69,242 research outputs found

    Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory

    Get PDF
    This work was funded by a BBSRC grant (BB/G021538/2) to all authors.Peer reviewedPreprin

    Automatic memory processes in normal ageing and Alzheimer’s disease

    Get PDF
    This study examined the contribution of automatic and controlled uses of memory to stem completion in young, middle-aged and older adults, and compared these data with a study involving patients with Alzheimer’s disease (AD) who performed the same task (Hudson and Robertson, 2007). In an inclusion task participants aimed to complete three-letter word stems with a previously studied word, in an exclusion task the aim was to avoid using studied words to complete stems. Performances under inclusion and exclusion conditions were contrasted to obtain estimates of controlled and automatic memory processes using process-dissociation calculations (Jacoby, 1991). An age-related decline, evident from middle age was observed for the estimate of controlled processing, whereas the estimate of automatic processing remained invariant across the age groups. This pattern stands in contrast to what is observed in AD, where both controlled and automatic processes have been shown to be impaired. Therefore, the impairment in memory processing on stem completion that is found in AD is qualitatively different from that observed in normal ageing

    Spotlight on dream recall. The ages of dreams

    Get PDF
    Brain and sleep maturation covary across different stages of life. At the same time, dream generation and dream recall are intrinsically dependent on the development of neural systems. The aim of this paper is to review the existing studies about dreaming in infancy, adulthood, and the elderly stage of life, assessing whether dream mentation may reflect changes of the underlying cerebral activity and cognitive processes. It should be mentioned that some evidence from childhood investigations, albeit still weak and contrasting, revealed a certain correlation between cognitive skills and specific features of dream reports. In this respect, infantile amnesia, confabulatory reports, dream-reality discerning, and limitation in language production and emotional comprehension should be considered as important confounding factors. Differently, growing evidence in adults suggests that the neurophysiological mechanisms underlying the encoding and retrieval of episodic memories may remain the same across different states of consciousness. More directly, some studies on adults point to shared neural mechanisms between waking cognition and corresponding dream features. A general decline in the dream recall frequency is commonly reported in the elderly, and it is explained in terms of a diminished interest in dreaming and in its emotional salience. Although empirical evidence is not yet available, an alternative hypothesis associates this reduction to an age-related cognitive decline. The state of the art of the existing knowledge is partially due to the variety of methods used to investigate dream experience. Very few studies in elderly and no investigations in childhood have been performed to understand whether dream recall is related to specific electrophysiological pattern at different ages. Most of all, the lack of longitudinal psychophysiological studies seems to be the main issue. As a main message, we suggest that future longitudinal studies should collect dream reports upon awakening from different sleep states and include neurobiological measures with cognitive performance

    Survival of the Fittest: Increased Stimulus Competition During Encoding Results in Fewer but More Robust Memory Traces

    Get PDF
    Forgetting can be accounted for by time-indexed decay as well as competition-based interference processes. Although conventionally seen as competing theories of forgetting processes, Altmann and colleagues argued for a functional interaction between decay and interference. They revealed that, in short-term memory, time-based forgetting occurred at a faster rate under conditions of high proactive interference compared to conditions of low proactive interference. However, it is unknown whether interactive effects between decay-based forgetting and interference-based forgetting also exist in long-term memory. We employed a delayed memory recognition paradigm for visual indoor and outdoor scenes, measuring recognition accuracy at two time-points, immediately after learning and after 1 week, while interference was indexed by the number of images in a semantic category. We found that higher levels of interference during encoding led to a slower subsequent decay rate. In contrast to the findings in working-memory, our results suggest that a "survival of the fittest" principle applies to long-term memory processes, in which stimulus competition during encoding results in fewer, but also more robust memory traces, which decay at a slower rate. Conversely, low levels of interference during encoding allow more memory traces to form initially, which, however, subsequently decay at a faster rate. Our findings provide new insights into the mechanism of forgetting and could inform neurobiological models of forgetting

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    Stochastic accumulation of feature information in perception and memory

    Get PDF
    It is now well established that the time course of perceptual processing influences the first second or so of performance in a wide variety of cognitive tasks. Over the last20 years, there has been a shift from modeling the speed at which a display is processed, to modeling the speed at which different features of the display are perceived and formalizing how this perceptual information is used in decision making. The first of these models(Lamberts, 1995) was implemented to fit the time course of performance in a speeded perceptual categorization task and assumed a simple stochastic accumulation of feature information. Subsequently, similar approaches have been used to model performance in a range of cognitive tasks including identification, absolute identification, perceptual matching, recognition, visual search, and word processing, again assuming a simple stochastic accumulation of feature information from both the stimulus and representations held in memory. These models are typically fit to data from signal-to-respond experiments whereby the effects of stimulus exposure duration on performance are examined, but response times (RTs) and RT distributions have also been modeled. In this article, we review this approach and explore the insights it has provided about the interplay between perceptual processing, memory retrieval, and decision making in a variety of tasks. In so doing, we highlight how such approaches can continue to usefully contribute to our understanding of cognition

    Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Get PDF
    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories
    corecore