57,633 research outputs found

    Digital image correlation techniques applied to LANDSAT multispectral imagery

    Get PDF
    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates

    Symmetry-guided nonrigid registration: the case for distortion correction in multidimensional photoemission spectroscopy

    Full text link
    Image symmetrization is an effective strategy to correct symmetry distortion in experimental data for which symmetry is essential in the subsequent analysis. In the process, a coordinate transform, the symmetrization transform, is required to undo the distortion. The transform may be determined by image registration (i.e. alignment) with symmetry constraints imposed in the registration target and in the iterative parameter tuning, which we call symmetry-guided registration. An example use case of image symmetrization is found in electronic band structure mapping by multidimensional photoemission spectroscopy, which employs a 3D time-of-flight detector to measure electrons sorted into the momentum (kxk_x, kyk_y) and energy (EE) coordinates. In reality, imperfect instrument design, sample geometry and experimental settings cause distortion of the photoelectron trajectories and, therefore, the symmetry in the measured band structure, which hinders the full understanding and use of the volumetric datasets. We demonstrate that symmetry-guided registration can correct the symmetry distortion in the momentum-resolved photoemission patterns. Using proposed symmetry metrics, we show quantitatively that the iterative approach to symmetrization outperforms its non-iterative counterpart in the restored symmetry of the outcome while preserving the average shape of the photoemission pattern. Our approach is generalizable to distortion corrections in different types of symmetries and should also find applications in other experimental methods that produce images with similar features

    Introduction to Thematic Mapper investigations. Section 1: Radiometry. Section 2: Geometry

    Get PDF
    An overview of papers which deal with radiometric characterization of the TM sensor is presented. Spectral characteristics are summarized. The geometric accuracy of TM are also examined. Aspects of prelaunch and post launch sensor performance, ground processing techniques, and error correction are also investigated

    Equity of Attention: Amortizing Individual Fairness in Rankings

    Get PDF
    Rankings of people and items are at the heart of selection-making, match-making, and recommender systems, ranging from employment sites to sharing economy platforms. As ranking positions influence the amount of attention the ranked subjects receive, biases in rankings can lead to unfair distribution of opportunities and resources, such as jobs or income. This paper proposes new measures and mechanisms to quantify and mitigate unfairness from a bias inherent to all rankings, namely, the position bias, which leads to disproportionately less attention being paid to low-ranked subjects. Our approach differs from recent fair ranking approaches in two important ways. First, existing works measure unfairness at the level of subject groups while our measures capture unfairness at the level of individual subjects, and as such subsume group unfairness. Second, as no single ranking can achieve individual attention fairness, we propose a novel mechanism that achieves amortized fairness, where attention accumulated across a series of rankings is proportional to accumulated relevance. We formulate the challenge of achieving amortized individual fairness subject to constraints on ranking quality as an online optimization problem and show that it can be solved as an integer linear program. Our experimental evaluation reveals that unfair attention distribution in rankings can be substantial, and demonstrates that our method can improve individual fairness while retaining high ranking quality.Comment: Accepted to SIGIR 201

    Astrometry with "Carte du Ciel" plates, San Fernando zone. I. Digitization and measurement using a flatbed scanner

    Full text link
    We present an original method of digitizing and astrometrically reducing "Carte du Ciel" plate material using an inexpensive flatbed scanner, to demonstrate that for this material there is an alternative to more specialized measuring machines that are very few in number and thus not readily available. The sample of plates chosen to develop this method are original "Carte du Ciel" plates of the San Fernando zone, photographic material with a mean epoch 1903.6, and a limiting photographic magnitude ~14.5, covering the declination range of -10 < dec < -2. Digitization has been made using a commercial flatbed scanner, demonstrating the internal precision that can be attained with such a device. A variety of post-scan corrections are shown to be necessary. In particular, the large distortion introduced by the non-uniform action of the scanner is modelled using multiple scans of each plate. We also tackle the specific problems associated with the triple-exposure images on some plates and the grid lines present on all. The final measures are reduced to celestial coordinates using the Tycho-2 Catalogue. The internal precision obtained over a single plate, 3microns ~ 0.18" in each axis, is comparable to what is realized with similar plate material using slower, less affordable, and less widely available conventional measuring machines, such as a PDS microdensitometer. The accuracy attained over large multi-plate areas, employing an overlapping plate technique, is estimated at 0.2".Comment: 16 pages, 19 figures and 3 tables. Accepted for publication in A&
    • …
    corecore