396 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Environmental engineering applications of electronic nose systems based on MOX gas sensors

    Get PDF
    Nowadays, the electronic nose (e-nose) has gained a huge amount of attention due to its ability to detect and differentiate mixtures of various gases and odors using a limited number of sensors. Its applications in the environmental fields include analysis of the parameters for environmental control, process control, and confirming the efficiency of the odor-control systems. The e-nose has been developed by mimicking the olfactory system of mammals. This paper investigates e-noses and their sensors for the detection of environmental contaminants. Among different types of gas chemical sensors, metal oxide semiconductor sensors (MOXs) can be used for the detection of volatile compounds in air at ppm and sub-ppm levels. In this regard, the advantages and disadvantages of MOX sensors and the solutions to solve the problems arising upon these sensors’ applications are addressed, and the research works in the field of environmental contamination monitoring are overviewed. These studies have revealed the suitability of e-noses for most of the reported applications, especially when the tools were specifically developed for that application, e.g., in the facilities of water and wastewater management systems. As a general rule, the literature review discusses the aspects related to various applications as well as the development of effective solutions. However, the main limitation in the expansion of the use of e-noses as an environmental monitoring tool is their complexity and lack of specific standards, which can be corrected through appropriate data processing methods applications

    Polymer-Based Micromachining for Scalable and Cost-Effective Fabrication of Gap Waveguide Devices Beyond 100 GHz

    Get PDF
    The terahertz (THz) frequency bands have gained attention over the past few years due to the growing number of applications in fields like communication, healthcare, imaging, and spectroscopy. Above 100 GHz transmission line losses become dominating, and waveguides are typically used for transmission. As the operating frequency approaches higher frequencies, the dimensions of the waveguide-based components continue to decrease. This makes the traditional machine-based (computer numerical control, CNC) fabrication method increasingly challenging in terms of time, cost, and volume production. Micromachining has the potential of addressing the manufacturing issues of THz waveguide components. However, the current microfabrication techniques either suffer from technological immaturity, are time-consuming, or lack sufficient cost-efficiency. A straightforward, fast, and low-cost fabrication method that can offer batch fabrication of waveguide components operating at THz frequency range is needed to address the requirements.A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss of planar waveguides, and which does not require any electrical connections between the metal walls. It therefore offers competitive loss performance together with providing several benefits in terms of assembly and integration of active components. This thesis demonstrates the realization of gap waveguide components operating above 100 GHz, in a low-cost and time-efficient way employing the development of new polymer-based fabrication methods.A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 - 170 GHz). The injection molding of OSTEMER is an uncomplicated and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.A dry film photoresist-based method is also presented for the fabrication of waveguide components operating above 100 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using complex and advanced machinery. For the integration of active circuits and passive waveguides section a straightforward solution has been demonstrated. By utilizing dry film photoresist, a periodic metal pin array has been fabricated and incorporated in a waveguide to microstrip transition that can be an effective and low-cost way of integrating MMIC of arbitrary size to waveguide blocks

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Investigation and development of titanium nitride solid-state potentiometric pH sensor

    Get PDF
    The measurement of pH value is crucial parameter in various fields like, drinking water monitoring, food preparation, biomedical and environmental applications. The most common device for pH sensing is the conventional pH glass electrode. While glass electrodes have several advantages, such as Nernstian sensitivity, superior ion selectivity, excellent stability, and extensive operating range, they have several key disadvantages. pH glass electrodes need to be stored in buffer solutions, they are fragile and have limited size and shape, making them impractical for some applications, such as being potentially used as miniature pH sensors for capsule endoscopy and ambulatory esophageal pH monitoring. To address these issues of limitations of glass electrodes, various metal oxides have been investigated and proposed as potential electrode materials for the development of pH sensors. Solid metal sensors offer unique features such as insolubility, stability, mechanical strength, and possibility of miniaturization. However, the main drawback of the metal oxide pH sensors is the interference caused by oxidizing and reducing agents present in some sample solutions. To reduce the redox interference, metal nitride solid sensors were investigated in this project with the potential for the development of high-sensitivity pH sensing electrodes. Metal nitrides are refractory, have high melting points and interstitial defects, and, at room temperature, they are chemically stable and resist hydrolysis caused by weak acids. There are many reports on different metal nitrides electrodes in literature, of which several have been previously investigated for use as pH sensors. Here, specifically, thin films of titanium nitride (TiN) were manufactured using radio frequency magnetron sputtering. The effect of sputtering parameters (e.g., thickness, sputter power, gas composition) were investigated to optimize the materials for use as pH sensor. Additionally, the underlining mechanism governing the pH sensitivity of these metal nitrides was investigated by examining the pH sensing properties (i.e., sensitivity, hysteresis, and drift) and the effect of redox agents. The successfully optimized material was then used to construct and demonstrate the concept of a solid-state pH sensor using an appropriate reference electrode. The solid-state TiN sensor paves the way for future development of a miniaturised pH sensor capsule for biomedical applications or lab-on-a-chip pH sensor for environmental and industrial applications. Expending the realms of pH monitoring, currently limited by the glass pH electrode

    Liquid cooled micro-scale gradient system for magnetic resonance

    Get PDF
    Schaltbare magnetische Feldgradientspulen sind ein geeignetes Werkzeug für die Modulation der Kernspinpräzession in der gepulsten Kernspinresonanzspektroskopie und Bildgebung. Die Magnetresonanztomographie von mikroskopischen Proben benötigt starke, schnell schaltbare Magnetfeldgradienten, um diffusionsbedingte Artefakte zu unterdrücken, Suszeptibilitätseffekte abzuschwächen und um die Messzeit zu verkürzen. Verschiedene Techniken können eingesetzt werden, um eine hohe Gradientenintensität zu erreichen, wie zum Beispiel die Erhöhung der Stromstärke oder die Steigerung der Windungsdichte der Feldspule. Ein weiterer, geeigneter technischer Ansatz besteht darin, die Gradientenspulen näher an der Probe zu platzieren. Als Konsequenz wird aber die durch die Joule-Erwärmung verursachte Wärmeentwicklung zu einem zentralen Problem. In dieser Arbeit wird ein neuartiges Design, ein Mikroherstellungsprozess und eine Kernspin-Evaluierung eines Feldgradientenchips präsentiert. Die Gradientenspulen wurden besonders hoch miniaturisiert und durch den Einsatz von verbesserten und neuartigen Strukturierungsverfahren entwickelt. Zuerst wird ein Fertigungsverfahren zur Herstellung einer kompakten Hochfrequenzspule vorgestellt. Durch den Einsatz einer maskenlosen Rückseitenlithographie konnte die Prozesskomplexität reduziert werden. Dieses Verfahren wurde durch Tintenstrahldruck mit Nanopartikeln realisiert, wobei die gedruckten Strukturen selbst als lithographische Maske für die Herstellung einer galvanischen Form dienen. Somit werden die Seitenwände der galvanischen Form durch die gedruckte Seed-Schicht optimal selbst ausgerichtet. Dies ermöglichte eine anisotrope Galvanisierung, um eine höhere elektrische Leitfähigkeit der gedruckten Leiterbahnen zu erzielen. Aus den Erkenntnissen der ausgearbeiteten Herstellungsprozesse wurde ein optimiertes Spulendesign für ein-axiale sowie drei-axiale linearen Gradientenchips entwickelt. Die einachsige lineare zz-Gradientenspule wurde mit der Stream-Function-Methode berechnet, wobei die Optimierung darauf abgestimmt wurde, eine minimale Verlustleistung zu erzielen. Die Gradientenspulen wurden auf zwei Doppellagen implementiert, die mittels Cu-Galvanik in Kombination mit fotodefinierbaren Trockenfilm-Laminaten aufgebracht wurden. Bei dem hier vorgestellten Herstellungsverfahren diente die erste Metallisierungschicht gleichzeitig dazu, Widerstands-Temperaturdetektoren zu integrieren. Um niederohmige Spulen zu realisieren wurde der Galvanisierungsprozess soweit angepasst, um eine hohe Schichtdicke zu erzielen. Die Chipstruktur beinhaltet ein aktives Kühlsystem, um dem Aufheizen der Spulen entgegenzuwirken. Thermographische Aufnahmen in Kombination mit den eingebetteten Temperatursensoren ermöglichen es, die Erhitzung der Spule zu analysieren, um die Strombelastbarkeit zu ermitteln. Die Gradientenspule wurde mit einer Hochfrequenz-Mikrospule in einer Flip-Chip-Konfiguration zusammengebaut, und mit diesem Aufbau wurde ein eindimensionales Kernspinexperiment durchgeführt. Es wurde eine Gradienteneffizienz von 3.15 Tm1A1T\,m^{−1}\,A^{−1} bei einer Profillänge von 1.2 mmmm erreicht

    PhD students´day FMST 2023

    Get PDF
    The authors gave oral presentations of their work online as part of a Doctoral Students’ Day held on 15 June 2023, and they reflect the challenging work done by the students and their supervisors in the fields of metallurgy, materials engineering and management. There are 82 contributions in total, covering a range of areas – metallurgical technology, thermal engineering and fuels in industry, chemical metallurgy, nanotechnology, materials science and engineering, and industrial systems management. This represents a cross-section of the diverse topics investigated by doctoral students at the faculty, and it will provide a guide for Master’s graduates in these or similar disciplines who are interested in pursuing their scientific careers further, whether they are from the faculty here in Ostrava or engineering faculties elsewhere in the Czech Republic. The quality of the contributions varies: some are of average quality, but many reach a standard comparable with research articles published in established journals focusing on disciplines of materials technology. The diversity of topics, and in some cases the excellence of the contributions, with logical structure and clearly formulated conclusions, reflect the high standard of the doctoral programme at the faculty.Ostrav

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field
    corecore