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Abstract. We show generic attacks on unbalanced Feistel ciphers based on the
meet-in-the-middle technique. We analyze two general classes of unbalanced Feistel
structures, namely contracting Feistels and expanding Feistels. In both of the cases,
we consider the practical scenario where the round functions are keyless and known
to the adversary. In the case of contracting Feistels with 4 branches, we show attacks
on 16 rounds when the key length k (in bits) is as large as the block length n (in bits),
and up to 24 rounds when k = 2n. In the case of expanding Feistels, we consider two
scenarios: one, where different nonlinear functions without particular structures are
used in the round function, and a more practical one, where a single nonlinear is used
but different linear functions are introduced in the state update. In the former case,
we propose generic attacks on 13 rounds when k = n, and up to 21 rounds when
k = 2n. In the latter case, 16 rounds can be attacked for k = n, and 24 rounds for
k = 2n.
Keywords: Unbalanced Feistel · Generic Attack · Key Recovery · MITM

1 Introduction
Block ciphers based on the Feistel construction are one of the most popular and well
studied symmetric-key primitives. The former block cipher standard DES [Cop94] as well
as a number of other ciphers are all based on the Feistel construction. Most of the Feistel
ciphers are in fact balanced Feistels. In such constructions, the state of the cipher is
divided into two parts of equal size, and it goes through several rounds, each with a round
function that updates one part of the state.

The topic of our research, however, are ciphers that belong to the class of unbalanced
Feistels. In this type of construction, the state is divided into more than two parts – usually
four or eight equal parts, called branches. With such a division, there is a wide variety of
round functions that can be considered. In particular, the size of the input and the output
of the non-linear round update can vary. Furthermore, the round may end not only with a
simple rounds twist (or cyclic shift of the parts), but also with an arbitrary permutation.
These types of ciphers have been introduced by Nyberg [Nyb96] and are called generalized
Feistel networks. In the networks, the size of the non-linear functions can be smaller than
that in balanced Feistels, which is useful to design lightweight ciphers.

Compared to balanced Feistels, the family of unbalanced Feistels offers a wider range
of designs, but the increased number of possible constructions requires larger effort for
cryptanalysis. In particular, no generic attack on a significantly large number of rounds is
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applicable to all of the unbalanced Feistels. Thus, one usually divides this large family into
several classes, each of which allows some type of a generic analysis. Among the classes,
two of the most popular unbalanced Feistels are contracting and expanding Feistels, which
are also called source-heavy and target-heavy Feistels [SK96,YI13].

A contracting Feistel uses a round function that takes all but one branch as inputs,
while it outputs a single branch. On the other hand, expanding Feistels rely on a round
function that takes as input a single branch and produces output of size equivalent to all
but one branch. Sometimes, these ciphers are defined more generally, i.e. a contracting
Feistel has round function with range smaller than domain, while in the expanding it is
the opposite. Under such a wide definition, a number of Feistel schemes are considered
contracting, e.g. RC2 [Riv98], SPEED [Zhe97], SMS4 [Lu08], SHACAL [HHN00], or expanding
e.g. MARS [BCD+98]. The wider definition, however, does not allow to generalize the
attacks on these Feistels. Thus, similarly to the previously published analysis, we focus on
the classical definition.

In most of the current analysis of contracting and expanding Feistels, the round
functions follow the Luby-Rackoff paradigm, i.e. the functions are chosen uniformly at
random from a family of all functions (with such a domain and range). In a series of
Asiacrypt papers, Patarin et al. [PNB06,PNB07,VNP10] have provided generic attacks
that penetrate most rounds in both contracting and expanding Feistels. Yanagihara and
Iwata [YI13,YI14] have found the required number of rounds to achieve full diffusion in
the states of such ciphers. In addition, they have provided saturation and impossible
differential characteristics that can be used in attacks, as well as upper bounds on the best
differential and linear characteristics. Naor and Reingold [NR99] have studied the security
of contracting Feistel schemes with pairwise independent permutations and have shown
lower bounds for the security of such constructions. Lucks [Luc96] has given security results
on contracting Feistel built upon hash functions. Yun et al. [YPL11] proved the birthday
bound security for 2d− 1 rounds on contracting Feistel. Suzaki and Minematsu [SM10]
evaluated generalized Feistel network with block shuffle structure with some particular
attack approaches e.g. integral or impossible differential attacks. However, the contracting
and expanding Feistel networks are not covered.

Our Contributions. We show generic chosen-plaintext attacks on contracting and ex-
panding Feistels. However, instead of assuming the general Luby-Rackoff type, we analyze
Feistels based on more practical round updates. A round of these ciphers is composed of a
keyless non-linear round function, surrounded by an arbitrary number of subkey XORs. In
such a framework, we show new generic attacks that penetrate a large number of rounds.

Our analysis is based on the meet-in-the-middle technique as proposed by Demirci and
Selçuk [DS08] in the attacks on AES. We use Dunkelman et al. [DKS10a] improvements
to this technique and follow their style of presentation. This relatively new cryptanalytic
technique seems promising: first it has been applied to the SPN construction adopted in
the AES by Dunkelman et al. [DKS10a], then it has been improved in [DFJ13,LJW14,LJ15],
and more recently it has been used for analysis on several different concrete primitives:
e.g., PRINCE in [DP15], TWINE in [BDP15], CLEFIA in [LJWD15], CAMELLIA in [LJWD15,
DLJW15], and also on generic balanced Feistel constructions in [GJNS14].

We examine three classes of unbalanced Feistels: one class of contracting Feistels, and
two separate classes of expanding Feistels. The success of our analysis depends on the
number of branches d and on the key bit-lengths k of the n-bit Feistels: the higher d and
k, the more rounds we can attack. This is because a bigger key and a bigger state size
will allow to guess more state values (without reaching the time complexity bound limited
by exhaustive key search and the data complexity bound limited by the code book), thus
we can add more rounds in the middle. For the class of contracting Feistels, we show a
meet-in-the-middle attack on 5d− 4 rounds. In the general case of expanding Feistels with
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arbitrary keyless round functions (we denote them as expanding Feistel-F), we show an
attack on 4d − 3 rounds. We separately analyze more specific expanding Feistels, with
linear dependency of the output branches in the round function (we denote it as expanding
Feistel-FL). Such round functions are more lightweight and are already in use, for instance
in ARIRANG [CHK+08]. For this type of Feistels, we give attacks on 5d− 4 rounds.

The numbers of attacked rounds given in the previous paragraph are valid for the case
where the key length matches the block length, i.e. k = n. When the key is larger, our
meet-in-the-middle attacks reach more rounds. The exact number of attacked rounds is
(3 + 2 k

n )d − 4 in the case of contracting and expanding Feistels-FL, and (2 + 2 k
n )d − 3

rounds in the case of expanding Feistel-F. To get a sense of concrete values implied by
these numbers, consider the case of a lightweight block cipher based on unbalanced Feistel
with 64-bit state, 128-bit key and 16 branches, i.e. (n, k, d) = (64, 128, 16). If the cipher is
an expanding Feistel-F within our analyzed class, then our attack penetrates 93 rounds.
On the other hand, if the cipher is a contracting Feistel, it reaches 108 rounds.

We stress out that our meet-in-the-middle attacks result in a full subkey recovery (and
not only distinguishers). The precise approach used to achieve the recovery is given for
example in [GJNS14], and due to space restrictions we omitted it from this paper. Our
results are summarized in Table 1.

We also stress out that this paper is not a straightforward application of existing tech-
niques to other constructions that have not been evaluated yet. For example, we introduce
the classic meet-in-the-middle attack to enumerate valid differential characteristics, is a
particular approach for expanding Feistels, i.e. cannot be seen in the previous work on
balanced Feistels. All of our three attacks have been experimentally verified of small scale
variants1.

Table 1: The number of attacked rounds for unbalanced Feistel constructions. All of our
attacks given in the table are more efficient than exhaustive search by a factor of 2n/2d. They
are chosen-plaintext attacks, and recover all the subkeys. In comparison, the attacks from
[PNB06,PNB07,VNP10] are applicable to wider classes of expanding and contracting Feistels but
only yield distinguishers.(† : r ≥ 2)

Type Bit Length of Key k #rounds
(d branches) Patarin et al. Ours

Contracting
Feistel

(Section 3)

n 2d− 1 5d− 4
2n 2d− 1 7d− 4

n+ rn
d 2d− 1 5d− 4 + 2r

Expanding
Feistel-F

(Section 4)

n 3d− 1 4d− 3
n+ n

d 3d− 1 4d
2n 3d− 1 6d− 3

n+ rn
d 3d− 1 4d− 3 + 2r †

Expanding
Feistel-FL
(Section 5)

n 3d− 1 5d− 4
2n 3d− 1 7d− 4

n+ rn
d 3d− 1 5d− 4 + 2r

1The source code of the attacks can be found at http://www1.spms.ntu.edu.sg/~syllab/attacks/
attacks.zip

http://www1.spms.ntu.edu.sg/~syllab/attacks/attacks.zip
http://www1.spms.ntu.edu.sg/~syllab/attacks/attacks.zip
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2 The Meet-in-the-Middle Attack
Our analysis is in line with the recent meet-in-the-middle (MITM) attacks on AES [DKS10b,
DFJ13,LJW14], a technique pioneered by Demirci and Selçuk [DS08] and improved by
Dunkelman et al [DKS10b]. Despite having the same name as the traditional MITM attacks
(the attacks on double DES [DH77] and on a number of hash functions, e.g. [AS09,GLRW10]),
this approach follows a different and a more complex strategy.2 Further, we give a brief
overview of the technique as seen by Dunkelman et al.

2.1 Overview of the Technique
Demirci-Selçuk MITM attack is a method for analysis of iterative block ciphers. It can
be seen as a technique that converts a differential on R rounds into a subkey recovery on
R′ +R+R′′ rounds. A trivial way of extending a differential to more rounds usually does
not provide a sufficiently strong filter (filter=whether R′ +R+R′′ round data pairs follow
the R round differential). On the other hand, Demirci-Selçuk technique leads to a very
strong filter.

Not every differential can be used in Demirci-Selçuk MITM attack. Let us take a brief
look at the details.

1. The differential has a low number of differential characteristics. An R-round dif-
ferential ∆ R−→ ∇ is specified only with two differences: an input difference ∆ and
an output difference ∇. If besides ∆ and ∇, we specify the difference after each
transformation in the R rounds, then we obtain a differential characteristic. The
number of all possible characteristics (that have the same input and output differences
as the differential) should be low – usually much lower than 2k, where k is the length
of the master key in bits.

2. The characteristics provide partial state values. By definition, a characteristic
specifies both the input and the output differences for each transformation in the R
rounds. Given these two differences (∆in,∇out) for some non-linear transformation
F (x) (used in the R rounds), we can actually find the input. That is, we can solve
F (x ⊕ ∆in) ⊕ F (x) = ∇out and find either the entire value of x or at least some
bits of x (the equation is called differential equation and usually it is solved with a
look-up table). Therefore, each characteristic allows the recover partial state values
– the R rounds may have many non-linear transformations and each will allow to
recover some bits of the state.

3. The partial values are sufficient to compute a property called b-δ-sequence.3 Let
FR(x) be the R rounds of the cipher covered by the differential (x is the input state;
for now we ignore the subkeys). If a characteristic of the differential provides sufficient
amount of state values, then we can compute a sequence of 2b differences (called b-δ-
sequence) defined as FR(v)⊕FR(v⊕ 1), FR(v)⊕FR(v⊕ 2), . . . , FR(v)⊕FR(v⊕ 2b).
Each value of this sequence defines how a certain input difference propagates into
an output difference after R rounds. For instance, the first value is propagation of
the difference 1 to FR(v) ⊕ FR(v ⊕ 1). To find the output difference, we have to
go through all the transformations of the R rounds. The propagation through the
linear transformations can be computed trivially. The non-linear transformation
may introduce branching. However, the partial state values recovered at Step 2
may be sufficient to uniquely determine the propagation through the non-linear

2To avoid confusion, it might be in the best interest to use another name for the approach.
3The term “n-δ-set” was defined in [GSW+14] as δ-set with n active bytes. The term “b-delta-set” was

defined in [GJNS14] as δ-set with b active bits, and “b-δ-sequences” was introduced as the corresponding
difference sequences.
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transformations (for instance, if in Step 2 we have found the value of x for the
non-linear F (x), then obviously, for any δ we can compute F (x ⊕ δ) ⊕ F (x)). In
those cases, we can compute the entire sequence. It is critical to understand that
each characteristic will result in a different b-δ-sequence (because each characteristic
provides different partial state values that are used to construct the b-δ-sequence).

The above analysis indicates that the differential ∆ R−→ ∇ may be described as a set of
different b-δ-sequences with cardinality less than 2k. This set is stored in a look-up table
T . The whole procedure consists in the offline phase of the attack (because it can be
executed without querying the cipher).

To convert the R-round differential into a subkey recovery on R′ +R +R′′ rounds, we
use the standard approach which basically relies on guessing parts of the subkeys used in
the first R′ and the last R′′ rounds. The wrong subkey guesses will be entirely discarded as
we rely on a very strong filter – the b-δ-sequence. This is the online phase of the attack.

First, we construct two differentials: ∆ R′−→ ∆ for the first R′ rounds, and ∇ R′′−−→ ∇ for
the last R′′ rounds (hence all R′+R+R′′ rounds are covered with ∆ R′−→ ∆ R−→ ∇ R′′−−→ ∇).
Then, we query plaintext pairs (p0, p0 ⊕∆) and check if corresponding ciphertext pairs
(c0, c∗0) have the difference ∇. For each good pair, we guess the subkeys used in the first R′
rounds.4 According to the guess, we compute the value v of the state after R′ rounds. Then,
we compute plaintexts p1, p2, . . . , p2b that correspond to the values v ⊕ 1, v ⊕ 2, . . . , v ⊕ 2b.
For instance, p1 can be computed by R′-round decryption (with the guessed subkeys) of
the state v⊕ 1. We query all pi and obtain corresponding ci. Finally, we guess the subkeys
used in the last R′′ rounds. For each guess of these subkeys, we do a partial R′′ round
decryption of all ci, which results in state values si. Namely, for each guess of subkeys, we
obtain the following 2b data transitions for R′ +R+R′′ rounds.

p0
R′−→ v

R−→ s0
R′′−→ c0,

p1
R′−→ v ⊕ 1 R−→ s1

R′′−→ c1,

p2
R′−→ v ⊕ 2 R−→ s2

R′′−→ c2,

· · ·

p2b
R′−→ v ⊕ 2b R−→ s2b

R′′−→ c2b .

Then, we create b-δ-sequence based on si, i.e. we compute the sequence of differences
s0 ⊕ s1, s0 ⊕ s2, . . . , s0 ⊕ s2b and check if the sequence is in the table T . Only correctly
guessed subkeys used in R′ and R′′ can result in a match. Therefore, we can entirely
recover these subkeys.

Above, we have defined the b-δ-sequence as FR(v) ⊕ FR(v ⊕ 1), FR(v) ⊕ FR(v ⊕
2), . . . , FR(v)⊕FR(v⊕2b), i.e. we have added the values 1, 2, . . . , 2b to the least significant
bits of the input v. This is an oversimplification – in an actual analysis the values are added
at the same positions as ∆ (e.g. if the input difference ∆ of the differential is added to the
third byte of the state, then 1, 2, . . . , 2b are added to this byte as well). Furthermore, we
have assumed that b-δ-sequence is defined in all bits of the output FR(v)⊕ FR(v ⊕ 1), . . .
In fact, the sequence can be defined only in t bits. Even when t = 1, the sequence will still
provide a strong filter as long as the value of b is large (the filter is on t · 2b bits).

2.2 Presentation of the Attacks
We will present our attacks by the following unified approach:

1. Offline phase (the construction of the table T )
4Essentially, we guess the subkeys in a way such that after the first R′ rounds the state difference is ∆.



312 Meet-in-the-Middle Attacks on Classes of Feistel Constructions

• Differential: we give the differential and show that its number of characteristics
is smaller than 2k.
• The b-δ-sequence: we show that for each characteristic, we can deduce partial

state values, and based on these state values, we can compute the b-δ-sequence.
• (Optional) Truncated differential: we show that instead of a single differen-

tial, we can consider several differentials that belong to a particular truncated
differential.

2. Online phase

• Key recovery: we define the number of added rounds (either before or after
the differential). We show how to use structures to reduce the amount of
plaintexts, and how to achieve the filtering of the ciphertext pairs.
• Complexity analysis: we give the estimates for the offline and online time,
memory, and data complexities.

Contrary to several recent papers, e.g. [DF16,FWG+16,SHW+14], where automated
tools have been used to find differential, impossible or integral characteristics, we do not
exactly follow this approach in our work: we did implement the search for contracting
Feistels, but not for expanding Feistels. The main reason is that in the expanding case,
finding a long differential characteristic suitable for the meet-in-the-middle attack can be
done by looking at sparse characteristics, which can usually be done easily by hand for
(generalized) Feistel networks. Consequently, optimality of the resulting attacks cannot be
proven without more in-depth analysis of differential characteristics, but it can probably be
reached using automated tools. Finally, we have arbitrarily decided to turn the attacks into
chosen-plaintext by extending (when possible) the differential characteristics towards the
plaintext side rather the ciphertext side, but the attacks would reach the same complexities
should one decide the other way.

3 Contracting Feistels
Contracting Feistels belong to the class of unbalanced Feistels. Their number of branches
d can vary, but satisfies d > 2. In a single round, only one branch is updated (refer to
Figure 1a). The Feistels are called contracting because the round update is achieved with
a non-linear function that takes as inputs the values of d− 1 branches (and the subkey),
while it outputs a single branch.

Patarin et al. have analyzed in [PNB06] the most generic contracting Feistels as specified
in Figure 1a. When d > 3, they have shown attacks on 2d − 1 rounds of such ciphers.
Yanagihara and Iwata have investigated in [YI13] the resistance of similar constructions
against a variety of attacks for specific values of d. Their results come in a form of
attacks as well as security upper bounds. For instance, for d = 4, they show that there
is an impossible differential on 6 rounds (attack), but there is no high-probability linear
characteristic on 14 rounds (upper bound).

We focus on contracting Feistels with non-linear round functions defined as

fi(x1, . . . , xd−1,Ki) = fi(x1 ⊕ . . .⊕ xd−1 ⊕Ki),

where fi is an arbitrary public non-linear function, with one branch input and one branch
output (refer to Figure 1b). We stress out that this type of functions are used, for
instance, in the Chinese block cipher standard SMS4 [Lu08]. Our MITM-based approach, in
comparison to the distinguishers provided in [PNB06], yields chosen-plaintext key-recovery
attacks on larger number of rounds. The precise formula for this number depends on the
bit length of key: when the bit lengths of key and the state are equal, then we penetrate
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f i
Ki

. . .

. . .

· · ·

(a) General model.

fi
Ki

⊕
. . .

. . .

(b) Our model.

Figure 1: Models of contracting Feistel with d branches.

through 5d−4 rounds, while when the key is twice as large as the state, then 7d−4 rounds.
In fact, our generic formula is (3 + 2 k

n )d− 4 rounds for contracting Feistel, with k-bit key
(k is a multiple of n

d and is greater than n), n-bit state, and an even number of branches
d ≥ 4. When k = n+ rn

d , this becomes 5d− 4 + 2r rounds as shown in Table 1.5
Note that the analysis given in the sequel can be generalized even further: the round

functions can be different depending on the round, the subkeys can be XORed after the
application of the round functions, etc. The analysis of all these variants is similar to the
original, thus is omitted. As an warm-up, we start with the case of a 4-branch contracting
Feistels when k = n, and from there develop the analysis for the cases of larger number of
branches and larger keys.

3.1 Case k = n and d = 4
In this section, we construct a 16-round key-recovery attack for a contracting Feistel
structure with d = 4 branches, when key and state share the same length in bits.

Differential. The 13-round differential used in the distinguisher is depicted in Figure 7
(in Appendix). For a given ∆0 and ∆1, its input difference is (∆0, 0,∆0,∆0) and its output
difference is (0,∆1,∆1,∆1). We show further that this differential contains at most 2 3n

4

distinct differential characteristics, which verifies the requirement discussed earlier (less
than 2k).

First, we note that in the first three rounds, the propagation is fully linear since the
input differences to the functions f1, f2 and f3 are zero. After three rounds, (∆0, 0,∆0,∆0)
becomes (0,∆0,∆0,∆0) with probability one. Similarly, (0,∆1,∆1,∆1) is transformed to
(∆1, 0,∆1,∆1) after three backward rounds.

Next, we observe that the slow diffusion in the d branches allows to linearly deduce
differences further in many branches. Not all of them can be determined since non-linearity
is introduced by the round functions. However, by enumerating all the output differences
∆X of f4, ∆Y of f5 and ∆Z of f6, it is possible to determine all the differences in all the
branches. Note that we do not need to guess the output difference of f7 as it depends
only on ∆0 and ∆1. This holds because it is halfway between the input and the output
difference.

Example. The output difference of f10 can be uniquely computed for each
∆X , ∆Y , and ∆Z (and given ∆0 and ∆1.) From the output of round 10, the
input difference of f10 is ∆1. The leftmost input to round 10 is a copy (no
update) of the second left branch of the input to round 7. So, we know the
output difference of f10 is ∆0 ⊕∆Z .

5For odd d, the construction from Figure 1b allows trivial differential distinguishers (with the same
plaintext difference in all d branches), thus has no scientific interest.
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Consequently, we enumerate all the possible differential characteristics of the differen-
tial (∆0, 0,∆0,∆0) → (0,∆1,∆1,∆1) by considering all the possible nonzero values for
(∆X ,∆Y ,∆Z). Since this tuple can assume (2 n

4 − 1)3 values, we conclude that about 2 3n
4

differential characteristics compose the differential.

Evaluation of the b-δ-sequence. Assume we have a differential characteristic with fixed
internal differences in all of the 13 rounds (as mentioned previously, each such characteristic
is defined with the three output differences ∆X ,∆Y ,∆Z). The functions f4, f5, . . . , f10 are
active and we know their input and output differences. As a result, by solving a differential
equation for each such function, we can determine the input and the output paired values,
of these seven functions.

We now determine the b-δ-sequence based on the found values. If (v, v′) denotes the
initial pair of inputs with difference (∆0, 0,∆0,∆0), let (v, v∆),∆ = 1, 2, . . . , 2b, be the
pair with the difference (∆, 0,∆,∆). In the first three rounds, none of f1, f2 and f3 is
active, and the difference becomes (0,∆,∆,∆). The input difference to f4 is ∆. Since we
already have the input value of f4 (that we found previously when analyzing v and v′),
it means we can compute the input value of f4 that correspond to v∆. For instance, if
the found value is a, then the new value would be a⊕∆. From the input value, we can
compute the output value of f4 simply as f4(a⊕∆), and thus we can obtain the output
difference of f4 as f4(a)⊕ f4(a⊕∆). By following the same procedure, we can compute
the output difference of the remaining f5, . . . , f10. Consequently, we can have the internal
state difference before the last three rounds. In particular, we have the state difference of
the second branch. This difference, after the remaining three rounds, becomes the state
difference of the first branch. Therefore, the b-δ-sequence can be computed based on the
first branch of the output and is determined uniquely without the knowledge of any of the
subkeys used in these 13 rounds.

Truncated Differentials. A possible tradeoff consists in alleviating the fixed input and
output differences of the differential, and in allowing 2x < 2 n

4 possible input differences ∆0,
and 2y < 2 n

4 possible output differences ∆1. Although (∆0,∆1) can take more than one
value, we still require the differential to be of the form: (∆0, 0,∆0,∆0)→ (0,∆1,∆1,∆1).
In that case, the complexities (in particular, the number of differential characteristics that
compose the truncated differential) increase by a factor 2x+y and become 2 3n

4 +x+y. In the
subsequent analysis, we use the two additional parameters x and y to find their optimal
values as to minimize the overall complexity of the complete attack.

Key Recovery. To launch the 16-round attack, we prepend three rounds to the differential
as shown in Figure 2. As there are three round functions with nonzero input differences, we
introduce three variables, namely δ1, δ2 and δ3, that correspond to the output differences
of f1, f2 and f3, respectively.

In order to get plaintext pairs with a valid difference ∆0 in the second branch, we
use a structure of plaintexts. Namely, we consider all the 2 3n

4 possible values in all the
branches except the second branch where we take only 2x values. Note that pairs with
two plaintexts from this structure already conform to the truncated differential discussed
earlier. We reach a data complexity of 2 3n

4 +x chosen plaintexts, and we get up to 2 3n
2 +2x

pairs with one valid difference ∆0 in the second branch.
Among all the pairs, we expect a fraction 2y/2n = 2−n+y to verify one of the possible

output differences according to the 2y values we allowed for ∆1. To efficiently filter the
remaining 2 n

2 +2x+y pairs, we store each plaintext/ciphertext value in a hash table sorted
by the 3-element value (c1, c2⊕ c3, c2⊕ c4) where the ciphertext equals (c1, c2, c3, c4). This
way, two ciphertexts (c1, c2, c3, c4) and (c′1, c′2, c′3, c′4) are stored under the same key if and
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Figure 2: Key recovery for 16 rounds (case k = n). The attack makes use of the 13-round
distinguisher from Figure 7.

only if c1 ⊕ c′1 = 0, c2 ⊕ c′2 ⊕ c3 ⊕ c′3 = 0 and c2 ⊕ c′2 ⊕ c4 ⊕ c′4 = 0, which subsequently
lead to the corresponding ∆1 to be ∆1 = c2 ⊕ c′2.

Among the 2 n
2 +2x+y remaining pairs, we need one pair that verifies the 13-round

differential in the last rounds. We detect it by checking the precomputed table T . The
probability that an input pair with known input difference yields one of the 2x intermediate
difference (∆0, 0,∆0,∆0) chosen during the precomputation phase is 2−3n/4 for each
pair. Indeed, when the pair with plaintext difference (∆P1,∆P2,∆P3,∆P4) is selected,
we can compute the four differences ∆0, δ1, δ2 and δ3 as ∆0 = ∆P2, δ1 = ∆P1 ⊕ ∆0,
δ2 = ∆P4⊕∆0 and δ3 = ∆P3, and from them, by solving differential equations, deduce the
subkeys K1, K2 and K3 used in the first three rounds. Once we have the subkey values, we
can easily construct plaintexts that correspond to the b-δ-sequences. For instance, to get
the plaintext that corresponds to ∆ = 1, we take the value of the state after three rounds
that corresponds to the initial plaintext p, XOR the difference (1, 0, 1, 1), go back three
rounds (this is possible because we have the values of the subkeys), and obtain the new
plaintext p1. In a similar manner, we can produce the remaining plaintexts p2, . . . , p2b and
thus we can obtain the b-δ-sequence, E(p)⊕E(p1), E(p)⊕E(p2), . . . , E(p)⊕E(p2b), where
E(x) is the ciphertext for the plaintext x. Note, we do not need to query the plaintexts
p1, . . . , p2b as they have already been queried previously. Indeed, the initial structure of
plaintexts already contains all the possible plaintext that can be obtained from any of the
plaintexts by going three forward rounds, adding a difference of the type (∆, 0,∆,∆) and
then inverting the state for three rounds. That is, S is composed of plaintexts Pi such
that for any i (and any K1,K2,K3), it holds F−3(F 3(Pi)⊕ (∆, 0,∆,∆)) ∈ S.

The probability to pass the first three rounds is 2−3n/4, and thus we need to collect as
many as 23n/4 pairs, that is: 2 n

2 +2x+y ≥ 23n/4, which implies 8x+ 4y ≥ n.

Complexity Analysis. The total data complexity required to conduct the attack amounts
to 2 3n

4 +x chosen plaintexts that are required to produce at least 2 n
2 +2x+y pairs for the

online phase. Therefore, the number of such pairs processed in the online phase amounts to
2 n

2 +2x+y, and each of them requires slightly less than one encryption. Finally, the memory
requirements to store the precomputed table is 2 3n

4 +x+y sequences of 2b elements.
To find optimal values for x and y that minimize the overall complexity, we observe

that 8x + 4y ≥ n must hold in order to collect enough pairs for the online phase, and
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0 ≤ x+ y < n/4 so that the memory and data complexities stay below 2n. As a result,
for x = n/8 and y = 0, this attack leads to a data complexity of 2 3n

4 +x = 2 7n
8 chosen

plaintexts, an online phase with time complexity of 2 n
2 +2x+y = 2 3n

4 operations, and a
memory complexity of 2 3n

4 +x+y = 2 7n
8 of b-δ-sequences.

To find a good value for b, we evaluate the number of false positive. In the online
phase on the attack, we perform 2 3n

4 checks in the precomputed table T , which contains
2 7n

8 sequences of 2b elements of n
4 bits each. Consequently, one check in the table yields

a false positive with probability 2 7n
8 /2 n

4 ·2
b = 2 n

8 (7−2b+1). We can ensure that no false
positive occurs for all the 2 3n

4 checks, if we select b such that: n
8 (7− 2b+1) + 3n

4 < 0, that is
b > log2(13)− 1. Hence, by fixing b = 3, we control the expected number of false positive
while minimizing the size of the elements stored in T .

Finally, we point out that the precise complexity of our attacks obviously has to
incorporate the value of b (so far we have omitted). It is easy to notice that the actual
time complexity is 2 3n

4 · 2b (rather than 2 3n
4 ). We have omitted the value of b from the

complexity estimates as: 1) it is a very small factor, 2) it makes the complexity formula
bulkier, and 3) the time complexity is given in terms of full encryptions, which overestimate
the actual operations that only evaluate a few rounds. For these reasons, we omit the
value of b in the further analysis as well.

3.2 Generalization to More Branches
The 16-round attack can be generalized and extended to more rounds when the number of
branches is higher. More precisely, when the contracting Feistel has d branches, we can
attack 5d− 4 rounds. To deduce this number, we focus on the two phases of our MITM on
16-round 4-branch Feistel and see how the number of rounds in each phase would change
with the increase of the amount of branches.

Differential and Characteristics. For the 4-branch Feistel, the used 13-round differential
can be decomposed as 13 = 3 + 7 + 3, i.e. it has 3 rounds at the beginning and 3 rounds
at the end (where the differential is determined uniquely, i.e. the probability is one), and
7 rounds in the middle. The 3 rounds on both sides of the differential, in a d-branch
Feistel are equivalent to d− 1 rounds with input difference (∆0, 0,∆0, . . . ,∆0) and output
difference (0,∆0,∆0, . . . ,∆0). The middle 7 rounds of the differential for the 4-branch
Feistel, are equivalent to middle 2d− 1 rounds for a d-branch Feistel. This comes from
the fact that the outputs (in terms of branches) of the 2d − 1 contracting functions in
these rounds will have to satisfy a system of equations on d branches and the whole system
can be solved by guessing d− 1 outputs (as a result, d+ d− 1 = 2d− 1). Note, having
an additional round in the middle would result in 2d outputs, thus it would require d
branches to be guessed and would incidentally raise the complexity of the attack to 2n.
Thus, having 2d− 1 middle rounds is optimal, and therefore the differential for d-branch
Feistel is on d− 1 + d− 1 + 2d− 1 = 4d− 3 rounds.

The (4d − 3)-round differential is uniquely determined in the first and in the last
d− 1 rounds. However, the differences in the middle 2d− 1 rounds are not unique and
this is where the characteristics that compose the differential differ. Although there
are 2d − 1 active functions in these rounds, as mentioned previously, by guessing d − 1
outputs, the remaining d outputs are determined uniquely. Thus, the total number of
possible differential characteristics that compose the differential is upper bounded by
2(d−1)·nd = 2 d−1

d n.
From a single differential we can switch to a truncated differential by taking 2x values

for ∆0. Subsequently, the number of differential characteristics becomes 2x+ d−1
d n. Hence,

this restricts x to x < n
d .
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The b-δ-sequence. Evaluation of the b-δ-sequence through the 4d− 3 rounds is similar
to the previous case of d = 4. The input difference (∆0, 0,∆0, . . . ,∆0) is changed to
(∆, 0,∆, . . . ,∆). Then, the first d − 1 rounds are passed deterministically. The middle
2d − 1 rounds are all active: hence, the values of all inputs and outputs of the 2d − 1
non-linear functions are known. Therefore, the input difference (0,∆,∆, . . . ,∆) at the
beginning of the middle rounds, can be propagated through all 2d − 1 rounds thus the
difference in all d branches can be computed after the middle rounds. Finally, the difference
in the second branch, when propagated through the remaining d− 1 rounds, becomes a
difference in the first branch, thus the b-δ-sequence can be computed at this branch.

Key Recovery and Complexity. In the online phase, we prepend d − 1 rounds to the
differential. The resulting input difference is (∗,∆0, ∗, . . . , ∗),6 which after d− 1 rounds
will become (∆0, 0,∆0, . . . ,∆0) (with probability 2−(d−1) n

d ), which is the input difference
of the (4d − 3)-round differential. The remaining analysis is the same as in the case of
d = 4. That is, we create a structure of plaintexts with 2x values at the second branch,
and all possible 2 n

d values in the remaining d− 1 branches. In total, there are 2x+ d−1
d n

plaintexts, which after querying result in around 22x+2n d−1
d pairs of ciphertexts. Among

these pairs, we expect around 22x+2n d−1
d −n to survive the n-bit filter (the output difference

of the differential is fully specified in all n bits). Note, the number of pairs is strictly less
than 2n, which is ensured by the restriction x < n

d . A portion 2 d−1
d n of these remaining

pairs produce the required difference after the first d− 1 rounds. Thus, to have at least
one pair, it follows that x = n

2d .
The offline phase dominates the total complexity of the attack and requires 2 n

2d + d−1
d n =

2n− n
2d time and memory. The time and data complexities of the online phase are 2n−n

d .
As a result, we can attack 4d− 3 + d− 1 = 5d− 4 rounds of a d-branch contracting Feistel.

3.3 Generalization to Larger Keys
With the increase of the bit length of the key, the number of attacked rounds raises and a
d-branch contracting Feistel with k-bit key is susceptible to a MITM attack on (3+2 k

n )d−4
rounds. For instance, a 4-branch contracting Feistel with k = 2n bit key is vulnerable to
24-round attack. Each time the key is increased by a bit amount equivalent to one branch,
we can attack two more rounds because both the offline and online phases of our previous
attacks benefit from this increase.

We first focus on the offline phase, in particular on the construction of differential and
enumeration of the characteristics. From the previous section, it follows that the differential
covers 4d− 3 rounds when k = n. Assume that the key length in bits has increased for an
additional r · n

d bits, i.e. for r branches. Then, we can construct a differential on 4d− 3 + r

rounds that contains at most 2 d−1
d n+r·nd = 2(d−1+r) n

d differential characteristics. This
differential is constructed by adding r additional rounds in the middle of the previous
differential. The output differences of the round functions in these r rounds are guessed
and thus the number of differential characteristics increases 2r n

d fold. In the sequel, we
consider truncated differential that contains 2 n

2d input differences.
In the online phase, we add in total d− 1 + r rounds to the differential: d− 1 rounds

are added before the differential (similarly to the previous attacks), and r rounds are
added after the differential. We create the same structure of 2n−n

d plaintexts and obtain
the corresponding ciphertexts. Then, we guess the subkeys of the last r rounds. For each
such guess, we obtain 2n−n

d values of the state after the differential by inverting the last
r rounds. These values are sorted according to the previous approach and the pairs of
states that have the required difference are checked additionally on b-δ-sequences. That is,

6A star (∗) denotes any nonzero difference.
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for the plaintext that corresponds to the first state of the pair, we get the corresponding
b-δ-sequence ciphertexts, invert them through r rounds, and finally check if the sequence
of values of the states coincide with some of the sequence from the precomputed table T .
It is critical to understand that we do not query additional plaintexts as all of them have
already been queried at the beginning of the online phase.

The complexity of the offline phase is 2(d− 1
2 +r) n

d = 2n+r n
d−

n
2d in time and memory. In

the online phase, we query 2n−n
d chosen plaintexts, while the processing of the ciphertexts

and the subkey guessing requires 2n−n
d · 2r n

d = 2n+r n
d−

n
d operations. As the key length in

bits is k = n+ rn
d , our attack outperforms the exhaustive key search by a factor 2 n

2d . In
total, we are able to attack (4d− 3 + r) + (d− 1 + r) = (3 + 2 k

n )d− 4 rounds.

4 Expanding Feistels with d− 1 Functions in a Round
Expanding Feistels are another class of unbalanced Feistels. Similarly to contracting
Feistels, the number of branches d can vary with d > 2. In one round, d− 1 branches are
updated with input from a single branch, as depicted in Figure 3a. The round starts with
an XOR of a subkey, followed by keyless update function composed of d − 1 branch-to-
branch non-linear functions. While it is natural to consider d− 1 independent functions
(see the core function of CRUNCH [GIJ+08]), the combination of a single nonlinear function
followed by d− 1 linear transformations (refer to Figure 3b) is more friendly for practical
implementations, as used in the hash function design ARIRANG [CHK+08]. In this paper,
we consider both cases. The case of d−1 independent functions is presented in this section,
and the case of d− 1 linear transformations is given in Section 5.

f1
i

f2
i

f3
i

Ki

(a) General case (Expanding
Feistel-F).

fi
Ki

L2
i

L1
i

L3
i

(b) Particular case (Expanding Feistel-FL).

Figure 3: Round function for expanding Feistels with d− 1 functions in the general case (a) and
in a more practical scenario using a single non-linear function and d− 1 linear functions (b).

Patarin et al. have provided in [PNB07,VNP10] security analysis of expanding Feistels.
They mainly focused on the case of d− 1 independent functions. Under the most general
assumption that each of these functions is chosen uniformly at random from all the
functions depending on the key, they have shown a distinguishing attack on at most 3d− 1
rounds.

A more recent application of expanding Feistels pertains to a long-lasting open problem
in symmetric-key cryptography, which consists in finding a so-called white-box implemen-
tation of the Advanced Encryption Standard (AES), which resists to a powerful attacker
that can see all the intermediate computations. As of today, all the propositions have
been broken [BGE04,MWP10,MRP12,LRM+13]. In a recent paper [BI15], Bogdanov
and Isobe solve the (much) easier problem of designing a block cipher allowing efficient
white-box implementations. They achieve this using expanding Feistels and rely on keyed
permutations (that is, a block cipher) as F-functions, where both input and output sizes
can be adapted to offer various security/efficiency tradeoffs. The attacks presented in this
paper rely on publicly known F-functions and consequently does not currently apply in
our framework. We thus do not discuss further details of [BI15].
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In the remaining of this section, we show how the MITM framework can be applied
to expanding Feistels with d− 1 independent but public functions, and provide a generic
all-subkey-recovery attack on 4d − 3 rounds. We emphasize that the genericity of the
attack would make it work for any key scheduling algorithm. Similarly to Section 3, we
begin our description with the case when the number of branches d = 4 and the key length
in bits k = n, and then we generalize it to more branches and larger key lengths.

4.1 Case k = n and d = 4
We construct a 10-round differential and append three rounds for the key recovery, which
makes a 13-round key-recovery attack.

Differential. For a given pair of differences (∆I ,∆O), the difference (0,∆I , 0, 0) becomes
(∆I , 0, 0, 0) with probability one after 3-round encryption, and the difference (∆O, 0, 0, 0)
becomes (0,∆O, 0, 0) with probability one after 3-round decryption. Theoretically, we
can inject six rounds in the middle, and obtain a differential on 3 + 6 + 3 = 12 rounds.
However, as we explain later, the b-δ-sequence cannot be computed in the last two rounds.
Therefore, we use a differential composed of only 3 + 6 + 1 = 10 rounds, which starts with
(0,∆I , 0, 0) and ends with (0, 0,∆O, 0). The differential is shown in Figure 8 (in Appendix).
We denote the three n

d -bit output differences produced by three functions in Rounds 4, 5
and 6 by (∆X1 ,∆X2 ,∆X3), (∆Y1 ,∆Y2 ,∆Y3) and (∆Z1 ,∆Z2 ,∆Z3), respectively. Similarly,
let (∆U1 ,∆U2 ,∆U3), (∆V1 ,∆V2 ,∆V3) and (∆W1 ,∆W2 ,∆W3) be the output differences of
functions in Rounds 9, 8 and 7, respectively.

Let us enumerate all the differential characteristics. For this purpose, we need to
identify all the valid intermediate differences ∆X`

,∆Y`
,∆Z`

,∆W`
,∆V`

,∆U`
, where ` ∈

{1, 2, 3}. When these differences are fixed, the corresponding internal state values can be
obtained easily. There are 2 n

4 choices for each difference, thus 2 9n
2 choices for all of them.

Exhaustively trying all the possibilities exceeds the cost of exhaustive key search. Hence,
we need a more efficient method.

Observe that, for example, in Round 4, if one of ∆X1 ,∆X2 and ∆X3 is fixed, the
internal state value is fixed to one choice on average, and then the corresponding output
differences for the other two functions can be computed. Namely, we can enumerate 2 n

4

choices of ∆X1 and then compute the corresponding ∆X2 and ∆X3 . The same procedure
can be applied to all six middle rounds, which will reduce the number of all differences to
2 3n

2 , however, this is still more than the cost of an exhaustive key search.
To cope with this, we use the classical meet-in-the-middle approach and find the valid

differences in the middle six rounds.7 First, in the forward direction, we enumerate 2 3n
4

choices of (∆X1 ,∆Y1 ,∆Z1) and compute the corresponding differences after Round 6,
which we store in a list L. Second, in the backward direction, we enumerate 2 3n

4 choices of
(∆U1 ,∆V1 ,∆W1) and compute the difference before Round 7, which are matched to the
entries in L. A total of 2 3n

4 · 2 3n
4 = 2 3n

2 pairs exist and the probability of each match is
2−n. As a result, in 2 3n

4 operations, we obtain all 2 n
2 valid differential characteristics for

the middle six rounds.8

Evaluation of the b-δ-sequence and Truncated Differential. For each of the 2 n
2 dif-

ferential characteristics, we modify the input difference (0,∆I , 0, 0) to (0,∆, 0, 0), and
propagate the impact of the change. The analysis is similar to Section 3. In the first three
rounds, the difference of the active branch becomes ∆. For the next six rounds, the input

7The usage of the classic meet-in-the-middle to find valid differences is a particular approach for
expanding Feistels, which cannot be seen in the previous work on balanced Feistels. The analysis in this
part is quite new.

8Here, we can match n
4 bits after computing two rounds in the backward direction. However, as far as

we know, this does not improve the attack.
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value to each function in the original pair and the modified difference allow us to compute
the modified difference. This makes the state differences known in all of the four branches
after nine rounds. In the 10th round, the input difference in the leftmost branch is simply
copied to the second leftmost branch in the output. For the other three branches, no
information is available to the attacker, thus the computation must stop here.

In summary, for each of the 2 n
2 differential characteristics, we choose 2b input differences

(0,∆, 0, 0), compute the corresponding differences in the second leftmost branch of Round
10, and store the sequence of differences in the precomputation table T . Note that as we
explain later, the value of b is very small, i.e. b = 3, and thus it has only a constant impact
on the attack complexity.

Similarly to Section 3, we consider 2x < 2n input differences ∆I and 2y < 2n input
differences ∆O. This way, the complexities increase by a factor 2x+y and become 2 3n

4 +x+y.
A total of 2 n

2 +x+y sequences are stored in T .
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Figure 4: Key recovery for 13 rounds (case k = n).

Key Recovery. We append three rounds to the 10-round truncated differential, as shown
in Figure 4. We first aim to obtain pairs of plaintexts that satisfy the truncated differential.
We choose the plaintexts with the required input difference and then filter out wrong
ciphertext pairs based on the output difference of the differential. Based on this difference,
there is an obvious filter for n

4 − y bits in the second leftmost branch whose difference
is limited to 2y choices. Furthermore, we can obtain stronger filter by focusing on the
truncated differential. Namely, due to the sparse propagation, the output difference of
the truncated differential after Round 12 is limited to (∆O, 0, 0, 0), which indicates that
(δ1, δ2, δ3) in the ciphertext difference must be canceled during the decryption of Round 13.
In other words, the output differences ∆f1

13,∆f2
13,∆f3

13 of three functions are determined
by the ciphertext difference. For each of the 2y choices of ∆O, the number of all the possible
differences for (∆f1

13, ∆f2
13, ∆f3

13) is limited to 2 n
4 . If those limitations are exploited

efficiently, more wrong pairs can be filtered out. However, because 2 n
4 choices of (∆f1

13,
∆f2

13, ∆f3
13) are dependent on ∆O, there is no obvious way to efficiently use these filters.

Our advanced strategy uses a two-level filtering, by which the number of pairs is firstly
reduced by the initial n

4 − y bits filter on ∆O, and then the remaining pairs are further
filtered by the 2 n

4 possibilities of (∆f1
13, ∆f2

13, ∆f3
13). More precisely, we perform the

procedure described in Algorithm 1. At Step 8 of the procedure, the number of possible
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pairs is 22x and the number of bits for the filter is n
4 − y, thus 22x−n

4 +y pairs will remain.
At Step 9, the probability that each pair remains is 2 n

4 /2 3n
4 = 2−n

2 , thus 22x− 3n
4 +y pairs

will remain. This is iterated 2 3n
4 times by the for loop specified at Step 5. As a result, we

obtain 22x+y pairs satisfying the truncated differential. For each such pair, the probabilities
that the differential propagation backwards in the last three rounds follows the one given in
Figure 4 are 2−n

4 , 1 and 1 for Rounds 13, 12 and 11, respectively. Thus when 22x+y = 2 n
4 ,

collecting 2 n
4 pairs will assure that there is at least one pair sufficient to recover the key.

For each of the 2 n
4 obtained pairs, we construct the b-δ-sequence according to the frame-

work introduced in Section 2. We start with a partial decryption from the corresponding
ciphertexts. In the last round, the internal state value after the subkey can be recovered
with T∆O

filter. This allows to uniquely recover the last subkey K13. We then exhaustively
guess n

2 bits of (K12,K11), which is sufficient to carry out the partial decryption from the
ciphertext to the target difference at the state between Rounds 10 and 11, and thus we
can compute b-δ-sequence and compare to the stored values of the table T .

Complexity Analysis. The complexities required to enumerate all the differences in
the precomputation phase are 2 3n

4 +x+y time and memory. The offline preparation in
Algorithm 1 requires only 2y+ n

4 time and memory, which is negligible compared to the
enumeration of the differences. The data complexity for the 3n

4 bits for inactive branches
(Step 5) and x bits for active branch (Step 6) amounts to 2 3n

4 +x chosen plaintexts. The
time complexity for the filtering is 2 3n

4 · 2x for Step 8 and 2 3n
4 · 22x−n

4 +y for Step 9, or in
total 2 3n

4 +x + 2 n
2 +2x+y. As explained before, we have the condition 22x+y = 2 n

4 . Then, the
complexity for the filtering phase becomes 2 3n

4 +x for a sufficiently large x. After obtaining
2 n

4 pairs satisfying the 13-round truncated differential, the time complexity for recovering
K13, K12 and K11 is 2 n

2 for each pair due to the exhaustive guess of (K11,K12). Thus,
the time complexity for the key recovery phase is 2 n

4 + n
2 = 2 3n

4 partial decryptions.
We use x = n

8 and y = 0 to balance the complexities under the condition 22x+y = 2 n
4 ,

which makes the time, memory and data complexities equal to 2 7n
8 . Finally, let us evaluate

the value of b. There are 2 7n
8 b-δ-sequences stored in T and 2 3n

4 b-δ-sequences are generated
online. Matching each differences reduces the number of correct key candidates by a factor
2−n

4 . Hence, setting b = 3 to provide 2(−n
4 )·23 = 2−2n matching condition suffices to detect

the correct key.

Algorithm 1: Two-level filter for data collection.
Offline Preparation
1: for 2y choices of ∆O do
2: for i = 0, 1, . . . , 2 n

4 − 1 do
3: Compute (δ1, δ2, δ3) =

(
f3

13(i)⊕ f3
13(i⊕∆O), f1

13(i)⊕ f1
13(i⊕∆O),

f2
13(i)⊕ f2

13(i⊕∆O)
)
. Store the result along with the value i in T∆O

filter.
4: Hash T∆O

filter for a later usage as a filter.
Online Filtering
5: for 2 3n

4 values of three inactive branches in the plaintext do
6: for 2x values of the active branch in the plaintext do
7: Query the chosen plaintexts. Store the corresponding ciphertexts in Tct indexed

by the value of the second leftmost branch.
8: Pick up all the pairs in Tct satisfying any of 2y differences for ∆O.
9: For the picked up pairs, check if (δ1, δ2, δ3) can be produced by ∆O,

i.e. check the match of (δ1, δ2, δ3) and T∆O

filter.
10: The pairs with successful match are regarded as passing the filter: they are

used for the key recovery.
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4.2 Generalization to More Branches
The 13-round attack for d = 4 consists of 10-round differential and 3-round key recovery.
The 10-round differential can be further divided into three rounds with a probability-one
differential, six rounds covered by the classical MITM approach and a final round allowing
the simple copy from the input to the output.

This can be generalized to a d-branch case as follows. The differential starts with d− 1
rounds that hold with probability one. Then, the number of middle rounds is 2(d − 1)
so that all the differential characteristics can be enumerated with the meet-in-the-middle
approach with a complexity below 2n. At the end, one additional round is appended (it
corresponds to the simple copy from the input to the output). The key recovery part
will also have d − 1 rounds such that the sparse differential continues for d − 2 rounds
followed by an additional round. In summary, (d− 1) + 2(d− 1) + 1 + (d− 1) = 4d− 3
rounds can be attacked under the condition k = n. The attack complexity is faster than
the exhaustive search by a factor of 2 n

2d , and it amounts to 2n− n
2d .

Compared to the previous (3d− 1)-round attack by Patarin et al. in [PNB07,VNP10],
our MITM attack penetrates significantly more rounds. However, we remind the reader
that the round function considered in this paper are less general than the Luby-Rackoff-like
structure tackled by Patarin et al. We indeed study the more practical Feistel-2-like
structure. Moreover, we note that the analysis of the most general case conducted by
Patarin et al. yields distinguishers, while the more specific framework examined here allows
to reach all-subkey-recovery attacks.

4.3 Generalization to Larger Key Lengths
When the key length in bits k increases, so does the number of attacked rounds. The most
straightforward attack for k = n+ rn

d for r ≥ 1 is obtained by iterating the same attack as
for k = n and by exhaustively guessing the additional rn

d -bit subkeys. This strategy works
for r additional rounds compared to k = n.

We can penetrate larger number of rounds by exploiting the property that the MITM
attack matches results computed independently in offline phase and online phases. In
each of these phases, we can additionally spend 2 rn

d cost by exhaustively guessing subkeys
for r more rounds, thus 2r additional rounds can be attacked than in the case of k = n.
We need additional filter for the increased 2 rn

d · 2 rn
d = 2 2rn

d bits when the results from
offline and online phases are matched. This can be achieved by merely increasing b in
the b-δ-sequence by one bit, which requires a negligibly small additional cost. Recall that
4d− 3 rounds are attacked for k = n. In the case of larger keys, 4d− 3 + 2r rounds are
attacked for k = n+ rn

d . For example, for d = 4 and k = 2n, 21 rounds can be attacked.
The improved factor of the attack complexity stays unchanged, and is n

2d bits faster than
the exhaustive search, i.e. 2n+ rn

d −
n
2d .

When r = 1, i.e. k = n+ n
d , we can further improve the attack by exploiting the fact

that the enumeration of the characteristics in the offline phase exploits the classical meet-
in-the-middle approach, thus can be further divided into two independent computations.
In the characteristics enumeration, 2(d−1) n

d possible differential characteristics are obtained
both in forward and backward computations and the n-bit match is examined in the middle,
which provides 22(d−1) n

d−n = 2(d−2) n
d valid characteristics and those are stored in a table

T .9 Here, the computational cost of 2
(d−1)n

d is not balanced with the memory requirement
for T which is 2

(d−2)n
d . In the particular case of k = n + n

d , we can set up the attack
so that those two complexities are indeed balanced. In the characteristics enumeration,
we inject two more rounds in the middle (when r = 1). Each direction enumerates 2n

9For d = 4 in Section 4.1, 2
3n
4 characteristics were enumerated in both directions and 2

3n
4 + 3n

4 −n = 2
n
2

valid combinations were obtained.
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characteristics with time complexity 2n and 2n+n−n = 2n valid characteristics are provided
after matching n bits in the middle, which requires 2n memory. Thus, the two complexities
are balanced and the attack is still faster than the exhaustive search of (n+ n

d )-bit key.
In summary, for r = 1, two rounds are added in the offline phase and one round in the
online phase and as a result a total of 4d− 3 + 3 = 4d rounds are attacked. At the end, we
note that adding two (or more) rounds in the offline phase cannot be achieved when r > 1.
This is because the number of matched (filtering) bits in the classical meet-in-the-middle
approach will not increase beyond n even when r increases. The increase of the key length
by n

d bits allows the attacker to spend an additional factor of 2 n
d , however, by adding

two rounds in the offline phase, the number of valid differential characteristics stored in
the table increases by a factor of 2 2n

d , thus the factor is not sufficient to cover the higher
number of characteristics.

5 Expanding Feistels with d− 1 Linear Transformations
In this section, we apply the MITM attack to expanding Feistels with a round update
composed of a non-linear function followed by d− 1 linear transformations. The general
construction of this subclass of expanding Feistels is depicted in Figure 3b. The round key
is XORed into one branch, followed by the application of the non-linear updating function
F . Then, the output is passed through distinct linear transformations L1, L2, . . . , Ld−1 to
update each of the other d− 1 branches. One can view this subclass as a special case of
the expanding Feistels considered in Section 4, i.e., each updating function comprises the
linear transformation and the non-linear function. Hence, all results presented in Section 4
apply here naturally. On top of that, we show how to utilize the properties of these linear
transformations and how to attack 5d− 4 rounds (cf. to 4d− 3 rounds before) when k = n,
and a larger number of rounds when the key length increases. Note, the updating functions
and linear transformations can be different between or within each round, and this is
irrelevant to the presented attacks.

In the same manner, we begin our analysis for the case of key length k = n and d = 4
branches in Section 5.1, which is one of the most commonly used setting in real block
cipher designs. Later, we extend our attacks to larger numbers of branches and key length
in Section 5.2.

5.1 Case k = n and d = 4
Differential. We use a differential on 13 rounds (depicted in Figure 9 in Appendix), with
an input difference (0,∆I , 0, 0) and an output difference (∆O, 0, 0, 0), where ∆I and ∆O

are arbitrary nonzero values. The input and output differences are chosen such that the
differential penetrates the maximal number of rounds. The input difference (0,∆I , 0, 0)
propagates in three rounds to (∆I , 0, 0, 0) and with probability one, since no difference
passes through the F functions in the first three rounds. Afterwards, the difference goes
through three more rounds and is determined by output differences ∆X , ∆Y and ∆Z of F
at Rounds 4, 5, and 6. The number of possible differences is increased by a factor of 2 n

4 at
each of these rounds, resulting in 2 3n

4 possibilities at the end of Round 6 of the differential.
Similarly, at the other end of the differential, the output difference (∆O, 0, 0, 0) becomes
(0,∆O, 0, 0) at the beginning of Round 11 with probability one. As a result, there are four
rounds left in between. We show that for each pair of difference at the 6-th and the 11-th
rounds, there is a unique (∆M ,∆W ,∆V ,∆U ) that connect them and hence the output
differences of Rounds 7, 8, 9, and 10 are uniquely determined. Overall, there are 2 3n

4

differential characteristics for each fixed input and output difference of the differential,
thus much less than that of a random permutation with n-bit key.

Further, we explain how the differences in the middle four rounds can be computed. Let
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us denote the input difference at the i-th round (in our case, i = 7) as (∆1
A,∆2

A,∆3
A,∆4

A),
and the output difference of the (i+ 3)-th round as (∆1

B ,∆2
B ,∆3

B ,∆4
B). We can express

the input/output differences and the four intermediate differences as the following system
of four linear equations:

∆1
A+ L1

i+2(∆W )+ L2
i+3(∆V )+ L3

i+4(∆U ) = ∆1
B

∆2
A+ L1

i+1(∆M )+ L2
i+2(∆W )+ L3

i+3(∆V ) = ∆2
B

∆3
A+ L2

i+1(∆M )+ L3
i+2(∆W )+ L1

i+4(∆U ) = ∆3
B

∆4
A+ L3

i+1(∆M )+ L1
i+3(∆V )+ L2

i+4(∆U ) = ∆4
B .

(1)

This system can be rewritten in the matrix form (∆M ,∆W ,∆V ,∆U )T = M4
−1 × (∆1

B −
∆1

A,∆2
B −∆2

A,∆3
B −∆3

A,∆4
B −∆4

A)T , where M4 is a 4× 4 matrix with entries of L’s or
zero.

Special Matching. When the difference pairs are three or less rounds apart, the number
of intermediate differences reduces, resulting in an over-defined system of linear equations
with four equations but less unknown variables. In such cases, not all input/output
difference pairs have solutions. Given the input and output, we further show how we can
check whether the two states can be connected, on an example of state values instead of
differences. Following the above notations, we denote the state value as (A1, A2, A3, A4)
at round i and (B1, B2, B3, B4) at round i+ 3, and use (M,W,V ) for the output of the F
functions at rounds i+ 1, i+ 2 and i+ 3. The system of equations reduces to:

A1+ L1
i+2(W )+ L2

i+3(V ) = B4
A2+ L1

i+1(M)+ L2
i+2(W )+ L3

i+3(V ) = B1
A3+ L2

i+1(M)+ L3
i+2(W )+ = B2

A4+ L3
i+1(M)+ L1

i+3(V ) = B3.

(2)

Similarly, the system can be rewritten in the matrix form: (B4 − A1, B1 − A2, B2 −
A3, B3 − A4)T = M3 × (M,W,V )T , where M3 is a 4× 3 matrix with entries of L’s and
zeros. Let us denote MU

3 a new 3× 3 matrix duplicating the first three rows of M3, and
MB

3 as the last row of M3. Then (M,W,V )T = MU
3
−1(B4 −A1, B1 −A2, B2 −A3)T and

B3 −A4 = MB
3 (M,W,V )T = MB

3 MU
3
−1(B4 −A1, B1 −A2, B2 −A3)T . Hence:

MB
3 MU

3
−1(B4, B1, B2)T −B3 = MB

3 MU
3
−1(A1, A2, A3)T −A4. (3)

Given two lists of states A and B, we can compute the two sides of the above equation
independently and store one side in a hash table, then match the other side by looking up
the hash table. Note, when the two states are less than three rounds apart, we will obtain
more equations. In general, x such equations for 4− x rounds achieve a filtering power of
xn
d bits.

The same argument applies when one matches the state difference, instead of values.
In fact, the same matrices and formulae as above can be used. Lastly, when the input
difference is given, one can also sort the output values (instead of differences), then filter
out those output pairs which are possible to be connected with the input difference.

Truncated Differential and b-δ-sequence. We can choose to use multiple ∆I and ∆O

to balance different aspects of the attack complexities. We use here a single choice of ∆I

and 2 n
8 choices of ∆O. Hence, we need to compute and store the b-δ-sequence for a total

of 2 n
8 + 3n

4 = 2 7n
8 differential characteristics.

In contrast to the previous analysis, the b-δ-sequence cannot be computed in any of
the branches after 13 rounds. It can be computed trivially in all the branches after 10
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rounds. However, only one branch will remain computable after the 11-th round, and none
for more rounds, since the internal values and differences of F functions are unknown for
Rounds 11 to 13. Hence, we compute the b-δ-sequence on the entire state only after the
10-th round and store them in the table T . We show later how these values can be used
for online matching.

f14
K14

L2
14

L1
14

L3
14

f15
K15

L2
15

L1
15

L3
15

f16
K16

L2
16

L1
16

L3
16

13-round distinguisher
∆O 0 0 0

0 ∆I 0 0

δ01 δ11 δ21 δ31

Figure 5: Key recovery for 16 rounds in the case k = n. The attack makes use of a 13-round
differential.

Data Collection, Key Recovery and Complexity. As depicted in Figure 5, the overall
attack penetrates 16 rounds: we append three rounds to the 13-round differential. We
collect sufficiently many ciphertext pairs by querying plaintext pairs with input difference
(0,∆I , 0, 0). To ensure the specific form of the output difference at the 13-th round can be
achieved, we need 2n−n

8 = 2 7n
8 plaintext pairs. As an intermediate step, for each of the 2 n

8

output differences that belong to the truncated differential, we compute all possible state
differences that can be achieved after three rounds. This results in around 2 n

8 · 2 3n
4 = 2 7n

8

output differences (at Round 16) that we store in a hash table TO. Each entry of this
table contains as well the corresponding input difference and the three output differences
from the round functions. The table is indexed by the output differences and is used in
the online phase to filter out wrong ciphertext pairs. Out of all 2 7n

8 ciphertext pairs, only
2 7n

8 + 7n
8 −n = 2 3n

4 are expected to match against the entries of TO. In addition, for each of
these pairs, from TO we obtain the output differences at Rounds 14, 15, and 16 (and thus
subkey suggestions) as well as the state difference after Round 13.

Further filtration makes use of the b-δ-sequence and the table T . For each of the
remaining 2 3n

4 pairs, we construct the b-δ-sequence of plaintexts and obtain a sequence of
ciphertexts. We decrypt the sequence for three backward rounds (with the use of three
suggested subkeys for each pair), and obtain a sequence of state values at the end of Round
13. We turn the sequence of state values into a sequence of state differences by computing
the difference between the sequence of values with the value of the state that corresponds
to the original pair (from the initial pair of plaintexts). By performing this task for all of
the filtered pair, we end up with 2 3n

4 sequences of state differences at Round 10. On the
other hand, in the table T we have another 2 7n

8 b-δ-sequence differences that correspond
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to the state differences at Round 13. The final step is to find a match between these two
sets. As we have only three rounds in between, the matching can be performed with the
use of (3) – obviously the right and the left side of the equation are independent, thus in a
meet-in-the-middle fashion, the match can be found. As the sequences are composed of
several differences, the match will be unique (i.e. even though we are matching on n

4 bits
per equation, there are b such equations, thus we can find the unique solution).

The overall complexities of the attack are 2 7n
8 for time, memory and data. Finally, the

required value of b can be estimated as follows. There are 2 3n
4 sequences at Round 13, and

2 7n
8 sequences at Round 10, and each value in the b-δ-sequence carries a filtering power of

n
4 bits. We therefore need 2b · n

4 >
3n
4 + 7n

8 , hence b = 3.

5.2 Generalization to More Branches and Larger Key Lengths
For a general expanding Feistels with d branches, the differential covers 4d − 3 rounds.
Similarly to the previously considered cases, the input difference passes d− 1 rounds with
probability one, and d − 1 additional rounds, each with a guess of a branch difference,
resulting in 2

(d−1)n
d possible differences after 2d− 2 rounds. The output difference, in the

backward direction, also passes d− 1 rounds with probability one, while the intermediate d
rounds can be determined completely. Hence, overall (d−1) + (d−1) +d+ (d−1) = 4d−3
round compose the differential, with 2

(d−1)n
d entries in the precomputed table T . To

balance the attack complexity, we use 2 n
2d choices for the input difference, resulting in

about 2
(2d−1)n

2d entries in T . In the key recovery phase, we append d−1 rounds at the end of
the differential. The remaining of the attack is similar to the attack of the previous section.
Note that in this case, we have a linear system of d equations, with d− 1 unknowns, but a
similar equation as (3) will still be able to provide a match between the sequences from the
table T and from the ciphertexts pairs. Overall, we can attack (4d− 3) + (d− 1) = 5d− 4
rounds with time, memory, and data complexities of 2

(2d−1)n
2d .

For a key length in bits k = n + rn
d , we can extend the differential by r additional

rounds and add r rounds in the online phase of the attack. The analysis is as in the
previous sections and we omit it. We only note that the complexities are increased by a
factor of 2 rn

d , resulting in overall complexities of 2n+ (2r−1)n
2 d time, memory and data for

an attack on 5d− 4 + 2r rounds.

6 Discussions: Comparison with Other Work

6.1 Comparison with Extended Generalized Feistel Network
At SAC 2013, Berger et al. proposed a new class of Feistel network called Extended
Generalized Feistel Network (EGFN) [BMT13]. EGFN enables a synthetic representation
of various generalized Feistel network including applications of non-linear functions from
one branch to several branches or from several to one. Besides, it also considers applications
of linear functions. For example, the network in Figure 6 with non-linear functions F1, F2
and linear functions L1, L2 can be represented using the following matrix.

L1 F1 1 0
F2 L2 0 1
1 0 0 0
0 1 0 0


Expanding Feistels with d− 1 functions that we discussed in 3a in Section 4 is exactly
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Non-linear 
layer:  ℱ 

Permutation 
layer:  𝒫 

𝐹1 

𝐹2 

Linear 
layer:  ℒ 

𝐿1 

𝐿2 

Figure 6: Extended Generalized Feistel Network.

an instantiation of EGFN, whose network can be represented by the following matrix.
f3 0 0 1
1 0 0 0
f1 1 0 0
f2 0 1 0


Therefore, our attacks can be directly applied to this instantiation of EGFN.

On the other hand, EGFN cannot represent network that applies a non-linear function
to the result of linear combination of branches or applies several different linear functions
after a non-linear function is applied. Thus, there is a gap between EGFN and the
contracting Feistel and expanding Feistels with d− 1 linear transformations discussed in
this paper. We think that filling this gap is a good future research direction. One approach
is (possible automatically) extending our attacks to any arbitrary matrix choice of EGFN.
Another approach is proposing yet another type of generalized Feistel that can deal with
the constructions discussed in this paper.

6.2 Detailed Comparison about SMS4

Because our attacks on contracting Feistel models the round function of SMS4, the attack
with 4-branches, k = n can be directly used to recover the key of SMS4. If applied, 16
rounds can be attacked with complexity of 2b × 23n/4, where b = 3 and n = 128, i.e. the
attack complexity is 299 operations. We note that this is a direct application of our generic
attack without any dedicated optimization. It will be interesting to compare the number
of attacked rounds between our MitM attack and other approaches. Summary of existing
attacks is given in Table 2.

The current best attacks are differential cryptanalysis and multiple linear cryptanalysis
reaching 23 rounds out of 32 rounds. In general, differential and linear cryptanalysis
and their variant such as boomerang or rectangle attacks well work for SMS4. Meanwhile,
other attacks such as integral, impossible differential, algebraic attacks are less effective
than differential and linear cryptanalysis. The efficiency of the MitM attack against SMS4
belongs to the latter case. However, it is still interesting to observe that the straightforward
application of our generic MitM attack is better than several approaches with a lot of
optimizations such as using relations of subkeys.

7 Conclusion
We have presented new generic attacks on classes of contracting and expanding Feistels.
Our results show that when we switch from Luby-Rackoff round function as analyzed
by Patarin et al. to more implementation-friendly round functions (such as keyless SP,
SPS, ARX, etc., surrounded by subkey additions), then contracting and expanding Feistels
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Table 2: Comparison of existing attacks against SMS4.

Attack Rounds Data Time Reference

Differential 21 2118 2126.6 [ZZW08]
Differential 22 2118 2125.7 [TKS08]
Differential 22 2117 2112.3 [ZWFS09]
Differential 23 2115 2124.3 [SWZ10]

Linear 22 2117 2120.4 [TKS08]
Linear 22 2117 2112.3 [ER08]

Multiple linear 22 2112 2124.2 [LGZ09]
Multiple linear 23 2126.6 2127.4 [CN11]

Boomerang 18 2120 2116.8 [TKS08]

Rectangle 14 2121.8 2116.7 [Lu07]
Rectangle 14 2107.9 2107.9 [TD08]
Rectangle 16 2125 2116 [ZZW08]
Rectangle 18 2124 2112.8 [TKS08]
Rectangle 18 2127 2103.8 [KWX13]

Integral 13 216 2114 [LJH+07]

Impossible differential 16 2105 † 2107 † [Lu07]
Impossible differential 16 2117.1 2132 ‡ [TD08]
Impossible differential 17 2117.1 2132 ‡ [Wan10]
Impossible differential 18 2117.1 2132 ‡ [SWX12]

Algebraic 7 − − [EDC09]

MitM 16 299 299 Ours

†: It was pointed out by [TD08] that those complexities are underestimated.
‡: Assuming that 2132 memory access is faster than 2128 encryptions.

are susceptible to MITM attacks on a much larger number of rounds. For example, in
the case of 4-branch contracting Feistels that have the same key and block lengths, this
results in an increase from 7 rounds to 16 rounds, while in the case of expanding Feistels,
from 11 rounds to 16 rounds. Moreover, our attacks penetrate even larger number of
rounds with the increase of the number of branches and with the increase of the key length.
For instance, SMS4-like cipher with a double key is vulnerable to a 24-round full subkey
recovery attack. In general, we have shown attacks on d-branch unbalanced Feistels with
k-bit keys on: (3 + 2 k

n )d− 4 rounds for contracting Feistels and expanding Feistels with
linear expansion, and (2 + 2 k

n )d− 3 rounds for the general case of expanding Feistels.
Although we have analyzed generic constructions without exploiting particular prop-

erties of the round functions, some of our attacks, in terms of penetrated rounds, are
on par with attacks on dedicated designs. For instance, several results on the block
cipher SMS4, including integral, rectangle and impossible differentials penetrate 13 to 16
rounds [Lu07, TD08, ZZW08]. Our generic attack on contracting Feistels and thus on
SMS4 reaches 16 rounds and fully recovers all the subkeys. In other words, in the same
chosen-plaintext framework, we can launch stronger attacks, without considering the round
function and the key schedule.

Additionally, the number of rounds required to achieve full diffusion is not correlated
to the number of rounds penetrated with our MITM attacks. Yanagihara and Iwata
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have found in [YI13] that four rounds are sufficient to achieve full diffusion in the case
of contracting and expanding Feistels with the number of branches d = 4. Even twice
this number is not sufficient to prevent the MITM attacks on these Feistels. Hence, the
designers should not estimate the resistance of the cipher based solely on the diffusion
property. Furthermore, the resistance cannot be proven even if the designers focus on some
of the differential properties of the Feistels. For instance, Yanagihara and Iwata show that
no differential characteristic can exist for seven rounds of contracting Feistels with d = 4.
Our 16-round MITM attack indicates that the security margin should be much larger.

As MITM have been the most successful attacks against balanced Feistels [GJNS14]
as well as against the class of unbalanced Feistels analyzed in this paper, it would be
interesting to understand their importance against other classes of Feistels, both generic
and dedicated. We leave as an open problem the analysis of Type 1, 2, 1.x Feistels [YI14],
more generalized class of unbalanced Feistels [BMT13] and designs based on dedicated
Feistels (such as CRUNCH [GIJ+08] and ARIRANG [CHK+08]).
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Figure 7: Differential on 13 rounds used in the 16-round attack. The XOR of two differences
∆A and ∆B is denoted by ∆AB , e.g. ∆0Y in round 5 represents ∆0⊕∆Y . This differential can be
decomposed in about 23n/4 distinct differential characteristics, parameterized by (∆X , ∆Y , ∆Z).
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Figure 9: Differential on 13 rounds used in the 16-round attack. This differential can be
decomposed in about 23n/4 distinct differential characteristics, parameterized by (∆X , ∆Y , ∆Z).
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