1,795 research outputs found

    Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN

    Get PDF
    We study multidimensional meet-in-the-middle attacks on the KATAN block cipher family. Several improvements to the basic attacks are introduced and explained. The most noteworthy of these is the technique of guessing only non-linearly involved key bits, which reduces the search space by a significant factor. The optimizations decreases the complexity of multidimensional meet-in-the-middle attacks, allowing more rounds of KATAN to be efficiently attacked than previously reported

    Meet-in-the-Middle Attacks on Classes of Contracting and Expanding Feistel Constructions

    Get PDF
    We show generic attacks on unbalanced Feistel ciphers based on the meet-in-the-middle technique. We analyze two general classes of unbalanced Feistel structures, namely contracting Feistels and expanding Feistels. In both of the cases, we consider the practical scenario where the round functions are keyless and known to the adversary. In the case of contracting Feistels with 4 branches, we show attacks on 16 rounds when the key length k (in bits) is as large as the block length n (in bits), and up to 24 rounds when k = 2n. In the case of expanding Feistels, we consider two scenarios: one, where different nonlinear functions without particular structures are used in the round function, and a more practical one, where a single nonlinear is used but different linear functions are introduced in the state update. In the former case, we propose generic attacks on 13 rounds when k = n, and up to 21 rounds when k = 2n. In the latter case, 16 rounds can be attacked for k = n, and 24 rounds for k = 2n

    Improved quantum attack on Type-1 Generalized Feistel Schemes and Its application to CAST-256

    Get PDF
    Generalized Feistel Schemes (GFS) are important components of symmetric ciphers, which have been extensively researched in classical setting. However, the security evaluations of GFS in quantum setting are rather scanty. In this paper, we give more improved polynomial-time quantum distinguishers on Type-1 GFS in quantum chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA) setting. In qCPA setting, we give new quantum polynomial-time distinguishers on (3d−3)(3d-3)-round Type-1 GFS with branches d≥3d\geq3, which gain d−2d-2 more rounds than the previous distinguishers. Hence, we could get better key-recovery attacks, whose time complexities gain a factor of 2(d−2)n22^{\frac{(d-2)n}{2}}. In qCCA setting, we get (3d−3)(3d-3)-round quantum distinguishers on Type-1 GFS, which gain d−1d-1 more rounds than the previous distinguishers. In addition, we give some quantum attacks on CAST-256 block cipher. We find 12-round and 13-round polynomial-time quantum distinguishers in qCPA and qCCA settings, respectively, while the best previous one is only 7 rounds. Hence, we could derive quantum key-recovery attack on 19-round CAST-256. While the best previous quantum key-recovery attack is on 16 rounds. When comparing our quantum attacks with classical attacks, our result also reaches 16 rounds on CAST-256 with 128-bit key under a competitive complexity

    Improved Meet-in-the-Middle Attacks on Round-Reduced Crypton-256

    Get PDF
    The meet-in-the-middle (MITM) attack has prove to be efficient in analyzing the AES block cipher. Its efficiency has been increasing with the introduction of various techniques such as differential enumeration, key-dependent sieve, super-box etc. The recent MITM attack given by Li and Jin has successfully mounted to 10-round AES-256. Crypton is an AES-like block cipher. In this paper, we apply the MITM method to the cryptanalysis of Crypton-256. Following Li and Jin\u27s idea, we give the first 6-round distinguisher for Crypton. Based on the distinguisher as well as the properties of Crypton\u27s simple key schedule, we successfully launch MITM attacks on Crypton-256 reduced to 9 and 10 rounds. For 9-round Crypton-256, our MITM attack can recover the 256-bit key with a time complexity 2173.052^{173.05}, a memory complexity 2241.172^{241.17}. For the 10-round version, we give two MITM attacks. The basic attack requires a time complexity 2240.012^{240.01} and memory complexity 2241.592^{241.59}. The time/memory complexity of the advanced MITM attack on 10-round Crypton is 2245.05/2209.592^{245.05}/2^{209.59}. Our MITM attacks share the same data complexity 21132^{113} and their error rates are negligible

    Cryptanalysis of Some AES-based Cryptographic Primitives

    Get PDF
    Current information security systems rely heavily on symmetric key cryptographic primitives as one of their basic building blocks. In order to boost the efficiency of the security systems, designers of the underlying primitives often tend to avoid the use of provably secure designs. In fact, they adopt ad hoc designs with claimed security assumptions in the hope that they resist known cryptanalytic attacks. Accordingly, the security evaluation of such primitives continually remains an open field. In this thesis, we analyze the security of two cryptographic hash functions and one block cipher. We primarily focus on the recent AES-based designs used in the new Russian Federation cryptographic hashing and encryption suite GOST because the majority of our work was carried out during the open research competition run by the Russian standardization body TC26 for the analysis of their new cryptographic hash function Streebog. Although, there exist security proofs for the resistance of AES- based primitives against standard differential and linear attacks, other cryptanalytic techniques such as integral, rebound, and meet-in-the-middle attacks have proven to be effective. The results presented in this thesis can be summarized as follows: Initially, we analyze various security aspects of the Russian cryptographic hash function GOST R 34.11-2012, also known as Streebog or Stribog. In particular, our work investigates five security aspects of Streebog. Firstly, we present a collision analysis of the compression function and its in- ternal cipher in the form of a series of modified rebound attacks. Secondly, we propose an integral distinguisher for the 7- and 8-round compression function. Thirdly, we investigate the one wayness of Streebog with respect to two approaches of the meet-in-the-middle attack, where we present a preimage analysis of the compression function and combine the results with a multicollision attack to generate a preimage of the hash function output. Fourthly, we investigate Streebog in the context of malicious hashing and by utilizing a carefully tailored differential path, we present a backdoored version of the hash function where collisions can be generated with practical complexity. Lastly, we propose a fault analysis attack which retrieves the inputs of the compression function and utilize it to recover the secret key when Streebog is used in the keyed simple prefix and secret-IV MACs, HMAC, or NMAC. All the presented results are on reduced round variants of the function except for our analysis of the malicious version of Streebog and our fault analysis attack where both attacks cover the full round hash function. Next, we examine the preimage resistance of the AES-based Maelstrom-0 hash function which is designed to be a lightweight alternative to the ISO standardized hash function Whirlpool. One of the distinguishing features of the Maelstrom-0 design is the proposal of a new chaining construction called 3CM which is based on the 3C/3C+ family. In our analysis, we employ a 4-stage approach that uses a modified technique to defeat the 3CM chaining construction and generates preimages of the 6-round reduced Maelstrom-0 hash function. Finally, we provide a key recovery attack on the new Russian encryption standard GOST R 34.12- 2015, also known as Kuznyechik. Although Kuznyechik adopts an AES-based design, it exhibits a faster diffusion rate as it employs an optimal diffusion transformation. In our analysis, we propose a meet-in-the-middle attack using the idea of efficient differential enumeration where we construct a three round distinguisher and consequently are able to recover 16-bytes of the master key of the reduced 5-round cipher. We also present partial sequence matching, by which we generate, store, and match parts of the compared parameters while maintaining negligible probability of matching error, thus the overall online time complexity of the attack is reduced

    HARDWARE ATTACK DETECTION AND PREVENTION FOR CHIP SECURITY

    Get PDF
    Hardware security is a serious emerging concern in chip designs and applications. Due to the globalization of the semiconductor design and fabrication process, integrated circuits (ICs, a.k.a. chips) are becoming increasingly vulnerable to passive and active hardware attacks. Passive attacks on chips result in secret information leaking while active attacks cause IC malfunction and catastrophic system failures. This thesis focuses on detection and prevention methods against active attacks, in particular, hardware Trojan (HT). Existing HT detection methods have limited capability to detect small-scale HTs and are further challenged by the increased process variation. We propose to use differential Cascade Voltage Switch Logic (DCVSL) method to detect small HTs and achieve a success rate of 66% to 98%. This work also presents different fault tolerant methods to handle the active attacks on symmetric-key cipher SIMON, which is a recent lightweight cipher. Simulation results show that our Even Parity Code SIMON consumes less area and power than double modular redundancy SIMON and Reversed-SIMON, but yields a higher fault -detection-failure rate as the number of concurrent faults increases. In addition, the emerging technology, memristor, is explored to protect SIMON from passive attacks. Simulation results indicate that the memristor-based SIMON has a unique power characteristic that adds new challenges on secrete key extraction

    Cryptanalysis of SKINNY in the Framework of the SKINNY 2018--2019 Cryptanalysis Competition

    Get PDF
    In April 2018, Beierle et al. launched the 3rd SKINNY cryptanalysis competition, a contest that aimed at motivating the analysis of their recent tweakable block cipher SKINNY . In contrary to the previous editions, the focus was made on practical attacks: contestants were asked to recover a 128-bit secret key from a given set of 2^20 plaintext blocks. The suggested SKINNY instances are 4- to 20-round reduced variants of SKINNY-64-128 and SKINNY-128-128. In this paper, we explain how to solve the challenges for 10-round SKINNY-128-128 and for 12-round SKINNY-64-128 in time equivalent to roughly 2^52 simple operations. Both techniques benefit from the highly biased sets of messages that are provided and that actually correspond to the encryption of various books in ECB mode
    • …
    corecore