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Abstract. Generalized Feistel Schemes (GFS) are important components of symmetric ciphers,
which have been extensively researched in classical setting. However, the security evaluations of
GFS in quantum setting are rather scanty.
In this paper, we give more improved polynomial-time quantum distinguishers on Type-1 GFS in
quantum chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA)
setting. In qCPA setting, we give new quantum polynomial-time distinguishers on (3d − 3)-round
Type-1 GFS with branches d ≥ 3, which gain d− 2 more rounds than the previous distinguishers.

Hence, we could get better key-recovery attacks, whose time complexities gain a factor of 2
(d−2)n

2 .
In qCCA setting, we get (3d− 3)-round quantum distinguishers on Type-1 GFS, which gain d− 1
more rounds than the previous distinguishers.
In addition, we give some quantum attacks on CAST-256 block cipher. We find 12-round and 13-
round polynomial-time quantum distinguishers in qCPA and qCCA settings, respectively, while the
best previous one is only 7 rounds. Hence, we could derive quantum key-recovery attack on 19-round
CAST-256. While the best previous quantum key-recovery attack is on 16 rounds. When comparing
our quantum attacks with classical attacks, our result also reaches 16 rounds on CAST-256 with
128-bit key under a competitive complexity.
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1 Introduction

Feistel block ciphers are featured by the efficient Feistel network, whose encryption and decryption process
are based on similar operations. This design has been extensively researched [1–4] and adopted by many
standard block ciphers, such as DES, Triple-DES, Camellia [5], GOST [6]. Feistel network was also
generalized to form Generalized Feistel Networks (GFN), which adopts more branches and different
operations between the branches. At CRYPTO 1989, Zheng et al. [7] summarised some Generalized Feistel
Networks as 3 types GFN, namely Type-1, Type-2 and Type-3 GFN. In addition, some other Generalized
Feistel Networks were invented by Anderson and Biham [8], Lucks [9] and Schneier and Kelsey [10]. Many
important primitives employed GFN, such as block ciphers CAST-256 [11], CLEFIA [12], Simpira [13]
as well as hash functions MD5 and SHA-1. The Generalized Feistel Network inherits the advantages of
Feistel Network. Besides, it allows a small round function to construct a cipher with a larger block size,
which is beneficial to lightweight implementations. In this paper, we focus on Type-1 and Type-2 GFN.
As the important block cipher CAST-256 and CLEFIA adopt Type-1 and Type-2 GFN, respectively, we
also denote Type-1 GFN as CAST256-like GFN and denote Type-2 GFN as CLEFIA-like GFN.

Classically, Luby and Rackoff [14] proved that a three-round Feistel scheme is a secure pseudo-
random permutation. At Asiacrypt 2000, Moriai and Vaudenay [15] studied some Generalized Feistel
Schemes (GFS) and proved a 7-round 4-branch CAST256-like GFS and 5-round 4-branch CLEFIA-like
GFS are secure pseudo-random permutations. Later, Hoang and Rogaway [16] improved and generalised
the provable-security analysis of Type-1, Type-2 and Type-3 GFS. Generic attacks on those construc-
tions are also widely studied, such as birthday attack [17], meet-in-the-middle attack [18], differential
attacks [19,20], and Patarin et al.’s attacks [21–23].

Recently, the security evaluation of symmetric ciphers against quantum adversaries becomes a hot
topic in communities. In the 2000s, it was a common belief that quantum attacks on symmetric primitives
are of minor concern, as they mainly consist of employing Grover’s algorithm [24] to generically speed up
search (sub-)problems. However, Kuwakado and Morii [25] found the first the polynomial-time quantum
distinguisher on 3-round Feistel using quantum period finding algorithm, i.e., Simon’s algorithm [26].
Later, various quantum attacks against symmetric primitives were invented, such as key-recovery attacks
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against Even-Mansour constructions [27], forgery or key-recovery attacks against block cipher based
MACs [28,29], key-recovery attacks against FX constructions [30], and so on.

According to Zhandry’s work [31], there are two different models for quantum cryptanalysis against
symmetric ciphers, i.e., standard security (also denoted as Q1) and quantum security (also denoted as Q2).
In Q1 model, the adversaries could only collect data classically and processes them with local quantum
computers. While in Q2 model, the adversaries could query the oracle with quantum superpositions of
inputs, and obtain the corresponding superposition of outputs. The Q2 model is theoretically interesting.
Moreover, as stated by Ito et al. [32], “the threat of this attack model becomes significant if an adversary has
access to its white-box implementation. Because arbitrary classical circuit can be converted into quantum
one, the adversary can construct a quantum circuit from the classical source code given by the white-box
implementation”. In this paper, we assume that the adversaries come from Q2 model.

There are already some papers investigate Feistel schemes or GFS against Q2 adversaries. Besides
Kuwakado and Morii [25]’s work, Ito et al. [32] extended the quantum distinguisher to 4-round Feistel
construction under quantum chosen-ciphertext setting. Based on the Grover-meet-Simon algorithm by
Leander and May [30], Hosoyamada et al. [33] and Dong et al. [34] introduced some quantum key-recovery
attacks on Feistel schemes. Dong et al. [35] gave some quantum distinguishers and key-recovery attacks
on some GFS. Dong et al. [36] and Bonnetain et al. [37] studied 2K-/4K-Feistel schemes against quantum
slide attacks. Notably, Hosoyamada and Iwata [38] proved a tight quantum security bound of the 4-Round
Luby-Rackoff construction recently.

Table 1. Rounds of quantum distinguishers on Type-1 GFS

Source Setting r d = 3 d = 4 d = 5 d = 6 d = 7 ...

[35] qCPA 2d− 1 5 7 9 11 13 ...

Section 4.1 qCPA 3d− 3 6 9 12 15 18 ...

Section 4.2 qCCA 3d− 2 7 10 13 16 19 ...

Table 2. Key-recovery attacks on Type-1 GFS (d ≥ 3) in quantum settings

Source Distinguisher Key-recovery rounds Complexity (log) Trivial bound (log)

[35] 2d− 1 r ≥ d2 T + (r−d2+d−2)n
2

rn
2

Section 4.1 3d− 3 r ≥ d2 T + (r−d2)n
2

rn
2

T : ( 1
2
d2 − 3

2
d + 2) · n

2

Table 3. Quantum attacks on CAST-256†

Source Setting Distinguisher
Attacked rounds

r = 14 r = 15 r = 16 r = 17 r = 18 r = 19

[35] qCPA 7 274 292.5 2111 – – –

Section 5.1 qCPA 12 237 255.5 274 292.5 2111 –

Section 5.2 qCCA 13 218.5 237 255.5 274 292.5 2111

†: Note that for 256-bit key size version, the trivial bound is 2128 by Grover algorithm.

Our contribution

In this paper, we give some improve attacks on Type-1 Generalized Feistel Schemes (GFS) in Q2 model
with quantum chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA)
setting, respectively.

First, in qCPA setting, we give new quantum polynomial-time distinguishers on (3d−3)-round Type-
1 GFS with branches d ≥ 3, which gain d − 2 more rounds than the previous distinguishers. Based on
Leander and May’s algorithm [30], we could get better key-recovery attacks, whose time complexities gain

a factor of 2
(d−2)n

2 . Second, when considering qCCA setting, we get (3d−3)-round quantum distinguishers
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Table 4. Comparisons between the classical and quantum attacks on CAST-256

Source Key Attack round Data Time

[39] 128 boomerang 16 249.3 –

Section 5.2 128 qCCA 16 – 255.5

[40] 192 linear 24 2124.1 2156.52

Section 5.2 192 qCCA 17 – 274

[41] 256 multidim.ZC 28 298.8 2246.9

Section 5.2 256 qCCA 19 – 2111

on Type-1 GFS, which gain d− 1 more rounds than the previous distinguishers. The distinguishers and
the key-recovery attacks on Type-1 GFS are summarized in Table 1 and 2.

In addition, we also evaluate CAST-256 block cipher in qCPA and qCCA settings. We find 12-round
and 13-round polynomial-time quantum distinguishers in qCPA and qCCA settings, respectively. Note
that the best previous one is 7 rounds. Hence, we could derive quantum key-recovery attack on 19-
round CAST-256. While the best previous quantum key-recovery attack is on 16 rounds. The results are
summarized in Table 3. We also compare our quantum attacks with classical attacks in Table 4. When
the key size of CAST-256 is 128, our result also reaches 16 rounds with a competitive complexity.

2 Notations

x0j the jth branch in the input;
xij the jth branch in the output of ith round, i ≥ 1, j ≥ 1;
d the branch number of CAST256-like GFS;
2d the branch number of RC6/CLEFIA-like GFS;
Ri the ith (i ≥ 1) round function of Type-1 (CAST256-like) GFS, the input and output are n-bit

string, n-bit key is absorbed by Ri;
Rij the jth (1 ≤ j ≤ d) round function in the ith (i ≥ 1) round function of Type-2 ( RC6/CLEFIA

-like) GFS, the input and output are n-bit string, n-bit key is absorbed by Rij .

3 Related works

3.1 Simon’s algorithm

Given a function f {0, 1}n → {0, 1}n, that is known to be invariant under some n-bit XOR period a, find
a. In other words, find a by given: f(x) = f(y)↔ x⊕ y ∈ {0n, a}.

Classically, the optimal time to solve the problem is O(2n/2). However, Simon [26] gives a quantum
algorithm that provides exponential speedup and only requires O(n) quantum queries to find a. The
algorithm includes five quantum steps:

I. Initializing two n-bit quantum registers to state |0〉⊗n|0〉⊗n, one applies Hadamard transform to the
first register to attain an equal superposition:

H⊗n|0〉|0〉 =
1√
2n

∑

x∈{0,1}n
|x〉|0〉. (1)

II. A quantum query to the function f maps this to the state

1√
2n

∑

x∈{0,1}n
|x〉|f(x)〉.

III. Measuring the second register, the first register collapses to the state:

1√
2

(|z〉+ |z ⊕ a〉).

IV. Applying Hadamard transform to the first register, we get:

1√
2

1√
2n

∑

y∈{0,1}n
(−1)

y·z
(1 + (−1)

y·a
)|y〉.
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V. The vectors y such that y ·a = 1 have amplitude 0. Hence, measuring the state yields a value y that
y · a = 0.

Repeat O(n) times, one obtains a by solving a system of linear equations. However, Kaplan et al. [28]
and Santoli [42] showed that Simon’s promise may be weakened at the cost of computing many vectors y
that y · a = 0. At Asiacrypt 2017, Leander and May [30] assume that f(x) behaves as a random periodic
function with period a, and show that any function value f(x) has only two preimages with probability
at least 1

2 . Moreover, they show that l = 2(n+
√
n) repetitions of the Simon’s algorithm are sufficient to

compute a. The probability is greater than 4
5 that it contains at least n− 1 linearly independent vectors

y that are orthogonal to a (Lemma 4, [30]).
At ISIT 2010, Kuwakado and Morii [25] introduced a quantum distinguish attack on 3-round Feistel

scheme using Simon’s algorithm. As shown in Figure 1, α0 and α1 are arbitrary constants:

f : {0, 1} × {0, 1}n → {0, 1}n
b, x 7→ αb ⊕ x32, where (x31, x

3
2) = E(αb, x),

f(b, x) = R2(R1(αb)⊕ x)).

f is periodic function that f(b, x) = f(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)). Then using Simon’s algorithm, one
can get the period s = 1||R1(α0)⊕R1(α1) in polynomial time.
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Fig. 1. 3-round quantum distinguisher

3.2 Hosoyamada and Sasaki’s Method to Truncate Outputs of Quantum Oracles

As shown in Figure 1, in Kuwakado and Morii’s quantum distinguisher, one has to truncate the output
2n bits of E to obtain the right half n bits, namely x32. However, Kaplan et al. [28] and Hosoyamada et
al. [33] pointed out that in quantum setting it is not trivial to truncated the entangled 2n qubits to n
qubits, since the usual truncation destroys entanglements.

At SCN 2018, Hosoyamada and Sasaki [33] introduced a method to simulate truncation of output-
s of quantum oracles without destroying quantum entanglements. Let O : |x〉|y〉|z〉|w〉 7→ |x〉|y〉|z ⊕
OL(x, y)〉|w⊕OR(x, y)〉 be the encryption oracle E, where OL, OR denote the left n bits and right n bits of
the complete encryption, respectively. The goal is to simulate oracleOR : |x〉|y〉|w〉 7→ |x〉|y〉|w⊕OR(x, y)〉.
Hosoyamada and Sasaki first simulate a tweaked OR, i.e., O′R : |x〉|y〉|w〉|0n〉 7→ |x〉|y〉|w⊕OR(x, y)〉|0n〉.
Let |+〉 := Hn|0n〉, where Hn is an n-bit Hadamard gate. Thus, O|x〉|y〉|+〉|w〉 7→ |x〉|y〉|+〉|w⊕OR(x, y)〉.
Then, they define O′R := (I⊗Hn)◦Swap◦O ◦Swap◦ (I⊗Hn), where Swap is an operator that swaps last
2n-qubits: |x〉|y〉|z〉|w〉 7→ |x〉|y〉|w〉|z〉. So O′R|x〉|y〉|w〉|0n〉 = |x〉|y〉|w ⊕ OR(x, y)〉|0n〉. Hence, OR could
be simulated given the complete encryption oracle O using ancilla qubits.

3.3 Grover’s algorithm

Given an unordered set of N = 2n items, Grover’s algorithm is to find the unique element that satis-
fies some condition. In other words, given a quantum oracle O which performs the operation O|x〉 =
(−1)f(x)|x〉, where f(x) = 0 for all 0 ≤ x < 2n except x0, for which f(x0) = 1, find x0. While the best
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classical algorithm for a search over unordered data requires O(N) time, Grover’s algorithm performs
the search on a quantum computer in only O(

√
N) operations, a quadratic speedup. The steps of the

algorithm are as follows:

1. Initialization of a n-bit register |0〉⊗n. Apply the Hadamard transform to the first register to attain
an equal superposition that can be given as follows:

H⊗n|0〉 =
1√
2n

∑

x∈{0,1}n
|x〉 = |ϕ〉. (2)

2. Construct an oracle O: |x〉 → (−1)f(x)|x〉, where f(x) = 1 if x is the correct state; otherwise, f(x) = 0.
3. Define the Grover iteration as (2|ϕ〉〈ϕ| − I)O, and apply it R ≈ π

4

√
2n times:

[(2|ϕ〉〈ϕ| − I)O]R|ϕ〉 ≈ |x0〉.

4. return x0.

3.4 Combining Grover and Simon’s algorithms

oracle. However, in the quantum CPA-model the scheme is completely insecure.
The main idea of [18] was to consider the function

f(x) := EncEM (x) + P (x) = P (x+ k1) + k2 + P (x),

where + is the bitwise XOR.

As this function fulfills f(x) = f(x + k1) for all x, one can use Simon’s
quantum algorithm [7, 25], that allows to compute the unknown period k1 of
function f in linear time. Once k1 is computed, computing k2 is trivial even on a
classical computer. It should be pointed out that Kaplan et al. [13] and Santoli,
Schaffner [23] solved the technical issue of dealing with a function that does not
fulfill Simon’s promise, namely that f(x) = f(y) iff y ∈ {x, x+ k1}, see Section 2
for more details.

The same idea was then used by Kaplan et al. [13] (and independently in [23])
to construct polynomial time quantum-CPA attacks on many modes of operations.
Kaplan et al. further showed how slide attacks can profit from using a quantum
computer.

The natural question that arises from the attacks on a generic cipher using
Grover’s algorithm and the attack on the Even-Mansour scheme using Simon’s
algorithm is the following: How secure is the FX construction against quantum
adversaries?

This construction, proposed by Killian and Rogaway in [15, 16], is an elegant
way of extending the key-length of a given block cipher and is the natural
combination of the Even-Mansour construction and a generic cipher. For this, we
assume we are given a (secure) block cipher E, encrypting n bit messages under
an m bit key k0, and we introduce two more n bit keys k1 and k2 as pre- and
post-whitening keys. The new block cipher is given as

Enc(x) = Ek0(x+ k1) + k2.

m

k1

Ek0

k2

c

From an efficiency point of view, the overhead of this modification is negligible.
Moreover, in an idealized model, one can prove that (using classical computers)
in order to attack the FX construction scheme, the success probability of an

attacker is bounded by q2

2n+m , where q is the number of queries to the encryption
scheme and to the underlying block cipher.

Initially, when considering Grover’s algorithm only, this scheme seems to
provide significantly more resistance against quantum computers, since now
(k0, k1, k2) ∈ Fm+2n

2 define the key space. Moreover, Simon’s algorithm does not
apply either, as the function Enc(x) +Ek(x) is periodic only for the correct guess
of k = k0.

3

Fig. 2. FX constructions

At Asiacrypt 2017, Leander and May [30] gave a quantum key-recovery attack on FX-construction
shown in Figure 2: Enc(x) = Ek0(x+ k1) + k2. They introduce the function f(k, x) = Enc(x) +Ek(x) =
Ek0(x + k1) + k2 + Ek(x). For the correct key guess k = k0, we have f(k, x) = f(k, x + k1) for all x.
However, for k 6= k0, f(k, ·) is not periodic. They combine Simon and Grover algorithm to attack FX
ciphers in the quantum-CPA model with complexity roughly 232.

Based on Leander and May’s work, Hosoyamada and Sasaki [33], and Dong and Wang [34] appended
several rounds to the 3-round Feistel distinguisher in Figure 1 to recover the keys of an r-round Feistel
cipher in time O(2(r−3)n/2). See the previous papers [33,34] for details.

3.5 Ito et al.’s attack on Feistel cipher

At RSA 2019, Ito et al.’s [32] gives new quantum distinguisher on 4-round Feistel cipher in quantum
chosen-ciphertext attack (qCCA) setting.

fO(β x)

Fig. 7. The function fO with FF4 and FF−1
4 , where O is FF4.

Zβ x

fO(β x)

Fig. 8. A circuit that is equivalent to fO.

If O is FF4, then by connecting FF4 and FF−14 , our function fO can be
illustrated as in Fig. 7. We observe that F4 has no effect on the computation of
fO, and F1 in FF−14 does not contribute to fO. They are shown in gray in Fig. 7.
We see that Fig. 7 is equivalent to Fig. 8, and the function fO is described as

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(x⊕ F1(αβ))

⊕ F2

(
x⊕ F1(αβ)⊕ F3(αβ ⊕ F2(x⊕ F1(αβ)))

⊕ F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(x⊕ F1(αβ)))
)
. (7)

Our main observation is the following lemma.

Lemma 2. If O = FF4, fO satisfies fO(β ‖ x) = fO(β ⊕ 1 ‖ x ⊕ F1(α0) ⊕
F1(α1)). That is, fO has the period s = 1 ‖ F1(α0)⊕ F1(α1).

Proof. Let Zβ‖x = x ⊕ F1(αβ) (See Fig. 8). We prove the lemma based on two
claims. The first claim is that Zβ‖x already has the period s = 1 ‖ F1(α0) ⊕
F1(α1), and the second claim is that the subsequent computation of fO does not
depend on β nor x.

First, Zβ‖x has the period s, since

Z(β‖x)⊕s = x⊕ F1(α0)⊕ F1(α1)⊕ F1(αβ⊕1)

= x⊕ F1(αβ)

= Zβ‖x.

We next show that the subsequent computation of fO does not depend on β
nor x. If we describe fO in equation (7) by using Zβ‖x, then we obtain

fO(β ‖ x) = α0 ⊕ α1 ⊕ F2(Zβ‖x)

14

Fig. 3. Ito et al.’s 4-round quantum distinguisher on Feistel [32]

As shown in Figure 3, plaintext (αβ , x) is first encrypted by 4-round Feistel to get the ciphertext
(d, c), then a new tweaked ciphertext (d ⊕ α0 ⊕ α1, c) is decrypted by the inverse 4-round Feistel to get
new plaintext. Then, Ito et al. defined function:
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fO = α0 ⊕ α1 ⊕ F2(x⊕ F1(αβ))
⊕F2(x⊕ F1(αβ)⊕ F3(αβ ⊕ F2(x⊕ F1(αβ))))
⊕F3(αβ ⊕ α0 ⊕ α1 ⊕ F2(x⊕ F1(αβ))),

(3)

where β is 0 or 1, and αβ is constant. Hence, fO has period s = 1‖F1(α0)⊕ F1(α1).

Combining with Leander and May’s algorithm [30], Ito et al. gave key-recovery attacks on Feistel
using the new distinguisher. In addition, in the key-recovery attacks, they did not to actually compute
the period of fO, instead, they distinguish f by checking the dimension of the space spanned by the
vectors given by the Simon’s algorithm. Thus, there will not be a problem if there are several partial
periods or periods other than s because it distinguishes f without computing s. In this paper, we also
use this method to launch our key-recovery attacks on Type-1 GFS and CAST-256. For more details, we
refer the readers to Ito et al.’s paper [32].

4 Quantum attack on Type-1 GFS

Ri ...

...

-1

1

ix -1

2

ix -1

3

ix -1i

dx

1

ix 2

ix 3

ix i

dx

Fig. 4. Round i of Type-1 GFS with d branches

As shown in Figure 4, the input of the Type-1 cipher is divided into d branches, i.e. x0j for 1 ≤ j ≤ d,

each of which has n-bit, so the blocksize is d× n. Ri is the round function that absorbs n-bit secret key
ki and n-bit input.

Dong et al. [35] first considered some quantum distinguishers and key-recovery attacks on Type-1
GFS. In this section, we give some improved polynomial-time quantum distinguishers on Type-1 GFS in
quantum chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA) setting,
respectively. Based on those distinguishers, some improved key-recovery attacks are achieved.

4.1 Quantum distinguishers on Type-1 GFS in qCPA setting

For the sake of clarity, we first give an example attack on Type-1 with d = 4, then extend to any case
with d ≥ 3. After that, the key-recovery attacks are given.

Example case of Type-1 with d = 4 in qCPA setting When d = 4, we have a 9-round quantum
distinguisher as shown in Figure 5.

The encryption process of 9-round Type-1 GFS is E(x01, x
0
2, αb, x) = (x91, x

9
2, x

9
3, x

9
4), where x01 and x02

are constants and b = 0, 1, α0, α1 are also constants, α0 6= α1. Suppose h(αb) = R3(R2(R1(x01)⊕x02)⊕αb),
Define f(b, x) = x92 ⊕ αb = R6(R5(R4(h(αb)⊕ x)⊕ x01)⊕R1(x01)⊕ x02)⊕R2(R1(x01)⊕ x02).

Hence, we deduce

f(0, x) = R6(R5(R4(h(α0)⊕ x)⊕ x01)⊕R1(x01)⊕ x02)⊕R2(R1(x01)⊕ x02)
= f(1, x⊕ h(α0)⊕ h(α1)),

f(1, x) = R6(R5(R4(h(α1)⊕ x)⊕ x01)⊕R1(x01)⊕ x02)⊕R2(R1(x01)⊕ x02)
= f(0, x⊕ h(α0)⊕ h(α1)).

(4)

Thus, f(b, x) = f(b⊕ 1, x⊕ h(α0)⊕ h(α1)), f(b, x) is a function with period s = 1‖h(α0)⊕ h(α1).
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Fig. 5. 9-round distinguisher on Type-1 GFS with d = 4
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Extending to any case of Type-1 with d ≥ 3 in qCPA setting We construct the quantum
distinguisher on the (3d−3)-round cipher. The intermediate state after the ith round is xij for 1 ≤ j ≤ d,

especially the output of the (3d− 3)th round is denoted as x3d−31 ||x3d−32 ||...||x3d−3d .
The encryption process of (3d − 3)-round Type-1 GFS is E(x01, ..., x

0
d−2, αb, x), where b = 0, 1, and

α0, α1 are arbitrary constants, α0 6= α1, and x0d = x. All remaining branches x01, x
0
2, ..., x

0
d−2 are constants.

Similar to the attack on case d = 4, we also define h(αb) = Rd−1(Rd−2(...R3(R2(R1(x01)⊕x02)⊕x03)...⊕
x0d−2)⊕ αb).

Then, we define

f(b, x) = x3d−32 ⊕ αb = R2d−2(R2d−3(...(h(αb)⊕ x)...)⊕Rd−3(. . . (R2(R1(x01)⊕ x02)⊕ x03 . . .)⊕ x0d−2))

⊕Rd−2(Rd−3(. . . (R2(R1(x01)⊕ x02)⊕ x03) . . .)⊕ x0d−2)

(5)

With simple computation, we deduce f(b, x) = f(b ⊕ 1, x ⊕ g(α0) ⊕ g(α1)). Therefore, function f
satisfies Simon’s promise with s = 1||g(α0)⊕g(α1). Thanks to Hosoyamada and Sasaki’s work [33] shown
in Sect. 3.2, we could truncate outputs of quantum oracles with ease, and hence f could be implemented
as quantum oracle. The period s of f could be found using Simon’s algorithm.
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Fig. 6. 16-round quantum key-recovery attack on Type-1 GFS with d = 4

Quantum key-recovery attacks on Type-1 GFS in qCPA setting We give an example key-recovery
attack on Type-1 GFS with d = 4 branches. Following the similar idea that combines Simon’s and Grover’s
algorithms to attack Feistel structure [33, 34], we append 7 rounds under the 9-round distinguisher to
launch the attack. As shown in Figure 6, there are 4n-bit key needed to be guessed by Grover’s algorithm
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to compute x92, which are highlighted in the red boxes of round functions. Note that, here we do not
need Hosoyamada and Sasaki’s method to truncate the output of encryption oracle. We just need to
implement a function hD(k10, k13, k14, k16, x

16
1 , x

16
2 , x

16
3 , x

16
4 ) = x92, where k10, k13, k14, k16 are round keys

in R10, R13, R14, R16, , respectively. hD decrypts (x161 , x
16
2 , x

16
3 , x

16
4 ) to get x92 by guessing k10, k13, k14, k16.

Hence, the 16-round quantum key-recovery attack needs about 22n queries and O(n2) qubits. If we
attack r > 16 rounds, we need guess (r − 12)n key bits by Grover’s algorithm. Thus, the the time

complexity is 2
(r−12)n

2 .
Generally, for d ≥ 3, we could get (3d − 3)-round quantum distinguisher. We append d2 − 3d + 3

rounds under the quantum distinguisher to attack r0 = d2 rounds Type-1 GFS. Similarly, we need to guess
( 1
2d

2− 3
2d+2)n-bit key by Grover’s algorithm. Thus, for r0 rounds, the time complexity is ( 1

2d
2− 3

2d+2)· n2
queries, and O(n2) qubits are needed. If we attack r > r0 rounds, we need guess ( 1

2d
2− 3

2d+2)n+(r−r0)n

key bits by Grover’s algorithm. Thus, the time complexity is 2(
1
2d

2− 3
2d+2)·n2 +

(r−r0)n
2 .

4.2 Quantum distinguishers on Type-1 GFS in qCCA setting

Example case of Type-1 with d = 4 in qCCA setting When d = 4, we get 10-round quantum
distinguisher as shown in Figure 7. Note that, for simplicity, we omit the last swap function.

The encryption process is E(x01, x
0
2, αb, x) = (x101 , x

10
2 , x

10
3 , x

10
4 ), where b = 0, 1, and α0, α1 are arbitrary

constants, α0 6= α1, and x04 = x. The branches x01, x
0
2 are constants. The decryption is D(x101 , x

10
2 ⊕ α0 ⊕

α1, x
10
3 , x

10
4 ) = (y01 , y

0
2 , y

0
3 , y

0
4), note that as shown in Figure 7, many internal states in the decryption

phase (right side of Figure 7) are the same to that in the encryption phase (left side of Figure 7).
In the right side of Figure 7, following the red lines and blue lines, we define f(b, x) = y01 =

R4(R7(g(b, x)⊕ α0 ⊕ α1)⊕R7(g(b, x))⊕ x62)⊕ x72, where g(b, x) = x92.
Then we try to compute the ANF of g(b, x). We first denote h(αb) = R3(R2(R1(x01) ⊕ x02) ⊕ αb).

Then, g(b, x) = x92 = R6(R5(R4(h(αb)⊕x)⊕x01)⊕R1(x01)⊕x02)⊕R2(R1(x01)⊕x02)⊕αb. Through simple
computation, we could deduce g(0, x) ⊕ α0 ⊕ α1 = g(1, x ⊕ h(α0) ⊕ h(α1)) and g(1, x) ⊕ α0 ⊕ α1 =
g(0, x⊕ h(α0)⊕ h(α1)).

Hence, g′(b, x) = R7(g(b, x) ⊕ α0 ⊕ α1) ⊕ R7(g(b, x)) is periodic, and the period is 1||h(α0) ⊕ h(α1).
Then, we rewrite f(b, x) = R4(g′(b, x) ⊕ x62) ⊕ x72. Since x62 = h(αb) ⊕ x22 = h(αb) ⊕ x holds, x62 is a
function on (b, x) with the same period to g′(b, x), i.e. the period is also 1||h(α0) ⊕ h(α1). Meanwhile,
x72 = R4(h(αb)⊕ x)⊕ x01, thus, it also has the same period 1||h(α0)⊕ h(α1).

So f(b, x) is a function with period 1||h(α0)⊕ h(α1).

Extending to any case of Type-1 with d ≥ 3 in qCCA setting We construct the new quantum
distinguisher on the (3d−2)-round cipher. The intermediate state after the ith round is xij for 1 ≤ j ≤ d,

especially the output of the (3d−2)th round is denoted as x3d−21 ‖x3d−22 ‖...‖x3d−2d . The encryption process

is E(x01, x
0
2, ..., x

0
d−2, αb, x) = (x3d−21 , x3d−22 , ..., x3d−2d ), where b = 0, 1, and α0, α1 are arbitrary constants,

α0 6= α1, and x0d = x. The branches x01, x
0
2, ..., x

0
d−2 are constants. So we also denote encryption process

as E(αb, x) for simplicity. The decryption is D(x3d−21 , x3d−22 ⊕ α0 ⊕ α1, ..., x
3d−2
d ) = (y01 , y

0
2 , ..., y

0
d).

Define g(b, x):

g(b, x) = x3d−32 = R2d−2(. . . (Rd+1(Rd(Rd−1(. . . (R2(R1(x01)⊕ x02)⊕ x03) . . .⊕ αb)⊕ x)

⊕ x01)⊕R1(x01)⊕ x02) . . .⊕Rd−3(. . . (R2(R1(x01)⊕ x02)⊕ x03) . . .⊕ x0d−3)⊕ x0d−2)

⊕Rd−2(Rd−3(. . . (R2(R1(x01)⊕ x02)⊕ x03) . . .⊕ x0d−3)⊕ x0d−2)⊕ αb.
(6)

We also take the case d = 4 as an example shown in Figure 7, and we follow the red lines in the encryption
process, and get

x3d−2i = x3d−3i = R2d−4+i(x3d−3i−1 )⊕ x2d−5+i2 , 3 ≤ i ≤ d,
x3d−21 = x3d−31 = R3d−3(x3d−3d )⊕ x3d−42 ,

x3d−22 = R3d−2(x3d−21 )⊕ x3d−32 .

(7)

Following the red lines in the decryption process of Figure 7, and get

y01 = Rd(R2d−1(x3d−32 ⊕ α0 ⊕ α1)⊕ x3d−23 )⊕R2d(x3d−23 )⊕ x3d−24 . (8)

We construct function f as following:
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Fig. 7. 10-round distinguisher on CAST256-like GFS with d = 4
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f : {0, 1} × {0, 1}n → {0, 1}n
b, x 7→ y01 , where (x3d−21 , x3d−22 , ..., x3d−2d ) = E(αb, x),

(y01 , y
0
2 , ..., y

0
d) = D(x3d−21 , x3d−22 ⊕ α0 ⊕ α1, ..., x

3d−2
d ),

f(b, x) = Rd(R2d−1(x3d−32 ⊕ α0 ⊕ α1)⊕ x3d−23 )⊕R2d(x3d−23 )⊕ x3d−24 .

f is derived in two steps: first, encrypting (x01, x
0
2, ..., x

0
d−2, αb, x) to get the cipher (x3d−21 , x3d−22 , ..., x3d−2d ),

second decrypting (x3d−21 , x3d−22 ⊕ α0 ⊕ α1, ..., x
3d−2
d ) to get the plaintext (y01 , y

0
2 , ..., y

0
d), and we define

f = y01 .
Define h(αb) = Rd−1(Rd−2(Rd−3(. . . (R2(R1(x01) ⊕ x02) ⊕ x03) . . . ⊕ x0d−3) ⊕ x0d−2) ⊕ αb). As shown in

equation (6), we can know g(0, x) = g(1, x⊕h(α0)⊕h(α1))⊕α0⊕α1, and g(0, x)⊕α0⊕α1 = g(1, x⊕h(α0)⊕
h(α1)). So g(b, x) has period 1||h(α0) ⊕ h(α1). Meanwhile, x2d−22 = Rd−1(Rd−2(Rd−3(. . . (R2(R1(x01) ⊕
x02)⊕x03) . . .⊕x0d−3)⊕x0d−2)⊕αb)⊕x = h(αb)⊕x, we get the period of x2d−22 is 1||h(α0)⊕h(α1). Similarly, in

f function, according to the first equation of equations (7), R2d(x3d−23 )⊕x3d−24 = x2d−12 = Rd(x2d−22 )⊕x01
has the same period. Moreover, in f function, through equation (7), R2d−1(x3d−32 ⊕ α0 ⊕ α1)⊕ x3d−23 =
R2d−1(x3d−32 ⊕ α0 ⊕ α1)⊕R2d−1(x3d−32 )⊕ x2d−22 = R2d−1(g(b, x)⊕ α0 ⊕ α1)⊕R2d−1(g(b, x))⊕ x2d−22 is
periodic. Hence, f(b, x) = f(b⊕ 1, x⊕ h(α0)⊕ h(α1)), the period s = 1||h(α0)⊕ h(α1),

Quantum key-recovery attacks on Type-1 GFS in qCCA setting We add r−3d+2 rounds before
the (3d− 2)-round distinguisher to launch the key-recovery attack by Leander and May’s algorithm [30].

The attack procedures are as follows:

1. Run the quantum circuit that takes the intermediate state value (xr−3d+2
1 , xr−3d+2

2 , ..., xr−3d+2
d−2 , αb, x)

after the first (r − 3d + 2) rounds and the subkeys for the first (r − 3d + 2) rounds as input, and
decrypt the first (r− 3d+ 2) rounds get the plaintext. Then use the encryption oracle E encrypt the
plaintext (x01, x

0
2, ..., x

0
d) to get the ciphertext (xr1, x

r
2, ..., x

r
d).

2. Run the quantum circuit, which takes the ciphertext (xr1, x
r
2 ⊕ α0 ⊕ α1, ..., x

r
d) and the (r − 3d + 2)

rounds subkeys as input. Make quantum decryption query D of the ciphertext to get the plaintext,
and use the the plaintext and subkeys to decrypt the last (r− 3d+ 2) rounds to get the intermediate
state (yr−3d+2

1 , yr−3d+2
2 , ..., yr−3d+2

d ).
3. Guess the subkeys of the first (r−3d+2) rounds. For each guessed subkey, use the the (3d−2) rounds

distinguisher in E and D to check its correctness. If the distinguisher is a periodic permutation, then
judge that the guess is correct. Otherwise judge that the guess is wrong.

For the r (r > 3d − 2) round, there are (r − 3d + 2)n-bit key needed to be guessed by Grover’s

algorithm. So the r-round quantum key-recovery attack needs about 2
r−3d+2

2 n time and O(n2) qubits.

5 Quantum attacks on CAST-256 block cipher

CAST-256 block cipher is a first-round AES candidate. It is composed of 48 rounds, including 24 rounds
Type-1 GFN and 24 rounds inverse Type-1 GFN, as shown in Figure 8, which is composed of 9-round
Type-1 GFN and 3-round inverse Type-1 GFN. The block size is 128 bits, which are divided into four
32-bit branches and the key size can be 128, 192 or 256 bits. Each round function absorbs 37-bit subkey.
Our attack is quit general and does not need any other details of the cipher.

In this section, we give two quantum attacks on CAST-256 block cipher in qCPA setting and qCCA
setting, respectively.

5.1 Quantum attack on CAST-256 in qCPA setting

As shown in Figure 8, we construct 12-round quantum distinguisher on CAST-256, which includes 9-
round Type-1 GFN and 3-round inverse Type-1 GFN. The distinguisher is very similar to the 9-round
distinguisher in Section 4.1.

Suppose h(αb) = R3(R2(R1(x01)⊕x02)⊕αb), Define f(b, x) = x122 ⊕αb = R6(R5(R4(h(αb)⊕x)⊕x01)⊕
R1(x01)⊕ x02)⊕ R2(R1(x01)⊕ x02). As shown in Section 4.1, f(b, x) = f(b⊕ 1, x⊕ h(α0)⊕ h(α1)), f(b, x)
is a function with period s = 1‖h(α0)⊕ h(α1).

As shown in Figure 9, when attacking r (r > 12) rounds CAST-256, we have to guess all the subkeys

in the last r − 12 rounds, i.e. (r − 12)× 37-bit key. Thus, about 2
(r−12)×37

2 = 218.5r−222 Grover iterations
are needed.
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5.2 Quantum attack on CAST-256 in qCCA setting

We construct a 13-round quantum distinguisher in qCCA setting as shown in Figure 10. The distinguisher
is very similar to the 10-round distinguisher of Type-1 GFS in Section 4.2.

The encryption process is E(x01, x
0
2, αb, x) = (x131 , x

13
2 , x

13
3 , x

13
4 ), where b = 0, 1, and α0, α1 are arbitrary

constants, α0 6= α1, and x04 = x. The branches x01, x
0
2 are constants. The decryption isD(x131 , x

13
2 , x

13
3 , x

13
4 ⊕

α0⊕α1) = (y01 , y
0
2 , y

0
3 , y

0
4). Note that as shown in Figure 10, many internal states in the decryption phase

(right side of Figure 10) are the same to that in the encryption phase (left side of Figure 10).
In the right side of Figure 10, following the red lines and blue lines, we define f(b, x) = y01 =

R4(R7(g(b, x) ⊕ α0 ⊕ α1) ⊕ x71) ⊕ x72, where g(b, x) = x92. From the left side of Figure 10, we find
x71 = R7(g(b, x))⊕ x62.

Then we try to compute the ANF of g(b, x). We first denote h(αb) = R3(R2(R1(x01)⊕x02)⊕αb). Then,
g(b, x) = x92 = R6(R5(R4(h(αb)⊕x)⊕x01)⊕R1(x01)⊕x02)⊕R2(R1(x01)⊕x02)⊕αb. Similar to Section 4.2,
g(b, x) is a function with period 1||h(α0)⊕h(α1). Meanwhile, x71 = R7(g(b, x))⊕x62 = R7(g(b, x))⊕h(αb)⊕x
is also has period 1||h(α0)⊕ h(α1).

Hence, g′(b, x) = R7(g(b, x)⊕α0⊕α1)⊕x71 is also periodic. Then, we rewrite f(b, x) = R4(g′(b, x))⊕x72.
Since, x72 = R4(h(αb)⊕x)⊕x01, thus, it also has the same period 1||h(α0)⊕h(α1). So f(b, x) is a function
with period 1||h(α0)⊕ h(α1).

Similar to the key-recovery attack in Section 4.2, when attacking r (r > 13) rounds CAST-256 using
the 13-round distinguisher, we have to guess all the subkeys in the first r−13 rounds, i.e. (r−13)×37-bit

key. Thus, about 2
(r−13)×37

2 = 218.5r−240.5 Grover iterations are needed.

6 Conclusion

In this paper, we give more improved polynomial-time quantum distinguishers on Type-1 GFS in quantum
chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA) setting. First, we
give new qCPA quantum distinguishers on (3d− 3)-round Type-1 GFS with branches d ≥ 3, which gain
d−2 more rounds than the previous distinguishers. Hence, we could get better key-recovery attacks, whose

time complexities gain a factor of 2
(d−2)n

2 . We also get (3d− 3)-round qCCA quantum distinguishers on
Type-1 GFS, which gain d− 1 more rounds than the previous distinguishers. In addition, we also discuss
some quantum attacks on CAST-256 block cipher.
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21. Jacques Patarin, Valérie Nachef, and Côme Berbain. Generic attacks on unbalanced feistel schemes with
contracting functions. In Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on
the Theory and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006,
Proceedings, pages 396–411, 2006.
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