51 research outputs found

    Real-World Evaluation of Full-Duplex Millimeter Wave Communication Systems

    Full text link
    Noteworthy strides continue to be made in the development of full-duplex millimeter wave (mmWave) communication systems, but most of this progress has been built on theoretical models and validated through simulation. In this work, we conduct a long overdue real-world evaluation of full-duplex mmWave systems using off-the-shelf 60 GHz phased arrays. Using an experimental full-duplex base station, we collect over 200,000 measurements of self-interference by electronically sweeping its transmit and receive beams across a dense spatial profile, shedding light on the effects of the environment, array positioning, and beam steering direction. We then call attention to five key challenges faced by practical full-duplex mmWave systems and, with these in mind, propose a general framework for beamforming-based full-duplex solutions. Guided by this framework, we introduce a novel solution called STEER+, a more robust version of recent work called STEER, and experimentally evaluate both in a real-world setting with actual downlink and uplink users. Rather than purely minimize self-interference as with STEER, STEER+ makes use of additional measurements to maximize spectral efficiency, which proves to make it much less sensitive to one's choice of design parameters. We experimentally show that STEER+ can reliably reduce self-interference to near or below the noise floor while maintaining high SNR on the downlink and uplink, thus enabling full-duplex operation purely via beamforming.Comment: This paper has been submitted to the IEEE for review and possible publication; copyright may change without notic

    Analysis of the sum rate for massive MIMO using 10 GHz measurements

    Get PDF
    Orientador: Gustavo FraidenraichTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho apresenta um conjunto de contribuições para caracterização e modelagem de canais reais de rádio abordando aspectos relacionados com as condições favoráveis de propagação para sistemas massive MIMO. Discutiremos como caracterizar canais de rádio em um ambiente real, processamento de dados e análise das condições favoráveis de propagação. Em uma segunda parte, focamos na determinação teórica de alguns aspectos da tecnologia de massive MIMO utilizando propriedades de distribuições matriciais Wishart. Inicialmente, apresentamos uma contribuição sobre a aplicação do algoritmo ESPRIT, para estimar parâmetros de um conjunto de dados multidimensional. Obtivemos dados por varredura em frequência de um Analisador Vetorial de Rede e os adaptamos para o algoritmo ESPRIT. Mostramos como remover a influência do ganho de padrão de antenas e como utilizar um gerador de modelo de canal baseado nas medidas reais de canal de rádio. As medidas foram feitas na frequência de 10.1 GHz com largura de faixa de 500 MHz. Utilizando um gerador de modelo de canal, fomos além do universo das simulações por distribuições Gaussianas. Introduzimos o conceito de propagação favorável e analisamos condições de linha-de-visada usando arranjos lineares uniformes e arranjos retangulares uniformes de antena. Como novidade da pesquisa, mostramos os benefícios de explorar um número extra de graus de liberdade devido à escolha dos formatos de arranjo de antenas e ao aumento do número de elementos. Esta propriedade é observada ao analisarmos a distribuição dos autovalores de matrizes Gramianas. Em seguida, estendemos o mesmo raciocínio para as matrizes de canal geradas a partir de informações reais e verificamos se as propriedades ainda permaneceriam válidas. Na segunda parte deste trabalho, incluímos mais de uma antena no terminal móvel e calculamos a probabilidade de indisponibilidade para várias configurações de antenas e número arbitrário de usuários. Esboçamos inicialmente a formulação para a informação mútua e, em seguida, calculamos os resultados exatos em uma situação com dois usuários e duas antenas, tanto na estação base (EB) como nos terminais de usuário(TU). Visto que as formulações para a derivação exata dos casos com mais antenas e mais usuários mostrou-se muito intrincada, propusemos uma aproximação Gaussiana para simplificar o problema. Esta aproximação foi validada por simulações Monte Carlo para diferentes relações sinal/ruídoAbstract: This thesis presents a set of contributions for channel modeling and characterization of real radio channels delineating aspects related with the favorable propagation for massive MIMO systems. We will discuss about how to proceed for characterizing radio channels in an real environment , data processing, and analysis of favorable conditions. In a second part, we focused on determination of some theoretical aspects of the Massive MIMO technology using properties of Wishart distribution matrices. We initially present a contribution on the application of ESPRIT algorithm for estimating a multidimensional set of measured data. We have obtained data by frequency sweep carried out by a vector network analyzer(VNA) and adapted it to fit in the ESPRIT algorithm. We show how to remove antenna pattern gain using virtual antenna arrays and how to use a channel model generator based on radio channel measurements of real environments. The measurements were conducted at the frequency of 10.1 GHz and 500 MHz bandwidth. By using a channel model generator, we have explored beyond the simulation of Gaussian Distributions. We will introduce the concept of favorable propagation and analyze the line-of-sight conditions using ULA and URA array shapes. As a research novelty, we will show the benefits of exploiting an extra degree of freedom due to the choice of the antenna shapes and amount of antenna elements. We observe these properties through the distribution of the Gramian Matrices. Next, we extend the same rationale to channel matrices generated from real channels and we verify that the properties are still valid. In a second part of the research work, we included more than one antenna in the mobile terminals and calculated the outage probability for several antenna configurations and arbitrary number users. We introduce a formulation for mutual information and then we calculate exact results in a case with two users with two antennas in both Base Station (BS) and User Terminals (UT). Since the formulations to the exact derivation for cases with more antennas and users seems to be intricate, we propose a Gaussian approximation solution to simplify the problem. We validated this approximation with Monte Carlo simulations for different signal-to-noise ratiosDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica248416/2013-8CNPQCAPE

    Survey of millimeter-wave propagation measurements and models in indoor environments

    Get PDF
    The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    Channel Simulators for MmWave and 5G Applications

    Get PDF
    Along with the tremendous growth of extremely high traffic demand, 5G radio access technology, is becoming the core component to support massive and multifarious connected devices and real-time, and to offer high reliability wireless communications with high data rate. And millimeter-wave (mmWave) range with a huge frequency spectrum from 3 GHz to 300GHz will perfectly meet the multi-gigabit communicative demand. However, mmWave usage also generally brings new challenges, such as coping with high attenuation or path losses. As an effective method to evaluate the performance of the new concept in communication networks, nowadays, several channel models and simulators have been proposed and developped, such as, WINNER, COST-2100, IMT-Advanced, METIS, NYU Wire-less and QuaDRiGa etc. The thesis goals have been to offer an overview of the advantages and disadvantages of various mmWave channel models existing in the literature, based on the published literature, and to compare based on simulations some of the main features of two selected open-source models, namely the WINNER 2 and QuaDRiGa channel models. In the future, more mmWave channel models are planned to be tested and simulated for a better understanding of their suitability for various mmWave applications

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems
    corecore