65 research outputs found

    Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling

    Get PDF
    Objectives: Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities and restore amputees' capacity of moving and interacting with the environment. Despite recent advances in biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered by the lack of intuitive and robust man-machine interfaces. Approach: Based on authors' developments, this work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual's phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With respect to current approaches based on machine learning, our method employs explicit representations of the musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a subspace contained within the broader operational space of an individual's musculoskeletal system. Results: Our results show that this constraint makes the approach applicable to real-world scenarios and robust to movement artefacts. This stems from the fact that any control command must always exist within the musculoskeletal model operational space and be therefore physiologically plausible. The approach was effective both on intact-limbed individuals and a transradial amputee displaying robust online control of multi-functional prostheses across a large repertoire of challenging tasks. Significance: The development and translation of man-machine interfaces that account for an individual's neuromusculoskeletal system creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be restored or replaced via biomimetic wearable assistive technologies

    Concept of an exoskeleton for industrial applications with modulated impedance based on Electromyographic signal recorded from the operator

    Get PDF
    The introduction of an active exoskeleton that enhances the operator power in the manufacturing field was demonstrated in literature to lead to beneficial effects in terms of reducing fatiguing and the occurrence of musculo-skeletal diseases. However, a large number of manufacturing operations would not benefit from power increases because it rather requires the modulation of the operator stiffness. However, in literature, considerably less attention was given to those robotic devices that regulate their stiffness based on the operator stiffness, even if their introduction in the line would aid the operator during different manipulations respect with the exoskeletons with variable power. In this thesis the description of the command logic of an exoskeleton for manufacturing applications, whose stiffness is modulated based on the operator stiffness, is described. Since the operator stiffness cannot be mechanically measured without deflecting the limb, an estimation based on the superficial Electromyographic signal is required. A model composed of 1 joint and 2 antagonist muscles was developed to approximate the elbow and the wrist joints. Each muscle was approximated as the Hill model and the analysis of the joint stiffness, at different joint angle and muscle activations, was performed. The same Hill muscle model was then implemented in a 2 joint and 6 muscles (2J6M) model which approximated the elbow-shoulder system. Since the estimation of the exerted stiffness with a 2J6M model would be quite onerous in terms of processing time, the estimation of the operator end-point stiffness in realtime would therefore be questionable. Then, a linear relation between the end-point stiffness and the component of muscle activation that does not generate any end-point force, is proposed. Once the stiffness the operator exerts was estimated, three command logics that identifies the stiffness the exoskeleton is required to exert are proposed. These proposed command logics are: Proportional, Integral 1 s, and Integral 2 s. The stiffening exerted by a device in which a Proportional logic is implemented is proportional, sample by sample, to the estimated stiffness exerted by the operator. The stiffening exerted by the exoskeleton in which an Integral logic is implemented is proportional to the stiffness exerted by the operator, averaged along the previous 1 second (Integral 1 s) or 2 seconds (Integral 2 s). The most effective command logic, among the proposed ones, was identified with empirical tests conducted on subjects using a wrist haptic device (the Hi5, developed by the Bioengineering group of the Imperial College of London). The experimental protocol consisted in a wrist flexion/extension tracking task with an external perturbation, alternated with isometric force exertion for the estimation of the occurrence of the fatigue. The fatigue perceived by the subject, the tracking error, defined as the RMS of the difference between wrist and target angles, and the energy consumption, defined as the sum of the squared signals recorded from two antagonist muscles, indicated the Integral 1 s logic to be the most effective for controlling the exoskeleton. A logistic relation between the stiffness exerted by the subject and the stiffness exerted by the robotic devices was selected, because it assured a smooth transition between the maximum and the minimum stiffness the device is required to exert. However, the logistic relation parameters are subject-specific, therefore an experimental estimation is required. An example was provided. Finally, the literature about variable stiffness actuators was analyzed to identify the most suitable device for exoskeleton stiffness modulation. This actuator is intended to be integrated on an existing exoskeleton that already enhances the operator power based on the operator Electromyographic signal. The identified variable stiffness actuator is the DLR FSJ, which controls its stiffness modulating the preload of a single spring

    Exploring 3 DOF upper limb dummy design method for upper limb impedance analysis

    Get PDF
    Department of Mechanical EngineeringPatients with neurological diseases such as stroke are accompanied by joint construction, rigidity, and spasticity. This phenomenon can change the inherent mechanical properties of the muscles and tendons of the disabled upper extremities, and the mechanical impedance change of the upper extremities. An investigation was conducted to produce a dummy model of upper extremities to identify these mechanical impedance changes. First, the muscles affecting the shoulder and elbow joints in the upper extremities of the human body, parameters of muscles, and the main muscles in the direction of motion described in the existing literature were investigated. And then, the relative torque of individual muscles was calculated for imitating the major muscle muscles, and the priority of the muscles for each direction of motion was selected after comparison with the main muscles. In addition, through the existing literature, the muscles and extent of stiffness in stroke patients were investigated, and through expert advice, muscles were screened by excluding those with the same function but with little impact. For the development of spring-based upper limb dummy model, the upper limb muscle stiffness value was obtained by referring to the OpenSim platform model, and the parallel elastic element stiffness value of the muscle was obtained because the objective was to observe the passive movement of the muscle. Five postures were selected for the experiment, and the muscles where parallel elastic element stiffness was identified in each posture were investigated. Afterward, we checked the Origin & Insertion of each muscle to investigate inter-muscular interference and interference with the upper limb dummy, and to prevent interference by spreading the muscle in the direction of the moment-arm. The length of the upper limb dummy frame was based on Anthropometric Parameter, and the upper limb dummy design was carried out by reflecting the above points.clos

    Studie zur neuromuskulären Stabilisierung des Sprunggelenkkomplexes anhand ausgewählter Muskeln

    Get PDF
    Das erfolgreiche Interagieren mit der Umwelt ist bezüglich der motorischen Kontrolle des Bewegungsapparates eine komplexe Aufgabe. Bei sich ändernden äußeren Anforderungen muss eine situationsadäquate Regulation der involvierten motorischen Strukturen erfolgen. Dazu müssen neuromuskuläre Prozesse im Sinne der Aufgabenerfüllung aufeinander abgestimmt werden, um beispielsweise ein externes Objekt sicher kontrollieren zu können. Wird die Stabilität während der Aufgabenerfüllung nicht durch die Umwelt (bzw. das Interaktionsobjekt) gesichert, muss das neuromuskuläre System diese Ausgabe übernehmen

    Design and Control of the McKibben Artificial Muscles Actuated Humanoid Manipulator

    Get PDF
    The McKibben Pneumatic Artificial Muscles (PAMs) are expected to endow the advanced robots with the ability of coexisting and cooperating with humans. However, the application of PAMs is still severely hindered by some critical issues. Focusing on the bionic design issue, this chapter in detail presents the design of a 7-degree-of-freedom (DOF) human-arm-like manipulator. It takes the antagonized PAMs and Bowden cables to mimic the muscle-tendon-ligament structure of human arm by elaborately configuring the DOFs and flexibly deploying the routing of Bowden cables; as a result, the DOFs of the analog shoulder, elbow, and wrist of the robotic arm intersect at a point respectively and the motion of these DOFs is independent from each other for convenience of human-like motion. The model imprecision caused by the strong nonlinearity is universally acknowledged as a main drawback of the PAM systems. Focusing on this issue, this chapter views the model imprecision as an internal disturbance, and presents an approach that observe these disturbances with extended-state-observer (ESO) and compensate them with full-order-sliding-mode-controller (fSMC), via experiments validated the human-like motion performance with expected robustness and tracking accuracy. Finally, some variants of PAMs for remedying the drawbacks of the PAM systems are discussed

    Muscle activation mapping of skeletal hand motion: an evolutionary approach.

    Get PDF
    Creating controlled dynamic character animation consists of mathe- matical modelling of muscles and solving the activation dynamics that form the key to coordination. But biomechanical simulation and control is com- putationally expensive involving complex di erential equations and is not suitable for real-time platforms like games. Performing such computations at every time-step reduces frame rate. Modern games use generic soft- ware packages called physics engines to perform a wide variety of in-game physical e ects. The physics engines are optimized for gaming platforms. Therefore, a physics engine compatible model of anatomical muscles and an alternative control architecture is essential to create biomechanical charac- ters in games. This thesis presents a system that generates muscle activations from captured motion by borrowing principles from biomechanics and neural con- trol. A generic physics engine compliant muscle model primitive is also de- veloped. The muscle model primitive forms the motion actuator and is an integral part of the physical model used in the simulation. This thesis investigates a stochastic solution to create a controller that mimics the neural control system employed in the human body. The control system uses evolutionary neural networks that evolve its weights using genetic algorithms. Examples and guidance often act as templates in muscle training during all stages of human life. Similarly, the neural con- troller attempts to learn muscle coordination through input motion samples. The thesis also explores the objective functions developed that aids in the genetic evolution of the neural network. Character interaction with the game world is still a pre-animated behaviour in most current games. Physically-based procedural hand ani- mation is a step towards autonomous interaction of game characters with the game world. The neural controller and the muscle primitive developed are used to animate a dynamic model of a human hand within a real-time physics engine environment

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device
    corecore