate a possible recent increase in flow speed, but this is insufficient to explain the large imbalance. We argue that catchment–wide estimates of accumulation rate contain large errors. This research provides new insights into the dynamic character of ice sheet outlet glaciers. In addition to quantifying recent changes, it also provides baseline data against which future behavior can be assessed

    Toward mountains without permanent snow and ice

    Get PDF
    The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will threaten downstream populations. Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.ISSN:2328-427

    The Southern Ocean Observing System (SOOS)

    Get PDF
    [in “State of the Climate in 2014” : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Changing Snowmelt Conditions in the Western Canadian Arctic

    Get PDF
    Multidecadal Changes in Spring Snowmelt in the Western Canadian Arctic This study investigates the changes in key aspects of snowmelt in the western Canadian Arctic. Specifically, we will look at changes in the onset of snowmelt and the duration of snowmelt between 1999 and 2019, and extended air temperature between 1957 and 2019. In addition, we will look at changes in eight meteorological variables during the melt period. It was found that the onset of snowmelt occurred 14 days earlier, while the melt period ends 20 days earlier than 20 years ago. As a result, the duration of melt period has decreased by 5 days. During this earlier and shorter melt period, the air temperature and relative humidity have both increased. While these changes were statistically significant, there were no statistically significant changes in SWE, precipitation, wind speed, downward shortwave and longwave radiation, or refreeze events. Future research will consider the effects and the variability of these changes on the snowmelt energy balance. Changing Snowmelt Energy Balance in the Western Canadian Arctic The hydrology of the of the Arctic is dominated by the accumulation of snow over the long winter, and the rapid melt of this snow over a few weeks in the spring. This aspect of the Arctic water cycle is especially sensitive to a warming climate. The timing and the rate of snow melt during the spring period has implications for aquatic ecosystems and communities that depend on melt water. As shown in Chapter 2, the western Canadian Arctic has experienced an earlier onset of snowmelt compared to earlier decades, a warmer and shorter melt period. The changes in the energy balance components are tied to climate warming, and therefore, controlling the rate of snowmelt. In this paper we will use a physically based snowmelt model to investigate changes in the energy transfers between the snow surface and the atmosphere during the snowmelt period over the last 21 years. Model runs demonstrate that radiation plays a decisive role, followed by turbulent fluxes of sensible heat and latent heat. A shorter duration of melt is due to a combination of changes in the end of winter SWE and meteorological conditions. As net radiation and warmer air temperatures increased, we found an increase to the rate of snowmelt by 0.7 mm/day per decade
    corecore